
Post-quantum Security of the
CBC, CFB, OFB, CTR, and XTS Modes of Operation

Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi,
Gelo Noel Tabia, and Dominique Unruh

University of Tartu
Estonia

Abstract. We examine the IND-qCPA security of the wide-spread block cipher modes of oper-
ation CBC, CFB, OFB, CTR, and XTS (i.e., security against quantum adversaries doing queries
in superposition). We show that OFB and CTR are secure assuming that the underlying block
cipher is a standard secure PRF (a pseudorandom function secure under classical queries). We give
counterexamples that show that CBC, CFB, and XTS are not secure under the same assumption.
And we give proofs that CBC and CFB mode are secure if we assume a quantum secure PRF
(secure under queries in superposition).

Keywords. Post-quantum cryptography. Block ciphers. Modes of operation. IND-qCPA security.

1 Introduction

Block ciphers are one of the most fundamental primitives in cryptography. On its own, however,
a block cipher is almost useless because it can only encrypt messages of a fixed (and usually
very short) length. Therefore block ciphers are usually used in so-called “modes of operation”:
constructions whose goal it is to extend the message space of the block cipher, and possibly add
other features or more security in the process. Since most encryption in practice uses at some
level a mode of operation, the security of those modes of operation is of paramount importance
for the security of many cryptographic systems.

In the light of the possible advent of quantum computers,1 we have to ask: is existing classical
cryptography also secure in the presence of attackers with quantum computers? In particular,
does the security of common modes of operation break down?

In this paper, we study a number of common modes of operation, namely those listed in
the 2013 ENISA2 report on recommended encryption algorithms [10]: CBC, CFB, OFB, CTR,
and XTS. We study whether those modes are secure in the quantum setting under comparable
assumptions as in the classical setting, and if not, we construct counterexamples.

The aforementioned modes of operation (except ECB and XTS) are known to be IND-
CPA secure in the classical setting, under the assumption that the underlying block cipher is
a pseudo-random function (PRF).3 ECB is known not to have reasonable security for most
applications, while the security of XTS is an open question.

In the quantum case, there are two variants of the IND-CPA notion: “standard IND-CPA”
and “IND-qCPA”. While standard IND-CPA lets the quantum adversary perform only classical
encryption queries, IND-qCPA (as defined by [6]) allows the adversary to perform quantum
encryption queries (i.e., queries which are a superposition of different messages, to get a super-
position of different ciphertexts). In other words, IND-qCPA additionally guarantees security
when the encryption key is used to encrypt messages in superposition. (See below for a discussion
on the relevance of this notion.)

1 There seem to be no clear predictions as to when quantum computers will be available and strong enough to
attack cryptography. But it seems daring to simply assume that they will not be available in the mid-term
future, just because we do not have clear predictions.

2 European Union Agency for Network and Information Security. We chose this list as a basis in order to
investigate a practically relevant and industrially deployed set of modes of operations.

3 If we want to be able to decrypt, then the block cipher should, of course, be a pseudo-random permutation.
But for mere security, PRF is sufficient.

Mode of Classical Standard (quantum) IND-qCPA?
operation IND-CPA? IND-CPA? (with PRF) (with qPRF)

ECB no no no no

CBC yes[17] yes no2 yes4

CFB yes[17] yes no3 yes4

OFB yes[17] yes yes3 yes3

CTR yes[17] yes yes3 yes3

XTS unknown[11] unknown “no in spirit”4 unknown

Table 1: Summary of our results. The superscripts refer to the bibliography or to theorem numbers. “No in spirit”
means that there is an attack using superposition queries that does not formally violate IND-qCPA.

Similarly, there are two variants of the notion of a classical PRF in the quantum setting:
standard secure PRF and quantum secure PRF. In the first case, the function cannot be dis-
tinguished from a random function when making arbitrary classical queries to that function.
In the second case, the function cannot be distinguished from random when making arbitrary
quantum queries, i.e., when querying the function on a superposition of many inputs.

We can now ask the question: which variant of quantum PRFs is needed for which variant
of IND-CPA. As it turns out, if we merely wish to get standard IND-CPA security, the answer
is trivial: CBC, CFB, OFB, and CTR are secure assuming that the underlying block cipher is a
standard PRF. In fact, the original security proofs of these schemes can be reused unmodified.4

(We hence abstain from reproducing the original proofs in this paper and refer to the classical
proofs instead.) And ECB is still trivially insecure, and for XTS we still do not know which
security we achieve.

On the other hand, if we ask for IND-qCPA security, the picture changes drastically. OFB
and CTR mode can be shown IND-qCPA secure based on a standard secure PRF. (The proof
is relatively straightforward.)

In contrast, we prove that CBC and CFB are not IND-qCPA secure based when based on a
standard secure PRF. In fact, for CBC and CFB we show that the adversary can even recover
the secret key using quantum queries. For XTS, we show that the adversary can recover the
second half of a plaintext if he can provide the first half of the plaintext (and the adversary can
get half of the key). Although this does not formally contradict IND-qCPA (because IND-qCPA
does not allow the challenge query to be performed in superposition), it show that XTS does
not satisfy the intuitive notion of CPA security under superposition attacks.

If, however, the block cipher is a quantum secure PRF, then CBC and CFB are IND-qCPA
secure. The proof of this fact, however, is quite different from the classical security proof: since
the block cipher is invoked in superposition, we are in a situation similar to the analysis of
quantum random oracles, which are notoriously difficult to handle in the quantum case. (Note:
this refers only to the difficulties encountered in our proof. Our results are in the standard
model, not in the random oracle model.)

We summarize the results in Table 1. Our counter-examples are in the quantum random
oracle model, but our positive results are in the standard model (no random oracle).

On the IND-qCPA security notion. The IND-qCPA security notion [6] models passive
security against adversaries that have access to the encryption of (chosen) plaintexts in super-
position. The obvious question is: do we need that?

– The most obvious reason is that in the future, we might want to encrypt messages in su-
perposition for some legitimate purpose. E.g., the encryption scheme is used as part of a

4 Except that the set of adversaries we consider is, of course, that of quantum polynomial-time adversaries,
instead of classical polynomial-time adversaries. Note that it is not always the case that a classical security
proof goes through unchanged in the quantum case. (A typical example are zero-knowledge proof systems
where rewinding is used in the classical proof. Rewinding-based proofs cannot be directly translated to the
quantum setting [1, 13,16].)

2

c0 c1 c2 c3

Random
IV

m1 m2 m3

H H H

⊕ ⊕ ⊕

(a)

c0 c1 c2 c3

Random
IV Random m2 m3

H H

⊕ ⊕

(b)

Fig. 1: (a) CBC mode (using a random function H instead of the block cipher). (b) Modified challenge ciphertext
computation (c1 replaced by randomness). We need to prove that replacing c2 by a random value leads to an
indistiguishable view.

quantum protocol. (That is, a protocol that actively uses quantum communication, not just
a classical protocol secure against quantum adversaries.)

– A second argument (made in [7]) is that with continuing miniaturization, supposedly clas-
sical devices may enter the quantum scale, and thus “accidentally” encrypt messages in
superposition. (Personally, we have doubts how realistic this case is, but we mention it for
completeness.)

– There is, however, a reason why insecurity under notions such as IND-qCPA may affect the
security of a purely classical system in the presence of a quantum attacker. If a classical
protocol is proven secure (with respect to a quantum adversary), intermediate games in the
security proof may actually contain honest parties that run in superposition. This happens
in particular if zero-knowledge proof systems or similar are involved [13, 16]. For example,
in [14, Section 5], the security proof of a classical protocol did not go through because the
signature scheme was not secure under quantum queries (they had to change the protocol
considerably instead). Encryption schemes that are not just standard IND-CPA, but IND-
qCPA might help in similar situations.

1.1 Our techniques

We briefly summarize the techniques we use to prove or disprove the security of the various
modes of operation.

IND-qCPA security of OFB and CTR mode using a standard PRF. Both OFB
and CTR mode are stream ciphers. That is, in both cases, encryption can be represented as
Enck(M) = Gk(|M |; r)⊕M , where Gk is a pseudorandom generator with key k for some random-
ness r. Thus, to encrypt a superposition

∑
i αi|Mi〉 of messages of length `, all we need to do is

to compute c := Enck(0) = Gk(`; r), and then to compute
∑

i αi|Enck(Mi; r)〉 =
∑

i αi|Mi ⊕ c〉.
Since computing Enck(0) can be done using a classical encryption query, it follows that su-
perposition encryption queries can be simulated using classical encryption queries. Hence the
IND-qCPA security of OFB and CTR can be directly reduced to the standard IND-CPA secu-
rity of the same schemes. And standard IND-CPA security is shown exactly in the same way as
in the classical setting.

IND-qCPA security of CBC and CFB mode using a quantum secure PRF. To show
security of CBC and CFB mode, we cannot directly follow the classical security proof since
that one relies inherently on the fact that the block cipher (the PRF) is queried only classically.
Instead, we use the following techniques to prove CBC security:

– Since the block cipher is a PRF, we can assume it to be a truly random function H (to
which the adversary has no access, since he does not know the key). CBC encryption is thus
performed as sketched in Figure 1 (a).

– We replace the challenge encryption (i.e., the encryption query where the adversary should
distinguish between Enc(m0) and Enc(m1)) step by step by randomness. That is, we consider

3

a sequence of hybrid games, and in the i-th game, the first i blocks of the challenge cipher-
text are replaced by uniformly random bitstrings. Once all ciphertext blocks are replaced
by randomness, the probability of guessing whether m0 or m1 was encrypted is obviously
1
2 . Thus, all we need to show is that replacing one block of the challenge ciphertext by
randomness leads to a negligible change in the advantage of the adversary. The situation is
depicted in Figure 1 (b).

