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Abstract

In this work we study communication with a party whose secrets have already been compromised. At first sight,
it may seem impossible to provide any type of security in this scenario. However, under some conditions, practically
relevant guarantees can still be achieved. We call such guarantees ‘“post-compromise security”.

We provide the first informal and formal definitions for post-compromise security, and show that it can be achieved
in several scenarios. At a technical level, we instantiate our informal definitions in the setting of authenticated key
exchange (AKE) protocols, and develop two new strong security models for two different threat models. We show
that both of these security models can be satisfied, by proposing two concrete protocol constructions and proving they
are secure in the models. Our work leads to crucial insights on how post-compromise security can (and cannot) be
achieved, paving the way for applications in other domains.
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1. Introduction

If all of a party’s secrets are compromised by an adversary, is there any hope of securely communicating with them in
the future? The folklore answer is “no”: a party’s long-term secret key defines their identity, and anyone knowing an identity
key can impersonate its owner. This applies broadly to protocols with different security models, including authenticated
key exchange and messaging. In all cases, traditional definitions of protocol security rule out compromise-and-impersonate
attacks as indefensible.

These scenarios are a pressing practical concern; modern secure systems are designed assuming that some compromise
might eventually occur, and aim instead to limit its scope. For example, devices frequently fall temporarily under adversarial
control: later-removed malware, short-term physical access, and confiscation at a border crossing all describe scenarios where
a potential adversary has access to a device which is then returned to the original owner. In the traditional paradigm, we
cannot make security guarantees about these post-compromise cases.

Definition 1 (informal). A protocol between Alice and Bob provides Post-Compromise Security (PCS) if Alice has a security
guarantee about communication with Bob, even if Bob’s secrets have already been compromised.

Our central thesis is that PCS is not just theoretically possible, but in fact practically implementable and already influencing
the design of state-of-the-art protocols. We will describe PCS precisely, explain the limits of what can be achieved, and give
formal security models that capture it. In practice, various cryptographic schemes aim to provide an informal version of
such guarantees. However, without a formal analysis there are many unanswered questions: To what extent can we allow
compromise? What must schemes do to achieve PCS? In what sense are some schemes fundamentally limited in their ability
to achieve PCS? How does PCS apply to real-world protocols used today?

Weak and Total Compromise. We distinguish between two forms of long-term key compromise: weak and total.

Weak compromise corresponds to temporary adversarial control of long-term key operations, without actual theft of the
long-term key. Such a situation can occur when an adversary has temporary access to a party’s hardware security module
(HSM). A HSM is a physical computing device that safeguards long-term keys, providing cryptographic operations such as
signing without allowing direct access to the key. It is commonly believed that if an adversary has only temporary access
to a HSM but does not learn the long-term key itself, then once this access is revoked security can still be achieved. We
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concretely define this notion and show that such guarantees can indeed be proven formally. However, the application of a
HSM to achieve PCS is non-trivial; we comment in particular that a recent TLS 1.3 proposal [25] does not have weak PCS.

Total compromise is more severe, and corresponds to an adversary who learns the long-term keys themselves. The
folklore that PCS is unachievable in this case is backed up by an informal argument, proceeding roughly as follows. An
adversary learning the long-term key of some party (“Bob”) can run the same computation that Bob would perform, using
the compromised key and generating new random numbers if needed. Since this is exactly what Bob would do, nobody can
distinguish between the true key owner and the adversary’s impersonation of them.

This informal proof of impossibility does not consider the case where the previously compromised agent later completes
a subsequent session. Indeed, such a session might generate a new and uncompromised secret. If this secret is then used for
authentication, the original compromise may not be sufficient to mount the impersonation attack.

Some protocols already maintain “key continuity” in this fashion. Examples include the telephony protocol ZRTP [10]
and the instant messaging protocols OTR [6] and its asynchronous successor Axolotl [28]]; the latter has been implemented
in Signal, WhatsAppl'| and Langley’s Pond [27]. These protocols all implement a key rotation scheme, whereby each
communication key is used to generate a successor and then deleted.

For this case, we formally define a mechanism to synchronise and rotate keys between communicating parties, and show
that it achieves PCS even after a full compromise of the long-term key. However, as we will show, there are subtleties
involved where this can go wrong.

Practical Implications. The secrecy guarantees offered by PCS after a total compromise are mostly with respect to a
network-based attacker who lacks the capability or incentive to individually attack all of its targets’ devices, but who might
be able to obtain their long-term keys. Concrete examples of such an attacker are a nation-state aiming to perform large
scale surveillance across a wide range of platforms, or a network administrator of a company whose employees communicate
amongst themselves using various platforms and operating systems.

For such an attacker, older protocols that do not even offer (weak perfect) forward secrecy are an easy target if long-term
keys can be compromised at some point in the future. The attacker can simply log all transmissions, and later use any
long-term keys that she obtains to reveal the plain texts. Such attacks are believed to be common on the modern Internet.

Protocols that offer (weak perfect) forward secrecy improve the situation, as they additionally ensure that the attacker
cannot just log all transmissions and decrypt them later using long-term keys. Instead, she must actively interfere with any
communications which she may want to decrypt later, significantly increasing her required per-target resources. However,
after obtaining a user’s long-term keys, she can still decide to target any of their subsequent communications, acting as an
undetectable Man-in-the-Middle (MitM).

Protocols with PCS after a total compromise, such as those we will define later, require the attacker to know fwo pieces
of information in order to attack a particular session: the long-term key and the agent’s current memory contents. Thus, such
protocols raise the bar even higher with two main new guarantees. First, even if she holds the long-term keys, the attacker
can no longer decide to perform an active MitM at an arbitrary time, but only immediately following a state compromise.
Even if she attacks a user and learns all of their secrets, as soon as the user completes an honest communication exchange
with some peer, the attacker is locked out from that pair.

Second, if the attacker does target a session immediately after a state compromise, she effectively has to commit to
playing the role of active MitM between those two parties indefinitely. (The reason is that her attack will cause the parties’
local states to diverge, thus preventing them from communicating directly.) This effectively makes a periodic attack impossible
for adversaries who wish to remain undetected: the only way to use the long-term keys for interception is to commit to the
role of permanent active MitM. If we additionally consider that the protocols might be used over different networks over
time, such attacks could be rendered effectively impossible.

Contributions. We make the following contributions.

1) We introduce the high-level notion of post-compromise security. This notion has wide applicability, and we use it to
unify the potential security guarantees offered by HSMs and by regular key rotation.

2) We instantiate post-compromise security in the context of authenticated key exchange (AKE), advancing the state of the
art in AKE security models. Our models formally incorporate PCS, and are strictly stronger than (i.e., imply) the best
known game-based definitions.

3) We give two specific approaches to achieve PCS. The first allows certain computations with the long-term key but does
not reveal it fully. We prove that PCS can be achieved in this case by relatively standard protocols.

4) The second approach permits the adversary to learn the long-term key of an agent before attempting an impersonation
attack. We show that no stateless protocol can achieve this type of security, but by providing a generic protocol

1. Open Whisper Systems originally designed TextSecure, a secure messaging system consisting of a custom key exchange (TripleDH) composed with a
ratcheting scheme (Axolotl). The name refers both to the protocol and to the mobile app implementing it. TextSecure-the-app has since been replaced
by “Signal”, TextSecure-the-protocol renamed to the “Signal Protocol”, and Axolotl renamed to the “Double Ratchet”. WhatsApp implements the Signal
Protocol, and the Signal Protocol uses the Double Ratchet. We discuss this ecosystem further in Section @
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Figure 1: Attack scenarios considered by forward and post-compromise secrecy; “test” refers to the session under attack. Forward secrecy
protects sessions against later compromise; Post-compromise secrecy protects sessions against earlier compromise.

transformation show that stateful protocols can achieve it. Our transformation produces protocols that are robust to an
unreliable network, which turns out to be non-trivial.

5) We supplement our work with case studies showing the practical applicability of post-compromise security. We show
with examples of OPTLS and TextSecure/Axolotl that practical protocols can fail to achieve PCS.

Overview. We revisit related concepts in Section [2] In Section |3| we discuss the high-level design of security models and how
to incorporate PCS. In Section ] we recall concrete game-based AKE models, and in Section [5] we extend them formally.
We discuss related work in Section [6] and conclude in Section [7} We provide proofs for all our formal statements.

2. Related Concepts

There are many techniques for maintaining security in the face of compromise. We take this opportunity to clarify some
of the different terminology that has been used.

Ratcheting. The term “ratcheting” has been used previously in the community, but has recently been popularised by Axolotl.
It generally describes systems which iteratively apply a one-way function, but within that class often takes different meanings.

The simplest ratcheting design generates a chain x — H(x) — H(H(x)) > ..., deleting old entries at each stage. This
is the approach used by [20] and in the original SCIMP [29]; roughly speaking, it provides forward secrecy in the sense that
past values cannot be computed from present ones, as in the first row of Figure [T}

Such designs do not provide security as per the second row of Figure |1} since from x all future values of H"(x) are
easily computable. Thus, Axolotl and the protocols of Section [5.2] additionally mix in in ephemeral values at each stage, so
that each update requires knowledge of fresh information. Such systems can also be called “ratchets.”

Finally, there are systems which mix in old values but do not ratchet; for example, the construction of [14] to resist
compromised RNGs. The guarantees provided by such systems can be incomparable to those above.

Future secrecy. To the best of our knowledge this term is not well-defined; we believe that it is often intuitively used for
what we call post-compromise security, but that the details are both crucial and subtle. There is no obviously-canonical way
to dualise the definition of forward secrecy at a formal level, though intuitively it means a property as in Figure [T}

Perrin [30] defines “future secrecy” to mean that “a leak of keys to a passive eavesdropper will be healed”—in other
words, that an adversary who learns keys but does not interfere with network traffic only learns secret data for a bounded
time period. This makes sense intuitively, but a closer look reveals that it is in fact a form of forward secrecy. The key insight
is that a passive adversary can perform their computations at any point, and so no extra advantage is gained by learning
long-term keys before the initial messages. Indeed, such security can be achieved by a basic, unsigned Diffie-Hellman key
exchange, meaning that it is more relevant in the context of lightweight or otherwise restricted classes of protocols.

In more detail, suppose some protocol 7 has (weak) forward secrecy: no attacker can learn long-term keys and retroactively
discover past session keys. Then 7 already satisfies the above form of future secrecy. Indeed, suppose for contradiction that
some passive attacker A violates the future secrecy of 7: it learns the long-term keys, eavesdrops on a particular session s,
and subsequently can distinguish the session key of s from random. Since the eavesdropping does not depend on knowing the
long-term keys, it is possible to exchange the order of these two operations, defining an attacker A’ which first eavesdrops
and then reveals long-term keys. But A’ is then an attacker against forward secrecy, contradicting our assumption.

Healing. ZRTP [10] uses the term “self-healing”. Again, we believe that this intuitive notion is challenging to capture
formally, and that it is a form of post-compromise security. The difficulty arises when describing what is implied when a
protocol is “healed”: clearly it is meant that the protocol is secure against certain classes of adversaries, but the precise
definition of which attacks fall into the class is not clear.



