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Abstract

Goldreich and Izsak (Theory of Computing, 2012) initiated the research on understanding
the role of negations in circuits implementing cryptographic primitives, notably, considering
one-way functions and pseudo-random generators. More recently, Guo, Malkin, Oliveira and
Rosen (TCC, 2014) determined tight bounds on the minimum number of negations gates (i.e.,
negation complexity) of a wide variety of cryptographic primitives including pseudo-random
functions, error-correcting codes, hardcore-predicates and randomness extractors.

We continue this line of work to establish the following results:

1. First, we determine tight lower bounds on the negation complexity of collision-resistant
and target collision-resistant hash-function families.

2. Next, we examine the role of injectivity and surjectivity on the negation complexity of
one-way functions. Here we show that,

(a) Assuming the existence of one-way injections, there exists a monotone one-way
injection. Furthermore, we complement our result by showing that, even in the
worst-case, there cannot exist a monotone one-way injection with constant stretch.

(b) Assuming the existence of one-way permutations, there exists a monotone one-way
surjection.

3. Finally, we show that there exists list-decodable codes with monotone decoders.

In addition, we observe some interesting corollaries to our results.

∗University of Rochester



1 Introduction

A boolean circuit C is monotone if it comprises only of fanin-2 AND and OR gates. Monotone
circuits have been extensively studied in complexity theory, where one of the fundamental goals
is to establish lower bounds on circuit size, and learning theory [17, 10, 5, 1, 6]. In the context
of cryptography, Goldreich and Izsak began exploring whether cryptographic primitives can be
implemented via monotone circuits [8]. They showed that, assuming the existence of one-way
functions, there exists a one-way function implementable by monotone circuits. On the nega-
tive side, they proved that psuedo-random generators cannot be implemented using monotone
circuits. More recently, Guo, Malkin, Oliveira and Rosen, inspired by a long series of works
[12, 7, 15, 2, 3, 16, 13, 4] in complexity theory, initiated the study of the negation complexity of
realizing cryptographic primitives. Loosely speaking, the negation complexity of a primitive is the
minimum number of negation gates required in any circuit implementing that primitive.

Markov [12] showed that any boolean function on n-bit inputs can be realized using a cir-
cuit with at most dlog(n + 1)e negation gates. A more efficient version was proved by Fischer
[7], which, in particular, implies that any polynomial-time computable boolean function can be
realized using a polynomial-size monotone circuit with dlog(n + 1)e negation gates. In essence,
the negation complexity of any arbitrary polynomial-time computable function is O(log n). In
[9], quite surprisingly, they show that this is tight for various primitives such as pseudorandom
functions, error-correcting codes, randomness-extractors and generic hard-core predicates. Inter-
estingly, a new technique was required to establish each lower-bound.

Our first motivating question concerns the negation complexity of collision-resistant hash-
functions. Various notions of collision-resistance have been used in cryptographic construc-
tions. Standard hash-functions, such as MD5 and SHA, are referred to as collision-resistant
hash-functions (CRH), where the security game of such function families requires an adversary
to find a pair of colliding inputs given a function picked uniformly from the family. A weaker
form of collision-resistance that can be realized from one-way functions, referred to as universal
one-way hash-functions (or target collision-resistant functions (TCR)) [14] require the adversary
to produce a target for which it needs to find a collision before seeing the description of the
hash-function. Yet another related primitive is second-preimage resistant hash-functions (SPR)
where it is infeasible for any adversary to find a collision for a randomly chosen hash-function
on a uniformly chosen input. Our first motivating question is:

What is the negation complexity of collision-resistance?

Another interesting result presented in the work of Guo et al. [9] proves the impossibility
of monotone one-way permutations.1 The main result shows that any monotone circuit that
implements a permutation must be of the form where the output bits are a permutation of the
input bits, in essence, making them easily invertible with probability 1. The result of Guo et al.
and Goldreich and Izsak show a gap in what kind of one-way functions are achievable using
monotone circuits. Our second motivating question is:

Do there exist polynomial-sized one-way surjections or one-way injections with monotone
circuit implementations?

1.1 Our Results

Our first result establishes optimal bounds on the negation complexity of CRHs and TCRs.

1A permutation is a length-preserving function that is both injective (i.e., one-to-one) and surjective (i.e., onto).
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Theorem 1 (Informal). Collision-resistant hash-functions and Target Collision-resistant hash-functions
require θ(log n) negation gates.

While we resolve the question for CRHs and TCRs, the problem remains open for Second Pre-
Image Resistant functions. Interestingly, since TCRs and SPRs are equivalent,2 any result on the
negation complexity of SPR could reveal something about the negation complexity of universal
hash-functions and, consequently, the XOR function.

Our second result explores whether injectivity or surjectivity influences the negation com-
plexity of constructing one-way functions. We answer in the affirmative that, if we relax one
of these conditions from a one-way permutation, it is indeed possible to construct monotone
one-way functions. More precisely, we prove the following theorems.

Theorem 2 (Informal). Assume the existence of one-way surjections. Then there exists a (poly-sized)
one-way surjection that is computable by a monotone circuit.

Theorem 3 (Informal). Assume the existence of one-way injections. Then there exists a (poly-sized)
one-way injection that is computable by a monotone circuit.

We remark that if we start with a one-way permutation f : {0, 1}n → {0, 1}n, then we can
construct a one-way injection g : {0, 1}n → {0, 1}3n and a one-way surjection h : {0, 1}n →
{0, 1}n−2 log n that are both monotone.

We also complement our injectivity result by showing that there do not exist one-way injec-
tions with constant stretch, where stretch refers to the difference in lengths of the output and
input. More formally, we prove the following theorem:

Theorem 4 (Informal). There exists an algorithm that, given oracle access to an injective function f :
{0, 1}n → {0, 1}m, where m− n = O(1), can invert f in polynomial time.

This can be viewed as a generalization of the result of [9] where they give an algorithm only
when m = n. We remark that not only can the algorithm invert an arbitrary element in the range
of the function, it can also determine whether an element is in the range of the function.

1.2 Our Techniques

We remark that for most of our results we rely on different techniques. We believe that un-
derstanding the negation complexity of cryptography is a fundamental problem, and that our
work sheds light on how different properties of functions influence the negation complexity of
cryptographic primitives. We briefly mention some of our techniques below.

Collision-Resistant Hash-Functions: Establishing that collision-resistant hash-function requires
negation gates follows using the pigeon-hole principle. Consider any monotone function with
m-bit outputs: In any m + 1 chain of inputs x1, . . . , xm+1 (i.e. xi � xi+1)3 which has strictly in-
creasing Hamming weights there must exist a pair of consecutive inputs that collide. This is
because each bit of the output can change at most once in the sequence and there are only m
output bits. We can then conclude by using the fact that hash-functions are compressing, i.e.
m < n and a chain can be easily constructed by simply flipping input bits one at a time from 0

to 1 starting from 0n. Following ideas of [9], using a theorem of Markov [12], we also extend this
to show that if the collision-resistant function is highly-compressing (namely by polynomially
many bits) then it must require log n negations.

