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Abstract. Side-channel attacks are an important concern for the se-
curity of cryptographic algorithms. To counteract it, a recent line of
research has investigated the use of software encoding functions such as
dual-rail rather than the well known masking countermeasure. The core
idea consists in encoding the sensitive data with a fixed Hamming weight
value and perform all operations following this fashion. This new set of
countermeasures applies to all devices that leak a function of the Ham-
ming weight of the internal variables. However when the leakage model
deviates from this idealized model, the claimed security guarantee van-
ishes. In this work, we introduce a framework that aims at building
customized encoding functions according to the precise leakage model
based on stochastic profiling. We specifically investigate how to take ad-
vantage of adversary’s knowledge of the physical leakage to select the
corresponding optimal encoding. Our solution has been evaluated within
several security metrics, proving its efficiency against side-channel at-
tacks in realistic scenarios. A concrete experimentation of our proposal
to protect the PRESENT Sbox confirms its practicability. In a realistic
scenario, our new custom encoding achieves a hundredfold reduction in
leakage compared to the dual-rail, although using the same code length.

Keywords: constant weight countermeasures, stochastic characterization, cus-
tomized encoding function, security metrics, information theoretic analysis, side-
channel analysis.

1 Introduction

Side-Channel Attacks. Side-Channel attacks (SCA) are nowadays well known
and most designers of secure embedded systems are aware of them. Since the first
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public reporting of these threats [15], a lot of effort has been devoted towards the
research about side-channel attacks and the development of corresponding coun-
termeasures. Side-channel attacks exploit information leaked from the physical
implementations of cryptographic algorithms. Since, this leakage (e.g. the power
consumption or the electromagnetic emanations) depends on the internally used
secret key, the adversary may perform an efficient key-recovery attack to reveal
this sensitive data. As this property can be exploited with relatively cheap equip-
ment, these attacks pose a serious practical threat to cryptographic embedded
systems. Amongst the side-channel attacks, two classes may be distinguished:

– The set of so-called profiling SCA: is the most powerful kind of SCA attacks
and consists of two steps. First, the adversary procures a copy of the target
device and uses it to characterize the physical leakage. Second, he performs
a key-recovery attack on the target device. This set of profiled attacks in-
cludes Template attacks [5] and Stochastic models (a.k.a. Linear Regression
Analysis) [10,22,23].

– The set of so-called non-profiling SCA: corresponds to a much weaker ad-
versary who has only access to the physical leakage captured on the target
device. To recover the secret key used, he performs some statistical analyses
to detect the dependency between the leakage measurements and this sen-
sitive variable. This set of non-profiled attacks includes Differential Power
Analysis (DPA) [15], Correlation Power Analysis (CPA) [3] and Mutual In-
formation Analysis (MIA) [13].

Side-Channel Countermeasures. A deep look at the state-of-the-art shows
that several countermeasures have been published to deal with side-channel at-
tacks. Amongst SCA countermeasures, two classes may be distinguished [18]:

– The set of so-called masking countermeasures: the core principle of masking
is to ensure that every sensitive variable is randomly split into at least two
shares so that the knowledge of a strict sub-part of the shares does not give
information on the shared variable itself. Masking can be characterized by
the number of random masks used per sensitive variable. So, it is possible
to give a general definition for a dth-order masking scheme: every sensitive
variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a way
that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation used in the Boolean masking, denoted as ⊕) and
no tuple of strictly less than d + 1 shares depends on Z. In the literature,
several provably secure higher-order masking schemes have been proposed,
see for instance [9], [12] and [21].

– The set of so-called hiding countermeasures: the core idea consists in mak-
ing the activity of the physical implementation constant by either adding
complementary logic to the existing logic [7] (in a hardware setting) or by
using a specific encoding of the sensitive data [6,14,24] (in a software set-
ting). Therefore, making this activity constant would theoretically remove
the correlation between the leakage measurements and the secret key.
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Constant Weight Countermeasures. A recent line of works has inves-
tigated possibilities to protect block ciphers in software implementations using
constant weight coding rather than using masking techniques. It is a specific
encoding that has the particularity that all its codewords have a constant Ham-
ming weight. More precisely, Hoogvorst et al. in [14] have presented a dual-rail
implementation of PRESENT [2] in 2011. The idea was straightforwardly taken
from existing dual-rail hardware, and consists in encoding one bit s.t. the logical
value 0 is represented as 01 and the logical value 1 is represented as 10 (or the
inverse).
Another idea derived from dual-rail can be found in a work by Chen et al. [6].
Several encodings are used, by reordering the bits and their complements in a
word, in order to ensure constant Hamming weight and distance leakage for all
operations of the block cipher PRINCE.

Recently, at CARDIS 2014, Servant et al. in [24] have proposed a new con-
stant weight implementation of the AES extending the idea of the software dual-
rail countermeasure proposed by Hoogvorst et al. in [14]. The core idea consists
in encoding efficiently the sensitive data as a whole (i.e. not bit per bit) with a
fixed Hamming weight value and then performing the AES internal operations
following this fashion. When assuming a Hamming weight leakage model, the
authors proved that their proposal is a leak-free countermeasure. However real
world devices do not fit this model, as explained hereafter.

Stochastic Characterization of the Leakage. It is often assumed that a
device leaks information based on the Hamming weight of the processed data.
This assumption is quite realistic and many security analyses in the literature
have been conducted following this model [3,19]. However, this assumption is not
complete in real hardware [28], due to small load imbalances, process variations,
routing, etc. For instance, authors in [16] have characterized, using a stochastic
approach, the leakage of four AES Sbox outputs when implemented in three
different devices. The obtained results prove that the leakage is very unbalanced
for each Sbox output and hence, the Hamming weight assumption is unsound
in practice. This imbalance always leaks some information that can be exploited
by a SCA adversary. Hence, the security guarantee claimed by constant weight
countermeasures does not necessarily hold in real world.

Our Contribution. In this paper, we refine the notion of data encoding
as a countermeasure to thwart side-channel attacks. In fact, we try to bridge
the gap between the physical leakage characteristics and the optimal encoding
which balances at best the data leakage. This work exposes a method based on
a first precise stochastic characterization of the target device, followed by the
generation of a specific encoding according to this model. To do so, we propose
an algorithm to select the best encoding function according to the physical leak-
age characterized on the target device. Our experiments show that the proposed
encoding framework is more efficient than the existing constant weight counter-
measures. We theoretically prove that our proposal reduces the Signal-to-Noise
Ratio and hence, an adversary requires more traces to disclose the secret key
than on the existing constant weight countermeasures. Furthermore, the security
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evaluation conducted illustrates that the leaked information is minimal and the
efficiency of stochastic attack in exploiting this leakage is reduced drastically.
Finally, the practical assessment of our proposal confirms its practicability to
protect cryptographic operations. When device registers leak roughly the same
function, our proposal could be applied to fully protect a block cipher. This
assumption is not fully realistic, meanwhile, our work is a first step towards
protecting block ciphers by involving customized encoding. If registers happen
to leak vastly differently, then we need different encodings for each register and
code conversions between memory accesses to protect a whole block cipher.

Paper Outline. The paper is organized as follows. In Sec. 2, we first detail
two published constant weight implementations to protect a block cipher in
a software setting. Then, we describe our new encoding framework in Sec. 3
and provide a theoretical analysis of it in Sec. 4. Furthermore, an information
theoretic analysis and a security evaluation are conducted in Sec. 5. This is
followed by some practical attack experiments applied on real devices in Sec. 6.
Finally, Sec. 7 draws general conclusions and opens some perspectives for future
work.