– Say we want to show that c2 = H(m2 ⊕ c1) is indistinguishable from random (the situation
in Figure 1 (b). At a first glance, this seems simple: m2 ⊕ c1 is uniformly random, so the
probability that it collides with other H-queries is negligible, hence H(m2⊕ c1) is uniformly
random. However, this argument does not hold in the quantum setting: since some encryp-
tion queries are performed in superposition, it can be that H was queries on all inputs
simultaneously, hence we cannot say that H was not queried at m2⊕ c1 before. Fortunately,
we can use the “One-way to Hiding (O2H) Lemma” from [15] here. This lemma basically
says: for a uniformly random x, to show that H(x) is indistinguishable from random, we
need to show: when running the adversary, and aborting at a randomly chosen H-query,
and measuring the input to that query (disturbing the superposition), then the probability
that the outcome is x is negligible.
In the present setting this means: if we measure a random H-query during the execution of
the IND-qCPA game, the probability that the argument equals m2 ⊕ c1 is negligible. For
example, the probability that one of the h-queries before the challenge encryption equals
m2 ⊕ c1 is trivially negligible, because c1 has not yet been chosen at that point.

– For the H-queries performed during the challenge query, we use the fact that H is indistin-
guishable from a random permutation [19]. In that case, the H-query inputs are uniformly
random due to the fact that c2 is chosen uniformly at random (remember that we replaced
c2 by a random value), hence they collide with m2 ⊕ c1 only with negligible probability.

– For the H-queries performed after the challenge query, we cannot use the same argument,
because those queries can be performed in superposition. However: if we only care whether
the chosen H-query has input m2 ⊕ c1, then, instead of just measuring the H-query input,
we can measure in the computational basis all registers involved in the encryption. Then
we observe that measuring all registers commutes with the operations performed during en-
cryption, so equivalently we can assume that that measurement happens at the beginning of
the encryption (and in particular measures the plaintext). And that means, for the purposes
of bounding the probability of measuring H-query input m2 ⊕ c1, we can assume that we
encrypt a classical plaintext. From here, the argument from the previous item applies.

– Altogether, the probability of measuring m2⊕c1 in any H-query is negligible. Then the O2H
lemma implies that the H(m2⊕ c1) is indistinguishable from random. And by iterating this
indistinguishability, we can replace the whole challenge ciphertext by randomness. And then
the adversary has only probability 1

2 of guessing which challenge plaintext was encrypted.
This shows that CBC mode is IND-qCPA secure if the block cipher is a quantum secure PRF.
The security of CFB mode is shown very similarly.

Insecurity of CBC and CFB mode using a standard secure PRF. To show that CBC
and CFB mode are insecure using a standard secure PRF, we first construct a specific block
cipher BC as follows:

BCk(x) := EH(k)

(
droplastbit (x⊕ (k‖1) · lastbit(x))

)
where E is a standard secure PRF and H refers to a random oracle. (This construction is not
really a block cipher because it is not injective and hence not decryptable. The definition of
BCk can be refined to make it decryptable, we omit this technicality in this proof overview,
see Section 3.1.) This block cipher has the special property of being k‖1-periodic: BCk(x) =
BCk(x ⊕ (k‖1)). In particular, this it cannot be a quantum secure PRF, even if E is. Namely,
given superposition access to BCk, Simon’s algorithm [12] allows us to recover k‖1 given quantum

4

oracle access to BCk.
5 This idea also allows us to break CBC mode when CBC mode uses BCk

as its underlying blockcipher. If we encrypt a single block message m using CBC, we get the
ciphertext (c0,BCk(c0 ⊕m)). Although the message m is XORed with the random IV c0, the
period remains the same, namely k‖1. Thus, using what is basically Simon’s algorithm, using
superposition queries to CBC mode, we get k‖1 (more precisely, one bit of information about
it for each superposition query). This reveals the key k completely and in particular shows that
CBC is not IND-qCPA secure.

The question of course is whether BCk is indeed a standard secure PRF. Even though
the adversary has only classical access to BCk, the proof cannot be purely classical: we use a
random oracle H that the adversary can query in superposition. Instead, we use again the O2H
lemma [15] mentioned above. This allows us to replace H(k) by a random key y in the definition
of BCk. Now the analysis of BCk becomes purely classical and basically amount to showing that
the adversary cannot guess two inputs to BCk that lead to the same input for Ey. (Using the
actual, decryptable construction of BCk, this proof becomes technically a bit more complex, but
still follows the same ideas.)

In the case of CFB mode, the attack is similar, except that here we need to encrypt two-
block messages in order to get a ciphertext that depends in a k‖1-periodic way on the plaintext.
(Since the first message block is not fed through the block cipher in CFB mode.)

Insecurity of XTS mode using a standard secure PRF. To attack XTS, we use the same
basic idea as for CBC and CFB. However, there are some additional complications. In XTS, two
keys k1, k2 are used. Each ciphertext block is computed as ci := αi−1L⊕BCk2(αi−1L⊕mi). Here
L := BCk1(I) is a secret value that is derived from a nonce I (thus L stays fixed throughout
one encryption operation, but changes from ciphertext to ciphertext). If we use the block cipher
constructed above (when breaking CBC), we can easily derive k2: since BCk2 is k2-periodic, so
is BCk2(αi−1L ⊕mi). Thus with one single block encryption we would be able to retrieve one
bit of k2 using Simon’s algorithm. However, retrieving k2 does not help us in decrypting XTS
mode, since we do not know k1, and hence cannot compute the value L. Also, the fact that
BCk1(I) is k1-periodic does not help us to retrieve k1 since we do not have any control over I.
Instead, we use the following trick. We construct

BCk(x, y) := EH(k)

(
droplastbit (x⊕ (k‖1) · lastbit(x)) , droplastbit (y ⊕ fk(x) · lastbit(x))

)
where fk is a suitable function depending on k (with the property that lastbit(fk(·)) = 1).
(We interpret message blocks are pairs x, y by splitting them in the middle.) Again we ignore
in this proof overview that BCk cannot be decrypted, the more involved construction given in
Section 3.2 avoids this problem.

Now BCk is k-periodic in x, and fk(x)-periodic in y for fixed first input x. Using this block
cipher, we can first use the attack technique described for CBC mode to recover k2 (by encrypting
a number of one block messages). The main difference is that now we create a plaintext that is a
superposition in the first half of the block (x), and fixes the second block (y := 0). Now, instead
of recovering k1 (which seems impossible), we can recover the message L used during a given
encryption query: We encrypt a message where the x-part of each block is 0, and the y-part of
each block is the superposition of all messages. Since BCk2 is invoked with αi−1L ⊕mi when
encrypting mi, we have that the first half of the input to BCk2 is the first half of αi−1L. Thus
BCk2 is fk2(firsthalf (αi−1L))-periodic. Thus from message block i, using Simon’s algorithm, we
get one bit of fk2(firsthalf (αi−1L)). Since we know k2, this reveals one bit of information about
αi−1L. Thus we get a bit each about many different αi−1L (for different i), and this allows us
to compute L. If our ciphertext, in addition to the superposition-message-blocks contains parts

5 A similar idea was already used in [18] to show that there is a standard secure PRF that is not quantum
secure. However, their construction had a period with respect to +, not to ⊕, which makes it unsuitable for
showing the insecurity of CBC mode.

5

that are unknown, we can then decrypt those using our knowledge of L and k2. (Note that we
cannot use this knowledge to decrypt another ciphertext, since each ciphertext uses a different
L.) Thus, we can decrypt ciphertexts whose plaintexts are partially under our control (and in
superposition), and partially unknown.

1.2 Related work

Boneh et. al. [4] have argued the requirement of quantum-accessible random oracle model to
prove post-quantum of BR encryption scheme introduced in [2]. They have proved the CCA
security of hybrid encryption scheme introduced in [2] in the quantum random oracle model.
Ebrahimi and Unruh in [9] prove the CCA security of Fujisaki-Okamoto transform in the quan-
tum random oracle model. In [5] Boneh and Zhandry construct the first message authentication
codes (MACs) that are existentially unforgeable against a quantum chosen message attack and
show that quantum-secure PRF leads to quantum-secure MACs. In [8], Damg̊ard et. al. study
secret sharing scheme and multiparty computation where the adversary make ask superposition
queries. They also examine the zero knowledge protocols and use the secret sharing results to
design zero knowledge proofs for all of NP in the common reference string model.

1.3 Organisation

In Section 2 we provide the various security definitions and lemmas used throughout the paper.
Section 2.1 contains the definition of all the modes of operations discussed. Section 3 describes
the attack on CBC, CFB, and XTS mode of operation based on standard secure PRF. In
Section 4 we show how to achieve the IND-qCPA security for the OFB and CTR modes of
operation. In Section 5 we show how to achieve the IND-qCPA security for the CBC and CFB
modes of operation.

2 Notation and tools

Notation. By x← A(y) we denote an algorithm A that takes an input y outputs a value that
is assigned to x. We write x ← AH(y) if A has access to an oracle H. By (A ← B) we refer

to the set of all functions from A to B. x
$←− A represents an x which is uniformly randomly

chosen from the set A. {0, 1}n represents the bit-strings of length n and a‖b for strings a and
b represents the concatenation of two strings. For two vectors a and b, a � b denotes the dot
product between two vectors. We use η(t) to denote a function with a security parameter t. If
we say a quantity is negligible(denoted negl.) we mean that it is in o(ηc) or 1 − o(ηc) for all
c > 0. We use the notation A ≈ B to say that quantity A has negl. difference with quantity B.
For an n−bit string a and binary variable b, a · b = a if b = 1 otherwise a · b = 0n. For a string
x = x1x2x3 · · ·xn where xi is the i − th bit we use functions lastbit and droplastbit such that
lastbit(x) = xn and droplastbit(x) = xix2 · · ·xn−1.

Definition 1 (IND-CPA). A symmetric encryption scheme Π = (Gen,Enc, Dec) is indistin-
guishable under chosen message attack (IND-CPA secure) if no classical poly-time adversary A
can win in the PrivKCPA

A,Π (t) game, except with probability at most 1/2 + negl:

PrivKPrivKPrivKCPACPACPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k ← Gen and a random bit b.

Query: Adversary A chooses two messages m0,m1 and sends them to the challenger.

Challenger chooses r
$←− {0, 1}∗ and responds with c∗ = Enck(mb; r).

Guess: Adversary A produces a bit b′, and wins if b = b′.