2A TCR can be constructed from an SPR by computing a universal hash-function (1-wise independent) on the input
before feeding it to the SPR function, namely, masking the inputs with a random key

3We write a � b, if for any i, ith bit of a is 1 implies that the ith bit of b is 1.

2



One-Way Monotone Surjections: Our technique for constructing one-way monotone surjec-
tions follows the idea of Goldreich and Izsak [8] for constructing one-way monotone functions.
Let ham(x) denote the Hamming weight of the string x. Recall that in their construction, starting
from any one-way function f : {0, 1}n → {0, 1}m, they consider a function f ′ that behaves as
follows:

• On inputs x such that ham(x) < n
2 , f ′ assumes the value 0m.

• On inputs x such that ham(x) = n
2 , f ′ assumes the value f (x).

• On inputs x such that ham(x) > n
2 , f ′ assumes the value 1m.

They then show that this function can be implemented using a monotone circuit. Since the
middle slice occupies at least 1√

n fraction of the total inputs, f ′ is a weak one-way function. Then
a strong monotone one-way function can be obtained via standard parallel repetition.

Suppose we start with a function f that is surjective and apply the construction specified
above, the resulting function will no longer be surjective. Instead, we rely on a an error correcting
code G with a certain property. More precisely, G maps ’balanced’ (i.e., contains the same number
of 0s as 1s) strings of length n + O(log n) to strings of length n surjectively. An example of one
such code is the Knuth code [11]. Given such codes, we can augment Goldreich’s construction to
get a monotone surjective one-way function as follows: We consider a function f ′ that takes as
input n +O(log n) inputs and first applies G to its input, followed by f on balanced inputs while
the rest of the inputs are defined just as before. It follows from the definition that this function
is surjective and weak one-way.

One-Way Monotone Injections: The technique for our one-way monotone injection construc-
tion can be explained using the same construction as above. Note that, in this construction,
inputs of Hamming weight smaller than n/2 all map to the same output. Similarly, inputs with
Hamming greater than n/2 also map to the same value. The main idea here to achieve injection
is to get rid of these collisions.

Towards this, we add two blocks of n-bits to the output where the purpose of the first block
is to handle inputs of Hamming weight smaller than n/2 and the other for those with Hamming
weight greater than n/2. The result then follows by showing that the following functions can be
built using monotone circuits:

• flower(x) = x when ham(x) < |x|/2 and f (x) = 1n otherwise.

• fupper(x) = x when ham(x) > |x|/2 and f (x) = 0n otherwise.

A Deterministic Algorithm to Invert Monotone Injection One of our main technical contri-
butions is in proving our lower bound on injections. Here we give an explicit deterministic
algorithm that allows inversion of any injections with constant stretch. In fact, we provide a
general analysis where the run-time of the algorithm depends on the input length and stretch.

At a high-level, the idea is that given a target b = f (s) of a function f : {0, 1}n → {0, 1}m, we
systematically break f down into a number of different cases, each of which is permutation-like,
in the sense that most of the output bits are permutations of the input bits. More specifically, we
reduce f to a piecewise function of restrictions of f (over domains where certain input bits are
held constant) where fixing one additional bit of the input fixes exactly one bit of the output. At
that point we use the correspondence between input and output bits to find pre-images for all
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but the stretch bits of y, which are brute-forced. We iterate through the cases until we find one
that produces a preimage for y, or we exhaust all cases, in which case no preimage can exist.

The main trick of the proof is the reduction of f into a polynomial (assuming m− n = O(1))
number of cases. Essentially, this is done by searching for an input bit that causes more than
one output bit to be fixed when set to 1 (or 0), and recursing into both the case where we set
it to one and set it to zero. Then, by a combinatorial argument, we show that this will only
recurse polynomially many times. In particular, this helps us characterize an important property
of functions of super-contstant stretch (that is, f : {0, 1}n 7→ {0, 1}n+ω(1)) that are potentially
hard to solve: they will very often exhibit the worst-case behavior where fixing an input bit to
0 fixes only one output bit to 0, but fixing it to 1 fixes multiple output bits to 1, or vice versa.
Functions like this are thus ideal candidates for one-way monotone injections of small stretch.

2 Definitions and Notations

For some x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for all i ∈ [n]. By definition, a Boolean
function f : {0, 1}n → {0, 1} is monotone iff f (x) ≤ f (y) whenever x � y and a function
g : {0, 1}n → {0, 1}m is monotone iff every output bit of g is a monotone Boolean function. If x
is a binary string, let ham(x) be the Hamming weight of x, i.e. the amount of 1s that appear in x.
A chain X = (x1, ..., xt) is a monotone sequence of strings over {0, 1}n, i.e, xi ≤ xi+1 for every
i ∈ [1, t− 1]. Define an increasing chain as a chain for which all xj 6= xk when j 6= k.

Let f : {0, 1}n → {0, 1} be a Boolean function, and let X = (x1, x2, . . . , xt) be a chain. Then,
define a( f , X) to be the largest set of indexes {0 ≤ i0, . . . , im ≤ n− 1} such that f (xij) 6= f (xij+1)
for every j ∈ [0, m− 1]. Furthermore, define a( f ) = maxX(a( f , X)) where X is a chain to be the
alternating complexity of f .

The following result was shown by Markov [12]:

Theorem 5. Let f : {0, 1}n → {0, 1}m be a Boolean function computed by a circuit with at most t
negations. Then a( f ) ∈ O(2t).

2.1 One-Way Functions

Definition 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is (strong) one-way
if for every PPT machine A, there exists a negligible function ν(·) such that

Pr[x ← {0, 1}n; y = f (x) : A(1n, y) ∈ f−1( f (x))] ≤ ν(n)

A function f {0, 1}n → {0, 1}m is said to be injective if for any x, y ∈ {0, 1}n, x 6= y =⇒
f (x) 6= f (y). f is said to be surjective if for any z ∈ {0, 1}m, there is an x ∈ {0, 1}n such that
f (x) = z. f is said to be a weak one-way function if there exists a polynomial p such that for all
adversaries A the probability with which it can invert the function is at most 1

p(n) for sufficiently
large n where the probability is over a randomly chosen input x and the random coins of A.

Definition 2 (Exponentially-hard one-way functions). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function. f is exponentially-hard one-way if there exists some c such that for every
probabilistic adversary A that runs in O(2cn) time, there exists a negligible function ν(·) such that

Pr[x ← {0, 1}n; y = f (x) : A(1n, y) ∈ f−1( f (x))] ≤ ν(n)
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Definition 3 (Regular one-way functions). Let f : {0, 1}∗ → {0, 1}∗ be a one-way function. f is
regular if there exists a function α : N→ N such that for every n ∈ N and every x ∈ {0, 1}n we have:

| f−1( f (x))| = α(n)

We assume that the regularity α(·) of a function f is not known (i.e. not polynomial-time
computable). Without loss of generality, we assume the one-way function is length preserving
i.e. f ({0, 1}n) ⊆ {0, 1}n.

