
Side-Channel Watchdog: Run-Time Evaluation
of Side-Channel Vulnerability in FPGA-Based

Crypto-systems

Souvik Sonar, Debapriya Basu Roy, Rajat Subhra Chakraborty
and Debdeep Mukhopadhyay

Secured Embedded Architecture Laboratory,
Indian Institute of Technology, Kharagpur, India,

souvik.sonar@iitkgp.ac.in,
{deb.basu.roy, rschakraborty, debdeep}@cse.iitkgp.ernet.in

Abstract. Besides security against classical cryptanalysis, its important
for cryptographic implementations to have sufficient robustness against
side-channel attacks. Many countermeasures have been proposed to thwart
side channel attacks, especially power trace measurement based side
channel attacks. Additionally, researchers have proposed several evalua-
tion metrics to evaluate side channel security of crypto-system. However,
evaluation of any crypto-system is done during the testing phase and is
not part of the actual hardware. In our approach, we propose to imple-
ment such evaluation metrics on-chip for run-time side channel vulnera-
bility estimation of a cryptosystem. The objective is to create a watchdog
on the hardware which will monitor the side channel leakage of the device,
and will alert the user if that leakage crosses a pre-determined thresh-
old, beyond which the system might be considered vulnerable. Once such
alert signal is activated, proactive countermeasures can be activated ei-
ther at the device level or at the protocol level, to prevent the impending
side channel attack. A FPGA based prototype designed by us show low
hardware overhead, and is an effective option that avoids the use of bulky
and inconvenient on-field measurement setup.

1 Introduction

Traditionally a crypto-implementation is evaluated against side channel vulner-
ability solely during the testing of the device, and once deployed in field, such
evaluation is not always possible. However, it might happen that the user may
need to update the underlying crypto-algorithm and perform the side chan-
nel vulnerability assessment again, which requires costly and sophisticated side
channel information acquisition equipments to be brought to the location of
deployment.

In this paper, we explore an alternative approach where such side chan-
nel vulnerability evaluation is done on-chip and is integrated with the crypto-
implementation itself. Additionally, this design strategy allows the user to have
a constant monitoring of side channel leakage, and could act as an alternative for

traditional side channel countermeasures which have large overhead for resource-
constrained devices. Although our hardware implementation was performed on
FPGA platform, the same principle can be applied to ASIC and SoC implemen-
tations also. In literatures, various metrics for side channel evaluation have been
proposed and is used for the side channel vulnerability testing of the crypto-
devices. Test Vector Leakage Assessment Methodology (TVLA) [2] is one of such
metrics that is becoming increasingly popular due to its simplicity and recent
international standardization. The proposed evaluation of side channel vulner-
ability on the device itself is achieved by integrating the TVLA hardware with
the crypto-implementation.

The contribution of the present paper can be tabulated as follow:

– In this paper we consider the widely used (TVLA) [2] as the metric of choice
for side channel vulnerability calculation. TVLA is a standard metric for
evaluation of a crypto-implementation against first order correlation power
attack, and can be easily extended against higher order attacks also [19].
The on-chip side channel vulnerability evaluator constantly monitors the
side channel information leakage of the crypto- implementation, and raises
an alarm whenever the TVLA value goes beyond safe threshold, making the
system susceptible to correlation power attack, hence acting as a watchdog.

– Implementation of TVLA involves complex floating point operations and
can contribute significantly to the area overhead of the design. In this paper,
we have implemented a lightweight fixed-point TVLA computation module,
which offers excellent accuracy when compared with an implementation of a
floating-point computation module, at a fraction of the hardware overhead.

– Various corrective decision can be made after being alerted by the side chan-
nel evaluator to thwart the adversary attacks. In this paper, we outline few
of such corrective measures. For example, decision like changing the secret
key information or manipulating the algorithm parameters can be made to
prevent the impending attack.