2 Existing Works on Leakage Balancing by Involving
Encoding Functions

This principle of data internal encodings has already been proposed by Chow et
al. in [8] in the context of white-box cryptography. Since then, several countermea-
sures have been proposed aiming at balancing the leakage by using some constant
Hamming weight encodings in a grey-box context1. For instance, Hoogvorst et
al. [14] have adapted the hardware dual-rail countermeasure to protect a soft-
ware implementation of PRESENT. To do so, the authors suggest to duplicate
the bit values representation, i.e. to use two bits to represent the logical value
of one bit. For instance, one can encode the logical value 0 as 01 and the logical
value 1 as 10 (or the inverse). When applying such an encoding to protect a n-bit
variable, all codewords generated have a constant Hamming weight of n. Hence,
assuming a Hamming weight leakage model, the power consumption provides no
sensitive information. For instance, the code used to protect a 4-bit variable is
presented in Appendix A, where all codewords have a constant weight of 4. In
the sequel, it will be referred as the dual-rail code.

The dual-rail representation is a specific case of this class of constant weight
codes, but it is not the only option one should consider in a software setting. As
a first example, authors of [6] propose a variation of the dual-rail applied to the
block cipher PRINCE. Another example is [24], in which the authors propose
a new balancing strategy based on the use of a code with the smallest cardinal
available to encode the sensitive data. To protect a 4-bit variable, one can use 16
codewords of 6-bit length, each with a constant Hamming weight of 3. The used

1 The adversary has access to the inputs and outputs of the cryptographic algorithm
plus extra side-channel information.
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code is provided in Appendix A. It will be referred as the (3,6)-code in the rest
of this paper. The security analysis conducted in [24] proves that this constant
weight implementation is a leak-free countermeasure under a Hamming weight
leakage model assumption. However, when the leakage function deviates from
this idealized model, the security guarantee provided by this countermeasure
vanish as discussed in this reference.

To sum up, all these investigations on how to balance the physical leakage
were conducted under the Hamming weight leakage model and with no prior
characterization of the target device to incorporate the precise leakage model.
Moreover, the choice of the code is made independently of the real bit leakage
(for example, in dual-rail representation, the logical value 1 is usually encoded
as 10). Therefore, the claimed security level of these countermeasures could not
be obtained in practice, where the bits may leak differently [16].

In the following section, we propose a framework for protecting sensitive data
by using specific encoding. It is aimed to bridge the physical leakage character-
istics to the choice of an optimal encoding function.

3 Towards a New Encoding Procedure for Leakage
Balancing

Unlike previous works in which the Hamming weight model is often assumed,
our solution is essentially based on harnessing the leakage characteristics and
building a customized encoding accordingly to obtain the best balanced leakage.
So, our framework is composed of two steps detailed in the following subsections.

3.1 First Step: Stochastic Characterization of the Leakage Function

A primordial step in our proposed framework is to take advantage of the adver-
sary’s knowledge of the target device during a stochastic characterization phase,
a.k.a. leakage profiling.

Let Z be a sensitive variable defined over Fn2 , then a stochastic characteriza-
tion assumes that the leakage function L(Z) can be expressed as the sum of two
mutually independent parts:

– a deterministic part D(Z): a function representing the power consumption
during the processing of the sensitive variable Z and,

– a random part R: a Gaussian noise with null mean and standard deviation
σ.

Hence, the leakage function can be rewritten: L(Z) = D(Z)+R =
∑u
i=1 αiδi(Z)+

N (0, σ), where αi are some weighting coefficients and δi are some well chosen
basis functions. Besides, we stress the fact that the basis choice is essential since
it directly impacts the profiling efficiency.

For the sake of simplicity, in this work, we assume a linear basis. This choice
is also motivated by the fact that higher-order basis functions are playing a
minor role despite their better representation of the reality [10]. Moreover, the
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deterministic part of the leakage in practice is very close to the value of the linear
part as discussed in [10]. So, our goal here is to characterize the leakage function
when its deterministic part deviates from the Hamming weight model, but keeps
the same degree. The study of higher-order basis functions (e.g. quadratic, cubic,
. . . ) is out of the scope of this paper.

This implies that every bit of the sensitive variable leaks independently.
This assumption is often used in SCA context to characterize the perceived
device leakage and sometimes referred as Independent Bit Leakage (IBL) as-
sumption [10]. We recall hereafter this assumption.

Assumption 1 (IBL assumption) Let Z be a sensitive variable defined over
Fn2 , then the deterministic part of the leakage function can be rewritten: D(Z) =∑n
i=1 αiZ[i], where Z[i] denotes the ith bit of the sensitive variable Z.

Under Assumption 1, the leakage function can be rewritten:

L(Z) =

n∑
i=1

αiZ[i] +N (0, σ) . (1)

So to recover the leakage function, one can apply a linear regression [10,16]
to obtain a precise estimation of the αi coefficients under the IBL assumption.

3.2 Second Step: Encoding Function Selection

Once the leakage function is characterized, the second step of our framework
consists in applying Algorithm 1 to obtain the optimal encoding function w.r.t.
the profiled leakage.

Algorithm 1 Selection of the optimal encoding function

Input: m: the codeword bit-length, n: the sensitive variable bit-length and αi: the
leakage bit weights, where i in J1,mK

Output: 2n codewords of m-bit length
1: for X in J0, 2m − 1K do
2: Compute the power consumption for each codeword X and store the result in

table D: D[X] =

m∑
i=1

αiX[i]

3: Store the corresponding value of the codeword in the index table I: I[X] = X
4: end for
5: Sort the power consumption stored in table D and the index table I accordingly
6: for j in J0, 2m − 2nK do
7: Find the argmin of |D[j]−D[j + 2n]|
8: end for
9: return 2n codewords corresponding to JI[argmin], I[argmin+ 2n]K

Our Algorithm 1 takes as inputs: the length in bits of respectively the code-
words and the sensitive data and, for each bit, the corresponding leakage weight
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obtained during a stochastic profiling as explained in the previous subsection.
Then, it outputs 2n codewords such that the delta consumption is the lowest
among all subsets of 2n codewords. Since the bit weights are unbalanced in prac-
tice, we argue that finding a code that guarantees a perfectly constant leakage
remains an unreachable goal in most of cases.

Given the output codewords length, we compute the expected power con-
sumption for each codeword and we store the result and the codeword value in
table D and table I respectively (c.f. the first loop from Line 1 to Line 4 in
Algorithm 1). Then, we sort table D (in ascending or descending order) and the
index table I accordingly (c.f. Line 5 in Algorithm 1). Finally, since our goal is
to choose a subset of 2n codewords such that the delta consumption is the lowest
one, we compute the delta of consumption for each subset of 2n elements (c.f.
the last loop from Line 6 to Line 8 in Algorithm 1) and later we select 2n indexes
from table I that minimize this delta. Thus, we obtain a code that ensures the
best balancing of the leakage w.r.t. the stochastic profiling result.

A clustering algorithm [1] would also give good results for this problem, but
we explain hereafter why we chose this algorithm which is somewhat simpler to
analyze. Let d be the maximum distance between two elements of a set S of n
elements. One can show that V ar(S) < n.d2, so that intuitively, minimizing this
distance d gives a subset with one of the lowest variances (and hence, one of the
lowest SNR). There might be a set S′ with lower variance but higher distance
d′, but in that case it would be easier to distinguish the two extreme values of
this set. Some attacks might use this fact to improve the success rate.