2.2 Target Collision-Resistant Hash-Function Families

Definition 4. Let G = {gk}k∈K be a family of functions where each function gk goes from {0, 1}n+`

to {0, 1}n. We say that G is a a Collision-Resistant Hash-Function Family if (i) the functions gk
are efficiently computable and (ii) for every efficient adversary A , the probability that A succeeds in the
following game is negligible in n:

• Choose k← K

• Let x, x′ ← A(1n, k)

• A succeeds if x 6= x′ and gk(x) = gk(x′)

Definition 5. Let G = {gk}k∈K be a family of functions where each function gk goes from {0, 1}n+`

to {0, 1}n. We say that G is a a Universal One-Way Hash-Function Family if (i) the functions gk
are efficiently computable and (ii) for every efficient adversary A , the probability that A succeeds in the
following game is negligible in n:

• Let (x, σ)← A(1n)

• Choose k← K

• Let x′ ← A(σ, k)

• A succeeds if x 6= x′ and gk(x) = gk(x′)

Universal One-Way Hash-Function Families [14] as defined above enjoy the property of target
collision-resistance. The related notion of Second Preimage Resistance follows the same security
game with the exception that x and k are uniformly chosen and handed to the adversary instead
of allowing the adversary to first choose x before seeing the key. It is well-known how to construct
UOWHFs from second preimage resistant families.

2.3 Error-Correcting and Balanced Codes

Let E : {0, 1}n → {0, 1}m be a polynomial-time computable function. Given strings y, y′ ∈
{0, 1}m, define

∆(y, y′) =
∑m

i=1 yi 6= y′i
m

We say E is γ-error-correcting if for any pair of distinct inputs x, x′ ∈ {0, 1}n, ∆(E(x), E(x′)) ≥ γ.

Definition 6. Let f : {0, 1}n → {0, 1}m be a polynomial-time computable function. f is a balanced
code if every element in the image of f is balanced, i.e. dm

2 e of its bits are 1 and bm
2 c of its bits are 0.
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In addition, we define BALn = {x ∈ {0, 1}n|x is balanced}, and On to be the strict order on
BALn that is inherited from the normal lexicographic order on {0, 1}n. For example, if n = 4, On
= 0011, 0101, 0110, 1001, 1010, 1100. Finally, if w is a binary string, let wk represent w whose first k
bits are flipped and the rest of the bits remain the same.

We are interested in constructing a surjective, poly-time computable function G : BALn →
{0, 1}n−2 log n (assuming n is a power of 2 for simplicity). This is known as a decoder for a
balanced Knuth Code [11]. For immediate reference we present the code and the proof in Ap-
pendix ??.

Theorem 6. The following function G : BALn → {0, 1}n−2 log n is surjective and computable in polynomial-
time.

1: function g(s):
2: u← first 2 log n bits of s
3: if u has balanced Hamming weight then
4: k← position of u in O2 log n for BALn
5: w← last n− 2 log n bits of s
6: return wk

7: else
8: return 0n−2 log n

3 Negation Complexity of Collision-Resistance

In this section, we prove our results regarding the negation complexity of collision-resitant hash-
functions. We start with a warm-up Lemma that illustrates the main idea.

Lemma 1. Let g : {0, 1}n → {0, 1}m be any monotone function such that m < n. Then there exists an
adversary A that can output x, x′ ∈ {0, 1}n such that x 6= x′ and g(x) = g(x′).

Proof. On a high-level the proof will demonstrate that every increasing chain has a collision.
Consider an algorithm A that does the following:

• Choose an arbitrary increasing chain X = (x1, ..., xn+1) over {0, 1}n and compute g(xi) for
all i. Suppose there exists an i such that g(xi) = g(xi+1). If so, output (xi, xi+1). Otherwise
output fail.

For all pairs g(xi) and g(xi+1), the montonicity of g and the definition of an increasing chain
implies that, either there exists at least one position in the bits of g(xi) that was a 0 turns to a 1
in g(xi+1), or g(xi) = g(xi+1). There are n possible values for i and a maximum of m possible
positions that can be flipped from 0 to 1. Furthermore, monotonicity implies that each position
can flip at most once. Since n > m, by the pigeonhole principle, there must exist at least one such
pair that has no bit that flips and thus, for this pair, g(xi) = g(xi+1) and xi 6= xi+1.

Corollary 1. There does not exist a family of collision-resistant hash-functions that is computable by
monotone circuits.

Next, we extend the proof to rule out monotone implementations of target collision-resistant
functions. Recall that in the security game for target collision-resistance, the adversary needs to
pick a target x for which it is required to find a collision before it receives the description of the
hash-function.
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Theorem 7. There does not exist a family of target collision-resistant hash-functions that is computable
by monotone circuits.

Assume, for contradiction, that there exists a family of target collision-resistant hash-functions
{gk}k∈K where gk is a function from {0, 1}n to {0, 1}m with m < n that can be computed using
a monotone circuit of polynomial size. From Lemma 1, we know that for any compressing
function, and therefore for any gk, every increasing chain of inputs has at least one collision.

Pick an arbitrary increasing chain X = (x1, ..., xn+1). Since every function gk has a collision
in this chain, using a standard averaging argument we can conclude that there exists at least
one index in [n], say i∗, such that with probability at least 1

n over the functions k ∈ K, gk(xi∗) =

gk(xi∗+1). Consider an adversary A that picks an input uniformly from the chain X and submits
it as a target. Upon receiving the function gk, it outputs (xi, xi+1) if gk(xi) = gk(xi+1). Otherwise,
it outputs fail.

It follows that A picks xi∗ with probability at least 1
n and when this happens, it succeeds in

outputting a collision with probability at least 1
n . Therefore, A succeeds in outputting a collision

with non-negligible probability, which is a contradiction.
Next, we strengthen our bound by proving that both CRHs and TCRs are highly non-

monotone.

Lemma 2. Let g : {0, 1}n → {0, 1}m be an arbitrary function that can be implemented by a circuit with
t = (1− ε) log n gates. Then there exists a constant c > 0 such that, if m < cnε, then there exists an
adversary A that the can output x, x′ ∈ {0, 1}n such that x 6= x′ and g(x) = g(x′).

Proof. We will rely on Markov’s theorem (cf. Theorem 5) that shows that for any boolean function
f on n-bit inputs that can be computed by a circuit with at most t gates, a( f ) = O(2t). Recall
that a( f ) = maxX a( f ,X ) where X is any non-decreasing chain over {0, 1}n and a( f ,X ) denotes
the number of times the output of f changes when iterating through the chain.

We prove that any increasing chain will have consecutive elements whose outputs are identi-
cal under g. Then we can rely precisely on the same adversary as in Lemma 1 that examines the
elements in an arbitrary increasing chain and outputs if it finds a collision on any consecutive
elements in the chain.