Actor Secure

Peers session
Time

(a) Classical adversary model. Abstract representation of the adversary’s capabilities during an attack. If Alice is communicating with Bob, classical
models allow the adversary to compromise the long-term keys of everyone except Alice and Bob. This ability to compromise the long-term key of
non-participants (“others”) is depicted in red (dark).
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(b) Adversary model with PFS. This figure depicts the capabilities of an adversary that can also compromise all long-term private keys after the end of
the attacked session. Protocols secure under such a threat model are said to also offer perfect forward secrecy (PFES).
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(c) Adversary model with KCI/AKC. Later works also consider adversaries that can compromise the actor’s long-term private key at any time, and

showed that a secure session can still be achieved. In AKE literature, such protocols are said to offer resilience against Key Compromise Impersonation
(KCI).

Figure 2: Existing adversary models for security protocols. Figure represents a relatively weak model, and Figures and
extend it with PFS and AKC.
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(a) Adversary model with PCS through limited compromise We denote with the orange box (the left side of the “peers” row) a limited form of
compromise, which allows the adversary some extra power without revealing the long-term key.
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(b) Adversary model with PCS through state Another form of PCS can be achieved if the long-term key is compromised but there is at least one
uncompromised session afterwards.

Figure 3: Our stronger adversary models for security protocols, capturing the notion of post-compromise security.

Bootstrapping. One can view our stronger form of PCS as a form of “bootstrapping”, whereby secrecy of one session key
K is used to ensure secrecy of its successors. This is a valid intuition; however, it is important to note that it is not sufficient
simply to run a secure key exchange protocol which depends on K. The reason is that this protocol must remain secure
when composed with the adversary’s earlier actions, which does not hold in general. (We show in Section [5.1] that OPTLS is
a counterexample.)



3. Modelling PCS

We now turn to the question of constructing a formal model for post-compromise security. In this section we discuss the
design choices at a high level, applicable to multiple paradigms within protocol design.

In §4] we instantiate our models concretely in the context of two-party AKE protocols.

The execution of a protocol can be abstractly depicted as in Figure [2] Each agent (a row in the tables) performs actions
over time that may lead to the creation of multiple concurrent sessions. To violate the security guarantee, the adversary must
choose a particular agent and session to attack; we call the target agent the ‘actor’ and the particular session the ‘secure’ or
‘test’ session. The secure session communicates with other agents (its peers) while other unrelated actors may also send and
receive messages.

These diagrams are an abstract representation of the model defined formally in Section [5.2} and necessarily do not depict
all of its technical details. In particular, we have not shown (i) adversary actions during the secure session, though they are
permitted to a limited extent, or (ii) the effects of concurrency, which mean that sessions can cross the vertical lines.We also
do not distinguish in the figures between long-term and ephemeral corruption.

Our high-level goal is to design protocols that achieve security even against a powerful adversary. We always assume
that the network is fully untrusted, and that messages may be modified, dropped or inserted in transit. In addition, we can
give the adversary access to actors’ secret keys or random number generators. The more powers we grant to the adversary,
the ‘stronger’ the security model and the more attacks the protocol can resist.

A classical adversary model, depicted in Figure is to grant the adversary access to the long-term keys of any party
not involved in the secure session. Security in such a model requires the protocol to limit the scope of compromise: if
Charlie’s key is revealed, Alice should still be able to communicate securely with Bob.

We can strengthen it by allowing the adversary to compromise all long-term private keys after the end of the attacked
session [12], as depicted in Figure This corresponds to (perfect) forward secrecy, whereby once a session is completed
even the long-term keys of all participants do not suffice to recover the session key.

We can also consider an adversary who compromises Alice’s private key, as depicted in Figure (Recall that we
have fixed “Alice” as the actor of the secure session.) This corresponds to the notion of actor key compromise (AKC) [2],
and was first proposed in the AKE context as key compromise impersonation (KCI) [22]], in which an adversary uses Alice’s
private key to impersonate as others to Alice.

Figure depicts a modern, strong adversary model. It is clear that there is one more step we could take to further
strengthen the model: to allow compromise in the final region. This corresponds to our concept of post-compromise security,
and in this work we will show that it is possible to satisfy security against adversaries which have some powers even in that
region.

We have already seen the following assertion.

Claim (informal). Post-compromise security is not achievable after unrestricted compromise of the intended peer.

The standard overapproximation is to rule out any compromise at all, as per Figure To continue the colour analogy,
however, Figures [3(a)| and show two ways in which a form of compromise can still be permitted: we can either colour
nearly all of the post-compromise box red (dark), or we can colour all of it nearly red. We develop both of these ideas, and
show that they naturally correspond to different approaches for achieving PCS.

As a concrete running example, suppose Alice and Bob regularly authenticate each other by means of a simple signed
DH protocol: Alice generates a random x and sends {¢” }sx,; Bob responds symmetrically. Alice’s authentication in this
protocol relies on sk not being compromised: if it is ever leaked, or used to sign a malicious value, then no authentication
guarantees can be made. Indeed, the adversary need only obtain a signature on g for some z which she knows, and she can
then impersonate Alice to Bob. Post-compromise security is a statement about the impossibility of such attacks.

PCS via weak compromise. Figure describes a limited form of compromise permissible against the peers of the secure
session. The impersonation attack requires the adversary to use the long-term key value during the secure session. If the
model allows some access to the key without revealing it to the adversary, and then revokes this access during the secure
session, a PCS guarantee may still be achievable.

Claim (informal). If the adversary is not granted the key itself, but instead limited access to it that is revoked during the
secure session, then PCS can still be achieved.

One interpretation of this limitation is the assumption of a form of trusted key storage, for instance in a hardware security
module (HSM). The adversary may have temporary access to the HSM at any point, but without the ability to extract the
key. If this access is then revoked, a well-designed protocol may regain its security guarantees.

Another interpretation of the hsm query is as a Bleichenbacher oracle—indeed, Bleichenbacher’s original attack precisely
allows the attacker to sign (i.e., decrypt) arbitrary data with the server private key, without revealing the key. PCS in this
scenario corresponds to preventing precomputation, requiring instead that use of the long-term key depends on data from the



secure session. [21]] remark that their attacks are more severe when deployed against QUIC precisely because it permits such
precomputation.

To continue our signed-DH example, suppose an adversary temporarily gains the ability to generate signatures with sk 4
on arbitrary data. She can choose a random number z, compute a signature {g*}sx,, and store it for later use. At any point
in the future, she can use that signature to impersonate Alice—even without the ability to generate new signatures. Thus,
our simple signed-DH protocol does not admit this form of PCS. We shall see later (Figure 4] and theorem that adding
an appropriate nonce challenge-response can prevent this attack.

PCS via state. A more subtle option, as per Figure is to colour only some of the box; that is, to allow the long-term
key to be revealed before the secure session as long as some uncompromised session has taken place.

The intuition is as follows. Suppose the secure session is between Alice and Bob, and the adversary already knows
Alice’s long-term key. Suppose further that Alice and Bob have already completed a previous session, deriving some secret
value v. If Alice’s actions in the secure session depend on v—a value from a previous session—then the adversary cannot
necessarily impersonate her. Thus, one session can be used to augment the security of another.

Claim (informal). If the adversary can compromise all but one exchange of messages before the secure session, then PCS
can still be achieved.

This approach is stateful: data from one session must be available to another. (Otherwise, even though Alice and Bob might
establish a secret value unknown to the adversary, they could not use that value later for authentication purposes.)

To continue our running example, we now have a scenario where the adversary knows sk4 and yet should still be
prevented from impersonating Alice to Bob. To do so, we will modify the protocol to use two secrets to derive session keys:
not just the long-term key sk 4, but also a secret value derived from the previous sessions. If, after a compromise, Alice
and Bob manage to perform a single honest (non-compromised) session, the adversary will not have enough information
to compute the subsequent secret values, and therefore cannot compute later session keys. We will cover the details in
Section 5.2

4. Background on AKE Security Models

To concretely instantiate our analysis of PCS in the domain of AKE protocols, we revisit existing AKE analyses. We
refer the reader to e.g. [8l |14} [26] for complete definitions.

The majority of security models for authenticated key exchange derive from [4]]. Recent notable models are the CK
model [[12] and the eCK model [26], which introduce ephemeral key reveals under various names and can be extended [|15]]
to cover other properties such as perfect forward secrecy. A related model was used for the proof of HMQV [13]]. These
models have consistently been applied to stateless protocols.

State Reveals. The traditional way to model compromise of ephemeral keys (e.g. = in a Diffie-Hellman key exchange which
sends ¢g*) is to give the adversary a specific power to reveal them. This is natural, but requires designers explicitly to specify
which values are considered compromisable. Moreover, the definition of security depends critically on this choice. For
example, is = or H (sk, z) the “ephemeral key” of a NAXOS-style AKE protocol sending g*(*k#)? To avoid this specification
problem more recent models instead reveal the outputs of the random number generator, with which any intermediate value
can be computed. We follow this trend, and use a randomness query instead of a specific ephemeral key reveal.

Long- and short-term secrets. Security models generally distinguish between long-term secrets (e.g. asymmetric keys used
to identify agents) and short-term secrets (e.g. ephemeral keys which are used and subsequently erased). The justification is
that practical scenarios exist in which one, but not the other, might be compromised. (Further discussion can be found in [1]].)

There is an ongoing debate about the practicality of this distinction, and in particular whether there are realistic scenarios
in which an adversary might compromise an ephemeral key but not its owner’s long-term key. We view this debate as
interesting but out of scope for the current paper, and follow academic tradition in distinguishing between randomness and
corrupt queries.

4.1. Notation and Assumptions

We write v <— x to denote the assignment of x to the variable v, and = <—s X to denote that the variable x is assigned a
value randomly chosen according to the distribution X. If S is a finite set, we write  <—s .S to mean that x is assigned
a value chosen uniformly at random from S. We say that an algorithm is efficient if its running time is polynomial in
the length of its input, and that a function f(k) is negligible if for all ¢ > 0 there exists a ko such that for all k > ko,
|f(k)| < k~¢. In the context of security protocols, we think of functions and bounds as being negligible in the security
parameter(s) of a protocol.



Consider a (multiplicative) cyclic group G of order ¢ with generator g. We make use of the decisional Diffie-Hellman
(DDH) hardness assumption, which says that it is hard to distinguish (¢*, g¥, ¢*¥) from (g%, g, g*), i.e., eppu(D) is negligible
in ¢ for any efficient D where

eppu(D) = ’Pr [z, <sZ,: D(g%,¢%,¢9"Y) = 1]
—Priz,y,z<+sZy: D(¢9%, g%, 9%) = 1] |

We define a signature scheme (KGen,Sig, Vf) to be existentially unforgeable under adaptive chosen message attack
(EUF-CMA) via the following game:
Setup. The challenger runs KGen. It gives the adversary the resulting public key pk and keeps the private key sk to itself.
Signature queries. The adversary issues signature queries myq,...,m,. To each query m;, the challenger responds by
producing the signature o; of m; and sending o; to the adversary. These queries may be made adaptively.
Output. Finally, the adversary outputs a pair (m, o). The adversary wins if o is a valid signature of m according to Vf and
(m, o) is not among the pairs (m;,o;) generated during the query phase.