Our framework consequently helps building properly encoding function cus-
tomized for the physically observable leakage. It acts as an interface between the
adversary’s knowledge of the physical leakage and the optimal encoding to be
used accordingly. We stress the fact that our Algorithm 1 is still applicable if
the IBL assumption is not respected. To do so, one should inject the obtained
leakage function in Line 2 and execute the algorithm to carry out the encoding
function.

4 Theoretical Analysis of the New Customized Encoding

In what follows, we provide a theoretical analysis of our solution. Namely, we will
show that to succeed a first-order univariate correlation attack on our proposal,
an adversary requires much more traces than on the existing constant weight
countermeasures. This is due to the fact that the selected subset of codewords
has a close-to-lowest power consumption variance among all possible subsets.

Let us start our analysis by exhibiting the explicit relationship between two
security metrics: the Minimum number of Traces to Disclose the key with a
given percentage of success rate (MTD), and the Signal-to-Noise Ratio (SNR).
This link has already been demonstrated by Mangard in [17] for unprotected
implementation. Our purpose is to provide the link between these two security
metrics for encoding-based countermeasures.
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To do so, we first recall how the number of traces to disclose the key is
connected to the Correlation Power Analysis (CPA).

4.1 Analytical Derivation of the Security Level for Correlation
Attacks.

The CPA attack [3] is based on the computation of the Pearson correlation
coefficient between the leakage function L(Z) and a prediction function f(Z)
chosen according to some assumptions on the device leakage model (e.g. the
Hamming weight function). Hence, the Pearson correlation coefficient can be
rewritten:

ρ[L(Z); f(Z)] =
Cov[L(Z); f(Z)]

σL(Z)σf(Z)
,

where Cov[.; .] is the covariance and σL(Z) and σf(Z) are respectively the
standard deviation of the physical leakage and the prediction leakage function.
Besides, in [17] the author demonstrated that the number of curves required to
break a cryptographic implementation by CPA is equal to:

N1−β = 3 + 8

 Z1−β

ln
(

1+ρ
1−ρ

)
2

, (2)

where Z1−β is a quantile of a normal distribution for the 2-sided confidence
interval with error 1− β. 2

We introduce hereafter the optimal correlation function and exhibit its rela-
tionship to the SNR security metric. Then, we deduce the explicit link between
the number of traces to disclose the key and the SNR.

4.2 From Optimal Correlation Function to the SNR

The optimal correlation function is defined as the function that maximizes the
correlation ρ[L(Z); f(Z)] and can be obtained from Corollary 8 in [20]:

ρopt =

√
Var[E[L(Z) | Z = z]]

Var[L(Z)]
, (3)

where E[.] and Var[.] denote the mean and the variance function respectively.
Based on this definition, we introduce the following proposition.

Proposition 1. Let L(Z) satisfies Eq. (1). Then, the optimal correlation func-
tion satisfies:

ρopt =

√
1

1 + 1
SNR

, (4)

2 Some values of quantiles are given in Appendix B.
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where the SNR can be rewritten:

SNR =

(
Var[

n∑
i=1

αiZ[i]]

)
/σ2 . (5)

Proof. The proof of Proposition 3 is given in Appendix. C. ut

As a direct consequence of Proposition 3, one can inject Eq. (C.1) into Eq. (2)
to find the number of traces required by a CPA attack to succeed according to
the SNR. Thus, assuming ρ is small3, it yields the number of traces to achieve
a success rate of 90%, denoted N90%:

N90% ≈ 8

(
Z90%

2ρ

)2

≈ 8

 Z90%

2
√

1
1+ 1

SNR

2

≈
2Z2

90%

SNR
(6)

From Eq. (6) one can conclude that the smaller the SNR is, the more traces
are required to achieve a success rate of 90% for a CPA attack. As a direct
consequence, if we decrease the SNR by a factor X, then the required number
of traces to succeed the CPA attack will be multiplied by X.

In the next subsection, we evaluate our proposal by computing the SNR and
then deducing the N90%.

4.3 Evaluation of our Proposal within the SNR and the N90%

Security Metrics

We recall that the deterministic part of the leakage function, defined under
the IBL assumption, satisfies D(Z) =

∑n
i=1 αiZ[i]. In the sequel, we make an

additional assumption on the statistical distribution of the bit leakage weights
αi. In fact, for the sake of simplicity, the distribution of the αi coefficients can
fairly be approximated by a Gaussian law. This assumption that we shall call
Gaussian Bit Leakage Weight (GBLW) assumption is formalized hereafter.

Assumption 2 (GBLW assumption) The bit leakage weights αi are mutu-
ally independent random variables drawn from a Gaussian distribution with unity
mean and standard deviation σα.

Under Assumption 2, the leakage function can be rewritten:

L(Z) = α · Z +N (0, σ) , (7)

where (·) denotes the scalar product operation and α = [α1, α2, . . . , αn] denotes
the bit leakage weight vector such that for every i in J1, nK we have αi ∼ N (1, σα).

3 In fact, we can approximate ln
(

1+ρ
1−ρ

)
= ln(1 + ρ)− ln(1− ρ) ≈ ρ− (−ρ) ≈ 2ρ.
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Let C be a (n,m)-function, i.e. C : Fn2 7→ Fm2 s.t. n ≤ m, denoting the
encoding operation used to protect a sensitive variable Z in Fn2 . Then, the leakage
function can be expressed as:

L(Z) = α · C(Z) +N (0, σ) =

m∑
i=1

αiC(Z)[i] +N (0, σ) . (8)

In the next proposition, we give an explicit formula of the SNR when an
encoding function is involved to thwart SCA attacks.

Proposition 2. Let L(Z) satisfy Eq. (8). Then, for every Z in Fn2 , the Signal-
to-Noise Ratio satisfies:

SNR =

 m∑
i,j=1
i 6=j

E[C(Z)[i]C(Z)[j]] + (σ2
α + 1)

m∑
i=1

E[C(Z)[i]]−

(
m∑
i=1

E[C(Z)[i]]

)2

 /σ2 .

(9)

Proof. The proof of Proposition 4 is given in Appendix D. ut

Using the result of Proposition 4 and Eq. (6), one can evaluate the amount
of traces required to reach a 90% of success rate when an encoding is applied
to protect a sensitive data. For the sake of comparison, we will also evaluate
this metric for some well known countermeasures. We list hereafter the leakage
functions we consider:

– Unprotected: Lunpro(Z) = α·Cunpro(Z)+N (0, σ), where Cunpro is the identity
function.

– Software dual-rail [14]: Ldual(Z) = α · Cdual(Z) +N (0, σ), where Cdual is the
dual-rail code, described in Appendix A.

– Software constant weight [24]: LcstHW(Z) = α · CcstHW(Z) +N (0, σ), where
CcstHW is the (3,6)-code described in Appendix A.

– Our proposed customized encoding: L(Z)cust = α ·Ccust(Z)+N (0, σ), where
Ccust is the code generated using Algorithm 1 for different codeword lengths.

In the sequel, we consider that the sensitive variable Z is a 4-bit variable,
(i.e. n = 4). Then, for each of the above described leakage functions, we have
computed the SNR over a set of 5.000 independent experiments using the result
of Proposition 4. The standard deviation of the bit leakage weights σα was fixed
at 0.25 and 0.5. Finally, we have deduced the N90% using Eq. (6).