Let X = (x1, ..., xn+1) be an arbitrary increasing chain over {0, 1}n. As before, we have that
every pair of consecutive elements either collide under g or differ by at least one position in
the output. By Markov’s theorem we know that each position in the output can change at most
c′2t = c′n1−ε times. Hence if n > mc′n1−ε then there must be a collision by the pigeonhole
principle. By fixing c = 1

c′ and observing that m < 1
c′ n

ε, the lemma follows.

Using the same techniques as before we obtain the following corollary.

Corollary 2. Let {gk}k∈K be a family of collision-resistant hash-functions or target collision-resistant
functions where gk is a function from n bits to m bits such that m < cnε and computable by a circuit with
t gates. Then t ≥ (1− ε) log n.

4 One-Way Monotone Injections

Theorem 8. If strong one-way permutations exist, then one-way monotone injections exist. In particular,
if strong one-way permutations exist, then strong one-way monotone injections exist from n bits to 3n
bits.
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Proof. Suppose there exists some one-way family of permutations fn : {0, 1}n 7→ {0, 1}n that have
a polynomial bound Q(n) on their circuit size. Then, let Ti,n : {0, 1}n 7→ {0, 1} be defined as
the function such that Ti(x) is true if and only if x has at least i of its n bits set to 1. First, we
show that Ti can be calculated via a polynomial-sized circuit through the following recursive con-
struction: let T0(x) = 1 for all x, and for i > 0, let Ti =

∨n
j=1
(
xj ∧ Ti−1(x with bit j set to zero)

)
.

Recall that if fn has circuit size bounded by Q(n), then by De Morgan’s laws, we can still con-
struct a monotone circuit f ′n : {0, 1}n × {0, 1}n 7→ {0, 1}n with circuit size ≤ Q(n) such that
f ′n(x,¬x) = fn(x) for all x. If we set Hi,n(x) = Tb n

2 c,n (x with bit i set to 0), then note that

for x with Hamming weight
⌊ n

2

⌋
, f ′n(x, H1,n(x)‖H2,n(x)‖ · · · ‖Hn,n(x)) = fn(x). Then, defining

Fn(x) = f ′n(x, H1,n(x)‖H2,n(x)‖ · · · ‖Hn,n(x)), consider the following constructed family:

gn(x) = Fn(x)‖
(

x ∧ [Tb n
2 c+1,n(x)]n

)
‖
(

x ∨ [Tb n
2 c,n(x)]n

)
Note that the concatenation of the H functions has a polynomial bound in n. Thus, we can
construct gn in a polynomial-size monotone circuit.

Claim 1. gn is injective.

Proof. For inputs x with Hamming weight less than b n
2 c, the last n bits of gn equals x, and

so within this range, there cannot be any collisions. A similar proof shows that there are no
collisions among inputs with Hamming weight greater than b n

2 c.
In addition, there are no collisions between inputs of Hamming weight b n

2 c, as Fn is injective.
There are also no collisions between inputs of Hamming weight less than b n

2 c and those with
Hamming weight greater than b n

2 c, because the third section of the latter consists of all 1s, and
the third section of the former cannot have Hamming weight greater than or equal to b n

2 c.
Finally, there are no collisions between inputs of Hamming weight less than b n

2 c and Ham-
ming weight equal to b n

2 c, as the third section of the former cannot have Hamming weight greater
than or equal to b n

2 c, and the third section of the latter consists of all 1s. A similar proof shows
that there are no collisions between inputs with Hamming weight equal to b n

2 c and inputs with
Hamming weight greater than b n

2 c.

Now, recall that there are Ω(1/
√

n) fraction of inputs with Hamming weight b n
2 c. Then, since

the first n bits of gn = fn for inputs with Hamming weight b n
2 c, the first n bits of gn = fn for

Ω(1/
√

n) fraction of inputs. Therefore, gn is Ω(1/
√

n) hard. The proof of this is very similar to
the proof found in Appendix C, which follows the proof in [8]. gn can then be amplified by a
simple extension to obtain strong one-way injections.

Corollary 3. If a one-way injection f I : {0, 1}n → {0, 1}m exists, then a one-way monotone injection
gI : {0, 1}n → {0, 1}m+2n exists.

Proof. Since the preceding proof does not require that the one-way function be surjective, the
proof is equivalent. Furthermore, the output of the constructed function is m bits concatenated
by two sequences of n bits each.

As a simple corollary, we can construct regular length-preserving functions:

Corollary 4. If one-way injections exist, regular length-preserving one-way monotone functions exist.

8



Proof. By the preceding theorem, we can construct a family of monotone weak one-way functions.
gn : {0, 1}n 7→ {0, 1}3n. Then, construct a family of functions hn : {0, 1}3n 7→ {0, 1}3n such that

hn(x) = gn(last n bits of x)

Then, hn is 22n-regular, as for any element y in the image of hn, there is exactly one element
x′ ∈ {0, 1}n such that g(x′) = y. Then, there are exactly 22n elements in the domain of hn whose
last n bits are equal to x′, thus each of these maps to y. Now, if there was an adversary D and a
polynomial q such that hn can be inverted with probability 1− A(n) + 1

q(n) , an adversary

D′(y) = last n bits of D(y)

would invert gn with probability 1− A(n) + 1
q(n) as well, thus contradicting the fact that gn is

weak one-way. Thus, hn is weak one-way, and can be extended to a strong one-way function.

Using a complexity leveraging argument, we obtain the following corollary assuming the
existence of exponentially hard one-way functions.

Corollary 5. If strong exponentially hard one-way permutations exist, strong one-way monotone injec-
tions exist from n bits to n + ω(log(n)) bits.

We need the following lemma to prove our corollary.

Lemma 3. If fn : {0, 1}n 7→ {0, 1}m(n) is sequence of strong exponentially hard one-way functions, then
for any function d ∈ ω(log(n)), the sequence of functions gn : {0, 1}d(n) 7→ {0, 1}m(d(n)) defined as
gn(x) = fd(n)(x) is strong one-way with respect to poly(n).

Proof. Suppose that given some fn exponentially hard (specifically, O(2cn) hard) and some d ∈
ω(log(n)), there exists some probabilistic adversary A that can invert gn with non-negligible
probability in (assuming n is sufficiently large) poly(n) time. However, this means that A can
invert fn in Bnp = B2log(n)p time. Since fn is exponentially hard, this must be greater than k2cd(n).
Since d ∈ ω(log(n)), this will be false for large enough n, a contradiction. By contradiction, gn is
a strong one-way function with respect to poly(n).

Next using the Lemma we establish our Corollary.

Proof. Suppose some fn is a sequence of strong exponentially hard one-way permutations. Let
d(n) ∈ ω(log(n)). Now, by the lemma, there exists a strong one-way sequence of permutations
gn on d(n)/2 bits that is strong one-way with respect to poly(n). By the previous theorem,
this means there exists a strong one-way monotone injection from d(n)/2 bits to 1.5 ∗ d(n) bits.
Append n − d(n)/2 input and output bits (each input mapping directly to the corresponding
output bit, so as to maintain injectivity) to get a strong one-way monotone injection from n bits
to n + d(n) bits, as desired.

