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Abstract—PPSS is a central primitive introduced by
Bagherzandi et al. [2] which allows a user to store a secret
among n servers such that the user can later reconstruct
the secret with the sole possession of a single password
by contacting t+ 1 (t < n) servers. At the same time, an
attacker breaking into t of these servers - and controlling
all communication channels - learns nothing about the
secret (or the password). Thus, PPSS schemes are ideal
for on-line storing of valuable secrets when retrieval solely
relies on a memorizable password.

We show the most efficient Password-Protected Secret
Sharing (PPSS) to date (and its implied Threshold-PAKE
scheme), which is optimal in round communication as in
Jarecki et al. [11] but which improves computation and
communication complexity over that scheme requiring a
single per-server exponentiation for the client and a single
exponentiation for the server. As with the schemes from
[11] and Camenisch et al. [4] we do not require secure
channels or PKI other than in the initialization stage.

We prove the security of our PPSS scheme in the
Universally Composable (UC) model. For this we present
a UC definition of PPSS that relaxes the UC formalism of
[4] in a way that enables more efficient PPSS schemes (by
dispensing with the need to extract the user’s password
in the simulation) and present a UC-based definition of
Oblivious PRF (OPRF) that is more general than the
(Verifiable) OPRF definition from [11] and is also crucial
for enabling our performance optimization.

1. Introduction

Two well-known facts about passwords: They are
the dominant form of authentication in the online world
and they are routinely leaked, particularly via offline
dictionary attacks performed on password-related in-
formation stolen from Internet servers (e.g., [16]). Yet
another fact is that passwords are protecting increas-
ingly valuable information from financial to personal
to high-value bitcoin wallets. A natural approach for

strengthening such protection would be to distribute the
information over a set of servers using a threshold secret
sharing system, but then the question is how a user
would authenticate to these servers. Reusing the same
password in all servers only increases the password (and
the stored information) vulnerability while memorizing
a different strong password for each server is unrealistic.

PPSS. To address this problem, Bagherzandi et al.
[2] introduced the notion of Password-Protected Se-
cret Sharing (PPSS) in which a user distributes its
information (a secret) among n servers such that the
compromise of any t of them leaks no information on
the secret (and password) while contacting t+1 servers
with the right password reconstructs the secret. A PPSS
is implied by any Threshold Password Authenticated
Key Exchange (T-PAKE) [15] (and vice versa, as shown
in [11]). Before [2] the most efficient T-PAKE proto-
col by MacKenzie et al. [15] required several rounds
of communication and transmission of O(n2) group
elements, while [2] showed a PPSS protocol where
a user exchanges 3 constant-sized messages (4 in the
typical case that a user initiates the communication)
with each server and performs 8 (multi) exponentia-
tions per server. In addition, the PPSS solution of [2]
assumes PKI-authenticated channels between a user and
each server during both initialization and reconstruction.
Later, Camenisch et al. [4] presented a PPSS protocol
(called T-PASS, for Threshold Password-Authenticated
Secret Sharing, in their work) that does not require
PKI authentication during the reconstruction phase but
costs 14 client exponentiations per server and 7 server-
side exponentiations for each server; it also requires
10 messages between a user and each server in secret
reconstruction. Jarecki et al. [11] provided the most
efficient PPSS solution to date, also without PKI au-
thentication in the reconstruction, with a reconstruction
procedure that takes a single round (two messages) be-
tween a user and each server and only costs two multi-
exponentiations per server for the client and roughly



two multi-exponentiations per each participating server.
Jarecki et al. [11] used an indistinguishability-based

definition of PPSS security adopted from [2] to the
password-only setting (i.e. no PKI assumption), while
[4] provided a Universally Composable (UC) definition
of PPSS (a.k.a. T-PASS) functionality. The essence of
these definitions is that the only attack available to
the adversary is the inevitable one, namely, an online
dictionary attack where validating a single password
guess requires either t+1 instances of the servers or the
user to interact with the man-in-the-middle adversary.

1.1. Our contributions.

Highly efficient performance. Our starting point is the
PPSS scheme of Jarecki et al. [11], the most efficient
PPSS solution to date, which we modify and improve in
several ways. First, we reduce the computational cost of
the protocol to single exponentiation per server for the
client, and to a a single exponentiation for each server,
which together with an additional exponentiation which
the client reuse for all servers brings the total client
cost to t + 2 exponentiations.1 At the same time, we
preserve the already optimal round complexity of the
scheme but further lower communication by eliminating
three group elements sent from server to client in the
scheme of [11] (the communication from client to server
is already minimal in [11] requiring the transmission
of a single group element). These savings are obtained
by eliminating the per-server public parameters in the
solution from [11] and by forgoing the zero-knowledge
proofs between each server and client required by their
scheme. As with previous efficient PPSS solutions, our
protocol is analyzed in the random oracle model.

Non-reliance on PKI and secure channels. A main
accomplishment of the PPSS schemes of [4] and [11]
is the non-reliance on secure channels or public-key
infrastructure during the reconstruction phase. This is
a major benefit since PPSS assumes a user that only
knows its user id and password, and does not carry
auxiliary devices with authenticated information. More-
over, the increasing vulnerabilities of certificate-based
authentication translates into weaknesses in schemes
that rely on such authentication. Fortunately, we achieve
our optimal performance while still dispensing with the
need of secure channels or PKI (except for a trusted
initialization protocol needed in all PPSS schemes).

1. We remark that the client cost, while smaller by roughly a
factor of two than the client cost in [11], is not minimal: Our client
uses O(t) exponentiations, while the client in the otherwise much
more communication and computation heavy T-PAKE scheme of
MacKenzie et al. [15] uses O(1) exponentiations. Moreover, our
client costs can be further reduced, as we show in a forthcoming
follow-up work: See also footnote 3 in Section 5.

UC security. In addition to the significant performance
improvement relative to [11], we also improve on their
security analysis. That is, we provide two proofs of
security for our PPSS protocol. First, we show that
our solution satisfies the indistinguishability-based def-
inition of PPSS security used in [2], [11]. However,
we also provide a proof that the same scheme satisfies
a UC formalization of PPSS. This formalization is in
itself a significant contribution of our work. Indeed,
while a UC definition of PPSS appeared in the work
of Camenisch et al. [4], our formulation significantly
relaxes this functionality in a way that enables the
proof of our much more efficient scheme. To obtain
this relaxed UC functionality (and the UC proof of our
scheme) we utilize a ticketing mechanism, used e.g.
by [11] in their formalism of V-OPRF (see below),
which allows us to dispense with the need to extract the
user’s input (in this case, the user’s password) during
an execution of a UC PPSS scheme, something that
requires heavier cryptographic mechanisms and results
in higher performance costs, as with the scheme of [4].
The ticketing mechanism ensures that in order to test
a single password guess, the attacker must impersonate
the user to t+1 servers or impersonate t+1 servers to
the client, which is optimal in terms of security against
guessing attacks and constitutes the very essence of the
PPSS security notion.

OPRF. A central ingredient in the scheme of [11]
that we preserve in our solution is the notion of a
Oblivious PRF [9], [13]. Roughly speaking, an OPRF
is a protocol between two parties, one holding a key
k for a PRF f and one holding an input x, where
no party learns anything except for the input holder
that learns fk(x). This notion has been shown to be
useful in many different contexts [7], [9], [13], [14] but
defining it so that it can be implemented inexpensively
is non-trivial. For example, using an MPC-type defini-
tion would require a costly implementation to achieve
concurrent security (as needed here) and would require
secure channels (undesired here). To resolve this prob-
lem, [11] introduced a UC-based OPRF definition that
allowed them to build a PPSS scheme with concurrent
security and without secure channels for reconstruction.
Moreover, their use of a ticketing mechanism in their
OPRF definition (which is also similar in spirit to e.g.
blind signature definitions, cf. [1]) allowed them to ob-
tain very efficient instantiations by avoiding extractable
proofs of knowledge or similar costly mechanisms (this
is the ticketing mechanism that, as said before, we
have borrowed for our own UC formulation of PPSS).
At the same time, in order for the OPRF to fit their
PPSS scheme, [11] strengthen the security notion of
OPRF adding a verifiability property that allows users

2



to detect dishonest behaviors of the PPSS servers during
reconstruction. Unfortunately, this additional property
introduces the need to use zero-knowledge proofs in
the implementation of their OPRF, costing one multi-
exponentiation for the client and server in each client-
server interaction and leads to an increase in the amount
of communication as well.

Here we resolve this problem by relaxing the Ver-
ifiable OPRF (V-OPRF) notion of [11] into a plain
UC OPRF functionality that does not provide verifia-
bility and therefore enables an optimal implementation
without zero-knowledge proofs at all (it also has the
potential of better fitting other OPRF applications). By
showing that this weaker notion of OPRF suffices for
realizing our PPSS, we obtain significant performance
benefits. On the other hand, forgoing the verifiability
property weakens the robustness of our PPSS solution,
namely, the ability to discard incorrect computations
during reconstruction. Yet, we can enjoy the best of the
two worlds: We can run the highly efficient protocol
without zero-knowledge proofs which we prove secure
here, and only resort to the ZK proofs in case the
reconstruction fails. Thus, in the normal case of a non-
adversarial run the cost of zero-knowledge is saved.
Finally, we remark that in real-world applications we
expect n to be a small number, in which case checking
different subsets of t + 1 servers until finding a non-
corrupted subset is a practical approach that completely
dispenses with zero-knowledge proofs.