In Fig. 1, we plot the number of traces to achieve a success rate of 90%
according to the noise standard deviation σ. For our customized encoding func-
tions, we show the results for different codewords lengths, i.e. Ccust : F4

2 7→ Fm2
with m in J5, 10K.

From Fig. 1, the following observations could be emphasized:
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Fig. 1. Evolution of the number of traces to achieve a success rate of 90% (y-axis)
according to an increasing noise standard deviation σ (x-axis in log scale base 2). Left:
for σα = 0.25. Right: for σα = 0.5.

– As expected the constant weight encoding countermeasures are less efficient
than our customized encoding functions. For instance, when the noise stan-
dard deviation equals 16, about 10.000 and 2.000 are sufficient to reach a
success rate of 90% when σα equals 0.25 and 0.5 respectively. This is due to
the fact that these codes are generated independently of the physical leakage
by simply assuming a Hamming weight leakage model.

– The longer the code is, the more resistant the countermeasure is. In fact, our
Algorithm 1 generates an encoding function such that the delta consumption
of the selected codewords, the corresponding physical leakage variance, and
the SNR are the lowest among all the subsets of codewords. So, the longer the
code is, the more efficient our proposed algorithm is in selecting an encoding
function that minimizes further the SNR. 4 For instance, when σα = 0.25 and
σ = 2, the SNR decreases from about 0.032 for the (3,6)-code to 7.8× 10−5

for the customized code of length 10.

– For a fixed noise standard deviation, one can notice that if σα increases, the
adversary will need less traces to achieve a success rate of 90%. For instance,
when σ = 8 and the customized encoding of length 6 is used, the N90% equals
approximately 10.000 and 8.000 traces when σα varies from 0.25 to 0.5 as
shown in Fig. 1. This observation is in-line with Eq. (D.1). In fact, when σα
increases, the SNR increases accordingly and hence the N90% decreases. To
sum up, the degree of randomness of the leakage function has a noticeable
impact on the amount of traces required by an adversary to achieve a success
rate of 90%. So, the higher σα is, the longer encoding function a designer
should use.

4 In Appendix E, we provide some examples of the SNR computation.
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– It is noteworthy that the code of length 5 is less efficient than the state-of-
the-art countermeasures when σα = 0.25. However, when σα = 0.5, this cus-
tomized code achieves a better result than the dual-rail and the (3,6)-code.

To conclude, our proposed encodings bring an overwhelming gain in terms
of number of traces to succeed the CPA attack. For instance, to break the code
of length 7, an adversary requires about 12 and 50 times more traces to achieve
a CPA success rate of 90% compared to the dual-rail countermeasure when σα
equals 0.25 and 0.5 respectively.

5 Security Evaluation of the New Customized Encoding

As argued on the evaluation framework introduced in [25], the robustness of a
countermeasure encompasses two dimensions: its amount of leakage irrespective
of any attack strategy and its resistance to specific attacks. So, the evaluation
of protected implementations should hold in two steps. First, an information
theoretic analysis determines the actual information leakage. Second, a security
analysis determines the efficiency of various attacks in exploiting this leakage.

Following this evaluation framework, we start with an information theoretic
analysis in the following subsection.

5.1 Information Theoretic Analysis

To evaluate the information revealed by our proposed encoding functions, we
compute the Mutual Information Metric (MIM) between the sensitive variable
Z and the leakage function: I[Lcust(Z);Z] = H[Lcust(Z)]−H[Lcust(Z) | Z], where
H[.] denotes the entropy function. For the sake of comparison, we evaluate the
MIM for the leakage functions listed in Sec. 4.3 as well. Besides, we compute
this metric also for a first-order masking leakage function:

Lmask(Z) = (α1 · (Z ⊕M))× (α2 ·M) +N (0, σ) , (10)

where M denotes a random mask defined over F4
2 and (α1, α2) are respectively

the bit leakage weight vector of the masked data (Z ⊕M) and the mask (M)
such that α1 6= α2. Put differently, we assume that the masked data bits and
the mask bits leak independently5.

From Eq. (10), one can conclude that for masking we consider a bivariate
leakage, i.e. a product combination of the two leakages (the masked data and
the mask) is exploited by the adversary.

For each leakage function, the MIM was computed for several standard de-
viations of the bit leakage weights (σα in {0.05, 0.25, 0.75, 1}) and over a set of
200 independent experiments. The MIM is computed via numerical integration
(Sec.4.1.b of [10]). This method is accurate when the leakage is mathematically
generated to perform simulations. The obtained results are shown in Tab. 1.

From Tab. 1, the following observations can be emphasized:

5 Our goal here is to analyze the masking countermeasure in the worst case scenario
(i.e. the mask register and the masked data register have different leakage functions).
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Table 1. Evolution of the MIM (y-axis in log scale base 2) according to an increasing
noise standard deviation σ (x-axis in log scale base 2).
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– Interestingly, all MIM curves are parallel and have the same slope (−2).
In fact, it has been demonstrated that the mutual information is propor-
tional to σ(−2d) for large enough noises, where d denotes the order of the
smallest statistical moment in the leakage distribution depending on the se-
cret key and corresponds also to the number of shares used to represent the
sensitive data [4,11,26]. Since for all the considered leakage functions the
sensitive data is represented with a single share (i.e. d = 1)6, then the corre-

6 For the masking leakage function, we stress the fact that we have used one share
which corresponds to the product combination of the masked data share and the
mask share (i.e. a second-order analysis of the first-order masking).
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sponding mutual information decrease exponentially following a curve with
slope (−2) when the noise standard deviation σ increases. As expected, this
confirms that the unprotected implementation and the encoding-based coun-
termeasures lead to first-order univariate weaknesses and that the masking
countermeasure leads to first-order bivariate weakness.

– Despite having the same gradient, the amount of information leaked differs
from a leakage function to another. For instance, one can see that whatever
the σα value is, our proposed encoding functions of length superior to 6 leak
less than the other encoding countermeasures and the first-order masking.
This result is in-line with that of Sec. 4.3. In fact, the longer the code is, the
less information is leaked, the lowest the SNR is, and the more traces are
needed to break the implementation.

– For σα ≤ 0.25, our customized code of length 5 performs worse since it leaks
more than the dual-rail and the (3,6)-code. This result is also in-line with
that shown in Fig. 1. In fact, an adversary requires less traces to break the
optimal code of length 5 than the (3,6)-code. This could be simply explained
by the fact that for small σα the best code is a constant weight one and no
such a code exists for length 5 to generate 16 codewords.

– It is noteworthy that the first-order masking performs worse when σα ≥ 0.75.
It leaks slightly more information than an unprotected implementation. This
result can be explained by the fact that when the bits of the two shares (the
masked data and the mask) leak ”very” differently, the countermeasure is
doubly impacted (i.e. unbalance of the masked data leakage and unbalance of
the mask leakage). This implies that the security guarantee by masking van-
ish in such a scenario. This result is in-line with that obtained in [11], where
the MIM has been evaluated when the masking and the unprotected leakage
functions radically deviate from the idealized Hamming weight model.

– It appears also that the degree of the deviation from the Hamming weight
model (i.e. σα) has a noticeable influence on the amount of information
leaked. In fact, for a fixed noise standard deviation σ, the higher σα, the
larger the leakage. The same observation has been pinpointed in [11], i.e.
the quantity of information leaked is strongly affected by the degree of ran-
domness of the leakage function. Moreover, this result is in-line with that
discussed in Sec. 4.3, i.e. the higher σα, the less number of traces are needed
to achieve a 90% of success rate.