5 One-Way Monotone Surjections

In this section, we provide our construction of one-way monotone surjections. First we require
the following definitions:

9



Definition 7. If f : {0, 1}n 7→ {0, 1}m is a function, let the k− cut of f be the function f (k) : {0, 1}n 7→
{0, 1}m such that

f (k)(x) =


0m : ham(x) < k
f (x) : ham(x) = k
1m : ham(x) > k

Definition 8. If x is a binary string and k is an integer, the threshold function of threshold k is the
function Tk such that

Tk(x) =
{

0 : ham(x) < k
1 : ham(x) ≥ k

Definition 9. If x is a binary string, let xi→0 stand for the binary string produced by changing the ith bit
in x to 0.

Proposition 1. If x is a binary string and ham(x) = k, then Tk(xi→0) = ¬xi.

Proof. If xi = 1, then xi→0 has Hamming weight k− 1. Thus, Tk(xi→0) = 0. If xi = 0, changing the
ith bit to 0 does not change x, and so it does not change the Hamming weight. Thus, Tk(xi→0) =
1.

The next proposition implicit in [8], states that f (k) is computable by a monotone circuits. For
completeness, we provide a proof of the proposition in the appendix.

Proposition 2. If f : {0, 1}n 7→ {0, 1}m is a function computable in polynomial time, then for any k, the
k− cut of f , f (k), is computable by a polynomial-sized monotone circuit.

Proof. Let C be a polynomial-sized circuit for f . Now, modify C to be a circuit with exactly n
not-gates represented as directed edges, one leaving each leaf of the circuit. Label these edges
e1 . . . en. Such a circuit C′ can be constructed that computes the same function as C, and is also
polynomial in size.

Now, for each i, replace the edge ei with the circuit computing Tk(xi→0). Note that the thresh-
old function can be computed by a monotone circuit polynomial in the size of x. Call this new
circuit Ck.

Recall that, when x has Hamming weight k, Tk(xi→0) = ¬xi, and thus the threshold function
computes the ‘not’ function, and so Ck computes the same function as C′ (and therefore as C) in
this special case.

Our final function will be the circuit that computes

(Tk(x)m & Ck(x)) | Tk+1(x)m

where & and | are the bitwise ‘and’ and bitwise ‘or’ functions. This circuit is clearly monotone,
as Ck is monotone, as is the threshold function, and only ‘and’ and ‘or’ gates are required to
compute bitwise ‘and’ and bitwise ‘or’. Furthermore, it is polynomial in n, as Ck and the thresh-
old functions are polynomial in n. All that is left to show is that it computes the k− cut of f .

10



• If ham(x) < k, then Tk(x)m = Tk+1(x)m = 0m, and so

(Tk(x)m & Ck(x)) | Tk+1(x)m = (0m & Ck(x)) | 0m = 0m

• If ham(x) = k, then Tk(x)m = 1m and Tk+1(x)m = 0m, so

(Tk(x)m & Ck(x)) | Tk+1(x)m = (1m & Ck(x)) | 0m = Ck(x) | 0m = Ck(x)

Furthermore, since ham(x) = k, we have that Tk(xi→0) = ¬xi, thus Ck(x) = C′(x) = C(x) =
f (x).

• If ham(x) > k, then Tk(x)m = Tk+1(x)m = 1m, and so

(Tk(x)m & Ck(x)) | Tk+1(x)m = (1m & Ck(x)) | 1m = 1m

Therefore, Ck equals f (k).

Theorem 9. If one-way permutations exist, then one-way surjections exist with O(log n) compression
which can be computed by a polynomial-sized monotone circuit.

Proof. The following function G : BALn → {0, 1}n−2 log n will be useful in proving this theorem:
1: function g(s):
2: u← first 2 log n bits of s
3: if u has even Hamming weight then
4: k← position of u in O2 log n for BAL2 log n

5: w← last n− 2 log n bits of s
6: return wk

7: else
8: return 0n−2 log n

Claim 2. G : BALn → {0, 1}n−2 log n is surjective and computable in polynomial time.

Proof: First, we prove that G is surjective. Towards proving this, we prove the following Claim.

Claim 3. Suppose w ∈ {0, 1}n−2 log n. Then, there exists a k ∈ {0, . . . , n− 2 log n} such that wk has
Hamming weight |w|2 .

Proof. To see this, let ham(w) = l. Observe that w0 has Hamming weight l, and w|w| has
Hamming weight |w| − l. Furthermore, w0, w1, w2, ... is a sequence of bit strings such that
ham(wi) = ham(wi+1)± 1. Thus, the Hamming weights of w0, w1, w2, . . . , w|w| hit every natural
number (inclusively) in between ham(w0) = l and ham(w|w|) = |w| − l. In this set of numbers
lies |w|2 . This is because, if l > |w|

2 , |w| − l < |w| − |w|2 = |w|
2 , and a similar argument goes for

when l < |w|
2 , and is trivial when l = |w|

2 . Thus, there is a k such that ham(wk) = |w|
2 .

Now, to prove that G is surjective, it suffices to show the following:

Claim 4. If u is the kth string in BAL2 log n according to O2 log n, G(uwk) = w.
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Proof. First, we show that the kth string in BAL2 log n indeed exists. It suffices to show that
|BAL2 log n| ≥ |w|, as we are never required to use k = |w|, as if w|w| has even Hamming weight,
so does w0. Thus we only consider k ∈ [0, . . . , |w| − 1]. First,

|BAL2 log n| =
(
2 log n

log n

)
≥ 22 log n−1√

log n

by Stirling’s approximation. Then, we have

22 log n−1√
log n

=
n2

2
√

log n
≥ n2

2 log n

Finally,

n2

2 log n
≥ n− 2 log n

⇐⇒
n2

2 − n log n + 2 log2 n
log n

≥ 0

And for sufficiently large n, the numerator on the left hand side is greater than 1, and 1
log n ≥ 0

for n > 1.
And so, for sufficiently large n,

|BAL2 log n| ≥ |w|

Claim 5. uwk ∈ BALn.

Proof. ham(u) = log n since 2 log n is even, and thus

ham(uwk) = ham(u) + ham(wk) =
2 log n

2
+
|wk|

2
=

2 log n + |wk|
2

=
n
2

Then, upon inspection of G, we see that since u has even Hamming weight, G will compute
k, the position of u in O2 log n. This is the same k as in wk, by definition of u. Then, G will return
w(k)(k) = w.

Let G be the function based on Knuth’s balanced code [11] described in Section 2.3. Recall
that G is computable in polynomial time and surjective (see Appendix ??). Using this function
G, we will now construct the following function, assuming one-way permutations exist. Let
f : {0, 1}n−2 log n 7→ {0, 1}n−2 log n be a one-way permutation. Let f ′ : {0, 1}n 7→ {0, 1}n−2 log n be
the function ( f ◦ G)(

n
2 ).

Claim 6. f ′ is monotone and surjective.