Applications. As mentioned above, PPSS has obvious
applications for protecting data whose security depends
on a user-memorable password. In particular, this data
can take the form of credentials and keys that when
reconstructed enable strong authentication by the user.
In particular, this allows the implementation of T-PAKE
schemes that bootstrap password authentication while
protecting the password against server compromise for
as long as no more than a threshold of servers is
compromised. Yet another application of PPSS is for
multi-factor authentication protocols (e.g., [17]) where
a user’s device acts as a “server” in a T-PAKE scheme.
Improving the efficiency of PPSS (and the resultant T-
PAKE) is important for all the above cases and partic-
ularly so for enabling the use of a (weak) device as a
PPSS server. In a follow-up work we will formalize UC
functionality for T-PAKE as the threshold extension of
UC PAKE model of [6], and we will show, extending
the result from [11], that the combination of UC-PPSS
and UC-KE (key exchange) results in a UC-secure T-
PAKE scheme.

Recent Related Work. We know of two further recent
examples of using efficient ROM-based implementation
of an OPRF protocol very similar to either the V-OPRF

used in [11] or to the OPRF we use here, in order
to implement some variant of a T-PAKE functionality:
A Pythia Service of [8] and the Distributed Password
Verification scheme of [5]. The first scheme uses a close
variant of the V-OPRF used in [11] for threshold verifi-
cation of password authentication, but these OPRF’s,
and hence the resulting T-PAKE, are not computa-
tionally minimal like because they use zero-knowledge
proofs (as in [11]) and bilinear maps. Moreover, their
proposal assumes the PKI setting. The second scheme
uses essentially the same low-cost OPRF scheme as
the one we analyze here, but it also assumes the PKI
setting. Indeed, the T-PAKE schemes of [5], [8] are
customized for an application where the role of the
client is played by a gateway server, rather than the end-
user, who connects to a threshold of trustee servers to
verify the user’s password. In such application the user
is assumed to send its password to the gateway server
over a PKI-authenticated link, and the gateway server
can be assumed to have authenticated connection to the
trustee servers. By contrast, the reconstruction phase in
our PPSS (and the resulting T-PAKE), while perfectly
applicable to such setting as well, can also be executed
by the end user without any further trust assumptions.2

2. The OPRF Functionality FOPRF

Notation. We use the following notational conventions:
• If x is a string, then x[L] denotes its left half.
• If n is an integer, then [n] denotes set {1, ..., n}.
• 0 is the vector of n 0’s, where n is a consistent

defined elsewhere; 0l is the l-length string of all
zeroes (we simplify it to 0 if there is no possibility
of confusion).

• If D is a set, then |D| denotes its cardinality.
• “:=” denotes the computation of a deterministic

function, while “←” denotes the computation of a
randomized algorithm.

• If D is a set, then x ←R D denotes “picking x
uniformly at random from D”;

• If G is a game and E is an event, then Pr[E||G]
denotes the probability that E occurs in G.

The Functionality. Please refer to Section 1 for an
introduction of the notion of OPRF and its applicability
to PPSS schemes. Here we introduce our UC func-
tionality, FOPRF, presented in Figure 1. It is derived
from the FVOPRF functionality of [11] by stripping off
the “verifiability” properties of the latter. Specifically,

2. Apart of this fundamental difference in trust assumptions, the T-
PAKE schemes of [8] and [5] have additional functional differences
from our PPSS scheme. In particular, the T-PAKE scheme of [5] is
proactive, unlike ours, but uses additive secret-sharing, i.e. it only
works for t = n−1 while our scheme works for any threshold t<n.
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FVOPRF allows a user to check consistency between
different runs of the OPRF; namely, that each time
that the function is run with the same sender on the
same input, the same answer is received (otherwise the
user rejects). This requires senders to have public keys
and requires the OPRF implementation to involve zero-
knowledge proofs. By omitting the verifiability condi-
tion we simplify the OPRF definition, implementation
and applicability.

The functionality FOPRF involves users, senders
and an (ideal-world) adversary denoted U, S,A∗, re-
spectively. We denote by l the security parameter which
determines the output size of the PRF. OPRF evalua-
tion is triggered by an (EVAL, sid , S, x) command from
user U requesting the computation of the PRF of server
S on input x. SNDRCOMPLETE and RCVCOMPLETE
denote the completion of S’s and U ’s computation,
respectively. An (EVAL, sid , S, x) operation from a user
U with sender S is completed by a (RCVCOMPLETE,
sid , U , S, S∗) where S∗ is the identity of a server
that is specified by A∗ and may or may not be equal
to the sender S in the EVAL command. In the case
S = S∗ we have a computation with the intended
sender S while the second case, S 6= S∗, corresponds
to the attacker channeling the request to a different
sender, possibly a corrupted one. In fact, we allow the
adversary to specify a value S∗ which may not even be
a server identity (in such case S∗ will be interpreted as a
pointer to a function table). Thus, there is no guarantee
of correctness of the evaluation request and, moreover,
two requests with same S and x can be answered
differently. This is where our OPRF formalism FOPRF

differs fundamentally from the definition of FVOPRF

in [11] which ensures correct and user-verifiable OPRF
computation. This relaxation simplifies the OPRF func-
tionality by dispensing with two essential elements in
FVOPRF, namely, the “public parameters” π associated
with each server (and used by the user to check correct
evaluation) and the requirement that even corrupted
senders must commit to computing an arbitrary but
deterministic function (represented in FVOPRF by the
circuit M ).

While we allow A∗ to route a user’s request to
the wrong sender we do make sure that A∗ cannot
forge computations by honest senders. As in [11] this
is enforced via a ticketing mechanism that ensures that
for any honest server S, the number of user-completed
OPRF evaluations (i.e., RCVCOMPLETE activations)
with S is no more than the number of SNDRCOM-
PLETE activations of S. Specifically, each sender S is
associated with a ticket value tx(S). Each time that a
sender S completes his interaction with a user, tx(S) in-
creases by 1; each time a user, either honest or corrupt,
completes an interaction that is associated to S, tx(S)

decreases by 1 (provided that it was not zero). This
ticketing approach dispenses with the need to extract
users’ inputs when building a simulator for proving the
security of a given realization of the functionality. This
simplification (which is shared with [11]), together with
the relaxation of the verifiability property as discussed
above, allows for the very simple and efficient OPRF
realization presented in the next section.

The functionality FOPRF maintains a table T used
to record the results of the PRF evaluation by differ-
ent senders on user-requested inputs. Specifically, entry
T (S, x) is defined as the sender’s S PRF evaluated
on input x. The table’s entries are initially undefined
and are filled with random values by FOPRF upon
RCVCOMPLETE activations. We note that T (S, x) is
chosen at random even in case that server S is corrupted
or it corresponds to a function table of the adversary. As
a result, any realization of FOPRF needs to ensure that
evaluations with corrupted senders result in (pseudo)
random outputs and even respect the ticketing mecha-
nism. Note that the values T (S, x) are communicated to
the requesting user but the inputs x remain fully hidden
as they are never communicated to any party, including
A∗. Finally, note that FOPRF provides the adversary
with direct access to all function tables by allowing the
issuance of EVAL requests directly to FOPRF.

3. Realization of FOPRF

The 2HashDH scheme. In Figure 2, we present an
efficient realization of FOPRF in the random oracle
model, based on the 2HashDH-NIZK construction of
FVOPRF in [11] from which we eliminate the zero-
knowledge proofs and the corresponding “public keys”
of servers.

This construction relies on a cyclic group of prime
order m. Let g be a generator of the group. The private
key k is chosen at random from Zm. Each user U main-
tains a table TU which consists of tuples of the form
(S, x, r, f). Let Z be the environment. The construction
uses two hash functions, H1 and H2.

The PRF is defined using blinded exponentiation,
i.e., as fk(x) = H2(x,H1(x)

k). For each value x the
user U wants to evaluate, U picks a random element r in
Zm, which remains the same among different senders.
When U wants to compute fk(x) where k is the private
key of a specific sender S, he sends a = H1(x)

r to S;
S sends back b = ak = H1(x)

rk to U , and U outputs
f = H2(x, b

1/r) = H2(x,H1(x)
k).

We describe the protocol in detail in Fig. 2. The
protocol is described to in the FAUTH-hybrid world
something that facilitates authenticated communication
between participants (see [3] for more details on this
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For each sender S, a table T (S, ·) is initialized to empty.
• Upon receiving (EVAL, sid , S, x) from user U (resp. A∗), record 〈U, S, x〉 (resp. 〈A∗, S, x〉) and send
(EVAL, sid , U, S) (resp. (EVAL, sid ,A∗, S)) to A∗.