The signature scheme is defined to be EUF-CMA if the probability of the adversary winning the above game is negligible
in the security parameter.

All hash functions in this paper are assumed to be random oracles. The random oracle model has been extensively studied
and simplifies the analysis of hash functions. It is known to admit theoretical attacks [[11]], though none are yet practical.

4.2. Oracles and Queries

We work in the tradition of Bellare and Rogaway [4], modelling agents (Alice, Bob, ...) as a collection of oracles II7 ;
representing player i talking to intended communication partner j in the s" session. The adversary, Eve, is a Probabilistic
Polynomial-time Turing Machine (PPTM) with access to these “role oracles”, who communicate only with Eve and never
with each other. As well as relaying messages, Eve has access to certain other powers which are formally implemented as
“queries”. Many different queries have been studied [} |12} 26] and used to model various security properties. A protocol in
this context succeeds if (i) it is correct, in that the parties who intend to talk to each other (and only they) derive matching
communication keys, and (ii) it is secure, so that Eve cannot distinguish the test session key from random.

We use notation similar to [14]. Each user can execute any arbitrary number of instances of an AKE protocol 7, called
sessions. Sessions are uniquely identified by their agent and the order in which they are created, and take on the role of
either Znitiator or Responder. They are implemented by a PPTM whose memory contains both session-specific memory
(denoted st for each session s) and long-term user memory (denoted st and shared between all sessions).

Session memory sty is descrilzed in Table E] and Ais local to a particular session. In contrast, user memory st is shared
amongst all sessions of the user P, and consists of P’s public/private key pair (pkp,skp), the identities and corresponding
public keys of all other users, as well as any other additional information required by the protocol. We assume that the
protocol algorithm runs only one step of a session at a time, though many sessions may execute concurrently.

A protocol 7 is specified by a key generation algorithm KGen and a protocol algorithm ¥ executed by each session
oracle. This algorithm takes as input the current session, user state, and an incoming message, and returns an outgoing
message as well as new session and user state values.

To define protocol security a game is played in ®. A setup algorithm first generates user identifiers and keypairs, sets all
session-specific variables to an initial value L, initalises the user memory of each user including distributing all public keys,
and initialises all other variables to L. We choose not to model dynamic key registration for simplicity and because we do
not anticipate it leading to any problems unique to the topics addressed in this paper. The adversary then plays the game
with access to some subset Q C 2 of the queries listed in Table [2| Since unrestricted use of these queries can trivially
break any session, we will impose some restrictions.

Definition 2 (Matching and partial matching). Let m be a protocol of h > 2 total messages, where, if h is even, the number
of messages sent from both sides is equal and if h is odd, the initiator sends one extra message. Let s denote a session of ™
with Sgums = accept. We say that session s partially matches session s’ in status s, # L if the following conditions
hold, where Sgnq|l...1] denotes the concatenation of the first | messages sent by session s and Sye|[1...1| denotes the

concatenation of the first | messages received by s.
!/ — o — o .
* Sple 7 Spote N Sactor = Speer N\ Speer = Sycror and either

o Srole =L A Sgena[l...m| =8l,.[1...m]ASpey[L...m] =5

[ /
recv

[L...m] withm = % if h is even and m = 252 if b is

send
odd, or
o Sple = RA Sgena[l...(m = 1)] = sly,[1...(m = 1)] A Speey[1...m] = sly[L...m] with m = 2 if h is even and
m= % if h is odd.
If in addition (Sgamus, Ssents Sreev) = (Shiauss Seecvs Seenz) Then we say that s matches s'.

If instead S}y, # L and s.,,, = Sycy then we say that s' is an origin-session [|15]] for s.



Name  Description

Sactor the identity of the user executing session s, where Sycior € P
Srole the role (initiator Z or responder R) played by sacior in s
Speer the intended communication partner of Sacior, Where Speer € P
Skey the session key established during the session

Srand the randomness used in the session

Sstep the next step to be executed in the protocol

Sstatus the session status Sgaws € {active, accepted,rejected}
s.m;  the i™ message sent

Ssent all messages sent by s,ctor during the session

Srecy all messages received by Sctor during the session

TABLE 1: Contents of session memory for session s.

Query Description

create(/l7 r, E) create a new session oracle at A with role = and peer B; randomness is sampled for spng and W executed to update the state and
return a message

send(A, i,71M) execute W on the i session oracle of A, update the state, and return the result

corrupt(A) reveal the long-term key of A

|randomness(/l7 ) reveal Sng, where s = (A,z‘)

hsm(A4,...) R defined in §5.1|

session-key(A, ) reveal Syey, Where s = (A4, 1)

cr—create(A, T, B, rnd) create a session as with create, but set s = 7nd instead of sampling it afresh

test-session(s) flip a coin b <—s {0, 1} and return kjp, where k1 = skey and kg <—s KGen

guess(b') end the game

TABLE 2: The set 2 of queries available to A.

Definition 3 (Freshness predicate). A freshness predicate is a Boolean predicate which takes a session of some protocol T
and a sequence of queries (including arguments and results).

Definition 4 (AKE security model). Let 7 be a protocol in ® of h > 2 total messages, let () denote A’s set of queries, and
let F be a freshness predicate. We call (Q, F) an AKE security model.

Definition 5 (Security game). Let 7 be a protocol of h > 2 total messages and X = (Q, F) be an AKE security model. We
define the experiment W (X) as follows:
(i) The setup algorithm is executed.
(ii) The adversary learns all public information (e.g., user identifiers and public keys) and then computes arbitrarily,
performing a sequence of queries from the set Q) \ {test-session, guess}.
(iii) At some point during W (X), the query test-session(s) is issued on some session s that has accepted and satisfies F
at the time the query is issued.
(iv) The adversary may continue issuing queries from @ under the condition that s continues to satisfy F.
(v) A outputs a bit V' via the query guess(b') as his guess for the bit b chosen during the test-session query. The game
ends, and A wins iff b=1"V.

Following [8], [9], we split the security requirement into two parts: correctness (matching is correctly implemented and
implies agreement on the derived key) and secrecy (the adversary cannot distinguish the derived key from random).

Definition 6 (AKE correctness). A protocol 7 is said to be correct in the security model (Q, F) if, for all PPTM adversaries
A, it holds that:
(i) If completed sessions s and s' match each other, then siey = 8.
(ii) Pr[M uItipIe—I\/Iatchg[ﬁX)(k)] is negligible, where Multiple-Match denotes the event that there exists a session admitting
two matching sessions.

Definition 7 (AKE security). A protocol 7 is said to be secure in the security model (Q, F) if, for all PPTM adversaries
A, the W (X)-advantage A
Advgl’,(X)(k:) = |Pr(b=10") — 1/

of A is negligible in the security parameter.

Models. We now have sufficient machinery to specify a security model, through a set of queries and a freshness predicate.
To demonstrate the concept, we provide an example of a relatively weak model suitable for protocols that are not designed
to resist compromised random number generators.



Definition 8 (Basic security model). The model X, is defined by QQ = {create, send, corrupt, randomness, session-key,

test-session, guess} and ' = \)_, F}, where

(F1) No session-key(s) query has been issued.

(Fy) For all sessions s* such that s* matches s, no session-key(s*) query has been issued.

(F3) No randomness(s) query has been issued.

(F4) For all sessions s* such that s* partially matches s, no randomness(s*) query has been issued.

(Fs) If there exists no origin-session for session s, then no corrupt(sye.r) query has been issued before the create query
creating session s or as long as Sgams = active and Sy, is empty.

It is a standard result that signed Diffie-Hellman (DH) is secure in this type of model under typical cryptographic assumptions.

Theorem 9. For an EUF-CMA signature scheme (KGen,Sig, Vf), the signed DH protocol of Figure [4| is secure in the model
Xpasic under the DDH assumption.

Proof: This will follow from Theorem in the next section. |

5. PCS in AKE

This section will instantiate the informal definitions and claims from Section [3] using the game-based security models
described in Section f] We first consider the case of weak compromise before returning to the full access case.

5.1. Weak Compromise

In order to model limited access to peers’ identity keys before the test session, we add a new query hsm(...) to the
model. This query will effectively act as a limited version of corrupt with which the adversary can attempt impersonation
attacks.

A model may additionally define a long-term key interface T, which is simply a function; we write (Q, F,Z) for the
model (@, F) with interface Z. We define the query hsm(A;...) to return Z(A,ska,...), that is, it invokes the long-term
key interface with the secret key of its first argument, passing all other arguments through. We use the term “model” both
when 7 is defined and where it is not (e.g. in other work). This is accomplished by setting Z = ¢d to be the identity function,
so that hsm is equivalent to corrupt.

Definition 10. Let pcs-hsm denote the trace predicate that
(i) for all queries hsm(zx,...), & = Speer; and
(ii) all queries hsm(z,...) were issued before the session s was created.

For any model (Q, F') with hsm ¢ (), we can define a PCS version of that model (Q U {hsm}, F'N pcs-hsm) that is at least
as strong.

Informally, this predicate captures that the adversary is allowed to query hsm only on the peer to the test session, and
then only before the creation of the test session. This is a strong model: suppose we permitted hsm queries after the creation
of the test session. If security were still achievable in this model then the interface is not capturing a meaningful form of
compromise, since even with access to it the adversary still cannot impersonate its owner. Moreover, permitting hsm queries
against unrelated parties after the completion of the test session does not add any additional adversarial power, since the
strictly stronger corrupt query is also permitted at those times.

We can vary the security requirements by choosing Z. Naturally, there is an impossibility result for stateless protocols
in the case Z = id. A protocol is stateless when the inputs to each session are limited to the long-term key and public
information, and values computed in one session are not available to others. Here, the hsm query simply reveals the long-term
key, so if the protocol carries no state across different sessions, the adversary can use hsm to reveal the long-term key,
generate her own session randomness, and then simulate the computations of the peer for a successful impersonation attack.

Is there a meaningful interface Z such that security in a model (Q U {hsm}, F N pcs-hsm, Z) is achievable? Yes: a simple
challenge-response signed DH protocol provides security in the model where Z(X,skx,m) = Sig, (m) is a signature with
the long-term key of the target. That is, the adversary is given signatures by Bob on its choice of messages, and still is
prevented from impersonating Bob.

Theorem 11. Let (A, sk, m) = Sigy , (m) be the signature algorithm of an EUF-CMA signature scheme (KGen, Sig, Vf),
let w be the protocol in Figure 4| and recall Xy = (Q, F) from Definition Then 7 is secure in the model (QQ U
{hsm}, F' N pcs-hsm) under the DDH assumption.

The proof of Theorem |11]is given in Appendix |B| An applied reading of the result is the following: “If Alice’s signing key
is stored in a hardware security module and used only for the protocol in Figure ] then to impersonate Alice the adversary
must have current access to the HSM.” Thus, the protocol achieves PCS under the weak model.
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Figure 4: A simple signed challenge-response DH protocol.