We provide a brief overview of TVLA and side channel simulation strategies
in Section 2. An efficient simulation of side channel traces is necessary as we need
to incorporate this into the implementation for correct computation of TVLA. In
Section 3, we discuss the side channel simulation strategy with detailed analysis
and results. This is followed by comprehensive description of on-chip TVLA com-
putation hardware in Section 4, where we rearrange the steps for easy integration
to the crypto-hardware. Next, in Section 5, we provide the architectural descrip-
tion and resource requirement of the developed hardware module. In Section 6,
we give an experimental validation of the proposed methodology by performing
a comparative analysis of TVLA computation on actual and predicted side chan-
nel traces. Finally in Section 7, we discuss the corrective measures to prevent
side channel adversary from getting access to the secret key value followed by
conclusion in Section 8.

2 Preliminaries

In this section, we will introduce TVLA and side channel simulation methodology
briefly.

2.1 TVLA

The methodology involves measuring side channel information (e.g. power traces,
EM traces) while performing cryptographic operation (e.g. AES) with a pre-
specified set of input vectors viz. plaintext and fixed key and performing Welch
t-test on side channel measurements [8]. Let SA and SB be the two sets of
measurements drawn for a DUT at any instant. Let µA and µB denote their
sample means, σ2

A and σ2
B denote their sample variance, NA and NB denote the

number of measurements in each set. The t-test statistic is given by:

t =
µA − µB√
σ2
A

NA
+

σ2
B

NB

(1)

The null hypothesis is that the two samples come from the same population,
implying that their means µA and µB are the same. If the power traces in the
two subsets are statistically different with high confidence, then information
leakage is present and the device is vulnerable to side-channel attacks. The null
hypothesis is rejected when the computed t-value exceeds the threshold value
of 4.5, i.e., | t |> 4.5. This threshold leads to a confidence level > 0.99999. The
computation of TVLA can be performed in two ways [2] [8]. In our approach
we are using Non-Specific Leakage Test of the first order for computing on-chip
TVLA value. For non-specific t-test, SA is collected with a fixed plaintext and SB
is collected with random plaintexts drawn from uniform distribution. The t-test
statistic is then calculated by computing the mean and variances for both the
data sets. If at any point of time the t-test statistic exceeds the safe threshold,
i.e. if tSAFE > |4.5|, the hardware is said to be under threat of side channel
analysis. The details of the test are illustrated in [2] [19].

2.2 Simulating Side Channel Traces

The success of any side channel attack depends upon the Signal-to-Noise ra-
tio (SNR) of the acquired side channel traces. Hence, the most important part
of a successful side channel attack is accurate and precise side channel trace
acquisition setup, requiring costly equipments like high-end oscilloscopes and
sophisticated probes. Trace acquisition from a physical device using these costly
equipments in real time is time consuming, as the trace acquisition speed is
bounded by the speed of the crypto-algorithm execution in the physical device.
To tackle this issue, one possible alternative is to develop a software which will
generate the side channel traces using a simulation model. This approach makes
the side channel evaluation procedure faster, allowing the evaluator more free-
dom to carry out side channel evaluation for different leakage models and attack
methodologies.

To estimate power consumption of a chip, different EDA vendors provide
different CAD software tools like PrimeTime [6], NC-Sim [4], ModelSim [10].
However, these tools are designed to aid the designer in reducing the power con-
sumption of the chip, hence not suitable side channel analysis. This argument
holds true for Nano-Sim [15] also which provides estimation of power consump-
tion of the CMOS circuits in the design. PINPAS [6] can generate power based
side channel traces for different crypto-algorithms on different hardware imple-
mentation. But it requires the architectural information of the implementation
which may not be always available. Another tool SCARD [1] provides similar
estimation but only a platform-independent one; consequently, its estimation
might be of varying accuracy from platform to platform.

The authors in [18] and [5] have proposed a methodology to generate simu-
lated power based side channel traces without the knowledge of the underlying
hardware. In [5], authors have used a stochastic model to build the model for
power traces generation and used linear regression to generate the simulated
power traces. The process comprises of two phases: profiling or training and
prediction as shown in Fig. 1. According to this model, the power traces are
expressed as below:

L(m) = θ0(m) +

i=n∑
i=1

θi(m)xi (2)

where L(m) denotes the value of the power trace at the sample point m, xis
are the parameter which correlates with the power consumption of the device.
For example, let us consider the power consumption during the execution of a
particular round of a block cipher where a register R0 is getting updated from
value v0 to v1. Here xi can be the Hamming weight of v0 ⊕ v1, in that case n is
equal to 1. On the other hand xi can be the ith bit of v0 ⊕ v1. In that case n is
equal to the length of the target register R0. The value θi is the weight-factor of
xi and θ0 is an additional weight-factor popularly known as the intercept [14].