• Upon receiving (SNDRCOMPLETE, sid , S) from A∗ increment tx(S) (or set to 1 if previously undefined)
and send (SNDRCOMPLETE, sid) to S or to A∗ if S is not a sender’s identity.

• Upon receiving (RCVCOMPLETE, sid , P, S, S∗) from A∗, recover record 〈P, S, x〉; abort if such triple
does not exist or S is honest and S∗ 6= S or tx(S∗) is 0 or undefined. Otherwise decrement tx(S∗) and:
– If T (S∗, x) is defined, then send (EVAL, sid , T (S∗, x)) to P .
– Otherwise pick ρ at random from {0, 1}l, set T (S∗, x) := ρ and send (EVAL, sid , ρ) to P .

Figure 1. Functionality FOPRF.

• Upon receiving (EVAL, sid , S, x) from Z , U scans its table TU and does the following:

– If there exists r and f such that (S, x, r, f) ∈ TU , then U outputs (EVAL, f ) to Z .
– Otherwise if there exists S′, r and f such that S′ 6= S and (S′, x, r, f) ∈ TU , then U sends

(SEND, (sid , n), U, S, a := H1(x)
r) where n is a random nonce. to FAUTH.

– Otherwise U picks r ←R Zm and sends a := H1(x)
r to S; adds (S, x, r, ∗) to TU .

• Upon receiving (SENT, (sid , n), U, S, a) from FAUTH, S sends (SEND, (sid , n + 1), S, U, b := ak) to
FAUTH where k is the key of S and outputs (SNDRCOMPLETE, sid ) to Z .

• Upon receiving (SENT, (sid , n + 1), S, U, b) from FAUTH, U finds (S, x, r, ∗) in TU and changes it to

(S, x, r, f) and outputs (EVAL, sid , f := H2(x, b
1/r)) to Z .

Figure 2. Protocol 2HashDH in the FAUTH-hybrid world.

functionality). Note that this by itself does not guarantee
the authenticity of the response to an (EVAL, sid , S, x)
activation of the protocol; indeed, in case S is corrupted
there is no way to ensure that the value ρ obtained at the
end of the protocol originates from a well-defined PRF
owned by S (for instance S could be playing man-in-
the-middle between users and two honest senders S1, S2

and thus S could be relaying responses from S1 or S2’s
depending on the identity of the callee U ).

Security analysis. We prove the security of the
2HashDH under the (N,Q) one-more Diffie-Hellman
(DH) assumption, which states that for any polynomial-
time adversary A,

Prk←RZm,gi←R〈g〉[A(·)k,DDH(·)(g, gk, g1, ..., gn) = S]

is negligible, where S = {(gjs , gkjs)|s = 1, ..., Q + 1},
Q is the number of A’s queries to the (·)k oracle, and
js ∈ [N ] for s ∈ [Q+ 1].

In other words, suppose A is equipped with a “kth
power” oracle and a DDH oracle, and THE number of

queries to the former is limited by Q. A is given N
random elements in 〈g〉. Since A is allowed to query
the (·)k oracle Q times, it is able to compute the kth
power of any Q of the N elements. The assumption
postulates that the probability that A computes the kth
power of any Q + 1 of the N elements (i.e. computes
the kth power of “one more” element) is negligible.

Theorem 1. Suppose the (N,Q)-one more DH assump-
tion holds for 〈g〉, where Q is the number of function-
ality executions (i.e. the total amount of messages with
EVALsent by U ) and N = Q + q1 where q1 is the
number of H1(·) queries. Then protocol 2Hash-DH UC-
realizes the FOPRF functionality.

More precisely, for any adversary against the pro-
tocol in Section 2, there is a simulator SIM that pro-
duces a view in the simulated world that no envi-
ronment can distinguish with advantage better than
qS ·εomdh,〈g〉(N,Q)+N2/m, where qS is the number of
senders, εomdh,〈g〉(N,Q) is the probability of violating
the (N,Q)-one more DH assumption and m = | 〈g〉 |.
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1) Pick and record N random elements r1, ..., rN ∈ Zm, and set g1 := gr1 , ..., gN := grN . Set counter
J := 1.

2) Every time when there is a fresh query x to H1(·), answer it with gJ and record (x, rJ , gJ). Set J := J+1.
3) Upon receiving (EVAL, sid , U , S) from FOPRF, send gJ to A as U ’s message to S (suitably formatted

to appear originating from the FAUTH adversary interface) and record 〈U, S, rJ , gJ〉. Set J := J + 1.
4) Upon receiving a from A as some user’s U message to a sender S
• If there is a pair 〈S, k〉 stored in this step, then send ak as the response of S for user U to A.
• Otherwise pick k ←R Zm, record 〈S, k〉 and send ak as the response of S for user U to A.
In either case, send (SNDRCOMPLETE, sid , S) to FOPRF.

5) Upon receiving b from A as some sender’s S′ message to a user U , recover rj and gj corresponding to
U (as stored in step 4) and do the following:
• If a pair 〈S, k〉 was recorded in step 4 with b = gkj , send (RCVCOMPLETE, sid , U , S′, S) to FOPRF.
• Otherwise if there exists p such that yp is defined and b1/rj = yp, then send (SNDRCOMPLETE, sid ,
p) and (RCVCOMPLETE, sid , U , S′, p) to FOPRF.

• Otherwise, choose a unique label p, set yp := b1/rj , record (p, yp), and send (SNDRCOMPLETE, sid ,
p) and (RCVCOMPLETE, sid , U , S′, p) to FOPRF.

6) Every time when there is a fresh query (x, u) to H2(·, ·),
• If there exists a triple (x, ri, gi) stored in step 2, then

– if there exists a pair 〈S, k〉 recorded in step 4 such that u = gki , set S′ = S.
– if there exists a pair (p, yp) recorded in step 5 such that u = yrip , set S′ = p.

then (i) send (EVAL, sid , p′, x) to FOPRF for a unique label p′, (ii) if S′ = p, then send
(SNDRCOMPLETE, sid , S′) (iii) finally, send (RCVCOMPLETE, sid , A∗, p′, S′). If FOPRF ignores
this message then abort and output FAIL. Otherwise after receiving FOPRF’s response (EVAL, sid , ρ),
set H2(x, u) := ρ.

• Otherwise set H2(x, u) to be a random string in {0, 1}l.

Figure 3. The Simulator SIM for the 2HashDH Protocol.

Proof. For any adversary A, we construct a simulator
SIM as in Figure 3.

We now argue that the SIM above generates a view
to an arbitrary Z which is indistinguishable from the
view in the real world. Without loss of generality,
suppose A is a “dummy” adversary who merely pass
through all its computation to Z .

Consider case 1 where Z is in the simulated world
and is able to control U , S and A using the following
interfaces:
• U : Z sends (EVAL, sid , S, x) to U (and U

transmits this message to FOPRF); U outputs ρ
to Z .

• S: S sends (SNDRCOMPLETE, sid ) to Z when
instructed by FOPRF.

• A: Z sends a to A when A acts as a user (and A
gives this message to SIM who acts as a sender),
and sends b to A when A acts as a sender (and A
transmits this message to SIM who acts as a user).
A sends whatever it receives from SIM to Z .

The view of Z in this case is as follows:
• (SNDRCOMPLETE, sid ) from S,

• (EVAL, sid , ρ) from U ,
• gj from A when A acts as a sender,
• ak from A when A acts as a user, and
• responses to H1(·) and H2(·, ·) queries.

Now consider case 2 where Z is in the real world and
is able to control U , S and A using the same interfaces
as in case 1. The view of Z in this case is as follows:
• (SNDRCOMPLETE, sid ) from S,
• (EVAL, sid , f = H2(x,H1(x)

k)) from U ,
• H1(x)

r from A when A acts as a sender,
• ak from A when A acts as a user, and
• responses to H1(·) and H2(·, ·) queries.

We now compare the views generated in the two cases:
• (SNDRCOMPLETE, sid ): In case 1, A receives

(SNDRCOMPLETE, sid ) in step 4: after SIM
receives a from A, it sends ak to A and
(SNDRCOMPLETE, sid , S) to FOPRF, and FOPRF

sends (SNDRCOMPLETE, sid ) to S (who in turn
transmits this message to Z). In case 2, after
S receives a from A, it sends ak to A and
(SNDRCOMPLETE, sid) to Z . From Z’s point of
view, the two cases are exactly the same.
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• (EVAL, sid , ρ) and (EVAL, sid ,
f = H2(x,H1(x)

k)): In case 1, U outputs
(EVAL, sid , ρ) in step 6. The only way to
distinguish between ρ and f is to query the
H2(·, ·) oracle. However, once (x, u = H1(x)

k) is
queried, SIM is able to detect this: If k is the key of
an honest sender, then u = gki holds, which is the
first condition of the first case in step 6. If k is the
key of a sender generated by SIM, it is supposed
to be yp = b1/rj = g

k/rj
j = (grj )k/rj = gk, hence

u = gki = (gri)k = (gk)ri = yrip holds, which
is the second condition of the first case in step
6. After that, SIM can get the proper ρ value by
interacting with FOPRF, i.e. these two values will
be the same (provided that FAIL does not occur).