TLS 1.3. Simply storing the long-term key in an HSM is not sufficient for PCS. For example, there has been recent discussion
on the specification of TLS 1.3, the upcoming standard for secure communication over the Internet). One proposal, OPTLS
[25]], has servers generate and sign temporary public keys that are then used for a signature-free handshake. (Google’s QUIC
also has this design.) After the client sends the initial hello message and DH share, the server responds with its hello, a
server DH share ¢°, a signature on ¢g°, and a MAC computed over some messages. Because servers typically possess certified
RSA signature keys, OPTLS allows for the signing of g® with the server’s signature key. Thus, the server does not need to
use a DH certificate. In one mode, the signature on g° covers both ¢g° and a validity period through which a client can
accept server authentication based on ¢g°. This mode saves the cost of a per-session signature, but endows the server with the
power of certification abilities. This means that a signed ¢ is all that is required to impersonate the server. In the extreme
case, an attacker with temporary HSM access could impersonate as a server supporting TLS 1.3, even when the real server
does not even support it.

The intuitive property of the protocol in Figure [] that grants PCS is that access to the signing key before launching an
attack on a session does not help the adversary. In OPTLS, this is not the case: these pre-signed keys effectively act as
credentials for the server, and an adversary with temporary access to the signing key can issue fake ones that persist after
access is revoked. This was briefly discussed on the TLS mailing list [[16, [24], mainly in the context of an attacker who
compromises only an ephemeral key. We see that the existence of these credentials prevents OPTLS from satisfying PCS,
even though it provides forward secrecy with an ephemeral DH exchange, and even if used with a TPM.

5.2. Full Compromise

Theorem |1 1| shows that a form of PCS can be achieved when the adversary’s access to the long-term key is restricted,
allowing it only to query the interface Z. However, there are many scenarios in which such a restriction cannot be implemented.
Thus, an interesting case occurs when the adversary has full access to (i.e., learns) the long-term key. In this case, we
consider Z = id, or equivalently allow corrupt queries before the start of the test session.

As discussed in Section [3] it is not hard to show that stateless protocols cannot meet this notion of security: an adversary
can steal Alice’s keys and then perform the same computations as Alice. We show now that stateful protocols can resist
such attacks.

The intuition is as follows. Every time Alice and Bob complete a session, they derive two secret, independent values
from the randomness, protocol state and messages: the session key and a token. The session key is the output of the protocol,
as usual. The token is used in the key derivation for the next session completed with the same peer; thus, an adversary who
wishes to simulate Alice’s computation must be able to derive the token in addition to all the other secret inputs. We call
such a design a key refreshing protocol.

Since a new token is generated every session, even a single uncompromised session implies secrecy of future keys;
moreover, if the token is derived in the same manner as the session key, then it is afforded the same protection and can only
be learnt by revealing an agent’s state. This is the core of our protocol transformation, though there are various subtleties
that we discuss later.

Modelling. Of course, this argument is informal. To make it precise we must define a formal security model, which specifies

exactly which actions the adversary is allowed to take. We proceed as follows. First, we define a minimal model (KE-PCS)
which only allows the attacker to make PCS attacks, and we formally prove that KE-PCS is not satisfiable by stateless
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protocols. Next, we provide two examples of adding PCS guarantees to existing models: first to a standard eCK-like definition
(eCKY, eCK"¥-PCS), and second to a strong model (Q2ake) for the class of all AKE protocols. Finally, we show that our
models are achievable by specifying protocols that meet them.

Recall that cr-create represents creation of a session with chosen randomness, so is a more powerful version of the
randomness query, and that we model full state compromise through randomness queries against all past sessions.

Definition 12 (Refreshed session). A session s is refreshed if there exists an “intermediate” session s' with matching session
s such that
. / /
(i) Sactor = Sactor and Speer = Speers
(ii) s' and s" both accept before the creation of s,
(iii) at most one of corrupt(s,,,,,) and (randomness(s’) or cr-create(s’) creating session s') have been issued, and

(iv) at most one of corrupt(s,,,,) and (randomness(s”) or cr-create(s") creating session s") have been issued.
Definition 13 (KE-PCS). The model KE-PCS is defined by (Q, F') where () = {create, send, corrupt} and F = P; A P» as
follows.

(P1) the corrupt query occurs, if issued, against Spe.. and before the creation of s
(P») if there is no origin-session for s, and the corrupt query was issued, then s is refreshed

The model KE-PCS captures precisely (and only) the concept of full PCS, the blue area in Figure 3(b)} if the adversary
compromises the long term keys of the peer before the test session starts, and the test session is not refreshed, then it can
impersonate the peer. (In this case there is no origin-session for the messages received by the test session.)

Theorem 14. No stateless protocol is secure in KE-PCS.

The KE-PCS model captures one particular aspect of protocol security. In order to give a comprehensive model, we can
extend existing AKE models to include PCS guarantees. For example, we recall and extend the eCKY model [15]. This
yields a practical model for key exchange protocols which captures eCK security as well as PCS.

Definition 15 (eCK", eCK"-PCS). Consider the clauses defined in Definition [8| and Table The models eCK" and
eCK"-PCS are defined by their freshness predicates as follows.

F(eCK") = Fy A FyNFSCK" N FECK" N K
F(eCK"-PCS) = A FER

Remark 16. The models eCK [26|] and eCK" differ only in the case that the adversary wishes to attack a session s admitting
an origin-session s* which is not a matching session for s. We use eCK" as our example since its presentation is closer to
our own, but see no reason that the same arguments should not apply also to eCK.

There are stronger models than eCK"Y, and we may naturally attempt to capture as many attacks as we can. Cremers and
Feltz [14] define strong models for classes of protocols (Appendix [C)); in the spirit of their work, by including PCS attacks
into their strongest model we can construct a strong model for the class of all AKE protocols. We follow their naming
scheme, whereby the model {2x is a strong model for the class X of protocols.

Definition 17 (Qakenism). Consider the clauses defined in Definition [8] and Table 31 The models Qakenism [[14)] and Qake
are defined by their freshness predicates as follows.

F(Qakenism) = Fr A FoAFPM A FPY A FRE
F(Qake) = Sk A FXR

Rationale for the freshness conditions. The {2 models described in Appendix [C|are constructed as follows. First, impossibility
results are proven for a class of protocols, by constructing adversaries which provably succeed against all protocols in the
class. Second, these adversaries are ruled out through careful choice of a freshness predicate. For example, the predicate
F§CKW rules out the class of adversaries which compromise both the randomness of the test session and the long-term key of
its actor, since such adversaries are guaranteed always to succeed against stateless protocols. We take these strong models as
our base models.

The new predicate, FXR, encodes the PCS attacks captured by KE-PCS: if there is no origin-session for s (i.e., the
adversary is impersonating its peer), and the key of speer has been revealed, then there must have been a “blue area” or key
refreshing session allowing security to be re-established.

The P; and P; predicates defined in KE-PCS are much more restrictive than the F); predicates we use subsequently,
ruling out many attacks which a protocol could resist. Specifically, they limit the adversary to learning the key only of the
peer to the test session. This is by design; KE-PCS is not intended as a strong model.
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Name  Definition

F1  No session-key(s) query has been issued.
F»  For all sessions s* such that s* matches s, no session-key(s*) query has been issued.

w . . . .
F5CK Not both queries corrupt(sacor) and (randomness(s) or cr-create(.) creating session s) have been issued.
FjCK For all sessions s’ such that s’ is an origin-session for s, not both queries corrupt(speer) and (randomness(s’) or cr-create(.) creating session
s’) have been issued.

w o . . o . .
FgCK If there exists no origin-session for session s, then no corru pt(speer) query has been issued.

FILSM Not all queries corrupt(sacor) as well as (randomness or cr-create) queries on all § with 8acior = Sactor, Where the query (create or cr-create)
creating session § occurred before or at the creation of session s, have been issued.
F4'SM For all sessions s’ where s partially matches s’, not all queries corru pt(speer) as well as (randomness or cr-create) queries on all sessions §

With Sactor = Sheor» Where the query (create or cr-create) creating session § occurred before or at the creation of session s’, have been issued.
Fg‘R If there exists no origin-session for session s, and a corrupt(sper) query has been issued before creation of session s via a query (create or
cr-create) or as long as Sguus = active and Srecv = €, then s is refreshed.

TABLE 3: Clauses of the freshness predicates for our AKE models. The predicates with superscript eCK" and ISM come from [15] and
[[14] respectively. The new predicate is the final one, marked with superscript KR.

. Slake

-
-
-
-
-
’

QAKEOISM # N eCK"Y-PCS

eCKY # KE-PCS

Figure 5: Relationship between the various models we define in this section. Qakenism and eCK® are from [[14] and [15] respectively. We
propose the other three modules in this work. Solid arrows denote inequality of security models (<scc, Appendix [C), dotted arrows denote
incomparability (neither model implies the other), and dashed arrows denote our transformation. For example, in this set Qaxe provides
the strongest security guarantees.

Satisfiability of the Models. Defining these models is of no use if they are not satisfiable: for a model X to be interesting
we must be able to prove that some nontrivial protocol is secure in X.

In Section [5.1] we defined a concrete protocol and proved it secure. Here, the construction required to ensure that state is
synchronised between communicating parties, as well as correctly used in the key derivation, is significantly more complex.
Instead of giving a concrete protocol, therefore, we define a generic transformation 7 — .

This transformation takes a three-message protocol 7 and converts it into a key refreshing protocol that achieves PCS
(and possibly more). Specifically, if 7 is secure in Qakenism then we prove that 7T is secure in Qake.

The use of state for authentication has a number of subtleties, and to deal with them our final transformation is relatively
complex. In particular, if Alice updates her state without explicitly authenticating her peer, she risks deleting a secret value
that she needs to communicate with Bob. Thus, stateful implicitly authenticated protocols with PCS can have a severe
denial-of-service flaw. More precisely, we define the notion of robustness as follows.

Definition 18 (Robustness). Let C (A B) be the benign “correct execution” adversary who creates an initiator session at
A, relays its initial message o B, returns the response to A and continues until A completes (including relaying the final
message to B). A network adversary is any adversary who only issues create and send queries.

A protocol w is robust if for any A and B, C causes a pair of maiching sessions deriving the same key to be established
at A with B and vice versa. It is post-network robust sz(A B) still induces a pair of matching sessions which derive the
same session key when executed sequentially after any network adversary.

Theorem 19. No correct one-round protocol which is secure in KE-PCS is post-network robust.

This theorem implies that any one-round protocol that achieves security in KE-PCS is vulnerable to a denial of service in
which an adversary with temporary network control can prevent any two parties from ever communicating again. This is in
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Let 7 be a three-message protocol A B2 A 5, B Assume that public DH keys are distributed for all participants, and that m
computes a pre-master secret from which session keys are derived. We define ' as a modification of 7 as follows.

« For each agent B we define new global state variables IS B.A and stg.potential 4 (for each communication partner A). The first
stores a single value and the second a possibly empty list of values. Initially, IS AB i set to g for all A, B.

« In a session s between parties A and B, each message A —+ B is replaced by (my, pj) where p; = MAC(my; ISA’B), and each
message B " A replaced by (m, ui) where pj = MAC(mj; ISB’A).