6

Definition 2 (IND-qCPA [6]). A symmetric encryption scheme Π = (Gen,Enc, Dec) is indis-
tinguishable under quantum chosen message attack (IND-qCPA secure) if no efficient adversary
A can win in the PrivKqCPA

A,Π (t) game, except with probability at most 1/2 + negl:

PrivKPrivKPrivKqCPAqCPAqCPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k and a random bit b.
Queries

- Challenge Queries: A sends two messages m0,m1 to which the challenger re-
sponds with c∗ = Enck(mb; r).
- Encryption Queries: For each such query, the challenger chooses randomness r,
and encrypts each message in the superposition using r as randomness:∑

m,c

ψm,c
∣∣m, c〉→∑

m,c

ψm,c
∣∣m, c⊕ Enck(m; r)

〉
Guess: A produces a bit b

′
, and wins if b = b

′
.

Definition 3 (Standard-security [18]). A function PRF is a standard-secure PRF if no
efficient quantum adversary A making classical queries can distinguish between a truly random
function and a function PRFk for a random k. That is, for every such A, there exists a negligible
function ε = ε(t) such that∣∣ Pr

k←K
[APRFk() = 1]− Pr

O←YX
[AO() = 1]

∣∣< ε.

Definition 4 (Quantum-security [18]). A function PRF is a quantum secure PRF if no
poly-time quantum adversary A making quantum queries can distinguish between truly random
function and the function PRFk for a random k.

Lemma 1 (One way to hiding (O2H) [15]). Let H : {0, 1}t → {0, 1}t be a random or-
acle. Consider an oracle algorithm AO2H that makes at most qo2h queries to H. Let B be an

oracle algorithm that on input x does the following: pick i
$←− {1, . . . , qo2h} and y

$←− {0, 1}t,
run AHO2H(x, y) until (just before) the i − th query, measure the argument of the query in the
computational basis, output the measurement outcome. (When AO2H makes less than i queries,
B outputs ⊥ /∈ {0, 1}t.) Let,

P 1
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, b′ ← AHO2H(x,H(x))],

P 2
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y $←− {0, 1}t,

b′ ← AHO2H(x, y)],

PB := Pr[x′ = x : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, x′ ← BH(x, i)].

Then, ∣∣P 1
AO2H

− P 2
AO2H

∣∣≤ 2qo2h
√
PB.

2.1 Modes of operation

Definition 5 (ECB Scheme). For a given permutation E : K × {0, 1}t → {0, 1}t we define
the symmetric encryption scheme ΠECB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K .

Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) := c1 · · · cn,
where ci = E(k,mi) for 0 < i ≤ n.
Dec: For a given cipher-text C = c1 · · · cn and key k; m̂i := E−1(k, ci) for 0 < i ≤ n.

7

Definition 6 (CBC Scheme). For a given permutation E : K × {0, 1}t → {0, 1}t we define
the symmetric encryption scheme ΠCBC = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K .

Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) :=

c0c1 · · · cn, where c0
$←− {0, 1}t and ci = E(k,mi ⊕ ci−1) for 0 < i ≤ n.

Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E−1(k, ci)⊕ ci−1 for 0 < i ≤ n.

Definition 7 (CFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t we define the
symmetric encryption scheme ΠCFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K .

Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) :=

c0c1 · · · cn, where c0
$←− {0, 1}t and ci = E(k, ci−1)⊕mi for 0 < i ≤ n.

Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1)⊕ ci for 0 < i ≤ n.

Definition 8 (OFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t we define the
symmetric encryption scheme ΠOFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K .

Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) :=

c0c1 · · · cn, where c0 = r0
$←− {0, 1}t, ri = E(k, ri−1) and ci = ri ⊕mi for 0 < i ≤ n.

Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1)⊕ ci for 0 < i ≤ n.

Definition 9 (CTR Scheme). For a given function E : K × {0, 1}t → {0, 1}t we define the
symmetric encryption scheme ΠCTR = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K .

Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) :=

c0c1 · · · cn, where c0
$←− {0, 1}t and ci = E(k, c0 + i)⊕mi for 0 < i ≤ n.

Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, c0 + i)⊕ ci for 0 < i ≤ n.

Definition 10 (XTS Scheme). For a given permutation E : K × {0, 1}t → {0, 1}t we define
the symmetric encryption scheme ΠXTS = (Gen,Enc,Dec) as follows:

Gen: Pick random keys k1 and k2 i.e., k1
$←− K and k2

$←− K .
Enc: For a given message M = m1m2 · · ·mn, where n is a polynomial in t; Enck(M) :=
c0c1 · · · cn, where ci = E(k1,mi ⊕ ∆i) ⊕ ∆i for 0 < i ≤ n, ∆ = αi−1L, L = E(k2, I) and
α is the primitive element of the field Fn2 . Here I is a publicly known nonce that is agreed upon
out of band (but that is different in different ciphertexts).
Dec: For a given cipher-text C = c1 · · · cn; and key k; m̂i := E(k, ci ⊕∆i)⊕∆i for 0 < i ≤ n.

3 Quantum attacks on CBC, CFB, and XTS based on standard secure PRF

We show that CBC and CFB mode are not IND-qCPA secure in general when the underlying
block cipher is only a standard secure PRF, and that XTS has a chosen-plaintext attack using
superposition queries. For this, in Section 3.1 and Section 3.2 we first construct two different
block ciphers that are standard secure PRFs (but are intentionally not quantum secure). Then,
in Section 3.3 and ?? we show how to break CBC and CFB, respectively, when using the first
of those block ciphers. And in Section 3.5 we show how to break XTS when using the second
block cipher.

3.1 Construction of the block cipher for CBC

To show that a standard secure PRF is not sufficient for IND-qCPA security of CBC and XTS
modes of operation we need a block cipher that is standard secure PRF but not quantum secure.

8

Our first step is to construct such a block cipher and prove it to be standard secure. In this
section we provide two such constructions of block cipher that would be later used to show
insecurity of CBC and XTS against a quantum adversary respectively.

Construction 1:

BCk(x) = EH(k)1

(
droplastbit(x⊕ (k‖1) · lastbit(x))

)∥∥tH(k)2

(
x⊕ (k‖1) · lastbit(x)

)
⊕ lastbit(x),

where, E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 is a standard secure PRF , t : {0, 1}n × {0, 1}n →
{0, 1} is a standard secure PRF, H : {0, 1}n → {0, 1}n×{0, 1}n is a random oracle and the key

k
$←− {0, 1}n−1.
For the chosen block cipher BC we show that the given construction is a permutation. It is

easy to see that E and t take an n−1-bit string (i.e., droplastbit(x⊕(k‖1) · lastbit(x))) and n−bit
string (i.e.,(x ⊕ (k‖1) · lastbit(x))) respectively 6. By appending 1−bit output from t XORed
with the last-bit of x it makes BCk’s output an n-bit string. For a given output of BCk and key
k one can decrypt E using key H(k)1 to retrieve the input droplastbit(x⊕(k‖1) · lastbit(x)). This
can be appended a 0-bit and can be fed into t with key H(k)2 to get an output of 1-bit. This
1−bit output when XORed with the lastbit(BCk) gives the lastbit(x). From x⊕ (k‖1) · lastbit(x)
and lastbit(x), we can compute x. Thus, BC is injective and if E is efficiently invertible, so is
BC.

Theorem 1. Construction 1 is a standard secure PRF for any quantum adversary D given
classical access to BCk and quantum access to the random oracle H.

Proof. LetD be any quantum adversary that distinguishes the BCk from a truly random function
RF with advantage δ given classical access to BCk and quantum access to H. Without loss
of generality we assume that D never queries its classical oracle twice with the same input.
Therefore,

δ =
∣∣Pr
[
DBCk,H = 1 : k

$←− {0, 1}n−1, H $←− ({0, 1}n → {0, 1}2n)
]
−

Pr
[
DRF ,H = 1 : H

$←− ({0, 1}n → {0, 1}2n), RF
$←− ({0, 1}n → {0, 1}n)

] ∣∣,
where, BCk denotes classical access to function BCk.
Let,

G0:= Pr
[
DBCk,H = 1 : k

$←− {0, 1}n−1, H $←− ({0, 1}n → {0, 1}2n)
]
,

G1:= Pr
[
DRF ,H = 1 : RF

$←− ({0, 1}n → {0, 1}n) , H
$←− ({0, 1}n → {0, 1}2n)

]
.

Thus, using the above definition we have: δ = |G0 −G1|. The construction 1 uses a random
oracle’s output as a key. By the O2H lemma (Lemma 1) we have the upper bound on the
probability of distinguishing between output of H and a random oracle on a common input.
Hence, we define the adversaries for O2H lemma as below:

Adversary AH(k,w):

b← DB̃C
′k
w ,H

return b

Adversary BH(k, j):
until the j-th H-query

b← DB̃C
′k
w ,H

if D makes < j queries
return ⊥

m = measured arg. of H
return m

6 Notice that (x⊕ (k‖1) · lastbit(x)) has its last bit always 0.

9

where,

B̃C
′k
w (x):= Ew1(x⊕ (k‖1) · lastbit(x))

∥∥ tw2(x⊕ (k‖1) · lastbit(x))⊕ lastbit(x), and w = w1

∥∥w2.

Using the above definition of the adversaries we have the following probabilities:

P 1
A := Pr

[
b′ = 1 : k

$←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}2n

)
, b′ ← AH(k,H(k))

]
,

P 2
A := Pr

[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←−
(
{0, 1}n → {0, 1}2n

)
, b′ ← AH(k,w)

]
,

PB := Pr
[
k = k′ : i

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}2n

)
; k′ ← BH(k, i)

]
where, q is the polynomial upper bound on the number of H−queries performed by D.

Hence, by O2H lemma [15] (Lemma 1) we have that, |P 1
A − P 2

A| ≤ 2q
√
PB. It is clear that

G0 = P 1
A. We now have to prove that PB is negligible. Hence, we define adversaries A2 and B2

similar to adversary A and B except that it uses random oracles Ẽ and t̃ in construction 1.