Proof. Given any x ∈ {0, 1}n−2 log n, there is a y ∈ {0, 1}n−2 log n such that f (y) = x (since f is
surjective). Then, since G is surjective, there is a z ∈ BALn such that G(z) = y. Thus, f (G(z)) = x.
Then, since z ∈ BALn, ham(z) = n

2 . And so f ′(z) = f (G(z)) = x. Furthermore, f ′ is known as
the n

2 -cut of f ◦G, and we have already proven that any k-cut of a polynomial-time algorithm has
a polynomial-size monotone circuit that computes it.
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It suffices to show that f ′ is weak one-way, as by a simple extension we can construct a strong
one-way function from f ′. Again, following [8], we can show that f ′ is weak.

Lemma 4. f ′ is a weak one-way function.

Assume that adversary D′ inverts f ′(Un) with probability at least 1 − A(n) + ε(n), where
A(n) = Pr[ham(Un) = n

2 ]. Now, construct adversary D that, on input y ∈ f ′(Un), returns
G(D′(y)).

Claim 7. For even weight strings in {0, 1}n, if D′ succeeds in inverting f ′, D will succeed in inverting
f .

Proof. Take x ∈ {0, 1}n of even Hamming weight. Let y = f ′(x). Making a simplifying assump-
tion that 0m and 1m are not in the range of f , this implies that y is not 0m or 1m, as f ′ = f ◦ G in
this case.

Now, assume D′ outputs x′ ∈ f ′−1(y). Since y is neither 0m nor 1m, x′ has even Hamming
weight. Then, D(y) = G(x′), and furthermore, f (G(x′)) = y because f (G(x′)) = f (x′) since x′

has even Hamming weight. Thus, D′(y) ∈ f−1(y).

Claim 8. D inverts f (Un) with probability at least ε(n)

Proof.

Pr[D( f (Un)) ∈ f−1( f (Un))] ≥ Pr[D( f (Un)) ∈ f−1( f (Un)) ∧ ham(Un) = n/2]

≥ Pr[D′( f ′(Un)) ∈ f ′−1( f ′(Un)) ∧ ham(Un) = n/2]

≥ Pr[D′( f ′(Un)) ∈ f ′−1( f ′(Un))]− Pr[ham(Un) 6= n/2]
≥ ε(n).

Corollary 6. If a one-way surjection fS : {0, 1}n−2 log n → {0, 1}m exists, then a one-way monotone
surjection gS : {0, 1}n → {0, 1}m exists.

Proof. By replacing the one-way permutation used in the preceding proof with fS, and using the
fact that the injectivity of the permutation is not used in the proof, this corollary follows.

Corollary 7. If strong exponentially hard one-way permutations exist, weak one-way monotone surjec-
tions exist from n bits to n−O(log log(n)) bits.

Proof. Suppose some fn is a sequence of strong exponentially hard one-way permutations. Let
d ∈ ω(log n). Now, via a compexity leveraging argument, we see that there exists a strong one-
way permutation gn on d-bits that is strong one-way with respect to polynomial-time adversaries.
By the previous theorem, this means that there exists a monotone weak one-way surjection from d
bits to d− log d bits. Append n− d input and output bits (each input mapping directly to the cor-
responding output bit, so as to maintain surjectivity) to get a monotone weak one-way surjection
from n bits to n− log d which will be n−O(log log(n)) as desired by setting d appropriately.
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6 Negation Complexity of Some One-Way Injections

One of our main technical contributions is presented in this section. We show that an arbi-
trary injective one-way function f from n bits to m bits can be inverted in deterministic time
O(poly(n, m)( m

m−n)2
m−n).

We say a function f is perfectly invertible in P if there is a deterministic polynomial-time
adversary that, with only oracle access to any f and given any x ∈ codomain( f ), outputs the
preimage f−1(x) or indicates that x is not in the range of f . Note that this is much stronger than
what an adversary normally needs to invert a function in the cryptographic context.

Theorem 10. There exists an inverter I that, for any k > 0, perfectly inverts in P the monotone injections
{0, 1}n 7→ {0, 1}m in deterministic time O(poly(n, m)( m

m−n)2
m−n).

In order to prove the theorem, we will require the following proposition that follows imme-
diately from an injectivity argument:

Proposition 3. Given any monotone injection, and any input bit of that function, restricting an input
bit to zero (or one) will necessarily restrict at least one output bit to zero (or one). In other words, for any
monotone injection f : {0, 1}n 7→ {0, 1}m, where f (b1b2 · · · bn) = b′1b′2 · · · b′m, then for all 1 ≤ t ≤ n,
there exists a t1 such that b′t1

= 1 whenever bt is 1, and a t0 such that b′t0
= 0 whenever bt is 0.

Proof. The inverter I consists of two main parts, the reduce method, and the solve method. The
adversary begins at the reduce method, and calls the reduce method recursively, until it reaches
the base case, at which point the solve method is run.

The reduce method operates on strings in {0, 1, ?}∗, which should be interpreted as follows:
the ? bits are considered “free” and may vary throughout the scope of the variables, whereas the
0 and 1 bits are fixed, and will not change. For convenience, we define a couple functions on
{0, 1, ?}∗: let z(y) denote the string obtained from y where all positions with a ? in y are replaced
with zero, and similarly let w(y) denote the string where all ? bits in y are replaced with ones.

The inverter I operates as follows:
Let x be the input, which has m bits. I calls reduce(x, ?n, ?m). beginning a recursive pro-

cedure. The procedure reduce(x, y, ?m) takes three inputs: the target x ∈ {0, 1}m (which is
unused, except insofar as it is passed onto the final solve method), the input bit configuration
y ∈ {0, 1, ?}n and the output bit configuration, p ∈ {0, 1, ?}m. The fixed bits in y should be inter-
preted as bits which are assumed to be consistent with the preimage of x, and the fixed bits in p
should be interpreted as bits that are constant over all possible settings of the free input bits. We
will maintain as a recursive invariant in calls to reduce that the difference between the number
of free bits in p and the free bits in y is at most m− n.

The reduce method is as follows:

• Define f ′ as the restriction of f such that the domain is the subset of {0, 1}n that only
disagree with y on its free bits, and the range is the subset of {0, 1}m that only disagree
with p on its free bits. Note that f ′ is a monotone injection. For each free bit in y, indexed
by t, let at ∈ {0, 1}n be the string that has only position t set to one, 0t−110n−t, and let
bt be the complement of at. Let rt = (at ∨ z(y)) and st = (bt ∧ w(y)) where ∨ and ∧
are computed bit-wise. Now, consider ham( f ′(rt)) and l − ham( f ′(st)). By Proposition 3,
both quantities are ≥ 1. If both are = 1 for all t, then as a base case, return the result of
solve(x, y, p). Otherwise, in the case that one of the quantities is ≥ 2 for some t, branch into
two recursive calls: reduce(x, at ∨ y, rt ∨ p) and reduce(x, bt ∧ y, st ∧ p), where the bitwise
∨ and ∧ operations are extended in the natural way, so that 0∨ ? = ?, 1∨ ? = 1, ? ∨ ? = ?,
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0 ∧ ? = 0, 1 ∧ ? = ?, and ? ∧ ? = ?. If either call returns a preimage for x, return that
preimage; otherwise, if both branches indicate no solution, return that there is no preimage.