« Upon receiving (m1, u1), B acts as follows:
- If 1 = MAC(my; ISB’A), B continues to the next step.
— If not, B checks for each value is € stg.potential 4 whether 1 = MAC(my;is). If this holds for some value is, B replaces

ISBA is, empties stg.potential 4 < 0, and continues to the next step.

— Otherwise, B rejects.

o The new value I Sfév’vA + KDF(o, 188 ’A, 1) is appended to stg.potential A

o The pre-master secret pms < KDF (o) is replaced by pms’ < KDF (o, ISB’A, 0).

« B computes 2. and sends (ma, p2) o

o A verifies p2 using its intermediate secret, and rejects if the verification fails. Otherwise, it updates ISPB ] Sl =
KDF (o, IS4B, 1), and sends (ms, us).

o B verifies u3 against the potential value from the current session, and if the verification passes and it would accept then it first sets
1SBA I1SE:A and stg.potentialA <~ 0.

(a) Definition of the PCS transform 7 — 71.

< Is

mi, H1
potential state
v
ma, U2 |
|
!
| update state to IS’ oIS
>@113, 13
—— ——
Alice, session 2 Bob, session 2
/
mh, oIS
|
AN
. | update state to IS’ |
ma, W2
update state to 15" | .,
ms, 43
| update state to IS”
—— ——

(b) Example trace of a transformed protocol. We show two sessions between Alice and Bob: in the first, the final message is dropped so Bob does not
update to IS’. In the second, Bob recalls IS’ from earlier (represented by the dotted line) and performs the earlier missed update.

Figure 6: Two-round, robust PCS transform.
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stark contrast to the world of stateless protocols, where if the first session run by C accepts with some probability, then any
subsequent session also accepts with the same probability.

We give the final version of the protocol transform, which handles these and other issues, in Figure [6(a)] In Figure [6(b)]
we show an example execution that illustrates the robustness mechanism. We refer the reader to the appendices for a full
explanation of the issues and justification of the transform design. The intuition is that it adds explicit authentication (through
a MAC applied to each message and requiring knowledge of the current IS), in such a way that Alice only updates an
intermediate secret if she can be confident that Bob can derive the new value. The security of the modified protocol 7f
follows from adding an intermediate secret in the KDF, and continuously updating it as sessions take placeﬂ Our construction
additionally depends on the (weak) perfect forward secrecy of 7. Because n! also has this property, the attacker cannot
compute the secrets added in the refreshed session, even if it has one of the long-term keys.

Theorem 20. Let 7w be a stateless protocol.

(i) If 7 is secure in eCK" then w' is secure in eCK"-PCS.
(ii) If m is secure in Qakenism, then w1 is secure in Qake.
(iii) If 7 is robust then ' is post-network robust.

The proof proceeds in several stages and is included in the appendices. We first give a simpler transformation 7 +— 7%,
which replaces the session key derivation K + KDF(pms) with K « KDF(0, pms, IS) and generates a new IS <+
KDF(1,pms, IS). Assuming it is hard to invert the KDF, we show that an adversary who can compute the IS output by
a session can also compute the session key of that session. Next, we show that due to the “chaining” of IS values, it is
hard for the adversary to derive the IS of a refreshed session. From these observations we can prove security of the simpler
transformation in e.g. Qake.

Next, we consider an intermediate protocol 7y, which adds the MAC values u; to the messages but does not maintain
the buffer of potential new state values. We show that the addition of the MACs does not weaken the security of the protocol,
and therefore that 7y, is also secure in Qake. Finally, to complete the security proof we show that the transformed protocol
7l is at least as secure as mysc, by a direct reduction.

Results in the computational setting are generally negative, in the sense that they prove that the adversary cannot
distinguish between certain values. Robustness is not a property of this form, and therefore the standard game-hopping
techniques are not immediately applicable. We instead construct a security argument to prove item (i), showing that certain
syntactic invariants imply that parties must remain synchronised. Roughly, we prove an invariant that if one party updates
the state s — s’ then the other party “knows” s’, in the sense that s’ is either its current state or present in its buffer of
potential updates. By construction of the protocol algorithm, this suffices to show that the correct-execution adversary C
indeed induces matching sessions.

6. Related Work

There is relatively little work on related phenomena. The concept of “key continuity” appears in various Internet Drafts
[10, 19], but there is little formal work in the academic literature to mirror these discussions.

Various protocols appear to implement some sort of key continuity (or pCS) features, including OTR [17]], ZRTP [10],
and even many SSH [31] implementations via the known-hosts feature. However, existing analyses of these protocols do not
cover this aspect.

Bowers et al. [7] define a notion of “drifting keys”, in which devices randomly modify their long-term key over time,
such that a trusted verifier can detect the discrepancies caused by an attacker with a slightly-incorrect key. This type of
protocol detects the adversary but does not prevent the compromise. Nevertheless, we view their work as providing a type of
PCS.

Itkis [20] describes forward secrecy for primitives as part of a more general theory of “key evolution”, in which keys are
constantly rotated. This gives a type of PCS, though applying not to protocols but to the cryptographic primitives themselves.

Stateful protocols. Cremers and Feltz [14] consider protocols that use shared state to pool randomness between different
sessions, but do not consider synchronisation of state between agents. Our work builds on theirs.

There has not been much analysis of stateful AKE, but state is used in various other primitives: stateful symmetric
encryption is well-known, and asymmetric encryption is also discussed in the literature [3]. State is of course used within
sessions—for example, ACCE [23] provides security to the message channel in the sense of stateful length-hiding authenticated
encryption. It is also used heavily at the application layer, particularly in the web context.

2. In fact, protocols transformed from eCK"™ are secure in a stronger model than eCK"Y-PCS: the intermediate secret acts as a weak entropy pool, sharing
randomness across sessions. This weak pooling is not very practical, however, since a stronger version is achievable with minimal overhead.
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TextSecure/Axolotl. The Axolotl (now Double) ratchet works roughly as follows. As Alice and Bob communicate, they
share a dynamically changing “root key” rk, similar to our intermediate secrets. Each sent message is accompanied by a DH
share, and the root key is updated as rk «— KDF(H (¢%%,rk)), where g*i and g¥% are the most recently sent DH shares.
Messages are themselves encrypted with keys derived from the most recent root key, which acts as synchronised state; as
such, Axolotl’s design includes a PCS-like mechanism.

The (recently discontinued) TextSecure messaging app used Axolotl, and one might therefore expect it to achieve PCS.
It did not, however, because of its implementation of multi-device messaging: TextSecure shared long-term keys across all
devices but maintained a separate Axolotl chain for each, allowing an adversary to impersonate Bob by claiming to be a
previously-unseen device after a compromise.

In more detail, the design of the protocol was that each device on a given user’s account stored a copy of the user’s
long-term key, but otherwise did not share state. For Alice to send a message to Bob she would send it separately to each
of Bob’s devices. Thus, an attacker who learned Bob’s long-term key could register a new device on Bob’s account, and
Alice would accept the new device as valid, since the correct identity key was used to set it up. Hence, if Bob’s key is
compromised then he could be impersonated to anybody. In particular, relating to the definition of PCS, the scenario would
be the following: First, the attacker learns Bob’s (long-term) identity key. Next, Alice and Bob have a key refreshing (honest)
session. If PCS were to be achieved, the attacker would now be locked out. However, the attacker can now register a new
device for Bob using only the identity key, and this enables the attacker to impersonate Bob again even though the session
under attack has been refreshed. Thus, PCS is not achieved. As a consequence, it is not clear if the “ratcheting” mechanism
in TextSecure provided any additional security guarantees above and beyond those of a strong AKE protocol, though it
certainly provided message transport with fewer round-trips.

A previous analysis of TextSecure [[18]] reported an unknown key share attack. Because the analysis in [18] does not
consider any security after the peer’s compromise, it does not cover PCS.

7. Conclusions

In hindsight, post-compromise security seems a highly desirable feature of communication systems, and it is perhaps
surprising that it has not been formalised before. Devices are frequently compromised, and post-compromise security is an
achievable property in a scenario that has not been previously considered. Our technical contributions in the domain of AKE
protocols demonstrate what might be achieved by post-compromise secure protocols, and how this can be achieved.

We showed that the use of a hardware security module to store keys can allow the effects of a compromise to be undone,
so that an adversary can no longer carry out impersonation attacks. There are relatively simple protocols which achieve this
level of security, although not all protocols do.

We then considered the more general case that the adversary learns the secret key, and defined a model in which the
adversary can do so as long as an unattacked session is permitted to complete. We observed that in this scenario stateless
protocols cannot prevent impersonation. However, some stateful protocols can do so: we gave a generic transformation
producing stateful protocols, and proved that its outputs are secure in our models. Not all key refreshing protocols necessarily
achieve PCS, however, and we showed that indeed the protocol in TextSecure did not.

As the notion of post-compromise security applies more widely than to just AKE protocols, we expect related areas also
to pick up on this concept and harden their constructions. This requires additional formal work, but should proceed along
the lines sketched here. We remark in particular that our first model is directly relevant to users who want the benefits of
storing keys in HSMs.

In addition to the long-term possibilities of extending our work to other domains, there are other direct avenues of future
work:

1) We considered only the case of a signature HSM; that is, a key storage interface which produces only signature with
the long-term key. Of course, most HSMs perform a wide range of operations. A natural extension of our work would
consider a more general interface to the key, inspired perhaps by the PKCS#11 standard.

Such an extension comprises a ‘balancing act’ between applicability and ease of proof. For example, Diffie-Hellman-style
protocols often require key derivation operations of the form (—). The interaction between such an interface and the
Diffie-Hellman computations of the session key is subtle.

In the spirit of strong models, we also foresee an interesting avenue of research investigating the limits of HSM-style
queries. For example, is there a natural class of interfaces for which no PCS is possible?

2) We considered a concrete protocol and proved it secure in the presence of a signature interface. A natural extension of
this question is to search for necessary or sufficient conditions for arbitrary protocols to meet this goal. For example, it
is clear that the signature should contain some fresh data.

3) A feature of Axolotl [30] which we did not discuss is that it sends messages with zero round trips. An interesting
question is the extent to which the ratcheting mechanism is necessary to achieve this, and how the security goals for a
O0-RTT protocol interact with PCS.
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Appendix A.
List of Changes

¢ v1.4, October 2019: Dropped ‘On’ from title to avoid confusion: the term “post-compromise security” was originally
introduced in this version v1.0 of this work. Some minor changes to the title page for clarity.

e v1.3, October 2016: Typo fixed in a freshness condition in Table 3 (thanks to Colin Boyd).
e v1.2, August 2016: added “Practical Implications” subsection to Section [I]

e v1.1, May 2016: described Related Concepts. Improved intuitive descriptions throughout, and technical updates for
clarity.

e v1.0, February 2016: initial version.

Appendix B.
Proofs for the Restricted-Compromise Model

Theorem 11. Let (A, sk, m) = Sigy , (m) be the signature algorithm of an EUF-CMA signature scheme (KGen, Sig, Vf),
let w be the protocol in Figure 4| and recall Xy = (Q, F) from Definition 8| Then 7 is secure in the model (Q U
{hsm}, F' N pcs-hsm) under the DDH assumption.