Adversary AH2 (k,w):

choose Ẽ,t̃ and simulate BC′k queries using
Ẽ, t̃

b← DBC′k,H

return b

Adversary BH
2 (k, j):

choose Ẽ,t̃ and simulate BC′k queries using
Ẽ, t̃
until j-th H− query:

b← DBC′k,H

if D makes < j queries
return ⊥

m = measured arg. of H
return m

where, BC′k(x) := Ẽ(droplastbit(x⊕ (k‖1) · lastbit(x)))
∥∥ t̃(x⊕ (k‖1) · lastbit(x))⊕ lastbit(x)

and Ẽ : {0, 1}n−1 → {0, 1}n−1, t̃ : {0, 1}n → {0, 1} are chosen randomly. We define,

G2 := Pr
[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←−
(
{0, 1}n → {0, 1}2n

)
, b′ ← AH2 (k,w)

]
PB2 := Pr

[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}2n

)
; k′ ← BH

2 (k, j)
]

Therefore, PB ≤ PB2 + ε, for some negligible ε as the only difference between the adversary
B and B2 is that BH uses classical access to PRFs Ew1 and tw2 where w1 and w2 are randomly
chosen while B2 uses random oracles Ẽ and t̃ respectively. We define the following classical
oracles Ẽ1, t̃1, Ẽ2, t̃2 as below:

Sampling 1:

Oracle Ẽ1:
Upon query on x:

Ẽ1(x) =

{
previous stored value, x queried before
store random element, x not queried before

return Ẽ1(x)

Sampling 2:

Oracle Ẽ2:
Upon query on x:
Ẽ2(x) = choose at random
if (x queried before in Ẽ2):

bad event
return Ẽ2(x)

Oracle t̃1:
Upon query on x:

t̃1(x) =

{
previous stored value, x queried before
store random element, x not queried before

return t̃1(x)

Oracle t̃2:
Upon query on x:
t̃2(x) = choose at random
if (x queried before in t̃2):

bad event
return t̃2(x)

10

It is easy to see that oracles Ẽ1 and t̃1 perfectly simulate oracles Ẽ and t̃ respectively, whereas
oracles Ẽ2 and t̃2 outputs a random string. Similar to adversary B2 we define the adversary B3

except that it uses oracles Ẽ2 and t̃2 instead of the oracles Ẽ and t̃. Hence, we have:

PB3 := Pr
[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}2n

)
; k′ ← BH

3 (k, j)
]
.

The difference between sampling 1 and sampling 2 is only when one of the input is repeated,
this we call the bad event. Let,

G3 := Pr[bad event : j
$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−

(
{0, 1}n → {0, 1}2n

)
; k′ ← BH

3 (k, j)]

Hence, by fundamental lemma of game playing [3], we have that: PB2 ≤ G3 + PB3 .

In game G3 and PB3 , k is independent of k′ because in sampling 2 oracles Ẽ2 and t̃2 gives
outputs that are independent of their inputs and k is only used in the inputs of Ẽ2 and t̃2.
Hence, we can replace string k in the input of adversary B3 with a null string 0.

PB3 = Pr
[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}2n

)
; k′ ← BH

3 (0, j)
]
≤ 2−n.

Now we focus on the calculation of G3 which denotes the probability of occurrence of bad
event. From the definition of G3 we see that bad event occurs only when same input is queried
again. Let r be the total number of BC-queries and q1, · · · , qr are the queries to BC. Consider
two queries qi′ and qj′ on BC′k that leads to same query on oracles Ẽ and t̃ then we have,

G3 = Pr[∃i′ 6= j′s.t.qi′ ⊕ (k‖1) · lastbit(qi′) = qj′ ⊕ (k‖1) · lastbit(qj′) :

j
$←− {1, . . . , q}; (k‖1)

$←− ({0, 1}n−1
∥∥1);H

$←−
(
{0, 1}n → {0, 1}2n

)
; k′ ← BH

3 (0, j)].

From game G3 we have qi′ ⊕ (k‖1) · lastbit(qi′) = qj′ ⊕ (k‖1) · lastbit(qj′). Hence, qi′ ⊕ qj′ =
(k‖1) · (lastbit(qi′)⊕ lastbit(qj′)). Queries not being same must have different last bits, thereby
XOR of last bit of qi′ and qj′ is 1 . Therefore we have,

G3 = Pr[∃i′ 6= j′; qi′ ⊕ qj′ = (k‖1) : j
$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−

(
{0, 1}n → {0, 1}2n

)
;

k′ ← BH
3 (0, j)]

Since k does not occur in the r.h.s. of this probability, and there are ≤ r(r−1)
2 pairs i′ 6= j′

G3 ≤
r(r − 1)

2
2−n+1, which is negligible

We now have,

PB2 ≤ PB3 +G3 ≤ 2−n +
r(r − 1)

2
2−n+1 ≈ negl.

Therefore,

PB ≤ 2−n +
r(r − 1)

2
2−n+1 + ε ≈ negl.

Hence, |G0 − P 2
A| = |P 1

A − P 2
A| is negl. Thus δ ≤ |P 2

A −G1|+ negl. .

The only difference between BC′k and B̃C
′k
w is that the underlying functions Ẽ and t̃ of BC′k

are random oracles whereas those of B̃C
k
w are standard secure PRFs. Thus, by the definition of

PRF |P 2
A −G2| ≤ ε. Using the sampling arguments as previously we define adversary A3 similar

to adversary A2 except that the underlying function of BC′k is Ẽ2 and t̃2.

11

G4 = Pr
[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←−
(
{0, 1}n → {0, 1}2n

)
; b′ ← AH3 (k,w)

]
,

G5 = Pr
[
bad event : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←−
(
{0, 1}n → {0, 1}2n

)
; b′ ← AH3 (k,w)

]
Using the fundamental theorem of game playing [3] we have that |G2 −G4| ≤ G5. Output

of A3 in G4 and G5 does not depends on k as the oracles Ẽ2 and t̃2 output random strings.
Hence, we can replace the input string k of A3 with a null string 0.

G4 = Pr
[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←−
(
{0, 1}n → {0, 1}2n

)
; b′ ← AH3 (0, w)

]
,

G5 = Pr
[
bad event : k

$←− {0, 1}n−1;w $←− {0, 1}2n;H
$←− ({0, 1}n → {0, 1}n) ; b′ ← AH3 (0, w)

]
.

We have that G5 ≤ r(r−1)
2 2−n+1 which is negl. analogously to G3 ≤ r(r−1)

2 2−n+1. Hence,
|G2 −G4| ≈ negl.. Now we can see that adversary A3 in game G4 has completely random
function instead of BC′k as it uses random functions Ẽ2, t̃2, and t̃′2. Note that the function in
G4 gives different values upon queries with the same input while RF in G1 gives equal outputs
in that case. Hence, G1 = G4. Therefore, using above results we have that:

δ = |G0 −G1| ≈ |P 2
A −G1| ≈ |G2 −G1| ≈ |G4 −G1| = negl

Thus, we have proved that the given construction is pseudo-random and hence a standard
secure PRF.

Thus, we have proved that the given construction is pseudo-random and hence a standard
secure PRF.

3.2 Construction of block cipher for XTS

Construction 2:

BCk(x, y) = EH(k)1(droplastbit(x̄), droplastbit(ȳ))
∥∥ tH(k)2(x̄, ȳ)⊕ lastbit(x)∥∥ t′H(k)3

(x̄, ȳ)⊕ lastbit(y),

where x̄ := x⊕(k‖1)·lastbit(x) and ȳ := y⊕fk(x)·lastbit(y) and fk(x) := x⊕(0n−1
∥∥lastbit(x))⊕

(k‖1) and key k
$←− {0, 1}n−1. E : {0, 1}n×{0, 1}2n−2 → {0, 1}2n−2 and t, t′ : {0, 1}n×{0, 1}2n →

{0, 1} are standard secure PRFs. H : {0, 1}n−1 → {0, 1}n×{0, 1}n×{0, 1}n is a random oracle
and x and y are n-bit strings.

For a chosen block cipher BC we first show that the given construction is a permutation.
It is easy to see that E and t, t′ take a 2n − 2-bit string (i.e, (droplastbit(x̄)

∥∥droplastbit(ȳ)))
and 2n−bit string (i.e., (x̄

∥∥ȳ)) respectively7. By appending 1-bit output each from t and t′

XORed with the last-bit of x and last-bit of y respectively, it makes BCk’s output a 2n-bit
string. For a given output of BCk and key k one can decrypt E with key H(k)1 to retrieve the
input (droplastbit(x̄)

∥∥droplastbit(ȳ)). This can be appended a 0−bit in each half be fed into t
and t′ with key H(k)2 and H(k)3 respectively, to get an output of 1−bit each. These 1−bit
outputs when XORed with the last two bits of BCk gives the lastbit(x) and lastbit(y). From
(x ⊕ (k‖1) · lastbit(x)

∥∥y ⊕ fk(x) · lastbit(y)), lastbit(x) and lastbit(y) we can compute x and y.
Thus, BC is injective, and if E is efficiently invertible, so is BC.

7 Notice that the last bit of (x̄
∥∥ȳ) is always 0 in each half.

12

Theorem 2. Construction 2 is a standard secure PRF for any quantum adversary D given
classical oracle access BCk and quantum access to the random oracle H.

Proof. Let D be any quantum adversary that distinguishes BCk from a truly random function
RF with advantage δ given classical access to BCk and quantum access to H. Without loss
of generality we assume that D never queries its classical oracle twice with the same input.
Therefore,

δ =
∣∣Pr
[
DBCk,H = 1 : k

$←− {0, 1}n−1, H $←− ({0, 1}n → {0, 1}3n)
]
−

Pr
[
DRF ,H = 1 : H

$←− ({0, 1}n → {0, 1}3n), RF
$←− ({0, 1}n → {0, 1}n)

] ∣∣,
where, BCk denotes classical access to function BCk.

Using the following games G0 and G1;

G0:= Pr
[
DBCk,H = 1 : k

$←− ({0, 1}n−1
∥∥1), H

$←− ({0, 1}n → {0, 1}3n)
]
,

G1:= Pr
[
DRF ,H = 1 : H

$←− ({0, 1}n → {0, 1}3n), RF
$←− ({0, 1}n → {0, 1}n)

]
.

we have that: δ =
∣∣G0 −G1

∣∣.
The construction 2 uses a random oracle’s output as a key. By the O2H lemma (Lemma 1)

we have an upper bound on the probability of distinguishing between output of H and a random
oracle on a common input. Hence, we define the adversaries for O2H lemma as below:

Adversary AH(k,w):

b← DB̃C
k
w,H

return b

Adversary BH(k, j):
until the j-th H-query:

b← DB̃C
k
w,H

if D makes < j queries
return ⊥

m = measured arg. of H
return m

where,

B̃C
k
w(x, y) := Ew1(x̄, ȳ)

∥∥ tw2(x̄, ȳ)⊕ lastbit(x)
∥∥ t′w3

(x̄, ȳ)⊕ lastbit(y), and w = w1

∥∥w2

∥∥w3.