As shown in Fig. 1, in the profiling phase, the training side channel traces
along with their corresponding plain-text and key value are passed to the model
builder. The model builder computes the weight-factors for each point along with
the intercepts, which are then used by the predictor to generate the simulated
power traces for given plain-text and key.

In this paper, we will mainly consider the above discussed linear regression
model [5] for side channel simulation generation. The main motivations behind
this choice is that it is relatively easy to design and implement hardware for the
linear regression model computation, and for correct TVLA prediction we need
to have on-chip power trace generator module. Next we provide more details of
the power trace generator module with more focus on the quality of generated
power traces.

U

I

L

D

E

R

B

M

O

D

E

L

Training
Traces

Plain Text

Key

Weight−Factors

Intercept

P

R

E

D

I

C

T

O

R

Plain Text Key

Fig. 1: Simulated Trace Generation Methodology

3 On-Chip Generation of Side Channel traces

As mentioned in Section 2.2, the leakage model of the crypto-implementation is
given by following equation:

L(m) = θ0(m) +

i=n∑
i=1

θi(m)xi (3)

To build the model we need to calculate the value of θi(m) and θ0(m).
There are several approaches which can be followed to obtain the values of
θi(m) and θ0(m). We have used the Least Mean Square (LMS) algorithm to
compute the values of θi(m) and θ0(m). We are not going to provide details of
LMS algorithm execution as it is a well known algorithm for supervised learning.
Interested readers are encouraged to go through [14] and [9] for further details of
LMS algorithm. Instead, we will focus on the quality of the training generation.
Accuracy of the model is estimated as the difference of the variances of the actual
power traces C(m) and the predicted power traces P (m) as follows:

Q(m) = V ar(C(m))− V ar(P (m)) (4)

The most important factor in this trace generation module is the choice
of xi. We can choose xi as the Hamming distance of a register, which gets
updated during the execution of a particular round of a block cipher. On the
other hand, we can also choose xi as the ith bit of the updated register value. In
that case we will have N number of xi values for N bits of the target register.
Both of these were considered and analyzed in [8] [2]. Our experimental results
(described in Section 6) indicate that both these choices are equally effective
in practice, as the model built by them generate similar quality of side channel

traces. Additionally, we also consider the trace count as another parameter for
model building and generate the power traces. Finally, we develop another model
using ANN (Artificial Neural Network) and compare it with the developed linear
models (LMs).

Fig. 2 shows the comparison between different models and actual power
traces. This figure clearly exhibits the practical equivalence between different
models and allows us to choose a simpler lightweight model comprising only
Hamming distance (HD) as parameter for the on-chip trace generator. The
equation used in the on-chip power trace generator is given below:

P (t) = θ0 + θ1 ×HD (5)

Sample Points
0 10 20 30 40 50 60 70

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 V

al
u

e

20

40

60

80

100

120
Actual Power Trace
Using LM (x

i
=HD)

Using LM(x
i
=ith bit of Register)

Using LM (x
i
=HD and Trace Count)

Using ANN

Fig. 2: Comparison Between Different Model for Power Trace Generation

Additionally, this developed model only exhibits the leakage information of
the side channel traces. Actual side channel signals contain this leakage informa-
tion but are contaminated with noise. This noise signal can be broadly classified
into two different classes viz. algorithmic noise and device specific noise. Differ-
ent crypto-algorithms will have different algorithmic noise on the same device.
On the other hand, each device will have different noise level for same algorithm
due to process variation. Hence, to make the side channel trace generation more
accurate, we need to incorporate this noise into the simulation of side channel
traces. Keeping the crypto-algorithm fixed, we have computed the device spe-
cific noise and incorporated it in the developed model to generate accurate side
channel traces. The histogram of the device specific noise is shown in Fig. 3. This
figure clearly shows that this device specific noise is can be well-approximated
by a Gaussian model.