Proof sketch: Denote the event of the adversary winning in Game i by S;. Assume the adversary always selects a test session s
where Sactor = A is the initiator. The other case is similar. For the adversary to win, the test session must have accepted. Let the
transcript of messages sent and received be as in Figure
Game 0: This is the original security game.

Game 1: This is the original security game except it aborts if two nonces ever collide or if two ephemeral DH shares ever collide.
This is a standard gamehop, and we see that | Pr(Sy) — Pr(S1)] is negligible.
Game 2: This game is identical to Game 1 except it aborts if the challenger fails to correctly guess the test session s before the
game begins. This is another standard game hop.
Game 3: This game is identical to game 2 except it aborts if the adversary ever queries hsm(B A ,g¥,mq) (for the unique g¥
received by A in the second message of s and the unique nonce n, selected by A in the initial message of s). As access to the
hsm query is revoked before n, is even generated by A, the probability that the adversary will query hsm on the random string
ng is negligible. Hence | Pr(S2) — Pr(Ss)] is negligible. o A
Game 4: This game is identical to Game 3 except it aborts if the received signature Sig,, {A, B, gY,ns} for actor A in session s
is forged, where Speer = B. Since the signature scheme is EUF-CMA, previous signatures, either from other protocol runs or the
hsm query, will not give the adversary non-negligible advantage in making this forgery. Hence | Pr(S3) — Pr(S4)| is negligible.
By Game 3 and Game 2, we must have that the signature is genuinely created by B in a (or several) session(s), since it
cannot be forged or found via the hsm query. Also, since the ephemeral DH value g¥ is unique by Game 1, the session s’ the
signature was created in is unique. R
Game 5: This game is identical to Game 4 except it aborts if the challenger does not successfully guess s’ such that speer = A
and B selected g in session s’ to send to A in session s. This is a standard game hop.
Game 6: This game is identical to Game 5 except we replace g” as computed in the test session key of s and (possibly s’ if the
last message is forwarded) by g*. This is a standard game hop based on the decisional Diffie-Hellman assumption. The hop is
allowed since the only two sessions that could compute g*¥ cannot be queried by the adversary.
As the session key contains the hash of g* for random z, the session key is indistinguishable from random. Thus,the adversary
cannot possibly have any non-negligible advantage in winning this game. By our hops, the protocol is secure in the original
security game.

Appendix C.
Strong Models for Protocol Classes

We here recall some definitions from Cremers and Feltz [14]], including the concept of a strong model for a protocol class.

Definition 21. Let secure(M, ) be a predicate that is true if and only if the protocol T is secure in security model M,
and let 11 be a class of AKE prot()cols. We say that a security model M' is at least as strong as a security model M with
respect to 11, denoted by M <Y _M’', if

vr € I, secure(M',7) = secure(M, )
We say that M and M’ are incomparable if M <Y M’ AM' €4 M
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Definition 22 (Protocol classes). We define AKE as the class of all protocols of h > 2 total messages for which the
probability that two sessions of the same user output in all protocol steps identical messages is negligible.

The subclass ISM of AKE (for “initial state modification”) consists of all protocols in AKE that only access and update
user memory upon creation of sessions.

The subclass SL of ISM consists of all stateless protocols; that is, those for which sty = proj(V (1%, stg, sts, m)) for
all (k,stg, stp, m), where projs is projection onto the third coordinate.

Each of these classes admits different strong models: attacks which can be prevented in a larger class may always work
in a smaller one. For example, we have already seen the impossibility result that stateless protocols cannot achieve key
indistinguishability if the long-term key of the peer to the test session has been revealed.

[14, Theorem 2] states five generic attacks against protocols in AKENSL, and rules them out in the security model below
(there denoted €2, ). The first pair of attacks are clear: the adversary directly queries the session key of the test session or
its partner. The second pair correspond to an adversary which corrupts all secret inputs to a party and thereby simulates its
computation. In the final attack the adversary corrupts some party and then impersonates them to the test session.

Definition 23 (Qakenst). The Qakens. model is defined by (2, F') where F = Fy N\ Fy A Ff’- AFPEA F55L and the F; are

as in Table |3| and as follows:

(F3L) Not both queries corrupt(seor) and (randomness(s) or cr-create(.) creating session s) have been issued.

(F;t) For all sessions s' such that s is partially matching s', not both queries corrupt(syeer) and (randomness(s’) or
cr-create(.) creating session s') have been issued.

(F5$L ) If there exists no origin-session for session s, then no corrupt(spe.r) query has been issued before creation of session
s via a (create or cr-create) query or as long as Syuus = active and Sy, = €.

A similar impossibility result, analogous to [14] Corollary 3], applies to protocols in ISM. Since in this class randomness is
shared between parties, it suffices for at least one previous session to have uncorrupted randomness.

Definition 24 (Qakenism)- The model Qaxenism is defined by (2, F) where F = Fy A Fy A FPM A EPM A F2E and the
clauses are as per Table 3]

We remark that the translation from an impossibility result to a strong model is not unique. An impossibility result gives
specific adversaries which can attack any protocol in a class, and a corresponding strong model rules out those adversaries
but as few others as possible. In particular, if an attack is not as generic as thought, the corresponding freshness predicate
will rule out more adversaries than strictly necessary—for example, the “generic” PCS adversary only attacks the first
session, but the final clause of the freshness predicate rules out any compromise before the test session.

We now define some models for use in subsequent proofs.

Definition 25. We define the following freshness predicates.

(FXR) If both queries corrupt(sae,) and (randomness(s) or cr-create creating session s) have been issued, then s is refreshed.
item For all sessions s' such that s is partially matching s', if both queries corrupt(s,e.,) and (randomness(s’) or
cr-create creating session s') have been issued, then s' is refreshed.

(FfR) If there exists no origin-session for session s, and a corrupt(Speer) query has been issued before creation of session s
via a query (create or cr-create) or as long as Sguys = active and Sy, = €, then s is refreshed.

We define the following models by their freshness predicates.

F(Smin) =F1 A Fy A F3E A FPE A FER

F(Ss1) =F) A Fy A FXR A EfR A EXR
The difference between F'(Spin) and F(eCKY-PCS) is only in Fy: the former restricts compromise only on sessions s*
which partially match the test session s, while the latter restricts compromise on any s* which is an origin-session for s.

Since a partially matching session for s is an origin session for s, we see that F/(eCKY¥-PCS) = F'(Spin). Likewise, it is
clear that F(Syin) = F(SsL), since the latter again allows strictly more adversarial actions. Hence:

Lemma 26. It holds that eCK"-PCS <;or Smin <sec SsL.

C.1. Pooling of Randomness

The key difference between the above models is in the treatment of the third and fourth clauses of the freshness predicate,
which describe the security of sessions where both an agent’s long-term key and local randomness are compromised.
Specifically, this situation is forbidden in SL since there they comprise the only secret inputs to the session key computation,
but there is more than one natural way to lift the restriction outside of SL.
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A protocol which stores the randomness of all past sessions (or some derived value e.g. a hash or seeded PRNG) needs
only one of these to be uncorrupted to maintain session key secrecy. This is the intuition behind Qakenism. However, because
it only stores local secrets, the state does not help authenticate its peer.

A protocol which stores state synchronised with its peer can use that state for improved authentication. Because the
state depends on previous random values, it can also provide some guarantees if the local randomness for a session is
compromised. These guarantees are weaker in two ways, though:

(i) because the secret is per-peer, if the randomness of a session with Bob is compromised then only a previous session
with Bob can help, and
(i1) because the peer also knows the secret, it could also be leaked by them.
Concretely, let A denote the adversary which honestly relays three sessions: s; : Alice <» Bob, s, : Alice <» Charlie and
s3 : Alice <> Bob, then queries corrupt(Alice), randomness(s;) and randomness(ss). This adversary is valid in Qakgnism
since there was at least one previous session with uncorrupted randomness, but invalid in Ss; since that session was not
with Bob. Conversely, the generic impersonation attack is valid in Ss. but succeeds against any protocol in ISM.

This demonstrates that the models Qakenism and Ssi are incomparable. But once state is shared between sessions, there
is no obvious reason not to pool randomness as well as maintain a shared secret, giving stronger guarantees if the local
RNG is weak. Such protocols’ guarantees are given by Qake.

Appendix D.
Robustness

Theorem 14. No stateless protocol is secure in KE-PCS.

Proof: The only secret inputs to the protocol algorithm of a stateless protocol are the session randomness and the long-term key. It
follows that the simple corrupt-and-impersonate adversary has the same success probability as the corrupted agent. |

One-round protocols with post-compromise secrecy are necessarily not robust to an unreliable network. The intuitive reason
is that if the initiator sends a message m but receives no reply, she cannot tell whether

(i) m was lost before delivery, or

(i) m was received by Bob but the response lost.
For a one-round protocol, the latter case has Bob accept a session with an intermediate secret that Alice does not know,
which clearly will cause trouble with future sessions.

We now formalise this argument. By a benign adversary we mean one which acts as a wire, faithfully relaying every

message in order to its intended peer.

Theorem 19. No correct one-round protocol which is secure in KE-PCS is post-network robust.

Proof: We give an explicit adversary in KE-PCS against II. The adversary corrupts some agent Bob, then completes an honest
session between Alice and Bob, meaning that Bob’s state may change. The adversary then uses the previous state value, which it
learnt from the corruption, to impersonate Bob to Alice in a subsequent session. We must argue (i) that this adversary does not
contradict freshness, which holds because of the intermediate session; and also (ii) that it wins the security game, which we show
with an explicit reduction to robustness.

Pick two targets A and B. Since II is post-network robust, the correct-execution adversary C = C (B A) induces matching
sessions at A and B, with the final protocol message sent A — B. (Otherwise use C(A B ). Our adversary .4 begins by executing
C; that is, it simulates its execution, and whenever C issues a query A issues the same query, and returns the response to C.

Next, A issues a corrupt(B) _query, and uses the response to set up a simulated B-oracle %, initialising it with the setup
algorithm used by the game. If B is the initiator then it simulates a create(X, A) query; if the responder then it additionally
simulates a send(X, ml,A) query where m; was the initial message sent by C above. (This ensures that the state of X is
equidistributed with that of B, required for Case 2 below.)

Now, A uses X to impersonate B to A: it executes C for a second time, except redirecting all send(B ..) queries made by C
to 3. That is, A stores the current state stx; in its memory, and whenever C issues a send(B, . ..) query A computes U (sty, .. .)
and returns its output as the result of the query. All other send queries are faithfully invoked by .A.

Let s be the session created at A by this execution. Note that s must complete, and therefore has status s.status €
{accept,reject}. We consider these cases separately.

Case 1: s accepts. We argue that s is fresh, and that it derives a key matching the key in sts.

To show that s is fresh there are two conditions in the freshness predicate. The first is that the only queries were issued
against B before the key refreshing session; this is true. The second is that s is refreshed; that is, that there exist two matching
sessions at A and B, accepted before the creation of s, for which not both corrupt and (randomness or cr-create) queries have
been issued. This is indeed true: the two sessions created by C satisfy this condition. Hence s is fresh.