• gj and H1(x)
r: In case 1, A receives gj in step

4, which is a random element in 〈g〉. In case 2, A
receives H1(x)

r where r is a random value in Zm
chosen by U and not revealed to A. Therefore,
from Z’s point of view, H1(x)

r is random, and
cannot be distinguished from the random gj .

• ak: In case 1, A sends a to SIM and receives ak
from SIM, where k is a random value. In case 2,
A sends a to S and receives ak from S, where k
is the sender’s key, which is randomly chosen. The
two cases are the same.

• answers to H1(·) and H2(·, ·) queries: In case
1, the answers are random from Z’s point of
view. Therefore, Z cannot distinguish them from
answers in case 2.

We conclude that if FAIL does not occur, Z is not able
to distinguish between case 1 (the simulated world)
and case 2 (the real world). Now we upper bound
Pr[FAIL]. Event FAIL occurs in the first case of step
6, where SIM sends a (RCVCOMPLETE, sid , A∗, p′,
S′) message to FOPRF but it is ignored. This can only
happen when the first condition holds and tx(S′) = 0.
For any S̃, let FAIL(S̃) be the particular event that the
(RCVCOMPLETE, sid , A∗, p′, S̃) message is ignored.
Note that the quantification over S̃ is over all the
honest servers’ identities. We can see that Pr[FAIL] ≤∑

S̃ Pr[FAIL(S̃)], where the number of terms in the
summation is bounded by qS , the number of senders.

We now upper bound Pr[FAIL(S̃)] by reducing
FAIL(S̃) to the one-more DH problem. Using the re-
duction RS̃ in Figure 4, we can see the following two
facts:
• Every time the (·)k̃ oracle is used (in step 4),

a (SNDRCOMPLETE, sid , S̃) message is sent to
FOPRF, so tx(S̃) increases.

• Every time tx(S̃) decreases (in the first case of
step 5 or the first condition of the first case of step
6), a pair of the form (z, zk̃) is recorded, where z

is either H1(x) or the message sent to A in step
3; in either case, z is in g1, ..., gN .

Therefore, if FAIL(S̃) occurs, the number of
pairs recorded is more than the number of
DDH oracle queries by one (assuming that
there is no collision in g1, ..., gN ), so the
one more DH-assumption is violated. That is,
Pr[FAIL(S̃)|There is no collision in g1, ..., gN ] =
εomdh,〈g〉(N,Q). So

Pr[FAIL|There is no collision in g1, ..., gN ] ≤
qS · εomdh,〈g〉(N,Q)

On the other hand, the probability that there is collision
in g1, ..., gN is upper bounded by N2/m. Thus, we have

Pr[FAIL] ≤ qS · εomdh,〈g〉(N,Q) +N2/m.

That concludes our proof.

Remark. Although in this work FOPRF is used
to construct a PPSS scheme, we mention here that
OPRF is of interest in many other areas, such as key-
word search [9] and secure function evaluation of set in-
tersection [10], [13]. Therefore, our protocol 2HashDH
may have further applications.

4. PPSS: Security Definitions

Password-Protected Secret Sharing (PPSS) was de-
fined in [2] as (password-protected) secret-sharing of
an arbitrary message and it was re-defined in [11] as
protecting a random key. We adopt this latter notion
here because it is more flexible: a secret key can be
used not only for encryption, but also for signatures,
key exchange protocols, and so on.

Definition 1. PPSS scheme (ParGen, SKeyGen, INIT,
REC) involves user U and n servers S1, ..., Sn:

ParGen: Given security parameter `, generates public
parameters crs .

SKeyGen: Si, given crs , generates its private state σi.

INIT is a protocol between U and S1, ..., Sn s.t.
• U runs algorithm UInit, which given crs and a

password pw, outputs a private key K ∈ {0, 1}`.
• Si runs algorithm SInit, which given crs and σi,

outputs user-specific information ωi.
REC is a protocol between by U and S1, ..., Sn s.t.
• U runs algorithm URec, which given crs and pw,

outputs K ′ ∈ {0, 1}` ∪ {⊥}.
• Si runs algorithm SRec on input crs, σi, ωi.
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Suppose (Q, g, y = gk̃, g1, ..., gN ) is an instance of the one-more DH problem. We run the simulator, with the
following revisions:
• In step 1, only set J := 1 and omit all other processes.
• In step 2 and step 3, use the challenges g1, ..., gN instead of random elements in 〈g〉 to answer H1(·)

queries (in step 2) and prepare the messages sent to A (in step 3). Besides, since rj is unknown, record
(x, gj) instead of (x, rj , gj) (in step 2), and 〈U, gj〉 instead of 〈U, rj , gj〉 (in step 3).

• In step 4, if ã acts as a message to S̃, then use the (·)k̃ oracle to compute b̃ := ãk̃. Record (ã, b̃) instead
of 〈S̃, k̃〉.

• In step 5, do the following instead: Upon receiving b from A as some sender’s S′ message to a user U ,
recover the corresponding gj (stored in step 3), record (gj , b), and do the following:
– If DDH(gj , b, ã, b̃) then send (RCVCOMPLETE, sid , U , S′, S̃) to FOPRF.
– Otherwise if there exists a pair 〈S, k〉 stored in step 4 such that b = ak, then send (RCVCOMPLETE,

sid , U , S′, S) to FOPRF.
– Otherwise if there exists p such that ap and bp are defined and DDH(gj , b, ap, bp), then send

(SNDRCOMPLETE, sid , p) and (RCVCOMPLETE, sid , U , S′, p) to FOPRF.
– Otherwise choose a unique value p, set ap := gj , bp := b, and send (SNDRCOMPLETE, sid , p) and

(RCVCOMPLETE, sid , U , S′, p) to FOPRF.
• In the first case of step 6, use the following to determine S′ and proceed as before.

– If DDH(gi, u, ã, b̃), then S′ = S̃.
– If there exists a pair 〈S, k〉 stored in step 4 such that u = gki then S′ = S.
– if there exists p such that DDH(gi, u, ap, bp) then S′ = p.

Figure 4. The Reduction RS̃ to the One-More DH Problem.

4.1. The Game-Based Definition

Here we recall the indistinguishability (or game-
based) PPSS definition from [11], simplified to the case
where adversary corrupts the maximal threshold t of
servers, while in Section 4.2 below we upgrade this
definition to the UC setting.

Correctness. If user U has interacts with uncorrupted
servers then it must reconstruct the same key that
was generated in the initialization process; that is, for
any `, any crs ← ParGen(1`), any (σ1, ..., σn) ←
SKeyGen(crs), any pw ∈ D, any K ← INIT(crs, pw),
and any K ′ ← REC(crs, pw), we have K ′ = K.

Security. Assume that an adversary A corrupts subset
B of up to t out of the n servers and acts as the “man-
in-the-middle” in q instances of PPSS reconstruction
protocol. Intuitively, the security of PPSS means that
the key K should remain pseudorandom to A except for
probability q/|D|. To model this formally, the security
game picks bit b and at the end of the INIT protocol
let A see key K(b) which is defined as the real key K
output by U for b = 1, or a random `-bit string for
b = 0. To model A∗’s interaction in REC instances we
let A∗ interact with oracles SRec and U�Rec, where SRec

runs Si’s REC protocol on input (crs, σi, ωi) for i 6∈ B,

while U�Rec runs URec on input (crs, pw) but when URec

outputs its local output K ′ or ⊥, U�Rec processes this
output as follows: If b = 1 then it forwards K ′ or ⊥
it unchanged to A∗, but if b = 0 then it forwards K(0)

instead of K ′ if URec’s output is K ′ 6=⊥, and forwards
⊥ otherwise.

Definition 2. A PPSS scheme with parameters (t, n) is
(qU , qS , ε)-secure if for any polynomial-time algorithm
A and any B ∈ {1, ..., n} s.t. |B| = t, we have

Advppss
A ≤ (qU + qS)/|D|+ ε,

where Advppss
A = |p1 − p0| for pb = Pr[b′ = 1] where

b′ is A’s output in a game below defined for b = 0, 1:
(1) Set pw ←R D, crs ← ParGen(1`) and σi ←

SKeyGen(crs) for i ∈ [n]. Send crs to A.
(2) Let UInit(crs, pw) interact with SInit(crs, σi) for

all i, where A has full control over each Si for i ∈ B
(and can modify their protocols), while the channels
between U and each Si for i 6∈ B are authenticated.
Let K(1) be UInit’s output in the above interaction, and
let K(0) ←R {0, 1}`. Send K(b) to A.

(3) A outputs b′ after qU interactions with
U�Rec(crs, pw, b,K(b)) and qS interactions with SRec.

Soundness. As argued in [11], the above security notion
also implies a soundness property, i.e. that an efficient
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adversary controlling up to t servers Si is unable to
make U output key K ′ in protocol REC s.t. K ′ 6= K
where K was output by U in protocol INIT. If there
exists A who successfully attack soundness then A′ can
run A and output 0 if U ’s outputs K in Init and K ′ in
Rec are the same, and 1 otherwise: If A breaks PPSS
soundness then A′ breaks PPSS security.