Using the above definition of the adversaries we have the following probabilities:

P 1
A:= Pr

[
b′ = 1 : k

$−→ {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}3n

)
; b′ ← AH(k,H(k‖1))

]
,

P 2
A:= Pr

[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}n;H
$←−
(
{0, 1}n → {0, 1}3n

)
; b′ ← AH(k,w)

]
,

PB:= Pr
[
k = k′ : i

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}3n

)
; k′ ← BH(k, i)

]
,

where q is the polynomial upper bound on the number of H−queries performed by D.

Hence, by O2H lemma [15] (Lemma 1) we have that, |P 1
A − P 2

A| ≤ 2q
√
PB. It is clear that

G0 = P 1
A. We now have to prove that PB is negligible. Hence, we define a adversaries A2 and

B2 similar to adversaries A and B respectively, except that it uses random oracles Ẽ, t̃, and t̃′

in construction 2.

13

Adversary AH2 (k,w):

choose Ẽ,t̃, t̃′ and simulate BC′k queries
using Ẽ, t̃, t̃′

b← DBC′a,H

return b

Adversary BH
2 (k, j):

choose Ẽ,t̃, t̃′ and simulate BC′k queries
using Ẽ, t̃, t̃′

until j-th, H-query:

b← DBC′k,H

if D makes < j queries
return ⊥

m = measured arg. of H
return m

where

BC′k(x, y) := Ẽ(droplastbit(x̄), droplastbit(ȳ))
∥∥ t̃(x̄, ȳ)⊕ lastbit(x)

∥∥ t̃′(x̄, ȳ)⊕ lastbit(y),

and Ẽ : {0, 1}2n−2 → {0, 1}2n−2 and t̃, t̃′ : {0, 1}2n → {0, 1} are chosen randomly. We define:

G2 := Pr
[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}3n;H
$←−
(
{0, 1}n → {0, 1}3n

)
, b′ ← AH2 (k,w)

]
PB2 := Pr

[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}3n

)
; k′ ← BH

2 (k, j)
]

Therefore, PB ≤ PB2 + ε for some negligible ε as the only difference between the adversary B
and B2 is that B uses classical access to standard secure PRFs Ew1 , tw2 , and t′w3

where w1, w2,

and w3 are randomly chosen while B2 uses random oracles Ẽ, t̃, and t̃′. Below we simulate the
following classical oracles Ẽ1, t̃1, t̃′1, Ẽ2, t̃2, and t̃′2:

Sampling 1:

Oracle Ẽ1:
Upon query on x:

Ẽ1(x) =

{
previous stored value, x queried before
store random element, x not queried before

return Ẽ1(x)

Sampling 2:

Oracle Ẽ2:
Upon query on x:
Ẽ2(x) = choose at random
if (x queried before in Ẽ2):

bad event
return Ẽ2(x)

Oracle t̃1:
Upon query on x:

t̃1(x) =

{
previous stored value, x queried before
store random element, x not queried before

return t̃1(x)

Oracle t̃2:
Upon Query on x:
t̃2(x) = choose at random
if (x queried before in t̃2):

bad event
return t̃2(x)

Oracle t̃′1:
Upon Query on x:

t̃′1(x) =

{
previous stored value, x queried before
store random element, x not queried before

return t̃′1(x)

Oracle t̃′2:
Upon Query on x:
t̃′2(x) = choose at random

if (x queried before in t̃′2):
bad event

return t̃′2(x)

It is easy to see that oracles Ẽ1, t̃1, and t̃′2 perfectly simulate oracles Ẽ, t̃ and t̃′ respectively,
whereas oracles Ẽ2, t̃2, and t̃′2 output a random string. Similar to adversary B2 we define
adversary B3 except that it uses Ẽ2, t̃2, and t̃′2 instead of the functions Ẽ, t̃, and t̃′ respectively.
Hence, we have:

PB3 := Pr
[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}3n

)
; k′ ← BH

3 (k, j)
]
.

14

The difference between sampling 1 and sampling 2 is only when one of the inputs is repeated,
this we call the bad event. Let,

G3 := Pr[bad event : j
$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−

(
{0, 1}n → {0, 1}3n

)
; k′ ← BH

3 (k, j)]

Hence, by fundamental lemma of game playing [3] we have that: PB2 ≤ G3 + PB2 .
In game G3 and PB3 , k is independent of k′ because in sampling 2 Ẽ2, t̃2, and t̃′2 gives

outputs that are independent of their inputs, and k is only used in the inputs of Ẽ2, t̃2 and t̃′2.
Hence, we can replace string k in the input of adversary B3 with the null string 0.

PB3 = Pr
[
k = k′ : j

$←− {1, . . . , q}; k $←− {0, 1}n−1;H $←−
(
{0, 1}n → {0, 1}3n

)
; k′ ← BH

3 (0, j)
]
≤ 2−n.

Now we focus on the calculation of G3 which denotes the probability of occurrence of the
bad event. From the definition of G3 we see that bad event occurs only when same input is
queried again. Let there be two queries qi′ and qj′ on BC′k that leads to same query on Ẽ, t̃,
and t̃′, then we have,

G3 = Pr[∃i′ 6= j′s.t. q1i′ ⊕ (k‖1) · lastbit(q1i′) = q1j′ ⊕ (k‖1) · lastbit(q1j′)︸ ︷︷ ︸
:=C1

and

q2i′ ⊕ fk(q1i′) · lastbit(q2i′) = q2j′ ⊕ fk(q1j′) · lastbit(q2j′)︸ ︷︷ ︸
:=C2

: j
$←− {1, . . . , q}; k $←− {0, 1}n−1;

H
$←−
(
{0, 1}n → {0, 1}3n

)
; k′ ← BH

3 (0, j)]

where q1j′ and q2j′ denotes the first and second half of the query qj′ , similarly for qi′ .

From above conditions we have 16 different cases based on the last bits of q1i′ , q
2
i′ , q

1
j′ , and

q2j′ . These conditions can be easily analysed and is found that in the conditions C1∧C2 hold for

at most one value of k. Since qi′ and q1j′ are independent of k, for each i′, j′, C1 ∧C2 holds with

probability ≤ 2−n+1. Let r be the total number of BC queries and q1, · · · , qr are the queries to
BC. Hence, we have:

G3 =
r(r − 1)

2
2−n+1 which is negligible.

We now have,

PB2 ≤ PB2 + ε ≤ PB3 +G3 ≤ 2−n +
r(r − 1)

2
2−n+1 ≈ negl.

Therefore,

PB ≤ 2−n +
r(r − 1)

2
2−n+1 + ε ≈ negl.

Hence, |G0 − P 2
A| = |P 1

A − P 2
A| is negligible. Thus, δ = |P 2

A −G1|+ negl.

The only difference between BC′k and B̃C
k
w is that the underlying functions Ẽ, t̃, and t̃′ of BC′k

are random oracles whereas those of B̃C
k
w are standard secure PRFs. Thus, by the definition of

PRF |P 2
A −G2| ≤ ε. Using the sampling arguments as previously, we define adversary A3 similar

to adversary A2 except that the underlying functions of BC′k are Ẽ2, t̃2, and t̃′2.

G4 := Pr
[
b′ = 1 : k

$←− {0, 1}n−1;w $←− {0, 1}3n;H
$←−
(
{0, 1}n → {0, 1}3n

)
; b′ ← AH3 (k,w)

]
.

G5 := Pr
[
bad event : k

$←− {0, 1}n−1;w $←− {0, 1}3n;H
$←−
(
{0, 1}n → {0, 1}3n

)
; b′ ← AH3 (k,w)

]
15

Using the fundamental theorem of game playing [3] we have that |G2 −G4| ≤ G5. Output
of A3 in G4 and G5 does not depends on k as the oracles Ẽ2, t̃2, and t̃′2 output random strings.
Hence, we can replace the input string k of A3 with a null string 0.

G4 = Pr
[
b′ = 1 : w

$←− {0, 1}3n; k
$←− {0, 1}n−1;H $←−

(
{0, 1}n → {0, 1}3n

)
; b′ ← AH3 (0, y)

]
,

G5 = Pr
[
bad event : w

$←− {0, 1}3n; k
$←− {0, 1}n−1;H $←−

(
{0, 1}n → {0, 1}3n

)
; b′ ← AH3 (0, y)

]
.

We have that G5 ≤ r(r−1)
2 2−n+1 which is negligible analogously to G3 ≤ r(r−1)

2 2−n+1. Hence,
|G2 −G4| ≈ negl.. Now we can see that adversary A3 in game G4 has completely random
function instead of BC′k as it uses random functions Ẽ2, t̃2, and t̃′2. Note that the function in
G4 gives different values upon queries with the same input while RF in G1 gives equal outputs
in that case. However, we assumed above that D never performs the same query twice. Hence,
G1 = G4. Therefore, using above results we have that:

δ = |G0 −G1| ≈ |P 2
A −G1| ≈ |G2 −G1| ≈ |G4 −G1| = negl.

Thus, we have proved that the given construction is pseudo-random and hence a standard
secure PRF.

3.3 Attack on CBC mode of operation

We choose a block cipher BC as in construction 1 in Section 3.1 for the construction of the
ΠCBC scheme (Definition 6). As proved, this block cipher is a standard secure PRF (i.e., if the
quantum adversary has only classical access to it).

Lemma 2. There exists a standard secure pseudo-random function such that ΠCBC is not IND-
qCPA secure. (In the quantum random oracle model)

Proof. Let the ΠCBC scheme use the block cipher BC, we use one block message to attack
the ΠCBC scheme. We know that the adversary has quantum access to the ΠCBC scheme,
hence a quantum adversary can query the superposition of all messages of size equal to the
block length of BC (i.e., n). The adversary prepares the quantum registers M and C to store
quantum messages and receive quantum cipher-texts respectively. The adversary then stores
the superposition of all one block messages in M (i.e.,

∑
m 2−n/2|m〉) and string |02n−1〉|+〉 in

C respectively, and makes an encryption query. The corresponding reply is then stored in the
quantum register C. The attack has been sketched in Figure 2.