A may therefore issue test-session(s), and compare the result to the session key in the memory of the unique session s’ at
the simulated B-oracle. Since the protocol is correct and s matches s’, we must have that s.key = s’ key with high probability,
and hence the adversary can easily win. In this case the theorem is proved.
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Let 7 be a protocol whose session keys are derived as K DF(pms). Let s denote the i™ completed session that has had
actor A and peer B, and let T SZA % denote the i intermediate secret A has stored for B in st 4~ The protocol 7 is modified
as follows:

« The session key k < KDF (o) that A computes in session s is replaced by k « KDF(J ISzA {3, 0).
o The next intermediate secret for peer B that A computes is [ SA B "« KDF(o, 1 S ,1).

« Upon session acceptance, [ S B is stored in st i replacing [ S 1 B Which is erased

Actor B computes intermediate secrets and session keys identically, and the initial intermediate secret I S(f R any two
parties P;, P; is publicly set to 0.

Figure 7: Definition of the one-round PCS transform 7 — 7™

Case 2: s rejects. We argue that the marginal distribution at A could also be induced by a network adversary.

Consider the network adversary C' which is equal to C except that the final message A — B is dropped. Consider the
distributions of messages sent to A by (C';C) and by .A. The first message is sampled from the distribution of initial messages at
B, possibly with the additional but equal first message. Subsequent messages from the first session at B are sampled from equal
distributions, since IT € IFSM implies that st is not updated by intermediate messages. The first message from C (resp. X) is
sampled from still the same distribution, since the final message was not delivered and hence the state at B was not updated.
Subsequent messages from C (resp. X) are sampled from equal distributions, again because IT € IFSM implies that sty is not
updated by intermediate messages. By this equality of distributions, we have that the session induced by C in (C';C) also rejects
and therefore C did not create a pair of matching sessions. Since C’ is a network adversary, IT is not post-network robust. In this
case the theorem is proved. |

Sequential precomposition with any adversary has no effect on the output distribution of role oracles in a stateless protocol.
We therefore have

Corollary 27. Any robust stateless protocol is post-Adv robust, but there exist robust protocols in ISM which are not even
post-benign robust.

Appendix E.
PCS Transform

E.1. One-round PCS transform

In this section, we present a generic transform to turn a protocol 7 in the class ISM into a protocol 7* not in ISM.

First, for simplicity and intuition, we provide a generic construction and proof of security in the case of 7 being a
one-round protocol. We show that 7* achieves security in strong PCS models, but is not robust in the sense that parties
can fall permanently out of sync with a unreliable network. Indeed, we prove that this is always the case with a one-round
protocol and therefore a trade-off between security and efficiently must always occur.

However, the proof technique for our one-round protocol transform allows us to then provide a security proof for a
two-round protocol. Our two-round protocol transform is more complicated in that it involves MACs and potential vs actual
intermediate secrets in memory, but the basic intuition of sharing and updating an intermediate secret is the same. We prove
that this protocol can be robust and achieve PCS.

Proof: We construct the adversary A, against protocol 7 as follows. A, runs as a challenger, implementing users executing protocol

7 against adversary A5. When Ax makes a create, cr-create, send, randomness or corrupt query, A, asks the same query as

an adversary against 7 and forwards the reply back to Az. When 4% makes a session-key query, A, asks the same query as an

adversary against 7, receives reply pms and then forwards KDF(pms) back to A5. When A5 asks a test-session query, Ax

asks the same query as an adversary against , receives reply kp and forwards KDF (k) back to Ax. Finally, A, outputs the
same guess b as Az. Since Az is a successful adversary, the test session for A, is fresh. Moreover, A, makes the correct guess

for b when A5 does. As Ax succeeds with non-negligible probability, so does .A. Therefore, if 7 is insecure, then so is 7. |

We define a new protocol 7* with the same messages as 7 but with a different key derivation in Figure [7} If A and B
are synchronised—that is, they have the same intermediate secret for each other—then they will derive equal session keys
from an honest session.

We show first that 7* is at least as secure as 7, and second that 7* additionally meets security in the PCS models.

Lemma 28. If 7 is secure in model X*, then so is 7*.
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Proof: We prove the contrapositive. That is, we prove that if 7* is insecure in model X ™, then so is . For an adversary A+
in model X* that succeeds against protocol 7* with non-negligible probability, consider adversary A, also in model X*, but
against protocol 7. A, proceeds in an almost identical way to A« except for minor differences. A, ignores intermediate secrets,
e.g., where A-» computes KDF (o, IS, 0), A, instead computes KDF (o). Where A.+ uses a session-key(s) query to reveal key
k* = KDF(o, IS, 0) which A+ then uses in later computations, A, uses the same session-key(s) query to reveal a different
session key k = KDF (o) which A uses instead (subject to the condition of A, ignoring intermediate secrets as already specified).
Subject to these conditions, A, executes the same trace as A,+. Denote the test session for A+ (resp. A) against protocol 7*
(resp. 7) by s+ (resp. sr). Similarly let the test session key kr+ (resp. k=) be computed as KDF (o, IS,0) (resp. KDF(or)).
As Ax~x is a successful adversary, s« is fresh. By the construction of A, and the freshness conditions in X*, s is also fresh.

As session keys are not used to compute any other terms in the protocol, and as intermediate secrets are only used to compute
other intermediate secrets or session keys, for all intents and purposes A, implements the same attack as A,«. If A, wins
against 7* by querying KDF (o, IS, 0), then A+ must have deduced the input tuple (o, IS,0), and in particular o«, which
is a function of only the key exchange. But since A, has the same trace as A+, A is able to deduce o, and k. Therefore,
if the adversary A+ succeeds against w* with this strategy, then A, can succeed against . If on the other hand A« wins
against 7 while never querying KDF(o+, IS, 0), then as the KDF is a random oracle, the only possibility is that this is a key
replication attack. Clearly if A.+ can do this, then so can A,. |

Before we prove the main theorem of this section (Theorem [31]), we make the following observation. Suppose an adversary
has to derive an intermediate secret 1.5; = KDF (o, 1S;_1,1). As the KDF is a random oracle, the only way of doing so is
by evaluating the KDF on the input (o, 15;_1, 1). If the adversary can do this, then she can also compute the session key
that comes with the same session as 1.S;, as k = KDF(o,15;_1,0). If the adversary can compute a session key, then she
does not need to use a session-key query on the session (or any matching session). Note we do not have circular reasoning
here as session keys are never used to compute anything in the protocol, including intermediate secrets. This leads us to the
following two lemmata which we will use in addition to Lemma |28 to prove Theorem

Lemma [29] is cumbersome to write, but states intuitively that computing an intermediate secret from a session with
uncompromised state is as difficult as computing the session key of that session.

Lemma 29. Take either (i) 2 = eCKY and KR = eCK"-PCS or (ii) Q = Qakenism and KR = Qaxe. Consider all
adversaries A+ in KR against protocol 7 such that the test session s of A« is refreshed and consider sessions s' and s"
as in the definition of s being refreshed. Denote the intermediate secret computed by Sucior (and possibly spee, if synchronised)
in s’ (and possibly s") by IS;. So in other words, 1S; = KDF(0;,_1,15;-1,1) for some key exchange information o;_,
and previous intermediate secret 1S;_1. If protocol 7 is secure in S, then the probability of adversary Ay« computing the
intermediate secret 1.S; is negligible.

Proof: Assume for contradiction that an adversary A+ exists that can compute 1.S; with non-negligible probability. Recall the
observation that if A+ can compute I.S;, then A-+ can also compute the session key of the same session s’. Therefore we can
assume without loss of generality that 4.+ does not issue a session-key(s’) (or, if synchronised, a session-key(s") query).

Consider adversary A, against (secure) protocol 7 in €2 that copies A« apart from in two ways: (i) A, ignores intermediate
secrets in the same way as in the proof of Lemma [28] and (ii) A, makes the same queries as adversary A.~ except where A+
queries test-session(s), Ax+ instead queries test-session(s’), and A, does not necessarily make the same guess query as Ag+.
We see that since A+ always makes a test session refreshed, it follows that s’ in fresh. Therefore if A,+ can compute 1.S; with
non-negligible probability, then A, can compute the test session key and succeed against 7 in €2 with non-negligible probability.
But 7 is secure in €2, which is a contradiction. |

Lemma [30] generalises this result to a sequence of intermediate secrets, since they are chained together inside random oracle
invocations. It states intuitively that if an intermediate secret comes from a refreshed session, then the adversary is unable to
compute any subsequent intermediate secret derived from it.

Lemma 30. Take either (i) 2 = eCKY and KR = eCK"-PCS or (ii) Q = Qakenism and KR = Qaxe. Consider all
adversaries A+ in KR against protocol 7 such that the test session s of Ay« is refreshed and consider sessions s' and s
as in the definition of s being refreshed. Denote the intermediate secrets Sucior Stores for Speer as 150,151,155 ... where
the intermediate secret computed in session s' is I1S; and the intermediate secret used in the computation of the test session
key of session s is 1S; (so j > 1). If 7 is secure in ), then the probability of adversary A« computing the intermediate
secret 1S is negligible.

Proof: We see that 1.S; = KDF(o;_1,15;-1,1) for some key exchange information o;_;. Intermediate secrets are never sent or
received, so for A+ to compute .S, A+ must compute the input 1.5;_1 (as well as o;_1). But IS;_1 = KDF(0j_2,15;-2,1)
for some key exchange information o;_2, and so on. By induction we see that for A+ to compute 1.5;, Ar+ must compute I.S;.
But by Lemma [29] this can only be done with negligible probability. |

We are now ready to prove Theorem
Theorem 31. For any protocol m € AKEN ISM,
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(i) If 7 is secure in eCK", then 7 is secure in eCK"-PCS
(ii) If m is secure in Qakenism, then T is secure in Qaxe

The high-level proof structure is as follows. For both and (i) we have already shown that 7* is at least as secure as 7 by
Lemma [28] so all that remains is to cover the cases of additional adversarial behaviour allowed against 7* but disallowed
against 7. In these additional cases, we argue as in Lemma [29) and Lemma [30 that a refreshed session protects the necessary
intermediate secret and thus the test session key.

Proof: If A creates a fresh test session we say it is valid.

1Il Since the Qake model is identical to the Qakenism model except for the difference in the 5" predicate, it follows by Lemma
28| that 7 will be secure in Qake if we can show that for all adversaries A that are valid in Qake but not in Qakenism, A
can only defeat 7* with negligible probability. In other words, such an adversary A must create a test session s for which no
origin session exists, and also issue a corrupt(speer) query. We can rule out the case that A wins by doing this as well as never
computing the test session key k = KDF(o;, IS;,0) by the same arguments as before. Now, by the 5" predicate in Qake, the
test session s must be refreshed, so there exists two other sessions s’ and s’ as in the definition of s being refreshed. To compute
the KDF on the inputs (o, 1S}, 0) required for the test session key, the adversary needs the intermediate secret 1.5, but this
cannot be computed with non-negligible probabrhty by Lemma 30}

. Consider adversary A in Ss_ against . Denote the test session by s with test session key & = KDF (o, IS;,0). We partition
into the events (i) V, (ii) V¢ N Ty, (iii) VC NToNS and (iv) VSN To NS¢ where V, Ty and S are defined by:

\% A is a valid adversary in Qakenst -
To There exists an origin session for the test session.
S A issues a corrupt(sacor) and a (randomness(s) or cr-create(s)) query.