4.2. The UC Definition

We define a universally composable (UC) notion
of PPSS as a secure realization of an ideal PPSS
functionality FPPSS presented in Figure 5. The PPSS
functionality we define is weaker than the PPPS func-
tionality of [4] (called T-PASS in that paper), since
it obviates the need for extracting malicious clients’
inputs at the time the PPSS reconstruction protocol
takes place. In order to avoid requiring such on-line
input extraction we use a ticketing mechanism which
is similar to the one we use in the UC definition of
OPRF in Section 2. We believe that any protocol that
realizes the T-PASS functionality of [4] should also
realize our functionality FPPSS of Figure 5, however it
can also be implemented by a much more lightweight
protocol that most likely do not realize the T-PASS
functionality of [4]. Functionality FPPSS we propose
has three interfaces, Initialization, Reconstruction, and
PasswordTest, on which we elaborate below.

The Initialization command INIT represents a user
with a unique username, represented by sid , at some
network entity U initializing a PPSS instance with
a set of n servers SI = {S1, . . . , Sn} on input a
password pw. The servers in SI become activated for
this instance provided that the ideal-world adversary A∗
agrees by sending command SINIT, and if all servers
in SI are activated the instance generates a random
secret K output by U if adversary agrees by sending
command UINIT. (In the real protocol this corresponds
to adversary forwarding protocol messages correctly.)
If set SI contains t + 1 corrupted servers then A∗
receives (pw,K), which corresponds to U creating a
password-protected secret-sharing among n players of
whom more than t are corrupted, at which point a (t, n)-
threshold secret-sharing no longer protects its secrets.

The Reconstruction command REC represents a user
at a potentially different network entity U ′ attempting
to recover the secret initialized above using password
pw′, which might or might not equal to pw above. The
reconstruction operation is directed to some set of t+1
servers SR, which might or might not overlap with
set SI above. It is important to emphasize that the
user maintains no state between the initialization and
the reconstruction operations except for memorizing
password pw (and username sid ), although a failure

to remember pw correctly is also allowed, and it is
modeled by setting pw′ 6= pw. In particular, the user
might connect to a different set of servers in the initial-
ization and in the reconstruction. Hence, for example,
if a user falls prey to a phishing attack, she could
execute the reconstruction protocol with servers SR
s.t. SR ∩ SI = ∅ and all servers in SR are corrupted.
However, by the rules of the FPPSS functionality which
we explain below, the worst thing that can happen
in this case is the inevitable on-line guessing attack:
The adversary can execute the reconstruction protocol
on behalf of the corrupt servers SR for some chosen
password pw∗ and secret key K∗, and in the case
pw∗ = pw it would cause U to reconstruct K∗ instead
of K (or ⊥).

SREC and UREC commands control the view of
the reconstruction protocol by the servers and the user
in a similar way as in the INIT above, but with some
significant differences: First, U ’s sessions with any
corrupt server in SI can be “routed” by A∗ to any
other server, hence in UREC command A∗ specifies
a set SC of servers who effectively participate in this
reconstruction, with the only constrain that SC must
contain all uncorrupted servers in SI. Secondly, user’s
completion can result in two different outcomes (in
addition to failure which A∗ can except in the case
when pw′ = pw and SR contains only uncorrupted
servers in SI): The default case is that the recon-
struction works and U ′ outputs key K created in the
initialization, which happens when pw′ = pw, i.e.
U ′ ran on the correct password, SC ⊆ SI, i.e. U ′
connected to servers participating in the initialization,
and there were either no corrupt servers in the set
SR with which U ′ attempted the reconstruction, or,
if some of those servers are corrupt A∗ still allowed
the protocol to succeed by setting the flag variable to
1. Another case is when U ′ connected only to corrupt
servers (and A∗ does not route these connections to
uncorrupted servers, hence we require not only that
SR ⊆ CorrSrv but also that SC ⊆ CorrSrv, which is
stronger because SR \ CorrSrv ⊆ SC), because such
reconstruction session offersA∗ an ability to perform an
on-line guessing attack on the user, i.e. A∗ can specify
its password guess pw∗ and, in case pw∗ = pw, cause
U ′ to output any value K∗ specified by A∗. Indeed, a
PPSS scheme which, like ours, does not assume any
other source of user’s security apart of the password,
and in particular does not assume PKI for security,
cannot offer stronger protection in the case the user
executes the protocol with an adversary who guesses
her password.

Finally, the Test Password command TESTPWD lets
adversary A∗ perform an on-line guessing attack on
the servers, i.e. specify a password guess pw∗ and a
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Initialize tested(pw) to ∅ and tx(S) to 0 for all S.
Initialization:

• Upon receiving (INIT, sid ,SI, pw) for |SI|=n from U , record 〈INIT, sid ,SI, pw〉 and send
(INIT, U, sid ,SI) to A∗. (Ignore other INIT commands.) Pick K←{0, 1}l, and if |SI ∩CorrSrv| ≥ t+ 1

then send (K, pw) to A∗.
• Upon receiving (SINIT, sid , S) from A∗, if record 〈INIT, U, sid ,SI, pw〉 exists and S ∈ SI then mark
S as ACTIVE and send (SINIT, sid) to S.

• Upon receiving (UINIT, sid) from A∗, if record 〈INIT, U, sid ,SI, pw〉 exists and all servers in SI are
marked ACTIVE then add K to 〈INIT, U, sid ,SI, pw〉 and send (UINIT, sid , K) to U .

Reconstruction:

• Upon receiving (REC, sid , ssid ,SR, pw′) for |SR|=t+1 from U ′, retrieve record 〈INIT, U,

sid ,SI, pw,K〉, record 〈REC, U ′, sid , ssid ,SI,SR, pw, pw′〉 and send (REC, U ′, sid , ssid ,SR) to A∗.
Ignore future REC commands involving the same ssid .

• Upon receiving (SREC, sid , ssid , S) from A∗, if S is marked ACTIVE then increment tx(S) and send
(SREC, sid , ssid) to S.

• Upon receiving (UREC, sid , ssid ,SC, flag, pw∗,K∗) for |SC|=t+1 from A∗, if a record
〈REC,U ′, sid , ssid ,SI,SR, pw, pw′,K〉 exists s.t. SR \ CorrSrv ⊆ SC and tx(S)>0 for all S in
SC then decrement tx(S) for all such S and send (UREC, sid , ssid ,RES) to U ′ s.t.:

– RES := K if (pw′ = pw) ∧ (SC ⊆ SI) ∧ [(flag = 1) ∨ (SR ∩ CorrSrv = ∅)];
– RES := K∗ if (pw′ = pw∗) ∧ (SC ⊆ CorrSrv) ∧ (flag = 2);
– RES := FAIL otherwise.

Password Test:

• Upon receiving (TESTPWD, sid , Si, pw∗) from A∗, if tx(Si) > 0 then set tested(pw∗) := tested(pw∗) ∪
{Si} and tx(Si) := tx(Si)−1, retrieve 〈INIT, U,SI, pw,K〉, and if |SI∩(tested(pw∗)∪CorrSrv)| ≥ t+1,
then return K to A∗ if pw∗ = pw, else return FAIL.

Figure 5. Ideal (t, n)-Threshold PPSS Functionality FPPSS.

set S of at least t + 1 servers in SI, and learn key
K if pw∗ = pw. However, FPPSS allows such guessing
attack to proceed only if A∗ engages the servers in S in
reconstruction protocol instances for username sid , as
represented by SREC commands. Every time such com-
mand is issued for some server S, functionality FPPSS

increments a ticket counter tx(S), and the adversary can
make a password guess only tx(S) > 0 for all S ∈ S,
and the counters of serves in S are decremented as
result of such password-testing attempt. Since a PPSS
server cannot tell if a reconstruction protocol instance
is originated by an honest user or by the adversary,
any such reconstruction session can be used either
for completion of honest user reconstruction instances
or for instances executed by the adversary. However,
the ticket-counting mechanism of FPPSS enforces that
any PPSS instance completed by t + 1 can be “used
up” either for a single instance of the honest user

reconstructing her secret or for a single instance of an
adversary who attempts the reconstruction on a guessed
password pw∗.

5. Proposed PPSS Scheme

In Figure 6 we present a PPSS scheme πPPSS which
is secure in the random oracle model assuming a non-
malleable commitment scheme. Protocol πPPSS uses
the functionality FOPRF as part of the construction
and it assumes that communication proceeds over au-
thenticated channels, modeled by functionality FAUTH.
Figure 7 shows a concrete implementation of this PPSS
scheme πPPSS using the 2HashDH OPRF from Figure 2
and a hash-based commitment secure in the random or-
acle model. The resulting protocol takes one interaction
round in reconstruction and two in initialization, and in
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Parameters: Security parameter `, threshold parameters t, n ∈ N, t ≤ n, field F := GF (2`), instance of
commitment scheme COM, hash function H with range {0, 1}2`.