After application of encryption algorithm Enc of ΠCBC the message and cipher-text registers
contain the following data (up to normalization):∣∣M,C

〉
=
∑
m

∣∣m〉 ∣∣c0〉 ∣∣droplastbit(BCk(m⊕ c0))〉∣∣+〉.8
The adversary now XORs c0 to the message register by using a CNOT gate. Hence, the quantum
bits of the system changes to∑

m

∣∣m⊕ c0〉 ∣∣c0〉 ∣∣droplastbit(BCk(m⊕ c0))〉∣∣+〉.
Using y = m⊕ c0 we have, ∑

m

∣∣y〉 ∣∣c0〉 ∣∣droplastbit(BCk(y))
〉∣∣+〉.

8 Here, k is the key for the block cipher BC.

16

|0n〉 H⊗n
m

ΠCBC

H⊗n

|0n〉
c0

•∣∣0n−1‖+
〉 c1

Fig. 2: Attack on 1 block CBC using Simon’s algorithm

Also by construction of BCk, this equals∑
y

∣∣y〉 ∣∣c0〉 ∣∣droplastbit(BCk(y ⊕ (k‖1)))
〉∣∣+〉

=
∑
y

|y ⊕ (k||1)〉|c0〉|droplastbit(BCk(y))〉|+〉.

Hence the adversary has the state (up to normalization),∑
y

(|y〉+ |y ⊕ (k‖1)〉)
∣∣c0〉 ∣∣droplastbit(BCk(y))

〉∣∣+〉.
We now apply n Hadamard gates (i.e.,H⊗n) giving us the following state (up to normalization):∑

y

∑
z

((−1)y�z + (−1)(y⊕(k‖1))�z)
∣∣z〉 ∣∣c0〉 ∣∣droplastbit(BCk(y))

〉∣∣+〉
This is equal to∑

y

∑
z

(−1)y�z(1 + (−1)z�(k‖1))
∣∣z〉 ∣∣c0〉 ∣∣droplastbit(BCk(y))

〉∣∣+〉.
Now if the n−bits of message register is measured one gets a vector z such that z�(k‖1) = 0

else the superposition collapses to 0. Hence, to retrieve k we can repeat the same attack again
and again until we get n independent vectors vi. Now using the Gaussian elimination one can
retrieve the n− 1 bits of k, thereby breaking the ΠCBC scheme.

3.4 Attack on CFB mode of operation

Here we provide an attack on the CFB mode of operation by using the similar attack as CBC
by the use of Simon’s algorithm.

Lemma 3. There exists a standard secure pseudo-random function such that ΠCFB is not IND-
qCPA secure. (In the quantum random oracle model.)

Proof. Similar to the construction of ΠCBC scheme we choose a PRF BC as in construction 1
in Section 3.1 for the construction of ΠCFB scheme. We know that this PRF is secure given the
quantum adversary has classical oracle access to it.

We show a key recovery attack on ΠCFB scheme by using encryption queries on messages
with two blocks and then apply Simon’s algorithm to retrieve the period a of the underlying
PRF BC. It is known that the adversary has quantum access to the ΠCBC scheme, therefore a
quantum adversary stores an equal superposition of messages and zero string of length equal to
the block length of BC (i.e., n) in m1 and m2 blocks of register M respectively. It then initializes
the quantum cipher-text register C with string

∣∣03n−1〉∣∣+〉 of length 3n. Adversary now makes
an encryption query to ΠCFB encryption function which replies with the corresponding cipher-
text in quantum register C. This attack has been sketched in the Figure 3

17

Hence, the registers now contain the following data (up to normalization)∣∣M,C
〉
=
∑
m1

∣∣m1

∥∥0n
〉 ∣∣c0〉 ∣∣BCk(c0)⊕m1

〉 ∣∣droplastbit(BCk(BCk(c0)⊕m1))
〉
|+〉,

where mi and ci denotes the i− th message and cipher-text blocks respectively. Also, we have
that∣∣M,C

〉
=
∑
m1

∣∣m1

∥∥0n
〉 ∣∣c0〉 ∣∣BCk(c0)⊕m1

〉 ∣∣droplastbit(BCk(BCk(c0)⊕m1 ⊕ (k‖1)))
〉
|+〉

=
∑
m1

∣∣m1

∥∥0n
〉 ∣∣c0〉 ∣∣BCk(c0)⊕m1 ⊕ (k‖1))

〉 ∣∣droplastbit(BCk(BCk(c0)⊕m1)
〉
|+〉

Let Υ = BCk(c0)⊕m1, then (up to normalization)∣∣M,C
〉
=
∑
m1

∣∣m1

∥∥0n
〉 ∣∣c0〉 (

∣∣Υ〉+∣∣Υ ⊕ (k‖1)〉)
∣∣droplastbit(BCk(Υ))

〉
|+〉

The adversary now applies n−Hadamard gates to the second block of ciphertext and gets
(up to normalization):∣∣M,C

〉
=
∑
m1

∑
z

((−1)Υ�z + (−1)(Υ⊕(k‖1))�z)
∣∣m1

∥∥0n
〉 ∣∣c0〉 ∣∣z〉 ∣∣droplastbit(BCk(y))

〉∣∣+〉
Now if we measure the second block of ciphertext register we get a vector z such that

z � (k‖1) = 0 else the superposition collapses to 0. Hence, to retrieve k we can repeat the
same attack again and again until we get n independent vectors zi’s. Now using the gaussian
elimination one can retrieve the n− 1 bits of k, thereby breaking the ΠCFB scheme.

|0n〉 H⊗
n

m1

ΠCFB

|0n〉
m2

|0n〉
c0

|0n〉
c1

H⊗
n

∣∣0n−1‖+
〉 c2

Fig. 3: Attack on 2 block CFB using Simon’s algorithm

3.5 Attack on XTS mode of Operation

Lemma 4. There exists a standard-secure pseudo-random function (in the random oracle model)
such that ΠXTS admits an attack of the following form: The adversary first performs a number
of superposition encryption queries. Then the adversary performs a superposition encryption
query where the first half of the plaintext is an adversary chosen superposition of messages, and
the second half is a bitstring m unknown to the adversary. Then the adversary can compute m.

Proof. Consider the XTS scheme using the block cipher BCk from construction 2. We first
show an attack on the XTS scheme to retrieve the key k1 as in Definition 10. It can be seen
from construction 2 that a message block is 2n-bits long. A quantum adversary prepares the
message register M with all 0 bits and cipher-text register C is set such that it has the state∣∣02n−2〉∣∣+ +

〉
in each block. Now the adversary applies n Hadamard gates (i.e., H⊗n) on first

18

half of every message block. 9 Hence the adversary possesses the i−th block of message such that
it contains a superposition of all n−bits strings in its first half and 0n string in its 2nd half (i.e.,∑

m1
i

2n/2
∣∣m1

i

∥∥0n
〉
). The adversary then queries on this message and receives the corresponding

cipher-text (up to normalization) such that∑
M

|M〉|C〉

where M = (m1
1

∥∥0n)(m1
2

∥∥0n) · · · (m1
p(t)

∥∥0n) and

C =
∣∣droplastbit2(BCk(m1

1⊕L1, L2)⊕L)
〉∣∣++

〉
· · ·
∣∣droplastbit2(BCk(m1

i ⊕ (αi−1L)1, (α
i−1L)2)⊕

αi−1L)
〉∣∣+ +

〉
· · · . As per the construction of BCk, the first half of input to PRFs E, t, and t′

is x̄ = (x⊕ (k‖1) · lastbit(x)) where x is the first half of input to BC. Hence, first 2n− 2 bits of
the output of BCk is periodic in the first input with period k‖1. We look at the i− th message
block and corresponding cipher-text. We have the following output on the i− th message block
(up to normalization)∣∣M,C

〉
:=
∑
m1

i

|m1
i

∥∥0n〉
∣∣droplastbit2(BCk(m1

i ⊕ (αi−1L)1, (α
i−1L)2)⊕ αi−1L)

〉∣∣+ +
〉
.

Hence we have (up to normalization),∣∣M,C
〉
=
∑
m1

i

(|m1
i

∥∥0n〉+|m1
i⊕(k‖1)

∥∥0n〉)
∣∣droplastbit2(BCk(m1

i⊕(αi−1L)1, (α
i−1L)2)⊕αi−1L)

〉∣∣++
〉

Now if we apply n Hadamard gates (H⊗n) on the first half of this i− th message block we
get the state (up to normalization):∑

mi

∑
y

(−1)m
1
i�y(1 + (−1(k‖1))�y))

∣∣y∥∥0n
〉

∣∣droplastbit2(BCk(m1
i ⊕ (αi−1L)1, (α

i−1L)2)⊕ αi−1L)
〉∣∣+ +

〉
=
∑
mi

∑
y:(k‖1)�y=0

(−1)m
1
i�y

∣∣y∥∥0n
〉︸ ︷︷ ︸

msg block

∣∣droplastbit2(BCk(m1
i ⊕ (αi−1L)1, (α

i−1L)2)⊕ αi−1L)
〉∣∣+ +

〉︸ ︷︷ ︸
ciphertext block

.

Therefore, it is easy to see that if one measures the first half of the i−th message block we get
a uniformly random vector y such that y � (k‖1) = 0. To retrieve k we need n− 1 independent
vectors yi’s such that yi � (k‖1) = 0 on which we can perform Gaussian elimination. These
vectors can be achieved by applying the same procedure on sufficiently many message blocks.

With this we have the first key of XTS. This is not yet sufficient to break XTS as we need to
retrieve L to be able to break the scheme. It is to be noted that every time a message is encrypted
a new L is randomly generated. Hence, we cannot use different ciphertexts to retrieve L, if we
are to use Simon’s algorithm. Therefore, we will use the same ciphertext for determining L, and
to contain the plaintext that we want to retrieve. For this we prepare the message register such
that the i − th message block will now have 0n string set in its first half and superposition of
all strings set in the second half (i.e., mi =

∑
m2

i
2n/2

∣∣0n∥∥m2
i

〉
). In addition to those blocks, the

message register contains a message |m∗〉 unknown to the adversary that he wants to decrypt.
Thus we have that the cipher-text received will be periodic in its second half rather than first
half as we did before. The received cipher-text up to normalization is∑

M

|M〉|C〉 ⊗ |m∗〉

9 Note that here every message block is 2n−bits long.

19

where M = (0n
∥∥m2

1)(0
n
∥∥m2

2) · · · (0n
∥∥m2

p(t)) and

C =
∣∣droplastbit2(BCk(L1,m

2
1⊕L2)⊕L)

〉∣∣++
〉
· · ·
∣∣droplastbit2(BCk((αi−1L)1,m

2
i ⊕ (αi−1L)2)⊕

αi−1L)
〉∣∣++

〉
· · · . We have the following output on the i−th message block (up to normalization)∑

m2
i

∣∣0n∥∥m2
i

〉 ∣∣droplastbit2(BCk((αi−1L)1,m
2
i ⊕ (αi−1L)2)⊕ αi−1L)

〉∣∣+ +
〉
.