Noise Value
-10 -8 -6 -4 -2 0 2 4 6 8 10

P
ro

b
ab

ili
ty

 D
en

si
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Histogram
Theoretical PDF

Fig. 3: Theoretical PDF and Simulated Histogram of Gaussian Noise

4 TVLA Computation on Hardware

As described in Section 3, the computation of TVLA demands a significant num-
ber of side channel traces acquired from a given crypto-implementation hard-
ware. This approach can be suitably applied for the analysis of crypto-algorithm
in an online mode. The same scheme can also be adapted for online analysis
where we will be requiring to make decisions based on real time acquisition of
side channel information.

In Eq.(1), we impose an assumption that the second data set will have almost
constant mean and negligible variance as it consists of traces from a fixed input.
Let us assume µb ≈ C and σ2

b ≈ 0. We can rewrite Eq.(1) as

t ≈ µa − C√
σ2
a/Na

(6)

Let xn be the nth side channel trace value at any sample point m. Also we
consider µan,m , CM2an,m

and σ2
an,m

be the mean, second central moment and
variance respectively after n traces.
The t-statistic value is computed using the following equations:

tn,m ≈
µan,m

− C√
σ2
an,m

/n
n = 1, 2, 3....., Na (7)

where the µ and CM values can be calculated iteratively as follows:

µan,m = µan−1,m +
xn,m − µan−1,m

n
(8)

CM2an,m
= CM2an−1,m

+
(xn,m − µan−1,m

)2

n
× (n− 1) (9)

σ2
an,m

=
CM2an,m

(n− 1)
(10)

From the above equations we note that for computing TVLA value we require
three divisions and one square root operations per new side channel trace per
data point, which increases area as well as performance overheads. In order to
implement the TVLA module more optimally in hardware, we have incorporated
certain modifications whose details are mentioned as follows

1. Minimizing hardware critical operations: For efficient implementation
of TVLA module in hardware we need to minimize the hardware-intensive
operations such as divisions and square roots. In a way we need to compute
the TVLA value such that we can systematically exploit the hardware re-
sources. To achieve this objective, the Eq.(7) is modified accordingly such
that we calculate the TVLA values only with additions, subtractions and
multiplications. We introduce a variable ∆n,m which is defined as:

∆n,m =
(xn,m − µan−1,m)

n
(11)

Eq.(11) for computation of ∆n,m can be viewed as a multiplication of (xn,m−
µan−1,m

) with the inverse of n for the nth side channel trace value. In our
module the inverse is computed offline for some fixed number of traces and
stored in on-chip memory (e.g. Block RAM in FPGA), such that the value
can be queried on demand during the computation of TVLA.
Eqns.(8) and (9) can be rewritten in terms of ∆n,m as

µan,m = µan−1,m +∆n,m (12)

and

CM2an,m
= CM2an−1,m

+∆n,m × (xn,m − µan−1,m
)× (n− 1) (13)

In a similar manner the variance σ2
an,m

can be computed from Eq.(10) by
multiplying CM2an,m

with the inverse of (n−1) which is accessible from the
Block RAM.
Now, squaring Eq.(7) we get

t2n,m ≈
(µan,m

− C)2 × n
σ2
an,m

n = 1, 2, 3....., Na (14)

Rearranging Eq.(14) we obtain as follows

t2n,m × σ2
an,m

≈ (µan,m − C)2 × n (15)

Thus instead of calculating the t-value directly we make decisions based
on comparison by exploiting the Eq. (15). As mentioned in Section 4 the

safe value, tSAFE = |4.5|. By replacing t2n,m in Eq. (15) with the value
of t2SAFE = 20.25, we say the crypto-algorithm is unsafe or not at any
mth sample point for the nth trace value if it satisfies the below mentioned
condition

UNSAFEm,n =

{
1, if 20.25× σ2

an,m
< (µan,m

− C)2 × n
0, if 20.25× σ2

an,m
≥ (µan,m

− C)2 × n

Consequently with this approach we are able to make real time decisions
based on TVLA computation with efficient utilization of hardware resources.