5.2 Side-Channel Security Analysis

To complete the security evaluation of our proposal, we conduct in this subsec-
tion a security analysis to evaluate its resistance to thwart SCA attacks. Namely,
we perform a security evaluation of the stochastic attacks, for which a strong
consistency with the previous security metrics analyses (i.e. the information the-
oretic analysis, the SNR and the MTD) should hold. To do so, we detail hereafter
the attack simulation setup.

Simulation Setup. The leakage measurements have been simulated as sam-
ples of all the leakage functions listed in Sec. 4.3 and that detailed in Eq. (10)
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for the first-order masking countermeasure. Moreover, the sensitive variable Z
was chosen to be a PRESENT Sbox output of the form S(X ⊕ k), where X
represents a varying 4-bit plaintext and k represents the key nibble to recover.

Attack scenarios. For our simulation attacks, we focus on two scenarios:

– The best-case scenario: we consider a powerful adversary who has access
to the bit leakage weights and the characteristics of the optimal used code
(i.e. the code length and the subset of the codewords). Then, he performs a
stochastic attack by targeting the protected variable C(S(X ⊕ k)).

– The worst-case scenario: we consider a more realistic (and much weaker)
adversary who has only the control on the target device to characterize the
physical leakage. However, the characteristics of the used code are unknown.
So, the adversary performs a linear regression over a 4-bit variable, i.e. the
PRESENT Sbox output S(X ⊕ k).

For each scenario and for each leakage function, we compute the success rate
of the stochastic attack [16] over 200 independent experiments. Moreover, this
security metric was computed for several standard deviations of the bit leakage
weights (σα in {0.05, 0.25, 0.75, 1}). The noise standard deviation was fixed at
σ = 0.25. The simulation results in the best-case scenario are plotted in Tab. 2.7

Simulation results. For the best-case scenario, the results shown in Tab. 2
are in-line with those obtained during the information theoretic evaluation. In
fact, when the σα ≤ 0.25, the optimal code of length 5 performs worse since an
adversary requires less traces to achieve a 100% of success rate than the constant
weight countermeasures. Besides, we conclude again that the longer the code is,
the more resistant the implementation is. Moreover, the higher the standard
deviation of the bit leakage weights is, the less efficient the encoding function is.

For the worst-case scenario, as expected, the stochastic attack performs worse
since the adversary does not have the control on the code length and the subset
of codewords used for the protection. So, the profiling phase outputs an imprecise
leakage model which impacts the attack efficiency.

These simulation results also highlight the inefficiency of fixed constant weight
codes such as the dual-rail in all the presented models. Customized encodings of
the same length of 8 bits exhibit a much higher resistance.

6 Practical Evaluation of the New Customized Encoding

In the previous sections, we have confronted our theoretical analyses based on
the SNR and the MTD security metrics with simulations based on the security
evaluation framework proposed in [25]. In the following, we aim to confront these
results against real measurements.

7 The simulation results in the worst-case scenario can be found in Appendix F.
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Table 2. Stochastic attack results in the best-case scenario for a noise standard devi-
ation σ = 0.25.
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6.1 Implementation considerations and memory-security trade-off

Encoding of sensitive data with codewords of longer length, e.g. representing
the PRESENT Sbox output nibble as a byte, seems unreasonable for embed-
ded software products at first, as the computation tables grow quadratically in
size with the length of the code. In order to avoid large memory penalties when
implementing our solution, a trick detailed in [14] and [24] has to be used. It
consists in encoding a n-bit variable as two separate halves. This way, the linear
and non-linear operations of a block-cipher can be performed at a much lower
memory cost than with a double-length encoding.
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We begin with a quick reminder of this trick. Listing 1.1 shows how to perform
an encoded memory access with an 8-bit input, encoded in two words of 7 bits
each. This kind of operation could be an AES Sbox or a XOR operation between
two nibbles for example.

1 // R3 = @table_msb, R4 = @table_lsb, R5 = @shift1_table, R6 =

@shift7_table

2 // R0 = operand MSB = 0xxxxxxx, R1 = operand LSB = 0yyyyyyy

3 LDRB R2, [R5,R0] // R2 = 00000000xxxxxxx0

4 EOR R0,R0,R0 // Clear R0

5 LDRH R0, [R6,R2] // R0 = 00xxxxxxx0000000

6 EOR R0,R0,R1 // R0 = 00xxxxxxxyyyyyyy

7 EOR R1,R1,R1 // Clear R1

8 EOR R2,R2,R2 // Clear R2

9 LDRB R1, [R3,R0] // R1 =table_msb[operand] (7 bits)

10 LDRB R2, [R4,R0] // R2 =table_lsb[operand] (7 bits)

Listing 1.1. Double-length encoded access for a code of length 7 (ARM assembly)

This procedure works if we assume all registers leak more or less the same
function of their inputs.8 If registers happen to leak vastly differently, then we
need different encodings for each register and code conversions between memory
accesses. This study is out of the scope of this paper.

As the code for the most significant bits of a register could be different than
the one for the least significant bits, we require to tabulate the shift operation
so that it outputs the correct code for the given destination within the register
(shift1 table and shift7 table in Listing 1.1). In the end this shows all classical
operations of a block cipher (e.g. XOR, Sbox) can be covered. Regarding bit-
level operations (e.g. permutation in DES, PRESENT), a solution may consist in
tabulating these operations too, if there is enough memory available. As shown
in Fig. 2, inside the look-up table we decode the inputs C(xi) by computing
(C−1), apply the bit-level permutation (P) and encode the result (Yi = P (xi)).

In the former case, the overhead compared to an unprotected implementation
would be the same as the one obtained in [24]. This means that an encoded
AES would execute only roughly 4 times slower than its unprotected version.

Regarding the choice of the code length, it is up to the designer to choose
the suitable length that guarantees the best performance-security trade-off ac-
cording to the perceived physical leakage. Perhaps a recommendation could be
to estimate the minimum number of traces to disclose the key (MTD) for differ-
ent code lengths (as investigated in Sec. 4.3) then select the encoding function
according to the available memory and the required level of security.

8 It was the case for our practical experiment as detailed in Appendix J.
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Fig. 2. Protecting bit-level permutation with encoding functions.

6.2 Experimental Setup

We have performed several practical experiments using a Micro-Controller in-
tegrated circuit from STMicroelectronics. Namely, we choose the STM32F3
circuit [27] based on the 32-bit RISC ARM Cortex-M4F processor core with
90nm CMOS process. In order to assess the practicability of our new framework
in realistic case, we use 4 different copies of the STM32F3 circuit (referred as
copy #1, #2, #3 and #4). Our goal is to provide an answer to the following
question:

Does a customized encoding for one circuit ensure the same security level
when implemented on a different circuit of the same family?

So, the idea behind using four copies is to enable us to apply our framework
(i.e. stochastic profiling of the leakage and customized encoding generation)
on one copy and to use the same encoding functions to protect the other copies
without a prior profiling. The target operation is a PRESENT Sbox computation
protected by a customized encoding function with different codeword lengths.
The side-channel traces were obtained by measuring the electromagnetic radia-
tions (EM) emitted by the target device.