Observe that when the solve method is called from the reduce method, it holds that all of the
free bits in the input y, when restricted to 0, set exactly one free bit in the output p to 0, and when
restricted to 1, set exactly one free bit in the output p to 1 (since, otherwise we recurse further).
Let π, τ be partial functions from free bits in y to the free bits in p such that on input a position
in the input indicate which output bit is set to zero and one, respectively. Now, by injectivity,
we know that π and τ must themselves be injective, because otherwise, setting two different free
input bits would result in the same output.

The solve method is as follows:

• Suppose there are k free input bits. First, discover the π and τ permutations by simply
testing each free input bit, and seeing which free output bit corresponds to that input.
Consider the images of π and τ, P and T. We know the number of free output bits is limited,
so |P∪ T| ≤ k + (m− n), and k = |P| = |T|. So, m + k− n ≥ |P∪ T| = |P|+ |T| − |P∩ T| =
2k − |P ∩ T|, meaning that k − |P ∩ T| ≤ (m − n). For each bit b ∈ P ∩ T, examine the
corresponding bit in x; if x has a zero at b, it must be the case that a preimage of x has
T−1(b) set to zero, and if x has a one at b, a preimage of x has P−1(b) set to one. Thus,
|P ∩ T| of the free bits can be deduced, leaving at most m− n remaining free bits. Perform
a brute-force search over all possible configurations of these bits, returning a preimage of x
if one is found, or indicating no such preimage exists.

It is clear that the solve method runs in O(m2m−n) steps. Next, we count the maximum number
of times reduce is called. Let T(i, j) be the number of times reduce is called, where i is the
number of free input bits and j is the number of free output bits minus the number of free
input bits. Note that in the worst case, T(i, j) = 1 + T(i− 1, j) + T(i− 1, j− 1), since in at least
one of the paths, more than one outbit bit is set by restricting an input bit. The recursion will
necessarily stop as soon as either i = 0 or j = 0. Equivalently this quantity is bounded by the
number of non-backtracking paths between corners on a n× (m− n) rectangular grid, which is
( m

m−n). Each call takes only O(nm) time, and so the total running time for the whole method is
O
(
nm2( m

m−n)2
m−n), which for constant m− n is polynomial in n.

Corollary 8. Any monotone injection from {0, 1}n 7→ {0, 1}n+O(log n) can be inverted in time nO(log n)

Recall that Corollary 5 shows that that assuming existence exponential-time hard one-way
permutations we can get a monotone injection with ω(log n) stretch secure against polynomial-
time adversaries. While still a small gap remains, this gives an indication that we cannot signifi-
cantly improve our results.

Corollary 9. There is an inverter that, for any constants k, g, perfectly inverts in P any monotone injection
f : {0, 1}n 7→ {0, 1}n+k with g negation gates at the bottom (meaning the negation gates are over only
input bits).

Proof. Suppose such an f existed. Then, consider the following algorithm with oracle access to f :
Iterate through every one of the 2g possible combinations of negated bits. On each combination,
define a restriction f ′ : {0, 1}n−g 7→ {0, 1}n+k, which is monotone and injective. Provide this as
an oracle to the adversary from the previous theorem and pass along your own challenge input.
If you get a result for any chosen combination, return it; otherwise, indicate no solution.
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Corollary 10. OWIs (one-way injections) with constant stretch and negation gates only at the bottom
must have a super-constant number of negation gates.

Proof. This is the contrapositive of the previous corollary.

Corollary 11. OWIs with constant stretch must either have a super-constant number of negation gates,
or a negation gate above a subcircuit of superconstant size.

Proof. If there were only a constant number of negation gates above a circuits of constant size,
then by De Morgan’s laws, an adversary could convert this into a circuit with a constant number
of negation gates at the bottom, which would violate the previous corollary.

Corollary 12. OWIs in NC0 with constant width require a super-constant number of negation gates.

7 Negation Complexity of List-Decodable Codes

In the work of Guo et al. [9], they show that error-correcting codes are highly non-monotone.
Here we extend their result to list-decodable codes.

Theorem 11. Given any sequence of polynomial-sized circuits fn that make up a list-encoding function
from n bits to m(n) bits that is resistant to εm(n) bit-flips, the number of negation gates in fn must be at
least log(n)−O(1).

In physical reality, the probability of a bit flip over a noisy communication channel is unlikely
to decrease as the message size increases; but rather, one would expect it to stay constant or
increase. Any reasonable formulation of error-tolerant coding should allow this sort of tolerance,
so the fact that almost log(n) negation gates are required for the encoding part of such a list
coding indicates that list encoding is a highly non-monotone problem.

Proof. Let ε > 0, and let fn : {0, 1}n 7→ {0, 1}m be some sequence of circuits that make a list-
encoding resistant to εm(n) errors. Now, suppose for contradiction that the number of negation
gates in fn is log(n)− b(n), where b is unbounded. Since the sequence fn make up a list-encoding,
it follows by definition that for any code s, a decoder must be able to output a polynomial-sized
list of outputs that contain all strings within εm(n) bit flips of f (s). In particular, we have that for
some polynomial p, for all n, for all s, Un(s) = {x|ham( f (x)⊕ f (s)) < εm(n)} has cardinality
≤ p(n). Let d be the degree of p.

Now, fix N large enough so that n > N implies C(n) = (n/2
d+1) > p(n), m(n) > d+1

ε , l(n) =⌊
n

2(d+1)

⌋
> 1

ε , and n ≥ 8(d + 1). Since b is unbounded, we can find n > N such that b(n) ≥
2 + log(d + 1) + log

(
2 + 1

ε

)
. Fix n as this value, and consider the following chain of elements

ai ∈ {0, 1}n for 0 ≤ i ≤ l(n), defined recursively.
The first element of the chain is a0 = 0n. As inductive invariants, we claim that ham(ai) =

i(d + 1) < n
2 and that if f (ai) � f (ai−1) then ham( f (ai)) ≥ ham( f (ai−1)) + εm(n). In the induc-

tive step, for 0 < i < l(n), pick n/2 bits that are set to zero in ai−1, Zi = {z1, z2, · · · , zn/2}. Let Ti

consist of the C(n) subsets of Zi that have exactly d+ 1 elements, and let Si =
{

ai ∨ (
∨

z∈W ez) |W ∈ Ti},
where ez ∈ {0, 1}n has bit z one and all other bits zero, and ∨ refers to a bitwise or. Note Si con-
sists of C(n) strings above ai−1, each with Hamming weight ham(ai−1) + d + 1 = i(d + 1). Due
to the size of Si, it must contain some element, which we assign to ai, that not contained in
Un(ai−1). If ai � ai−1, then since ai /∈ Un(ai−1), ham( f (ai)⊕ f (ai−1)) ≥ εm(n), it must be the
case that ham( f (ai)) ≥ ham( f (ai−1)) + εm(n), and so both inductive invariants hold.
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Thus, we have constructed the chain a0 ≺ a1 ≺ · · · ≺ al(n), such that whenever f (ai−1) ≺
f (ai), ham( f (ai)) ≥ ham( f (ai−1)) + εm(n). Furthermore, we know due to Markov that since fn
has log(n)− b(n) negations, there can be at most 2log(n)−b(n) = n