2. Avoiding Floating Point Operations: The predicted side channel traces
so obtained as described in Section 2.2 are represented in floating point num-
bers. The arithmetic operations on floating point numbers not only incur area
overheads but also make the hardware design more complex. In our method
instead of performing floating point operations, we adapt a mechanism to
compute the TVLA value using fixed point operations by representing the
computed power traces in standard Q-number format and keeping the res-
olution of fractional parts up to 8-bits. The values of θ0 and θ1 computed
from Eq.(5) during profiling phase are converted to its Q-number format and
given as constants to the on-chip TVLA trace simulator. Also by ignoring the
excess bits, the fractional parts are restricted to 8-bits during intermediate
operations in TVLA computation. It is observed that the total computation
of TVLA can be done using a register of length atmost 50-bits. The fixed
point operations are implemented using DSP hard macros available on FP-
GAs [20].

3. Minimal number of Sample Points: As seen from Eq.(7), the compu-
tation of TVLA is done on side channel traces for a particular mth sample
point. The maximum value of m depends on the number of sample points
chosen in order to avoid false alarms. But as we increase the number of
sample points (m) and henceforth compute the TVLA for each point, the
hardware efficiency is compromised to a great extent. Instead, for a par-
ticular crypto-algorithm we primarily focus on those points in side channel
information traces that are highly prone to CPA. Henceforth, the TVLA
values on entire set of points are calculated on side channel traces that are
used during the profiling phase in offline mode. We then identify those sam-
ple points that corresponds to high TVLA values. The parameters θ0 and
θ1 computed in Eq.(5) are then incorporated in each of the TVLA modules.
Thereafter the module for each sample points compute the TVLA values
real-time in hardware and raise alarms to thwart any attack. In our simu-
lations, we have taken m = 6 as a satisfactory trade-off between modeling
accuracy and hardware overhead.

5 Architecture and Resource Requirement

In our experimental setup, we have used SASEBO-GII as target evaluation board
with AES-128 as crypto-implementation [7]. The TVLA values are computed
over a set of 9000 traces. The overall hardware architecture is depicted as a
block diagram in Fig. 4.

A
E
S

D

E

S

I

G

N

M

O

D

U

L

E

T

V

L

A

M

O

D

U

L

E

T

V

L

A

M

O

D

U

L

E

T

V

L

A

M

O

D

U

L

E

T

V

L

A

C
10

()

C C3 4

. . .

. . .

Intercept

Weight−factor

Plain Text

CipherText
On Chip

Trace Simulator

Decision Logic

Key

Control

HW Computer

Fig. 4: Overall Architectural Framework

The summary of the resource utilization is highlighted in Table 1.

Implementation LUT’s Slices Slice Registers Block RAM DSP Slices Critical Path Time(ns)

TVLA with floating point 2490 838 418 0 0 24.026

TVLA with fixed point 199 110 222 2 24 13.929

Table 1: Resource Utilization in SASEBO-GII

From Table 1 it is quiet evident that the fixed point implementation of
TVLA is much faster and hardware efficient as compared to its floating point
representation. The latency for the standard implementation of AES-128 module

on SASEBO-GII evaluation board is observed to be approximately 14 ns [17]. Ad-
ditionally, the fixed point implementation of TVLA module gives an advantage
by eliminating the synchronization issues with the standard AES-128 crypto-
implementation on SASEBO-GII hardware. Henceforth, we adapt the fixed point
approach for the on-chip TVLA module.

6 Experimental Validation

As mentioned in Section 5, the first 4500 traces out of 9000 traces are used
for training or profiling in order to obtain the parameters θ0 and θ1, which are
then applied for prediction of the remaining 4500 traces. The predicted trace is
then further added with modeled hardware specific noise on-chip as described in
Section 3. We then compute the values for Eq.(15) with t2 = t2SAFE = 20.25 over
a particular sample point on actual power traces acquired using oscilloscopes.
The same computation is carried out for predicted traces. Fig. 5 depicts the
graphical representation of TVLA computation over actual and predicted power
traces for sample points with m = 6 using fixed point implementation. From
Fig. 5 it is quiet evident that TVLA value for predicted traces shows the same
trend when compared with the TVLA values with actual power traces. Further,
we carried out a comparative analysis for TVLA computation in floating and
fixed point representation by calculating the corresponding errors. It is observed
that the error between floating and fixed point estimations of TVLA lie within
±20 which is quiet acceptable at per with the required hardware constraints.