We have that the output of block cipher BCk has period fk((α
i−1L)1) in its second half.

Hence this equals (up to normalization):∑
m2

i

(
|0n
∥∥m2

i 〉+ |0n
∥∥m2

i ⊕ fk((αi−1L)1)〉
) ∣∣droplastbit2(BCk((αi−1L)1,m

2
i⊕(αi−1L)2)⊕αi−1L)

〉∣∣++
〉

Hence, for an i− th block if we apply an n−bit Hadamard gate (H⊗n)on the second half of
i− th message block we have (up to normalization)∑

m2
i

∑
y

(−1)m
2
i�y(1 + (−1)fk((α

i−1L)1)�y)
∣∣0n∥∥y〉

∣∣droplastbit2((BCk((αi−1L)1,m
2
i ⊕ (αi−1L)2)⊕ αi−1L)

〉∣∣+ +
〉

=
∑
m2

i

∑
y:fk((αi−1L)1)�y=0

(−1)m
2
i�y

∣∣0n∥∥y〉︸ ︷︷ ︸
msg block

∣∣droplastbit2(BCk((αi−1L)1,m
2
i ⊕ (αi−1L)2)⊕ αi−1L)

〉∣∣+ +
〉︸ ︷︷ ︸

ciphertext block

Hence if we measure the second half of the message register we get a vector y such that
y� fk((αi−1L)1) = 0. By the definition of fk(x) = x⊕ (0n−1‖lastbit(x))⊕ (k‖1) in construction
2 of Section 3.1 we have,

yi �
(
(αi−1L)1 ⊕ (0n−1

∥∥lastbit((αi−1L)1))⊕ (k‖1)
)

= 0,

where yi is the vector y obtained for the i-th block.
Let En be a 2n × 2n matrix with 1 on the n-th diagonal element and 0 elsewhere. In the

matrix notation we have,

[
yi
∥∥0n

]
R

 αi−1

M

L

C

+

En

M

 αi−1

M

L

C

+

 k1
0n


C

 = 0,

where []C , []M , []R represents column matrix, square matrix, and row matrix respectively.
This is equivalent to

[
yi
∥∥0n

]
R

I − En

M

 αi−1

M

L

C

=
[
yi
∥∥0n

]
R

 k1
0n


C

,

and to [
droplastbit(yi)

∥∥0n+1
]
R

 αi−1

M

L

C

=
[
yi
∥∥0n

]
R

 k1
0n


C

.

Hence, we have a matrix equation such that if we know the 2n independent vectors droplastbit(yi)
we can retrieve L using Gaussian Elimination, thereby breaking the XTS scheme. These indepen-
dent vectors can be obtained by applying the above attack on sufficiently many message blocks
(within the same ciphertext). Using k1 and L, the adversary can then decrypt the ciphertext
blocks corresponding to |m∗〉 and thus get m∗.

20

4 IND-qCPA security of OFB and CTR modes of operation

In this section, we analyze the quantum security of OFB and CTR modes of operation. Our
motive is to prove the security of these schemes against the quantum adversary based on IND-
qCPA definition(Definition 2) in Section 2. These two modes of operation are similar in working
thence similar proofs.

We provide a generic proof for any cryptographic-system with encryption function which
XOR’s the message with a random pad based on the length of message and random key. This
proof shows that IND-qCPA security of the scheme reduces to the fact that it is IND-CPA
secure.

Lemma 5. Let Π = (Gen,Enc,Dec) be an encryption scheme with encryption algorithm as
Enck(M) = Gk(|M |; r) ⊕M , for randomness r, given message M and key k ← Gen. If Π is
IND-CPA secure then it is IND-qCPA secure.

Proof. Let Pr[PrivK qCPA
Aq ,Π

(t) = 1] = ε(t) + 1
2 , for a poly-time quantum adversary Aq. We con-

struct an efficient quantum adversary A such that Pr[PrivKCPA
A,Π (t) = 1] = ε(t) + 1

2 . Adversary

AEnck(1t) works as follows:
1. A prepares two quantum registers M and C being message and ciphertext registers respec-

tively.
2. runs Aq, whenever Aq queries encryption oracle on superposition of messages answer the

queries in the following way:
– the quantum message and

∣∣0|M |〉 are stored in M and C respectively,

– query s := Enck(0
|M |) = Gk(|M |; r), where r is the randomness.

– apply unitary operator Uto quantum register M and C where U
∣∣M,C

〉
:=
∣∣M,C⊕M⊕s

〉
.

– send the register
∣∣M,C

〉
to the adversary Aq.

3. when Aq asks the challenge query send it to the challenger and send received result back to
Aq.

4. continue to answer any encryption oracle query as in step 2.
5. Aq outputs the result b′, send b′ to the challenger.

It is clear that Pr[PrivKCPA
A,Π (t) = 1] = Pr[PrivK qCPA

Aq ,Π
(t) = 1] = 1

2 +ε(t) and A is poly-time.

Theorem 3. If E is a standard secure pseudo-random function then ΠOFB and ΠCTR schemes
are IND-qCPA secure.

Proof. ΠOFB andΠCTR schemes are IND-CPA secure when E is standard secure pseudo-random
function. Thus, result follows from Lemma 5.

5 IND-qCPA security of CBC and CFB mode of operation

IND-qCPA security of CBC and CFB modes of operation are conditional on the existence of
quantum secure primitives. We use the One-way to Hiding Lemma [15](Lemma 1) to prove the
bound for any quantum adversary that attacks the system.

We define Enci,HCBC (M) := c0c1 · · · cn, where cj
$←− {0, 1}t for j ≤ i and cj = H(mj ⊕ cj−1)

for i < j ≤ n. Similarly we define, Enci,HCFB (M) := c0c1 · · · cn, where cj
$←− {0, 1}t for j ≤ i and

cj = H(cj−1)⊕mj for i < j ≤ n.

In the next lemma we prove that probability of distinguishing the output of CBC Enci,HCBC

from Enci+1,H
CBC by a quantum adversary having access to oracle Enci,HCBC is negligible in t, where

t is the security parameter. As the proof for Enci,HCBC and Enci+1,H
CFB is similar we provide the

instances for Enci,HCFB in parentheses JK wherever there is a difference. Also, we use Enci,H to

represent the encryption functions of Enci,HCBC and Enci,HCFB to generalize the proof.

21

Lemma 6. For any i with i : 0 ≤ i ≤ p(t)− 1, and every quantum adversary A that makes at
most qA queries,

∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))]− Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣∣∣≤ O(p(t)2qA2

2
t
2

)
,

where p(t) is the maximum number of blocks in the message M and t is the length of each
message block.

Proof.

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))]− Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣∣∣

For a given message M = m0m1 · · ·mn let Ẽnc
i

H(M, c0, · · · , ci) := ĉ1ĉ2 · · · ĉn where

ĉj =

{
cj 0 ≤ j ≤ i
H(ĉj−1 ⊕mj) J= H(ĉj−1)⊕mjK i < j ≤ n

Then we have,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i

H(Mb, c0, . . . , ci))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci+1
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣ (1)

We put ci := x ⊕ mi+1
b J= xK where mi+1

b is the (i + 1)th block of the message Mb and

x
$←− {0, 1}t. This means that ci is uniformly random as x is randomly chosen. Therefore,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc

i,H
;

c0, . . . , ci−1
$←− {0, 1}t, x $←− {0, 1}t, ci := x⊕mi+1

b J:= xK;

b′ ← AEnci,H (Ẽnc
i

H(Mb, c0, . . . , ci))]− Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; c0, . . . , ci−1
$←− {0, 1}t, x $←− {0, 1}t, ci := x⊕mi+1

b Jci := xK,

y
$←− {0, 1}t, ci+1 := yJ:= y ⊕mi+1

b K; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣ (2)

22

By definition of Ẽnc
i

H , we have Ẽnc
i

H(Mb, c0, · · · , ci) = Ẽnc
i+1

H (Mb, c0, · · · , ci+1) with ci+1 :=
H(x) J:= H(x)⊕mi+1

b K. Hence,

ε(t) =
∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci−1
$←− {0, 1}t, x $←− {0, 1}t, ci := x⊕mi

bJ:= xK, ci+1 := H(x)J:= H(x)⊕mi+1
b K;

b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]− Pr[b = b′ : H ← ({0, 1}t → {0, 1}t),

b
$←− {0, 1};M0,M1 ← AEnci,H ; c0, . . . , ci−1

$←− {0, 1}t, x $←− {0, 1}t, y $←− {0, 1}t,

ci := x⊕mi
bJ:= xK, ci+1 := yJ:= y ⊕mi+1

b K; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

We define an adversary AO2H that makes oracle queries to random function H
$←− ({0, 1}t →

{0, 1}t). AO2H with given inputs x and y does the following:

Adversary AHO2H(x, y):

M0,M1 ← AEnci,H

b
$←− {0, 1}

c0, . . . , ci−1
$←− {0, 1}t; ci = x⊕mi+1

b J= xK; ci+1 = yJ= y ⊕mi+1
b K;

compute C := Ẽnc
i

H(Mb, c0, c1, . . . , ci+1)

b′ ← AEnci,H (C)

return b′ = b

We note here that adversary AO2H can answer the adversary A’s query as it has oracle
access to H. Let qo2h be the number of H-queries made by AO2H , it is clear that qo2h ≤ 3p(t)qA.
Let q1, q2 and q3 denote the number of queries that AO2H makes to H before the challenge
query, during challenge query and after challenge query respectively. 10

It is clear that:

ε(t) =
∣∣∣Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t, b̃← AHO2H(x,H(x))]

− Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y $←− {0, 1}t, b̃← AHO2H(x, y)]
∣∣∣ (3)

Let B be an oracle algorithm described in the O2H lemma(Lemma 1). Therefore, we have
that ε(t) ≤ 2qo2h

√
PB, where we have the probability PB as

PB = Pr[x = x′ : j
$←− {1, . . . , qo2h}, x

$←− {0, 1}t, H $←− ({0, 1}t → {0, 1}t),
x′ ← BH(x, j)]

=
1

qo2h
· Pr[x = x′ : x

$←− {0, 1}t, H $←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]︸ ︷︷ ︸
:=P j

B

To evaluate P jB we consider three cases depending whether the j-th H-query is before,
during, or after the challenge query.