6.3 Attack Experiments and Results

To perform our profiling phase, we have first acquired 25.000 EM traces recording
an AES Sbox computation when implemented on copy #1. The use of the AES
Sbox (8 bits output) rather than the PRESENT Sbox (4 bits output) was neces-
sary to extract the weights of all the 8 bits of a register by a stochastic approach.
To do so, we have performed a linear regression attack and we have captured
the averaged bit weights returned when the attack succeeds to find key9. The

9 As detailed in [16], the stochastic attack does not only return the best key candidate
but also a linear regression of the leakage. We computed the average of the bit leakage
coefficients during a time window where the attack succeeds.
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obtained bit weights αi are plotted in Appendix G. For this circuit, we have
observed that it leaks closely to the Hamming weight model which implies an
exploitable penalty in the security of constant weight countermeasures.

Second, we have executed Algorithm 1 to obtain the optimal encoding func-
tions of length varying in J5, 7K to protect the 4-bit PRESENT Sbox output.
Third, for each code length, we have implemented the protected PRESENT
Sbox on each copy. We stress the fact that we have used the obtained encoding
functions (for copy #1) to protect the three other copies without a prior leakage
characterization. For fair comparison, 50.000 EM traces 10 were acquired with a
fixed experimental setup: i.e. the same electromagnetic probe, the same probe’s
position, the same oscilloscope configuration to sample the measurements and
the same temporal acquisition window. The code setup is a simple Sbox access
in RAM which overwrites a register containing zero. The Sbox was aligned in
memory for every encoding, and the same registers were used for each circuit
copies.11

Finally, we conducted 10 independent enhanced CPA attacks12 against each
implementation of the four copies (i.e. we used 10 independent set of 5.000 EM
traces). The evolution of the averaged rank of the correct key among 16 (4-bit
keys) is plotted in Fig. 3 for each circuit and code length.

The various encodings perform as expected on all circuits, although they
were constructed from the profiling of only one of them. Longer codes provide
higher resistance, but only very slightly for a code of length 5. These practical
results are in-line with the simulation ones shown on Sec. 5.2. Overall, these
results confirm that one can profile a single device, devise the corresponding
encodings, then use them to protect another device of the same family without
loosing much in resistance. More studies should be performed in order to fully
assess the generic side of the countermeasure nonetheless.

7 Conclusion

In this paper, we have proposed a new framework for building customized encod-
ing function according to the physical leakage characteristics of the target device.
It gives assurance that even under good profiling conditions for an attacker, the
Signal-to-Noise Ratio is close to minimal. We also showed how much leakage
reduction is to be expected for previous constant weight countermeasures in the
case of an imbalanced leakage. The security evaluation conducted has shown
the overwhelming advantages of our proposal compared to the existing constant
weight countermeasures in more realistic scenarios. It is also more difficult to
attack than a first-order masking when the latter’s shares can be easily com-
bined by an attacker. It is also possible to obtain the same performance impact

10 An example of an EM trace is provided in Appendix H.
11 The assembly code used is detailed in Appendix I.
12 We assume a powerful adversary who has access to the used encoding function Ccust

and the bit leakage weight vector α. Hence, he is able to compute ρ[L(Z);α·Ccust(Z)].
We emphasize the fact each attack was processed on the whole trace.
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Fig. 3. Evolution of the correct key rank according to the number of observations.

as constant weight implementations, making customized encodings faster than
known second-order masking schemes. Besides, the obtained results within the
four considered security metrics (i.e. the SNR, the MTD, the information theo-
retic, the success rate of stochastic attack) are in-line, proving the tightness of
our security evaluation process. Finally, the practical assessment of our solution
have enabled us to confirm its practicability to protect cryptographic operations
when applied on four different copies of the same device.

Our work opens avenues for further research of new encoding functions when
assuming a higher-order leakage model (e.g. quadratic, cubic, . . . ) and also the
study of new designs combining both masking and encodings. Another future
work will consist in studying the inter-conversion of encoding functions when the
registers of a circuit have different leakage model and then, several customized
codes have to be used to protect a block cipher.
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A The Dual-Rail and (3,6)-Codes

The dual-rail code and the (3,6)-code are provided in Tab. 3 and Tab. 4 respec-
tively.

Table 3. The dual-rail code.

0 → 01010101 4 → 01100101 8 → 10010101 12 → 10100101
1 → 01010110 5 → 01100110 9 → 10010110 13 → 10100110
2 → 01011001 6 → 01101001 10 → 10011001 14 → 10101001
3 → 01011010 7 → 01101010 11 → 10011010 15 → 10101010
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Table 4. The (3,6)-code.

0 → 000111 4 → 010011 8 → 011010 12 → 100110
1 → 001011 5 → 010101 9 → 011100 13 → 101001
2 → 001101 6 → 010110 10 → 100011 14 → 101010
3 → 001110 7 → 011001 11 → 100101 15 → 101100

B Some Precomputed Values for the Quantiles of a
Normal Distribution

We provide in Tab. 5 some precomputed values of the quantile of a normal
distribution for the 2-sided confidence interval with error (1− β).

Table 5. Some precomputed values for the quantiles of a normal distribution.

Confidence level [%] (1− β) Z1−β

60 0.842
80 1.282
90 1.645
95 1.960
98 2.326
99 2.576

C Proof of Proposition 1

We recall hereafter Proposition 1.

Proposition 3. Let L(Z) satisfies L(Z) =
∑n
i=1 αiZ[i] + N (0, σ). Then, the

optimal correlation function satisfies:

ρopt =

√
1

1 + 1
SNR

, (C.1)

where the SNR can be rewritten:

SNR =

(
Var[

n∑
i=1

αiZ[i]]

)
/σ2 .
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Proof. On the one hand, we have:

Var[E[L(Z) | (Z = z)]] =Var[E[

n∑
i=1

αiZ[i] +N (0, σ) | (Z = z)]]

=Var[E[

n∑
i=1

αiZ[i] | (Z = z)] + E[N (0, σ)]] (two independent variables)

=Var[
∑
z∈Fn

2

P[Z = z]

(
n∑
i=1

αiz[i]

)
+ 0]

=Var[
n∑
i=1

αiZ[i]] . (C.2)

On the other hand, we have:

Var[L(Z)] =Var[
n∑
i=1

αiZ[i] +N (0, σ)]

=Var[
n∑
i=1

αiZ[i]] + Var[N (0, σ)] (two independent variables)

=Var[
n∑
i=1

αiZ[i]] + σ2 . (C.3)

Hence, Eq. (C.2) and Eq. (C.3) together imply that the optimal correlation
function can be expressed as:

ρopt =

√
Var[E[L(Z) | Z = z]]

Var[L(Z)]

=

√
Var[

∑n
i=1 αiZ[i]]

Var[
∑n
i=1 αiZ[i]] + σ2

=

√
1

1 + σ2

Var[
∑n

i=1 αiZ[i]]

=

√
1

1 + 1
SNR

,

which leads to Eq. (C.1) and achieves the proof. ut

D Proof of Proposition 2

We recall hereafter Proposition 2.
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Proposition 4. Let L(Z) satisfy L(Z) = α · C(Z) +N (0, σ) Then, for every Z
in Fn2 , the Signal-to-Noise Ratio satisfies:

SNR =

 m∑
i,j=1
i 6=j

E[C(Z)[i]C(Z)[j]] + (σ2
α + 1)

m∑
i=1

E[C(Z)[i]]−

(
m∑
i=1

E[C(Z)[i]]

)2

 /σ2 .