INIT for user U :

1) On input (INIT, sid , {S1, ..., Sn}, pw), pick s ∈R F and parse H(s) as [r||K].
2) Generate (s1, ..., sn) as a (t, n) Shamir’s secret-sharing of s over F and set s := (s1, ..., sn).
3) Send (EVAL, (sid , i), Si, pw) to FOPRF and wait for response (EVAL, (sid , i), ρi), for all i ∈ [n].
4) Compute ei := si ⊕ ρi for i ∈ [n], set e := (e1, ..., en), and compute C := COM((pw, e, s); r).
5) Set ω := (e, C) and send (SEND, (sid , i, 0), Si, ω) to FAUTH for i ∈ [n].
6) If FAUTH returns (SENT, (sid , i, 1), Si, ACK) for all i ∈ [n], output (UINIT, sid ,K).

INIT for server S:

1) On message (SNDRCOMPLETE, (sid , i)) from FOPRF for some i, create a record 〈sid , i〉.
2) On message (SENT, (sid , i, 0), U, ω) from FAUTH for some existing record 〈sid , i〉, append ω to it, send

(SEND, (sid , i, 1), U, ACK) to FAUTH, and output (SINIT, sid).

REC for user U :

1) On input (REC, sid , ssid ,SR, pw′), send (EVAL, (sid , ssid , j), S′j , pw′) to FOPRF for all S′j ∈ SR.
2) If FOPRF returns (EVAL, (sid , ssid , j), σj) and FAUTH returns (SENT, (sid , ssid , j, 1), S′j , (ij , ωj)) for

all j∈[t+1], then if ij1 = ij2 or if ωj1 6= ωj2 for any j1 6=j2 then output (UREC, sid , ssid , FAIL) and
stop. Otherwise set ρ′ij := σj for all j ∈ [t+ 1], and set I := {ij | j ∈ [t+ 1]}.

3) Parse any ωj as (e′, C ′), parse e′ as (e′1, ..., e
′
n), and set s′i := e′i ⊕ ρ′i for all i ∈ I .

4) Recover s′ and the shares s′i for i 6∈ I by interpolating points (i, s′i) for i ∈ I .
5) Set s′ := (s′1, ..., s

′
n), parse H(s′) as [r′||K ′], and output (UREC, sid , ssid ,RES) for RES = K ′ if

C ′ = COM((pw′, e′, s′); r′) and RES = FAIL otherwise.

REC for server S:

1) Given message (SNDRCOMPLETE, (sid , ssid , j)) from FOPRF, if S holds record 〈sid , i, ω〉 then send
(SEND, (sid , ssid , j, 1), U, (i, ω)) to FAUTH and output (SREC, sid , ssid).

Figure 6. Protocol πPPSS which realizes UC functionality FPPSS in the (FOPRF,FAUTH)-hybrid world.

both phases each server makes 1 exponentiation while
the user makes t+ 2.3

We note that the assumption that all communication
proceeds over authenticated channels is a useful sim-
plification for security analysis. However, while some
form of authenticated channels is necessary in initial-
ization, e.g. implemented by TLS authenticated under
servers’ PKI certificates, in reconstruction such PKI-
based authentication is a form of security “hedging”,
but it’s not strictly necessary. As our security analysis
shows, each reconstruction instance executed with ma-

3. In a forthcoming work we show that client-side costs can be
reduced further by “de-blinding” the OPRF responses of all servers
in one multi-exponentiation. In this alternative scheme the secret-
sharing is performed on the level of OPRF key, and this shared-key
OPRF variant is conceptualized as a Threshold OPRF.

licious servers gives the adversary the ability to make
one online password guess, exactly the same as in any
password-only PAKE scheme. But if the user forms
an authenticated connection to at least one uncorrupted
server, e.g. using PKI certificates, then our UC security
model shows that the adversary then loses this online
password guessing ability.

Note on Robustness. The ideal PPSS functionality
FPPSS we specify in Section 4 does not yield a robust
PPSS scheme in a generic way, e.g. because function-
ality FPPSS requests that the user specifies the exact
set of t+ 1 servers and in the case of failure does not
let the user know which of the servers in the requested
set have failed to perform correctly. (In that aspect our
PPSS functionality is similar to the one proposed in [4].)
Indeed, we believe that it would be useful to generalize
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Parameters: Security parameter `, threshold parameters t, n ∈ N, t ≤ n, field F = GF (2`), cyclic group of
prime order m with generator g; hash functions H1, H2, H3 with ranges 〈g〉, {0, 1}`, {0, 1}2`.

Communication Setting: Communication between U, S1, ..., Sn goes over authenticated channels, e.g. TLS.

INIT for user U on input (sid , {S1, ..., Sn}, pw):
1) Choose s ∈R F and generate shares (s1, . . . , sn) as a (t, n)-secret-sharing of s over F.
2) Pick α ∈R Zm, compute a = (H1(pw))α, and send ((sid , i), a) to Si for i ∈ [n].
3) Given bi(= aki) from each Si, set ρi = H2(pw, b

1/α
i ) and ei = si ⊕ ρi for all i ∈ [n].

4) Set e := (e1, . . . , en), s := (s1, ..., sn), [r||K] := H3(0, s), C = H3(1, pw, e, s, r), and ω := (e, c).
5) Send ((sid , i, 0), ω) to Si for all i ∈ [n], and given ((sid , i, 1), ACK) for all i ∈ [n] output K.

INIT for server Si:
Pick ki ∈R Zm, on message (sid , ai) from U , abort if sid not unique, otherwise reply with bi = (ai)

ki .
On message ((sid , i, 0), ω) from U , store (sid , i, ωi, ki) and send ((sid , i, 1), ACK) to U .

REC for user U on input (sid , ssid , {S′1, ..., S′t+1}, pw):
1) Pick α ∈R Zm, compute a = (H1(pw))α, and send ((sid , ssid , j), a) to Sj for j ∈ [t+ 1].
2) Given ((sid , ssid , j), (bj , ij , ωj)) from each Sj , set σj = H2(pw, b

1/α
j ) for j ∈ [t+1]. Abort if ij1 = ij2

or ωj1 6= ωj2 for any j1 6=j2. Otherwise set ρij := σj for all j ∈ [t+ 1] and I := {ij | j ∈ [t+ 1]}.
3) Parse ω1 as (e, C) and e as (e1, ..., en). Set si := ei ⊕ ρi for each i ∈ I .
4) Recover s and the shares si for i 6∈ I by interpolating points (i, si) for i ∈ I . Set s := (s1, ..., sn).
5) Parse H3(0, s) as [r||K], and output K if C = H3(1, pw, e, s, r) and FAIL otherwise.

REC for server Si:
Given ((sid , ssid , j), a) from U , abort if a 6∈ 〈g〉 or Si does not hold a record (sid , i, ω, ki) with the
matching sid . Otherwise compute b := aki and send ((sid , ssid , j, 1), (b, i, ω)) back to U .

Figure 7. Concrete Instantiation of PPSS Protocol πPPSS of Figure 6, based on 2HashDH OPRF

the PPSS functionality we present by (1) letting the user
direct the reconstruction protocol instance to a server set
SR containing more than t+1 servers, instead of fixing
|SR| to t+1 as in FPPSS of Figure 5; and (2) reporting
on the identity of servers in SR which failed to respond
consistently with others in the reconstruction attempt.
However, although we do not show that formally, we
believe that protocol πPPSS which we present here can
be easily extended to provide both properties: The user
could initialize the protocol with more than t+1 servers,
and if in step 2 of REC the user gets more than t + 1
replies but the reconstruction fails on the first subset of
t+1 replies, the user could either search for the (t+1)-
element subset for which reconstruction succeeds, or it
could request that each responding server Sj provides
a ZK proof that its response bj is correct under public
Sj’s public verification parameter πj = gkj , as in the
Verifiable OPRF used in the PPSS scheme of [11]. A
vector π of these public parameters would have to be
committed along (pw, e, s) in C, but to reduce com-
munication C would be a commitment to (pw, e, s, h)
where h = H(π), hence only the hash value h would
have to be transmitted along with (e, C) by each Sj in
the default case of no active faults.

5.1. Game-Based Security of Scheme πPPSS

We prove that protocol πPPSS in Figure 6 satisfies
the game-based PPSS security notion (see Section 4.1).

Theorem 2. If COM is εB-binding, εH -hiding and
εNM -non-malleable commitment scheme and H is a
random oracle then the PPSS scheme πPPSS of Figure
6 is (qU , qS , ε)-secure for ε = εB + 2εH + qU εNM +
(qH + qU )/2

`, where qH is the bound on the number
of adversary’s queries to H .

Proof. We first describe the security experiment. Of the
four processes of the execution of the scheme, ParGen
and SKeyGen are trivial, so we omit them here. We
assume that t among n servers are corrupt. Let B denote
the set of these corrupt servers.

In Init, the adversary A is assumed not to interfere
in the computation of fg(pw) where g /∈ B. However,
for b ∈ B, A can send a pointer q, which may or may
not be b, so that U receives fq(pw). Let Q be the set
of such q’s (so Q is a t-element set of pointers).

In Rec, adversary A interacts with two oracles, URec

and SRec, which run the code of U and S1, ..., Sn in Rec,
respectively, which creates the following view for A:
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When interacting with URec, A’s view is a function
of string ω which U will use in this instance, and two
sets of pointers P and P ′:
• A sends a set of t + 1 ω′j values to U in step 1.