Number of Traces
0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
V

L
A

 V
al

u
e

-6

-4

-2

0

2

4

6
TVLA on Actual Traces
TVLA on Predcited Traces

Fig. 5: TVLA Computation of Traces using Fixed Point Implementation for m = 6

7 Thwarting SCA through TVLA Alert

Once the integrated TVLA module exhibits TVLA value beyond the safe value,
certain preventive steps must be adopted to protect the underlying crypto-
algorithm from side channel adversary. In this section, we will briefly outline
few examples of such preventive techniques.

Generally, the objective of the side channel adversary is to obtain the key
of the cryptographic implementation. Hence to prevent that certain protection
mechanism can be employed. We categorized these techniques into two broad
categories: 1. Device Level Prevention Mechanisms and 2. Protocol Level Pre-
vention Mechanisms. In case of device level prevention mechanism, we try to
reconfigure the some parameter of the crypto-algorithm in such a way so that
the side channel adversary does not get any information regarding the key value.
Some of such device level protection mechanisms are listed below:

1. Changing the key: In [3], the authors have presented fresh re-keying
scheme, where each encryption is computed with a different key, generated
from a master key. This scheme is synchronized between sender and re-
ceiver and requires only the sharing of the master key. We can adopt similar
methodology once the TVLA alert goes high. However in this case, instead
of using different key for each encryption, we will change the key only when
the TVLA alert goes high

2. Changing the S-Box: Deploying a pool of different S-Boxes and doing
encryption by randomly choosing one S-box from this pool of S-boxes to
prevent CPA was proposed in [12]. In this case, apart from key, there is
another secret value termed tweak which determines the choice of S-box
and is changed for every encryption. Like the previous example, we can also
adopt this mechanism in our case by changing the tweak value only when the
TVLA value goes beyond the safe value. Efficient generation architecture of
such S-boxes is discussed in [16].

3. Changing the Mask Value (BMS Scheme): Masking is probably the
most popular countermeasure against power attack with a theoretical secu-
rity guarantee. However, this security guarantee holds only when the mask
value is changed from each encryption. An alternative Block RAM scram-
bling mechanism for efficient masking was proposed in [11] where we do
multiple encryptions with a single mask and changes the mask only after a
pre-specified number of encryptions is executed. An alternative LUT based
scrambling mechanism is discussed in [16]. Now in this case, instead of chang-
ing mask after a pre-specified number of encryption, we can change the mask
only when the TVLA alert goes high, making the countermeasure more ef-
ficient and smart.

4. Protocol Level Prevention Strategy: With advancement of IoT based
framework in implementing complex networks, security against potential
eavesdropper becomes a primal condition. A model based upon quantitative
information flow against side-channel analysis of web traffic has been pro-
posed in [13]. However if an IoT node becomes vulnerable to SCA attacks by

an adversary, the full information flow gets compromised. The on-chip TVLA
can be implemented on these resource constrained devices, which will trigger
some probable decision strategies at protocol level upon TVLA alert. Once
such possibility can be bypassing those nodes whose TVLA value crosses the
desired threshold level and hence vulnerable to adversary. Once the node
regains the safe TVLA value, the information flow is restored. The overall
strategy is pictorially represented in Fig. 6.

Fig. 6: A plausible Protocol Level Prevention Scheme for IoT based architecture. Each
step from (a) to (d) represents the flow of information from IoT node A to node G.
(a) Information flow is initiated from A to G via F.
(b) Node F with high TVLA value is prone to adversary attack.
(c) Node F is isolated from network with information flow bypassed via D, E.
(d) Infomation flow is resumed from A to G via F once node F has safe TVLA value

8 Conclusion

We have described a technique for on-chip estimation of SCA vulnerability of
cryptographic hardware. Our scheme utilizes the widely used TVLA metric to
perform this estimation. We have demonstrated through experimental results the
effectiveness of a low-overhead fixed-point implementation of the TVLA estima-
tion hardware. The scheme can be used to provide proactive, real-time protection
against SCA, both at device and protocol level. Our future research would be
directed towards demonstrating the effectiveness of the proposed methodology
in an IoT framework.