4(d+1)(2+1/ε)
times in the chain

where f (ai−1) ⊀ f (ai). By the pigeonhole principle, there must be some subchain b1, · · · , bk with
f (b1) ≺ · · · ≺ f (bk) where k ≥ l(n)−1

n/(4(d+1)(2+1/ε))
≥ n/(2(d+1))−2

n/(4(d+1))

(
2 + 1

ε

)
≥
(

2− 8(d+1)
n

) (
2 + 1

ε

)
≥

2 + 1
ε . Since b1, · · · , bk is a subchain of a1, · · · , al(n), we have that for each i > 1, ham( f (bi)) ≥

ham( f (bi−1)) + εm(n), so that ham( f (bk)) ≥ ham( f (b0)) + (k− 1)εm(n) ≥ εm(n) +m(n), which
is clearly impossible as the maximum and minimum Hamming weights are m(n) and 0. By
contradiction, the claim holds.

Next, we establish that while the encoder of a list-decodable code cannot be monotone, we
prove that the decoder can be made monotone.

Theorem 12. Suppose there exists a sequence of (possibly probabilistic) circuits Ck of size S(k) on input
{0, 1}k that outputs a list of L(k) elements, each of which is a string {0, 1}n(k), for some n, L, S : N 7→N.
Then, there exists a polynomial p and a monotone (probabilistic if the original circuit was) circuit Mk of
size S(k)p(k) that outputs a list of Θ(k)L(k) elements, each of which is a string {0, 1}n(k), such that for
all strings y, M|y|(y) contains C|y|(y) as a sublist.

Proof. We know from an existing result that for some polynomial q, given the sequence of circuits
Ck of size S(k), we can construct an equivalent sequence of circuits C′k of size S(k)q(k), where C′k
has N(k) = dlog2(k + 1)e negation gates. Separate out the negation gates as follows: let

ak(x,¬bk,1(x),¬bk,2(x), · · · ,¬bk,N(k)(x)) = C′k(x)

where ak is the monotone circuit that takes everything above the negation gate (taking the outputs
of the negation gates as additional inputs), and bk,i is the circuit below the i-th negation gate of
C′k (via some arbitrary ordering). Then, construct the desired circuit Mk(x) as the concatenation
of ak(x, e1, e2, · · · , eN(k)) for every e1, e2, · · · , eN(k) ∈ {0, 1}. This only multiplies the size, S(k)q(k)
since ak is a subcircuit of C′k, by a factor of 2N(k) = Θ(k), meaning the size of Mk is S(k)p(k) for
some polynomial p. Also, Mk outputs a list of Θ(k)L(k) elements (in fact Θ(k) lists of size L(k)).
Now, for any input string y, M|y|(y) has a sublist a|y|(y,¬b|y|,1(y),¬b|y|,2(y), · · · ,¬b|y|,N(|y|)(y))
which has identical output to C′|y|(y) and thus C|y|(y), proving the claim.

Corollary 13. If there exists a polynomial-size list decoder for a given sequence of codes Ck : Σk 7→ Σn(k)

for some n : N 7→ N that outputs a list of size L(k) for some N 7→ N, there exists a monotone
polynomial-size list decoder for C that outputs a list of size kLk.

Corollary 14. If there exists a probabilistic polynomial-size local list decoder for a given code C : Σk 7→ Σn

that outputs a list of size Lk, there exists a monotone probabilistic polynomial-size local list decoder for C
that outputs a list of size kLk.
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A k-cut of a Function is Monotone

Proposition 4. If f : {0, 1}n 7→ {0, 1}m is a function computable in polynomial-time, then for any k, the
k− cut of f , f (k), is computable by a polynomial-sized monotone circuit.

B Missing Proofs from Section 4

Corollary 15. If strong exponentially hard one-way permutations exist, strong one-way monotone injec-
tions exist from n bits to n + ω(log(n)) bits.

C Missing Proofs from Section 5

Corollary 16. If strong exponentially hard one-way permutations exist, weak one-way monotone surjec-
tions exist from n bits to n− log(log(n))−ω(1) bits.

Proof. Suppose some fn is a sequence of strong exponentially hard one-way permutations. Let
d(n) ∈ ω(1). Now, recalling the lemma from the previous section about exponentially hard func-
tions, we see that there exists a strong one-way sequence of permutations gn on log(n)2d(n) bits
that is strong one-way with respect to poly(n). By the previous theorem, this means there exists
a weak one-way monotone surjection from log(n)2d(n) bits to log(n)2d(n) − log(log(n)2d(n)) bits.
Append n− log(n)2d(n) input and output bits (each input mapping directly to the corresponding
output bit, so as to maintain surjectivity) to get a weak one-way monotone surjection from n bits
to n− log(log(n)2d(n)) = n− log(log(n))− d(n), as desired.

D Negation Complexity of List-Decodable Codes

Theorem 13. Given any sequence of polynomial-sized circuits fn that make up a list-encoding function
from n bits to m(n) bits that is resistant to εm(n) bit-flips, the number of negation gates in fn must be at
least log(n)−O(1).

D.1 Some Corollaries to our Injection Lower Bound

Corollary 17. For any constant c, for any OWI with constant stretch, for all inputs of Hamming weight
less than c [assuming n is sufficiently large], at least one negation gate must not trigger, and for all inputs
of Hamming weight more than m− c, at least one negation gate must trigger.

Proof. Suppose that for some constant c, all negation gates trigger for some input of Hamming
weight c (for large enough n). Then, consider the following algorithm on target x: check all
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strings with Hamming weight ≤ c via a brute-force search. Otherwise, for each string w with
Hamming weight c, guess that w is below the true preimage, and that w has all negations trig-
gered. With non-negligible probability in x, this will happen. Let fw be the restriction of f to
the zero bits of w (the other bits fixed at 1) which has constant width m− n + c. Feed this into
the inverter in the main theorem to find the inverse of x. The case from the other end follows
identically.

Corollary 18. Any monotone function f that has a constant number of collisions (in other words,
|{(x, y)|x 6= y, f (x) = f (y)}| is constant) is perfectly invertible in P.

Proof. Say there are c collisions. Through the adversary in the main theorem, we can find all such
collisions. For each collision (x, y), since x 6= y, there is a bit that is 1 for one member of the pair
and 0 for the other. First, iterate through all possible 2c configurations of these bits, then run the
adversary of the main theorem on the function restricted to the remaining bits, which still has a
constant width of m− n + c.
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