Note that U continues execution only if all these
values are the same; otherwise U aborts. This is
equivalent to the scenario where A specifies ω′

and a (t+1)-element sequence P in {1, ..., n} and
sends an ω′P = ω′ for p ∈ P to U . Let ω′ =
(e′, C ′) = ((e′1, ..., e

′
n), C

′).
• When U sends (EVAL, sid , Sp, pw) to F , A can

send (UINIT, sid , U, p′) to F in step 2, where p′
is a pointer which may or may not equal to p.
Since each p ∈ P corresponds to a p′, all p′’s
form a (t + 1)-element sequence of pointers P ′
(not necessarily in {1, ..., n}). That is, A makes
ρ′p = fp′(pw). Since UINIT, sid = (S1, ..., Sn)
and U remain the same during the whole session,
we can omit these and assume that A inputs P ′.

When interacting with SRec, A’s view is formed
by A’s ability to send (EVAL, sid , Si, x) for any
i ∈ {1, ..., n} and any x ∈ D to FPPSS in step 2 (that is,
A computes fi(x)). Here the output of SRec is decided
by A’s inputs i and x.

Recall also that the security experiment depends on
bit b: If b = 0, the output of U�Rec is a random string
(provided that URec does not output ⊥), while if b = 1,
the output of U�Rec is the output of URec. Below we only
describe the case where b = 1, because for the b = 0
case the security game is a simple modification of the
b = 1 game.

Below we define a series of security games starting
with game G0 which is identical to the security game
the adversary A interacts with in the case b = 1. In
each game we define the following events:
• COMCOR: On some interaction with URec,

C ′ = COM((pw, e′, s′); r′),
where s′ and r′ are values recovered by URec in
the games.

• EH : On some interaction with URec or SRec, A
queries s to the random oracle H(·).

• ES : On some interaction with SRec, A’s input i is
the pointer of some honest server, and x = pw.
(That is, A computes fi(pw).)

• EU : On some interaction with URec,
(C ′ 6= C ∨ P ′ 6= Q|P ) ∧ COMCOR.

(In the security experiment, this means that A
sends something other than ω in step 1 of Rec,
or changes some pointers on which f of pw is
computed as in Init, but U ’s check passes.)

Let E = EH ∨ ES ∨ EU .
Let G0 be the security experiment. Let G1 be a

modification of G0, where ei and si (i ∈ {1, ..., n}) are

Initialization:
1. Pick pw←R D.
2. Pick s←R F.
3. Parse H(s) as [r||K].
4. Generate (s1, ..., sn) as a (t, n) Shamir’s secret-
sharing of s over F. Set s := (s1, ..., sn).
5. A inputs a t-element set of pointers Q. Compute
ρg := fg(pw) (g /∈ B) and ρb := fq(pw) (b ∈ B),
where q is the pointer in Q which corresponds to
i and each fi(·) is a random function onto {0, 1}`
6. Set ei := si ⊕ ρi (i ∈ [n]) and e := (e1, ..., en).
7. Compute C := COM((pw, e, s); r).
8. Send ω := (e, C) to A.
Reconstruction (repeated qU times)
1. A inputs ω′ = (e′, C ′), a sequence P in [n] and
a sequence P ′ such that |P | = |P ′| = t+ 1.
2. For each p ∈ P , compute ρ′p := fp′(pw) where
p′ is a pointer in P ′ corresponding to p.
3. Compute s′p := e′p ⊕ ρ′p.
4. Recover s′ using the t+ 1 shares s′p (p ∈ P ).
5. Parse H(s′) as [r′||K ′].
6. Compute s′q (q ∈ {1, ..., n}−P ) by polynomial
interpolation using the values s′ and s′p (p ∈ P ).
Set s′ := (s′1, ..., s

′
n).

7. If C ′ = COM((pw, e′, s′); r′), then output K ′.
Otherwise reject (i.e. output ⊥).

Figure 8. The Security Experiment G0.

generated as follows: first choose all ei’s at random. For
b ∈ B, set sb := eb ⊕ fq(pw), where q is the pointer in
Q which corresponds to b. Then compute sg (g /∈ B)
by polynomial interpolation using s and sb (b ∈ B).
Finally set fg(pw) := eg ⊕ sg. By the one-time pad
argument and by the fact that adversary controls up to
t values fi(pw) it follows that G1 is identical to G0.

Let G′1 be a modification of G1, where in step 5 of
Rec, [r′||K ′] is defined as [r||K] if s′ = s and H(s′)
otherwise. Since H(s) = [r||K] according to step 3 of
Init, G′1 is simply a change of notion of G1, and they
are unconditionally identical.

Let G2 be a modification of G′1, where in step 3 of
Init, [r||K] is picked as a random string, and the game
challenger aborts if A queries s on H(·).

We can see that if EH does not occur, G2 and G′1
are identical. Therefore, we have

Pr[EH ||G2] = Pr[EH ||G′1].

Let G3 be a modification of G2, which outputs K
generated in Init if ω′ = ω and P ′ = Q|P , and rejects
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otherwise. However, the game challenger still computes
all the values computed in G2. Note that

¬EU = (ω′ = ω ∧ P ′ = Q|P ) ∨ ¬COMCOR.

Moreover,
• If ω′ = ω ∧ P ′ = Q|P , then both G2 and G3

output K;
• If ¬(ω′ = ω∧P ′ = Q|P )∧¬COMCOR, then both
G2 and G3 reject.

Thus, G3 is identical to G2 assuming EU does not
occur. Therefore, we have

Pr[EU ||G3] = Pr[EU ||G2].

Let G4 be exactly the same with G3, except that the
game challenger outputs a random string if A queries
fg(pw) where g is the pointer of an honest server (i.e.
ES occurs). Obviously, if ES does not occur, G4 and
G3 are identical. Therefore, we have

Pr[ES ||G4] = Pr[ES ||G3].

Note that G4’s output K is independently random
of everything else. Therefore, we have

Pr[b′ = b||G4] = 1/2.

Furthermore, G0 and G4 are identical if E does not
happen. Besides A’s input and output, the event E also
involves pw (in ES) and s (in EH and EU ). We can
see that A’s view of pw does not change from G0 to
G4; A’s view of s does not change from G0 to G3,
and does not change from G3 to G4 assuming ES does
not occur. Thus, we have

Pr[ES ||G0] = Pr[ES ||G4],
Pr[EH ∧ ¬ES ||G0] = Pr[EH ∧ ¬ES ||G4],
Pr[EU ∧ ¬ES ||G0] = Pr[EU ∧ ¬ES ||G4].

This implies

Pr[E||G0] = Pr[E||G4],
Pr[b′ = b ∧ ¬E||G0] = Pr[b′ = b ∧ ¬E||G4].

Now we upper bound Pr[EU ||G4]. We break EU
into three sub-events:
• EU1: C ′ 6= C ∧ COMCOR.

We will argue that
Pr[EU1 ∧ ¬ES ||G4] ≤ qU (1/|D|+ εNM ).

Note that EU1 may occur at A’s jth query to URec

for any j = 1, ..., qU . Let EjU1 be the event that
EU1 happens at A’s jth query to URec. Obviously

Pr[EU1 ∧ ¬ES ||G4] ≤
qU∑
j=1

Pr[EjU1 ∧ ¬ES ||G4].

We will argue that
Pr[EjU1 ∧ ¬ES ||G4] ≤ 1/|D|+ εNM

for any j = 1, ..., qU by constructing a reduction
to COM’s non-malleability property. The reduction

picks ei’s and ρp(x)’s for p ∈ B at random,
receives C and sends (e, C) to A. At A’s first j−1
queries to URec, the reduction simply processes as
the game challenger in Rec. At A’s jth query to
URec, the reduction receives pw, e, s and r, then
computes and outputs the corresponding e′, s′ and
r′ using ρ′p(pw) for p ∈ B.

• EU2: C ′ = C ∧ (e′, s′) 6= (e, s) ∧ COMCOR.
We will argue that

Pr[EU2 ∧ ¬ES ||G4] ≤ εB
by constructing a reduction to COM’s binding
property . In Init, the reduction proceeds as the
game challenger. In Rec, it computes s′ and r′ ac-
cordingly, and outputs (C, (pw, e), (pw, e′), r, r′)
once C ′ = C = COM((pw, e′, s′); r′) holds.

• EU3: C ′ = C ∧ (e′, s′) = (e, s) ∧ P ′ 6= Q|P ∧
COMCOR. Since P ′ 6= Q|P , there is at least one
element p′ ∈ P ′ and one element p ∈ Q|P that are
different. However, we have s′p = sp, s′p = e′p ⊕
fp′(pw), sp = ep⊕fq(pw), and e′p = ep. Therefore,
fp′(pw) = fp(pw). Since fp′(pw) and fp(pw) are
both random strings in {0, 1}`, the probability that
this occurs in one query is 1/2`, which implies
that Pr[EU3||G4] ≤ qU/2`.