References

1. Martin Aigner, Stefan Mangard, Francesco Menichelli, Renato Menicocci, Mauro
Olivieri, Thomas Popp, Giuseppe Scotti, and Alessandro Trifiletti. Side channel
analysis resistant design flow. In Circuits and Systems, 2006. ISCAS 2006. Pro-
ceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE, 2006.

2. G Becker, J Cooper, E DeMulder, G Goodwill, J Jaffe, G Kenworthy, T Kouzminov,
A Leiserson, M Marson, P Rohatgi, et al. Test Vector Leakage Assessment (TVLA)
methodology in practice.

3. Sonia Beläıd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel Med-
wed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich. Towards
fresh re-keying with leakage-resilient PRFs: cipher design principles and analysis.
Journal of Cryptographic Engineering, 4(3):157–171, 2014.

4. Cadence. Cadence NC-Verilog Simulator Help. http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.433.1841.

5. Nicolas Debande, Maël Berthier, Yves Bocktaels, and Thanh-Ha Le. Profiled Model
Based Power Simulator for Side Channel Evaluation. IACR Cryptology ePrint
Archive, 2012:703, 2012.

6. Jerry den Hartog, Jan Verschuren, E de Vink, Jaap de Vos, and W Wiersma.
PINPAS: a tool for power analysis of smartcards. In Security and privacy in the
age of uncertainty, pages 453–457. Springer, 2003.

7. Research Center for Information Security (National Institute of Advanced In-
dustrial Science and Technology). Side-Channel Attack Standard Evalua-
tion Board (SASEBO): SASEBO-GII. http://www.rcis.aist.go.jp/special/

SASEBO/SASEBOGII-en.html.

8. Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST Non-invasive attack
testing workshop, 2011.

9. Eleftherios Giovanis. Applications of Least Mean Square (LMS) Algorithm Re-
gression in Time-Series Analysis. Available at SSRN 1667440, 2010.

10. Mentor Graphics. ModelSim. http://www.mentor.com/products/fpga/model.

11. Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for recon-
figurable devices. In Cryptographic Hardware and Embedded Systems–CHES 2011,
pages 33–48. Springer, 2011.

12. Suvadeep Hajra, Chester Rebeiro, Shivam Bhasin, Gaurav Bajaj, Sahil Sharma,
Sylvain Guilley, and Debdeep Mukhopadhyay. DRECON: DPA Resistant Encryp-
tion by Construction. In Progress in Cryptology–AFRICACRYPT 2014, pages
420–439. Springer, 2014.

13. Michael Backes Goran Doychev Boris Kopf. Preventing side-channel leaks in web
traffic: A formal approach. 2013.

14. Sears Merritt and Abigail Jacobs. Lecture Notes for CSCI 5454. 2012.

15. Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia, and Pietro Camarda. Nano-
Sim: simulating electromagnetic-based nanonetworks in the network simulator 3.
In Proceedings of the 6th International ICST Conference on Simulation Tools
and Techniques, pages 203–210. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2013.

16. Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley, Jean-Luc Danger, Deb-
deep Mukhopadhyay, Xuan Thuy Ngo, and Zakaria Najm. Security, Privacy, and
Applied Cryptography Engineering: 5th International Conference, SPACE 2015,
Jaipur, India, October 3-7, 2015, Proceedings, chapter Reconfigurable LUT: A
Double Edged Sword for Security-Critical Applications, pages 248–268. Springer
International Publishing, Cham, 2015.

17. Akashi Satoh, Toshihiro Katashita, and Hirofumi Sakane. Secure implementation
of cryptographic modules.

18. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Cryptographic Hardware and Embedded
Systems–CHES 2005, pages 30–46. Springer, 2005.

19. Tobias Schneider and Amir Moradi. Leakage Assessment Methodology. In Tim
Gneysu and Helena Handschuh, editors, Cryptographic Hardware and Embedded
Systems – CHES 2015, volume 9293 of Lecture Notes in Computer Science, pages
495–513. Springer Berlin Heidelberg, 2015.

20. L.F. Stadler. Hard macro-to-user logic interface, August 11 2009. US Patent
7,573,295.