10 We can assume without loss of generality that AO2H performs exactly q1, q2, q3 queries respectively. If it
performs less, we simply add dummy queries.

23

∣∣m1
b

〉
UIV

UH

UIV

Measure

∣∣0t
〉

UH

∣∣m2
b

〉
• •∣∣0t

〉
...∣∣0t

〉
UH

∣∣∣mi′
b

〉
• •∣∣0t

〉
...∣∣0t

〉
UH

∣∣ml
b

〉
• •∣∣0t

〉
Fig. 4: Composition of Encryption Oracle using H oracle .

Case I (j ≤ q1):
In this case, the j-th iteration query to the oracle H is computed before the challenge query

is done. So adversary A does not get access to x while queries are done. Therefore, adversary A’s
queries are independent of x, as it never executes challenge query and beyond. As the adversary
A never used the x for any query we can therefore say that fixing x to be any string should not
affect argument of the query. Therefore, we fix input x as the null string 0n.

P jB = Pr[x = x′ : x
$←− {0, 1}t, H $←− ({0, 1}t → {0, 1}t), x′ ← BH(0, j)] ≤ 2−t.

Case II (q1 ≤ j ≤ q1 + q2):
In this case the j-th iteration query to the oracle H is made during the challenge query (i.e,

q1 < j ≤ q1 + q2). Therefore, oracle algorithm B can stop adversary A at any of the following
queries:

H(mi+2
b ⊕ y), H(mi+3

b ⊕H(mi+2
b ⊕ y)), · · · , H(m

p(t)
b ⊕H(m

p(t)−1
b ⊕ · · ·H(mi+2

b ⊕ y) · · ·))
r
H(y)⊕mi+2

b , H(H(y)⊕mi+2
b)⊕mi+3

b , · · · , H(H(H(· · ·H(y)⊕mi+2
b) · · ·))⊕mp(t)

b

z

By using result from Zhandry [19] on distinguishing a random function from a random permu-
tation we have,

P jB ≤ Pr[x = x′ : H
$←− Perm(), x

$←− {0, 1}t, x′ ← BH(x, j)] +O

(
j3

2t

)
Note that the argument of the j-th query is s := mi+j−q1+1

b ⊕H(mi+j−q1
b ⊕· · ·⊕H(mi+2

b ⊕y) · · ·)
Js := H(· · ·H(H(y) ⊕mi+2

b) · · · ⊕mi+j−q1
b) ⊕mi+j−q1+1

b K. From the definition of O2H lemma
we know that y is chosen independently at random from x and H. It is easy to see that for a
fixed message Mb s would be assigned an output by a permutation that is independent of x but
dependent on y since the input to first call to H is mi+2

b ⊕ y JyK. Therefore,

P jB ≤ Pr[x = x′ : H
$←− Perm(), x

$←− {0, 1}t, x′ = s] +O(
j3

2t
) ≤ 1

2t
+O

(
j3

2t

)
≈ O

(
j3

2t

)
Case III (j ≥ q1 + q2):

In this case, the j-th iteration query to the oracle H is computed after the challenge query is
done. We have j > q1 + q2. Adversary A makes many encryption oracle queries and eventually
measures the argument of one of the H oracle query and stops. Say it measures in the kth H
oracle query of j-th encryption query.

P jB := Pr[x = x′ : x
$←− {0, 1}t, H $←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

The circuit diagram in Figure 4 represents the working of adversary AO2H . AO2H answers
encryption queries using oracle access to H. Let the quantum message (possibly entangled) to be

24

stored in the quantum register M and the corresponding ciphertext in the quantum register C.
The encryption circuit is composed of the quantum gates UIV , UH , CNOT and measurements.
Where UIV |M〉 = |M⊕IV 〉, UH |M,C〉 = |M,C⊕H(M)〉, CNOT |M,C〉 = |M,C⊕M〉, and the
measurements are in the computational basis of the message space. Thus, in each case I,II,III

we have P jB ∈ O
(
q3o2h
2−t

)
. 11

The unitary gates used to compose the circuits are diagonal in the computational basis
and hence commute with the measurements. Therefore, moving the measurements prior to
the unitary operations do not affect the probability distribution of the output. Hence, we can
measure the message register M before performing the unitary operations. Thus, it is similar
to the Case II where we have a query on a classical message.

Therefore, we have P jB = O(j
3

2t).

Hence by the definition of PB we have, PB ≤ O(
q3o2h
2t). Therefore, we have that ε(t) ≤

qo2h
√
PB ≤ qo2h

√
O(qo2h

3

2t) = O(qo2h
3

2t)

Theorem 4. If the function E is a quantum secure PRF then ΠCBC and ΠCFB is IND-qCPA
secure.

Proof. For any efficient adversary A making qA encryption queries using Lemma 6 and triangle
inequality we have,

∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← sAEnc0,H ; b′ ← AEnc0,H (Enc0,H(Mb))]

−Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc0,H ; b′ ← AEnc0,H (Encp(t),H(Mb))]
∣∣

≤ nO

(
p(t)3qA

3

2t

)
,

One can see that Encp(t),H(Mb) outputs ciphertext as a completely random string. Hence,
the output b

′
by adversary is independent of b. Therefore,

∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnc0,H ; b′ ← AEnc0,H (Enc0,H(Mb))]−
1

2

∣∣
≤ p(t) ·O

(
p(t)3qA

3

2t

)
.

Note that Enc0,H is indistinguishable from Enc function of Π by definition of qPRF. As the
proof steps for CBC and CFB are same in Lemma 6 one could replace Enc0H by Enc function of
scheme ΠX where X = {CBC,CFB}. Therefore,

∣∣Pr[PrivK qCPA
A,ΠX

(t) = 1]− 1

2

∣∣≤ O(p(t)3qA3

2t

)
+ negl(t).

as qA is polynomial in t we deduce that,

∣∣Pr[PrivK qCPA
A,ΠX

(t) = 1]− 1

2

∣∣≤ negl(t).
11 Note that in Figure 4 we measure all registers, not only the query register. This does not change P j

B since the
additional measurements are performed on registers that are not used further.

25

References

1. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof systems (the
hardness of quantum rewinding). In FOCS 2014, pages 474–483. IEEE, October 2014. Preprint on IACR
ePrint 2014/296.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS
’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia,
USA, November 3-5, 1993., pages 62–73. ACM, 1993.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Proceedings of the 24th Annual International Conference on The Theory and Applications
of Cryptographic Techniques, EUROCRYPT’06, pages 409–426, Berlin, Heidelberg, 2006. Springer-Verlag.

4. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Ran-
dom oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and In-
formation Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in
Computer Science, pages 41–69. Springer, 2011.

5. Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 592–608. Springer, 2013.

6. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum computing
world. https://eprint.iacr.org/2013/088, 2013. The definition of IND-qCPA only appear in this eprint,
not in the conference version.

7. Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition attacks on cryptographic
protocols. In ICITS 2013, volume 8317 of LNCS, pages 142–161. Springer, 2014. Online version IACR ePrint
2011/421.

8. Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition attacks on cryptographic
protocols. In Carles Padró, editor, Information Theoretic Security - 7th International Conference, ICITS
2013, Singapore, November 28-30, 2013, Proceedings, volume 8317 of Lecture Notes in Computer Science,
pages 142–161. Springer, 2013.

9. Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum security of the fujisaki-okamoto transform. Tech-
nical report, Institute of Computer Science, University of Tartu, 2015. Available at http://www.cs.ut.ee/ un-
ruh/qro.pdf.

10. European Union Agency for Network and Information Security (ENISA). Algorithms, key sizes and param-
eters report - 2013 recommendations. https://www.enisa.europa.eu/activities/identity-and-trust/

library/deliverables/algorithms-key-sizes-and-parameters-report, October 2013.
11. Phillip Rogaway. Evaluation of some blockcipher modes of operation. Evaluation carried out for the Cryp-

tography Research and Evaluation Committees (CRYPTREC) for the Government of Japan, 2011.
12. Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483, 1997.
13. Dominique Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume 7237 of LNCS, pages 135–152.

Springer, April 2012.
14. Dominique Unruh. Everlasting multi-party computation. In Crypto 2013, volume 8043 of LNCS, pages

380–397. Springer, 2013. Preprint on IACR ePrint 2012/177.
15. Dominique Unruh. Revocable quantum timed-release encryption. IACR Cryptology ePrint Archive, 2013:606,

2013.
16. John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–58, 2009.
17. Mark Wooding. New proofs for old modes. IACR Cryptology ePrint Archive, 2008:121, 2008.
18. Mark Zhandry. How to construct quantum random functions. In 53rd Annual IEEE Symposium on Foun-

dations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 679–687.
IEEE Computer Society, 2012.

19. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Information &
Computation, 15(7&8):557–567, 2015.

26

https://eprint.iacr.org/2013/088
http://eprint.iacr.org/2011/421
http://eprint.iacr.org/2011/421
https://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report
https://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report

	Post-quantum Security of theCBC, CFB, OFB, CTR, and XTS Modes of Operation
	Introduction
	Our techniques
	Related work
	Organisation

	Notation and tools
	Modes of operation

	Quantum attacks on CBC, CFB, and XTS based on standard secure PRF
	Construction of the block cipher for CBC
	Construction of block cipher for XTS
	Attack on CBC mode of operation
	Attack on CFB mode of operation
	Attack on XTS mode of Operation

	IND-qCPA security of OFB and CTR modes of operation
	IND-qCPA security of CBC and CFB mode of operation