(D.1)

Proof. Let C : Fn2 7→ Fm2 be an encoding function, then the SNR can be rewritten:

SNR =
Var[α · C(Z)]

σ2

=
E[(α · C(Z))

2
]

σ2︸ ︷︷ ︸
Term #1

− (E[α · C(Z)])
2

σ2︸ ︷︷ ︸
Term #2

.

This result is directly deduced from the formula of the variance. We can now
derive the expression of the two terms. First of all, we have:

Term #1 =
1

σ2
E[(α · C(Z))

2
]

=
1

σ2
E[

m∑
i,j=1

αiαjC(Z)[i]C(Z)[j]]

=
1

σ2
E[

m∑
i,j=1
i 6=j

αiαjC(Z)[i]C(Z)[j] +

m∑
i=1

α2
i C(Z)[i]]

=
1

σ2
E[

m∑
i,j=1
i 6=j

αiαjC(Z)[i]C(Z)[j]] + E[

m∑
i=1

α2
i C(Z)[i]]

=
1

σ2

m∑
i,j=1
i 6=j

E[αiαj ]E[C(Z)[i]C(Z)[j]] +

m∑
i=1

E[α2
i ]E[C(Z)[i]] (αi and C(Z)[i] are independent)

=
1

σ2

m∑
i,j=1
i 6=j

E[αi]E[αj ]E[C(Z)[i]C(Z)[j]] +

m∑
i=1

E[α2
i ]E[C(Z)[i]] (αi are independent)

=
1

σ2

m∑
i,j=1
i 6=j

E[C(Z)[i]C(Z)[j]] + (σ2
α + 1)

m∑
i=1

E[C(Z)[i]] . (E[αi] = 1 and E[α2
i ] = σ2

α + 1)

(D.2)
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Then, we evaluate the Term #2:

Term #2 =
(E[α · C(Z)])

2

σ2

=

(
E[

m∑
i=1

αiC(Z)[i]]

)2

σ2

=

(
m∑
i=1

E[αi]E[C(Z)[i]]

)2

σ2

=

(
m∑
i=1

E[C(Z)[i]]

)2

σ2
. (D.3)

Hence, Eq. (D.2) and Eq. (D.3) lead to Eq. (D.1) and achieve the proof. ut

E Examples of Some Customized Encoding Functions
and the Corresponding SNR Values

To evaluate the SNR, we have generated at random two 10-bit leakage weight
vectors α1 and α2, according to a standard deviation σα equals 0.25 and 0.5.
The returned weights of each bit are plotted in Fig. 4. We also plotted in green
dashed line the value corresponding to the bit leakage weight in a Hamming
weight model, i.e. αi = 1 for all i in J1, 10K.
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Fig. 4. Bit leakage weights obtained using linear regression. Left: for σα = 0.25. Right:
for σα = 0.5.

Then, for each bit leakage weight vectors, we have computed the optimal code
using Algorithm 1. Finally, we have deduced the corresponding codewords delta
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consumption, the variance and the SNR for a fixed noise standard deviation
σ = 2. The obtained results are highlighted in Tab. 6 and Tab. 7 for σα equals
0.25 and 0.5 respectively.

27



T
a
b
le

6
.

S
N

R
co

m
p
u
ta

ti
o
n

w
h
en

σ
α

=
0
.2

5
.

α
1

[0
.6

8
7
1
1
9
,

0
.9

5
3
4
7
1
,

1
.1

5
2
6
4
7
,

0
.9

9
4
9
8
5
,

1
.2

6
0
2
2
4
,

0
.8

2
2
9
9
6
,

1
.0

2
5
1
2
8
,

0
.8

9
1
0
2
9
,

1
.0

6
2
7
7
8
,

0
.6

9
4
0
1
7

]

C
o
d
e

C
o
d
ew

o
rd

s
D

el
ta

p
ow

er
P

ow
er

co
n
su

m
p
ti

o
n

le
n
g
th

u
se

d
co

n
su

m
p
ti

o
n

va
ri

a
n
ce

S
N

R

0
x
1
4

0
x
1
1

0
x
a

0
x
c

0
x
6

0
x
9

0
x
3

0
x
5

1
.3

6
8
9
1
3

0
.2

0
3
8
2
6

5
0
x
1
a

0
x
1
c

0
x
1
6

0
x
1
9

0
x
1
3

0
x
1
5

0
x
e

0
x
b

0
.1

0
1
9
1
3

0
x
3
4

0
x
2
9

0
x
2
3

0
x
1
5

0
x
3
8

0
x
2
c

0
x
3
2

0
x
1
9

0
.6

0
0
2
9
2

0
.0

3
1
3
3
6

6
0
x
2
6

0
x
d

0
x
1
3

0
x
7

0
x
2
a

0
x
1
c

0
x
1
6

0
x
b

0
.0

1
5
6
6
8

0
x
5
8

0
x
b

0
x
5
1

0
x
6
4

0
x
3
2

0
x
4
c

0
x
1
a

0
x
4
5

0
.2

9
6
4
9
4

0
.0

0
9
0
3
2

7
0
x
2
9

0
x
1
3

0
x
2
6

0
x
e

0
x
5
4

0
x
3
8

0
x
7

0
x
3
1

0
.0

0
4
5
1
6

0
x
c9

0
x
8
e

0
x
5
6

0
x
e2

0
x
6
5

0
x
9
9

0
x
b
2

0
x
3
5

0
.1

3
5
8
7
6

0
.0

0
2
2
5
8

8
0
x
8
b

0
x
5
3

0
x
2
7

0
x
d
8

0
x
a
c

0
x
7
4

0
x
ca

0
x
4
d

0
.0

0
1
1
2
9

0
x
6
a

0
x
1
1
6

0
x
8
d

0
x
a
6

0
x
4
e

0
x
1
b
0

0
x
1
6
1

0
x
1
1
3

0
.0

6
7
7
9
2

0
.0

0
0
6
0
2

9
0
x
a
3

0
x
2
d

0
x
1
5
8

0
x
e8

0
x
1
9
4

0
x
1
4
5

0
x
9
a

0
x
4
b

0
.0

0
0
3
0
1

0
x
2
ca

0
x
1
7
4

0
x
d
6

0
x
f1

0
x
2
2
e

0
x
1
4
e

0
x
1
6
9

0
x
cb

0
.0

3
2
3
5
4

0
.0

0
0
1
5
6

1
0

0
x
2
f

0
x
3
a
4

0
x
2
b
8

0
x
1
d
8

0
x
1
a
5

0
x
1
3
c

0
x
9
e

0
x
b
9

7
.8
×

1
0
−
5

0
x
5
5

0
x
5
6

0
x
5
9

0
x
5
a

0
x
6
5

0
x
6
6

0
x
6
9

0
x
6
a

1
.0

9
7
7
5
0

0
.0

9
2
4
9
8

8
(t

h
e

d
u

a
l-

ra
il

co
d

e
)

0
x
9
5

0
x
9
6

0
x
9
9

0
x
9
a

0
x
a
5

0
x
a
6

0
x
a
9

0
x
a
a

0
.0

4
6
2
4
9

0
x
7

0
x
b

0
x
d

0
x
e

0
x
1
3

0
x
1
5

0
x
1
6

x
1
9

0
.9

4
0
0
8
8

0
.0

6
4
7
3
9

6
(t

h
e

(3
,6

)-
co

d
e)

0
x
1
a

0
x
1
c

0
x
2
3

0
x
2
5

0
x
2
6

0
x
2
9

0
x
2
a

0
x
2
c

0
.0

3
2
3
6
9

28



T
a
b
le

7
.