In sum, we get

Pr[EU ||G4] ≤ εB + qU (1/|D|+ εNM ) + 1/2`.

Let G5 be a modification of G4, s.t. C is set as
COM((0, e,0); r) instead of COM((pw, e, s); r). Since
s and pw are independently random from everything
else in G5, we have

Pr[EH ||G5] ≤ qH/2`,
Pr[ES ||G5] ≤ qS/|D|.

Furthermore, an easy reduction shows that

Pr[EH ||G4] ≤ Pr[EH ||G5] + εH ,
Pr[ES ||G4] ≤ Pr[ES ||G5] + εH .

Therefore,
Pr[E||G4] = Pr[EU ∨ EH ∨ ES ||G4]

≤ Pr[EU ||G4] + Pr[EH ||G4] + Pr[ES ||G4]

= (qU + qS)/|D|+ ε.

Combining all the results we get above, we conclude
Pr[b′=b||G0] ≤ Pr[E||G0] + Pr[b′=b ∧ ¬E||G0]

= Pr[E||G4] + Pr[b′ = b ∧ ¬E||G4]

= Pr[E||G4] + Pr[b′ = b||G4] Pr[¬E||G4]

= Pr[E||G4] + 1/2(1− Pr[E||G4])

= 1/2 + 1/2Pr[E||G4]

= 1/2[1 + (qU + qS)/|D|+ ε],

which implies the theorem.
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Set tx(S) := 0, T (S, x) :=⊥, tested(pw) := ∅, pointer(i) :=⊥, and pointer(ssid , j) :=⊥, for all values
S, x, pw, i, ssid , j. Generate (COM, td) using equivocable commitment generator tdCKG(1`).

1) On (INIT, sid , U,SI) from FPPSS, for all i∈[n] set Si:=SI[i] and send (EVAL, (sid , i), U, Si) to A. If
FPPSS in addition sends (pw,K), record it.

2) On (SNDRCOMPLETE, (sid , i), S) from A, set tx(S)++, record (i, S).

3) On (RCVCOMPLETE, (sid , i), U, Si, S
∗
i ) from A, ignore this message if Si is honest and S∗i 6= Si, or

tx(S∗i ) = 0. Otherwise set tx(S∗i )−− and pointer(i) := S∗i . If pointer(i) 6=⊥ for all i ∈ [n] then also do:

If FPPSS sent (K, pw) in step 1 then for all i ∈ [n] set ρi := T (pointer(i), pw) (assign it to a random
value in F if undefined), pick s by evaluating a random t-degree polynomial over F, set e := s ⊕ ρ,
pick r ← {0, 1}`, define H(s) := [r||K], set C := COM((pw, e, s); r). Otherwise, i.e. if (K, pw) wasn’t
sent in step 1, pick e ←R Fn and set (C, tdC) ← tdCom(td). In either case, set ω := (e, C) and send
(SEND, (sid , i, 0), U,SI[i], ω) to A for all i ∈ [n].

4) On (SENT, (sid , i, 0), U, S, ω) from A, ignore this message if (i, S) hasn’t been recorded in step 2.
Otherwise send (SEND, (sid, i), S, U, ACK) to A and (SINIT, sid , S) to FPPSS.

5) On (SENT, (sid , i, 1), S, U, ACK) from A, ignore message if ω wasn’t created in step 3 or if S 6= SI[i].
Otherwise mark i as ack’ed. If all i ∈ [n] are ack’ed send (UINIT, sid) to FPPSS.

6) On (REC, sid , ssid , U ′,SR) from FPPSS, send (EVAL, (sid , ssid , j), U, Sj) to A for all Sj ∈ SR.

7) On (SNDRCOMPLETE, (sid , ssid , ·), S) from A, set tx(S)++, send (SREC, sid , ssid , S) to FPPSS.

8) On (RCVCOMPLETE, (sid , ssid , j), U, Sj , S
∗
j ) and (SENT, (sid , ssid , j), Sj , U, (ij , ωj)) from A, ignore

this message if Sj doesn’t match Sj in the EVAL query which SIM sent for this (ssid , j) in step 6, or if
Sj is honest and S∗j 6= Sj , or if tx(S∗j ) = 0. Otherwise set tx(S∗j )−− and set pointer(ssid , j) := S∗j .

If pointer(ssid , j) 6=⊥ for all j ∈ [t+ 1] then set SC as the set of server-name pointers pointer(ssid , j)
for j ∈ [t+1] and send (UREC, sid , ssid ,SC, flag, pw∗,K∗) to FPPSS for (flag, pw∗,K∗) set as follows:

a) If ij1=ij2 or ωj1 6=ωj2 for any j1 6=j2 then set (flag, pw∗,K∗) := (0,⊥,⊥).
b) If ωj = ω and pointer(ssid , j) = pointer(ij) for all j ∈ [t + 1] where ω is the value created by SIM

in step 3 then set (flag, pw∗,K∗) := (1,⊥,⊥).
c) Define X as a set of values x s.t. T (pointer(ssid , j), x) 6=⊥ for all j ∈ [t + 1]. For each x ∈ X do

the following subprocedure:
Set ρ′ij := T (pointer(ssid , j), x) for all j ∈ [t + 1], and set I := {ij | j ∈ [t + 1]}, and parse
any ωj as (e′, C ′), set s′i := e′i ⊕ ρ′i for all i ∈ I , interpolate (s′, {s′i}i 6∈I) from {(i, s′i)}i∈I , set
[r′||K ′] := H(s′). Finally, if C ′ = COM((pw′, e′, s′); r′) then set (flag, pw∗,K∗) := (2, x,K ′)
(and break the loop).

If above loop processes all x ∈ X without breaking, set (flag, pw∗,K∗) := (0,⊥,⊥).
9) On (EVAL, sid , S, x) from corrupt U∗ (or A) and (RCVCOMPLETE, sid , U∗, S, S∗) from A, ignore this

message if S is honest and S∗ 6= S or if tx(S∗) = 0. Otherwise set tx(S∗)−−, add S∗ to tested(x), send
(TESTPWD, sid , S∗, x) to FPPSS, and given reply RES do the following:

Case 1: If RES = FAIL then send (EVAL, T (S∗, x)) to A. (If T (S∗, x) is undefined pick T (S∗, x)←R F.)

Case 2: If RES = K then set ρi := T (Si, pw) and I := I ∪ {i} for all i ∈ [n] s.t. pointer(i) = Si
and Si ∈ tested(pw). Set si = ei ⊕ ρi for all i ∈ I . Interpolate (s, {si}i 6∈I) from {(i, si)}i∈I , set
r ← Equiv(tdC , (pw, e, s)), H(s) := [r||K], and set T (Si, x) := si ⊕ ei for al i 6∈ I .

Figure 9. Simulator SIM for showing that protocol πPPSS realizes functionality FPPSS.

15



5.2. UC Security of the Proposed PPSS Scheme

Protocol πPPSS in Figure 6 satisfies not only the
game-based PPSS security definition but it also realizes
the ideal PPSS functionality proposed in Section 4.2:

Theorem 3. If COM is an equivocable and non-
malleable commitment scheme and H is a ran-
dom oracle then the PPSS scheme πPPSS of Fig-
ure 6 UC-realizes PPSS functionality FPPSS in the
(FOPRF,FAUTH)-hybrid world.

The full proof of theorem 3 below will appear in
the full version of this paper, and here we will only
sketch this security argument. Here we only exhibit a
construction of a simulator SIM, presented in Figure
9, which we use to show that protocol πPPSS real-
izes functionality FPPSS given FOPRF, FAUTH, an
equivocable commitment scheme COM and a random
oracle model for hash function H . We note that the
requirement on the commitment scheme are stronger in
theorem 3 than in theorem 2, and include an additional
property of equivocability. In a nutshell, a commit-
ment scheme is equivocable if the standard commit-
ment procedures are amended by a triple of algorithms
(tdCKG, tdCom,Equiv), where tdCKG(1`) creates an
instance COM of the commitment scheme together with
an equivocation trapdoor td, tdCom(td) creates a fake
commitment C together with C-specific equivocation
trapdoor tdC s.t. for any m procedure Equiv(tdc,m)
generates string r s.t. r is a decommitment of C to m.
Simulator SIM in Figure 9 uses algorithm tdCKG to
create an instance of the commitment scheme together
with an equivocation trapdoor, and it uses this trapdoor
to create C in the ω = (e, C) public parameters created
in the INIT procedure as a fake commitment. The reason
SIM needs to create commitment C in this way is
because SIM does not know the real password pw and
secret key K which FPPSS created on behalf of the hon-
est user in this PPSS instance, but when the adversary A
playing the role of a corrupt user U∗ performs the PPSS
reconstruction with t+1 honest servers (see the last step
in Figure 9) on some password guess x, SIM forwards
this x to FPPSS via the TESTPWD interface and if it
turns out thatA’s guess is correct, i.e. x = pw, then SIM
has to “open” the committed public parameter ω into a
valid reconstruction of K on password pw. Since pw is
part of the information committed in C, this is where
SIM uses the ability to equivocate the commitment by
opening it to the correct value.
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