S
N

R
co

m
p
u
ta

tio
n

w
h
en

σ
α

=
0
.5

.

α
2

[0
.6

1
3
3
3
1
,

0
.6

4
4
5
8
4
,

0
.6

0
2
5
3
1
,

0
.1

9
0
9
8
6
,

0
.5

8
6
2
6
8
,

0
.8

9
0
9
5
1
,

1
.8

3
8
8
1
4
,

1
.2

5
7
9
4
3
,

0
.8

9
9
9
2
2
,

0
.6

1
4
6
9
9
]

C
o
d
e

C
o
d
ew

o
rd

s
D

elta
p

ow
er

P
ow

er
co

n
su

m
p
tio

n

len
g
th

u
sed

co
n
su

m
p
tio

n
va

ria
n
ce

S
N

R

0
x
5

0
x
1
1

0
x
1
4

0
x
9

0
x
c

0
x
1
8

0
x
7

0
x
1
3

0
.6

7
1
6
4
7

0
.0

5
7
3
6
5

5
0
x
1
6

0
x
b

0
x
e

0
x
1
a

0
x
1
5

0
x
d

0
x
1
9

0
x
1
c

0
.0

2
8
6
8
2

0
x
2
e

0
x
1
e

0
x
3
6

0
x
3
c

0
x
b

0
x
2
3

0
x
2
9

0
x
1
3

0
.3

4
6
7
3
5

0
.0

1
3
7
3
9

6
0
x
1
9

0
x
3
1

0
x
f

0
x
2
7

0
x
2
d

0
x
1
7

0
x
1
d

0
x
3
5

0
.0

0
6
8
6
9

0
x
3
c

0
x
9

0
x
6
c

0
x
7
8

0
x
1
6

0
x
4
6

0
x
5
2

0
x
2
6

0
.3

1
5
4
8
2

0
.0

1
3
0
3
5

7
0
x
3
2

0
x
6
2

0
x
1
e

0
x
4
e

0
x
5
a

0
x
2
e

0
x
3
a

0
x
6
a

0
.0

0
6
5
1
7

0
x
d
a

0
x
1
b

0
x
f2

0
x
3
3

0
x
f9

0
x
9
3

0
x
2
e

0
x
8
e

0
.1

1
3
7
2
3

0
.0

0
1
5
4
8

8
0
x
5
3

0
x
a
6

0
x
a
d

0
x
4
e

0
x
6
6

0
x
6
d

0
x
c6

0
x
7

0
.0

0
0
7
7
4

0
x
1
4
c

0
x
1
5
a

0
x
1
4
5

0
x
1
5
3

0
x
9
c

0
x
9
5

0
x
cc

0
x
d
a

0
.0

5
6
4
2
0

0
.0

0
0
3
1
0

9
0
x
c5

0
x
1
8
c

0
x
e

0
x
d
3

0
x
1
9
a

0
x
1
8
5

0
x
7

0
x
1
9
3

0
.0

0
0
1
5
5

0
x
b
4

0
x
1
b
1

0
x
8
a

0
x
2
1
8

0
x
1
9

0
x
3
a
2

0
x
a
6

0
x
1
a
3

0
.0

2
1
1
3
8

4
.0

3
×

1
0
−
5

1
0

0
x
2
3
4

0
x
3
3
1

0
x
3
5

0
x
2
0
a

0
x
b

0
x
2
2
6

0
x
3
2
3

0
x
2
7

2
.0

1
×

1
0
−
5

0
x
5
5

0
x
5
6

0
x
5
9

0
x
5
a

0
x
6
5

0
x
6
6

0
x
6
9

0
x
6
a

1
.5

8
2
3
2
1

0
.1

7
0
2
4
1

8
(th

e
d

u
a

l-ra
il

cod
e
)

0
x
9
5

0
x
9
6

0
x
9
9

0
x
9
a

0
x
a
5

0
x
a
6

0
x
a
9

0
x
a
a

0
.0

8
5
1
2
0

0
x
7

0
x
b

0
x
d

0
x
e

0
x
1
3

0
x
1
5

0
x
1
6

x
1
9

1
.8

9
5
7
8
9

0
.3

1
0
5
6
9

6
(th

e
(3

,6
)-cod

e)
0
x
1
a

0
x
1
c

0
x
2
3

0
x
2
5

0
x
2
6

0
x
2
9

0
x
2
a

0
x
2
c

0
.1

5
5
2
8
4

29



F Security Evaluation results of the Worst-Case Scenario

The simulation results obtained in the worst-case scenario are provided in Tab. 8.

Table 8. Stochastic attack results in the worst-case scenario for a noise standard
deviation σ = 0.25.
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G Linear Regression Bit Weights Characterized on Copy
#1 of the STM32F3

From Fig. 5, one can conclude that the STM32F3 circuit leaks closely to the
Hamming weight model.
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Fig. 5. Bit leakage weights obtained using linear regression.

H Example of an acquired EM trace

From Fig. 6, one can identify the presence of 3 spikes standing respectively to:

1. the loading of the Sbox input,

2. the Sbox access, and

3. the copy of the Sbox output.

The corresponding assembly code is detailed in Appendix I.

I Implementation details

We provide hereafter the instruction sequence used to perform an encoded
PRESENT Sbox computation. The Sbox table is stored in register R0 and the
Sbox input (i.e. the bitwise xor of the plaintext and the secret key) is stored in
register R1.

1 EOR R2,R2,R2 // clear R2

2 LDRB R2,[R0,R1] // access the Sbox and store the result in R2

3 EOR R0,R0,R0 // clear R0

4 MOV R0,R2 // copy the Sbox output into R0
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Fig. 6. Electromagnetic trace.

J Device characterization

Our goal here is to check if the STMF32 Micro-Controller registers have the
same leakage model or leak differently. To do so, we have first implemented
the following assembly code on copy #1. In fact, we performed two AES Sbox
accesses and we stored the results into two different registers initialized at zero
(Lines 2 and 5). The Sbox table is stored in register R0 and the Sbox input (i.e.
the bitwise xor of the plaintext and the secret key) is stored in register R1.

1 EOR R2,R2,R2 // clear R2

2 LDRB R2,[R0,R1] // access the AES Sbox and store the result in R2

3 MOV R3,R2 // copy the AES Sbox output into R3

4 EOR R3,R3,R3 // clear R3

5 LDRB R3,[R0,R1] // access the AES Sbox and store the result in R3

Then, we acquired 25.000 EM traces recording the two AES Sbox computa-
tions. Afterwards, we performed a linear regression attack to get the bit leakage
weights of each registers. We plot the obtained results in Fig. 7.

From Fig. 7, two observations could be emphasized:

1. Both registers leaks closely to the Hamming weight model. This result is
online with that shown in Appendix G, where the stochastic characterization
was made for register R0.

2. Both registers R2 and R3 have roughly the same leakage model. Thus, to
apply our scheme, a designer could use the same encoding function to protect
all operations of a block cipher.
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Fig. 7. Bit leakage weights obtained. Left: for register R2. Right: for register R3.

To confirm our claim, we applied an enhanced CPA attack (as described in
Sec. 6.3) and estimated the evolution of the averaged rank of the correct key
when targeting the Sbox output stored in R2 and R3. The result is plotted in
Fig. 8. As expected, the key rank curves have the same convergence slope.
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Fig. 8. Evolution of the correct key rank according to the number of observations.
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