Event V. This case is covered by Lemma 28]

Event VN Ty NS¢ If A is a valid adversady in Qake but not in Qakenst, then it must be because of the difference in the 3™,
4™ or 5™ freshness predicates as the 1% and 2" are identical. If an origin session also exists, it must be because of the 3™ or 4%
predicates. If A also does not issue a corrupt(sactor) and a randomness(s) (or cr-create(s)) query, then the difference must be in
the 4™ predicate. In this case, since A is still a valid adversary in Qakg, it must be the case that there exists a session s’ such
that s is partially matching s’, where the queries corrupt(speer) as well as (randomness(s’) or cr-create(s’)) have been issued,
where s is refreshed. By analogous reasoning to Lemma and Lemma the intermediate secret I.S; used in the computation
of the test session key k is safe, so we are done.

Event VeNTyNS. If Ais a valid adversary in Qake but not in Qaxenst, then it must be because of the difference in the 3,
4" or 5™ freshness predicates as the 1% and 2™ are identical. If an origin session also exists, it must be because of the 3 or 4th
predicates. If it is because of the 4", see the analysis of event V¢ N Ty N SC. If it is (possibly also) because of the difference in
the 3" predicate, then by the 3™ predicate of Ssi, s must be refreshed. By analogous reasoning to Lemma [29| and Lemma the
intermediate secret I.S; used in the computation of the test session key k£ is safe, so we are done.

Event V¢ NTj. If A is a valid adversary in Qake but not in Qakenst, then it must be because of the difference in the 3 4th
or 5™ freshness predicates as the 1 and 2" are identical. If it is because of the difference between the 3™ and 4™ predicates, see
the analysis of Event VN Ty N S. If it is (possibly also) because of the difference in the 5™ predicate, then this case is covered
by analogous reasoning to (). |

A useful corollary of Theorem [31] is that one can use it to reverse engineer proofs of security; real-world protocols that use
synchronised state may be complex and lack proofs of security, but if they are of the same form as 7* then it will suffice to
prove the security of the simpler corresponding protocol of the same form as 7.

E.2. Two-Round PCS Transform

The previous PCS transform was not robust when applied to multiple-round protocols. We give an alternative transform,
specific to two-round protocols, which does achieve robustness. Again, it converts a protocol 7 subject to some restrictions
into a protocol 7! not in ISM.

Intuitively, the major obstacle to robustness is related to the two generals’ problem: if Alice updates her state, the next
message might be dropped. However, since we postcondition on the fact that C’s messages are completed unaltered, we
solve this by allowing the first message to play the role of the dropped one. We therefore build a protocol transform (-)f
which is closely related to (-)*, but (i) the initial messages are authenticated with the current state, (ii) secrets are tied to
the particular protocol role of each party, and (iii) there is logic to handle the case where a final message was dropped.
Specifically, each party maintains separate initiator and responder states; the latter contains not only the current IS value but
also a collection of potential ones, corresponding to sessions which might have been accepted by initiator A. Upon receipt of
the final protocol message, the responder B updates its state and deletes all other potential values. However, in case this final
message was dropped, it also checks incoming initial messages against the current potential states and updates if necessary.
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The formal description of 7' was depicted in Figure and its message flows in Figure |6(b)| It assumes that public
DH keys are distributed for all parties, and that m as before computes a pre-master secret from which session keys are
derived.

Theorem 20. Let w be a stateless protocol.

(i) If m is secure in eCK" then 7t is secure in eCK"-PCS.
(ii) If 7 is secure in Qaxenism, then 't is secure in Qake.
(iii) If m is robust then ' is post-network robust.

The high-level argument for Theorem [20| is as follows. We alter the protocol 77* in minor steps until it becomes protocol 7',
arguing about the security of each protocol along the way. First, we transform 7 into 77* to gain the claimed extra security
by Theorem We then consider an intermediate protocol 7yac and show it is at least as secure as 7*. Finally, we show
that 7' is at least as secure as 7yac. At the end, we will have shown that 77 is at least as secure as mac, which is at least
as secure as m*, which is secure in the required model by Theorem

Proof sketch: We only prove that security in Qakenism implies security in Qake; the other implication is analogous.

First transform 7 into 7* using the PCS transform of Section [E} By Theorem [31] 7* is secure in Qaxe.

Next, transform 7* into myac, which is identical to 7* except each message m; is replaced with (my, u;) as in the transform
above. Note that myac is not robust as it does not use a global stg.potential 4 variable as in the transform above. However, myac
is also secure in Qake; if an adversary can succeed against myac in Qake with non-negligible probability, then essentially the
same attack works on 7*. If the attack requires the test session being fresh and refreshed, then we can apply the random oracle
assumption and use the hash inside a HMAC to show that no extra information is gained from myac over 7*. Hence by Lemma
the attack must not involve the adversary gaining any knowledge of the IS, and as such the same attack (but ignoring the
MACs) can work against 7w*. If on the other hand the attack works with the test session not being refreshed, then no security of
the IS is guaranteed and so the MAC is superfluous information. As such, an attack of this type on 7{ac implies an attack on 7*.
So any attack on myac can be translated onto an attack on 7*. Thus mac i secure in Qake.

To prove w' is at least as secure as myac, we assume the existence of a successful adversary .A_; against 7' and use it to
construct a successful adversary .A,,'\*AAC against myac. For the queries send, create and cr-create, naive forwarding of queries and
replies in the simulation will fail, since the list of potential IS values is used in 7t to compute the MAC values. .

For example, consider the case where A and B engage in two pairs of sessions, where in both A is the initiator and B the
responder. If A_; does not send the final message of the first session A — B, then the messages in the second session will differ.
Indeed, 7' is precisely designed to detect this message loss and update anyway, so it will send a MAC with the new state; while
mwmac Will not and therefore will use the old state. . .

But this is not a problem, because while simulating A+, AmAC can make an additional send(B,-) to B to complete the
original session. The update procedures in myac and 7' are identical, so this causes the states to agree before the construction of
the final message. A .

This will perfectly simulate B’s reply, as if B’s state updated because of the stg.potential 4 variable. It is not difficult to
check the other cases, or that the simulation can still work if Apif ever decides to go back and finish a session that Am A
automatically finished. The other queries can be simulated in the normal way. This shows that 7' is secure in Qake. |

We now give a symbolic argument for robustness. Let 7 be a stateless robust protocol, and 7 its transform. Let #(t) denote
the number of invocations of the KDF in the construction of a term ¢.

Lemma 32. For any network adversary A, if at some time during the execution of A we have two values sty, sty €
stg.potentialA, then #(st1) = #(st2)

Proof: A value st’' is added to a non-empty stg.potential 4 Jjust when a message gI,MAC(stg 43°) is received; since st =

KDF\(...,st) we have that #(st’) = 1 + #(st). Thus we have the stronger invariant that #(st') = 1 + #(stg 4) at all times,
which proves the lemma. ’ |

Lemma 33. Ifstié = st and stgA = sto, then #(st1) > #(sta).

Proof : Every state update st — st’ increases #(st) by one; we thus need to show only that A performs this update before B, but
this indeed holds by induction on the trace length. If the final event in the trace updates st%2 4 then we have equality:

(i) if it was receipt of the third protocol message then B receives a message from A with state st and updates its state to st
(i) if it was receipt of the first protocol message then the same still holds.
Thus for all traces we have the inequality. |

z R
Corollary 34. #(StA,B) — #(StB,A> € {0,1}

Proof: We need only show that A cannot update twice without an intermediate update by B; the result then follows since each
responder update restores equality. But this holds easily: A updates state only when receiving a message m from B with the new
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Figure 8: Time ordering of events in the proof of Lemma

state, and thus #(st”) can be at most one ahead of #(st™) at the time m was sent, and hence certainly no further ahead. |

Lemma 35. IfstIA . = IS at some time t, then either(i) stz2 A= IS at time t, or (ii) IS € st@potential;1 at time t.

Proof by symbolic argument: Note that state is linear; that is, that there is only one possible value of st’~ AB

first claim that the state never repeats; that is, if st = IS at times t; < ¢2 then stI = IS at all times t; <t < t5. This
holds by case analysis on the rules which change the state all of which make the change st — KDF(...,st) and therefore the
number of function symbols in the state term only increases.

Now, let S,, be the statement that the lemma holds for all traces of length < n. We prove S,, for all n by induction. The
base case is trivial; for the inductive case, we need only consider the rules which may change either the Z or the R state, since if
the final rule does not change either state then the induction hypothesis applies to the truncated trace.

at a given time. We

Update initiator state. Suppose therefore that we update stfi’ 5 ISe = ISy # 1S, = stg 4 at time ¢. By explicit key
confirmation we have that IS} € stg.potential 4> added at some time ¢’ < ¢. If it was never removed then we are done, so suppose
that it was removed by sending a message m to B at some time ¢’ < k < ¢; choose the earliest possible k > t'. Finally, since the
message causing it to be added must have been sent with state 1.5, at some time k', we have k" < t" < k < t. The removal can
be upon B’s receipt of either the first or the third protocol message, so there are two cases to consider.

Third. Suppose that m is the third and final protocol message, causing stR potential 4to be emptied as part of the pre-accept
computation. We derive a contradiction from Lemma suppose #(IS¢) = n sO that #(IS ?) = n + 1. The construction of the
third protocol message m occurs only when A changes state; by linearity, since st = ISy at k¥’ and k it must be so for all
times between k' and k. Therefore, m was constructed at A before k' , say with state st such that x := #(st) <n

Now, since k was chosen as early as possible, we have that I.S, € stg.potential 4 at time k since it was not removed
beforehand. Since m is only accepted if the new state is currently in stg.potential 4» we have that st € stg.potential 4i- By
Lemma [32] therefore, n = #(1S;) = #(st) < n, which is a contradiction.

First. Suppose that m is the first protocol message, causing stg.potential 4ito be emptied because it is sent with a state
st € stg.potential 4- Again by Lemm:a since IS} € stg.potential 4 we must have that #(st) = n + 1. This is impossible,
since the final event in the trace has A update to IS and therefore it sent no messages with such a state.

Update responder state. Suppose that the final rule, invoked at time ¢, changes the responder state. Let ¢’ be the time of the
last change to st% AiB setting it say to ISy, so that the induction hypothesis holds at time ¢ < ¢. Thus we have either stg 41 =15

or IS, € st .potential ;. By Corollary 34| we must have that #(st 1) changes from #(1S,) — 1 to #(IS), since the’corollary
holds both before and after the change. The only messages that trlgger such a change are sent by A with a state st having

#(st) = #(ISe), and hence since states are linear st = I.S,. It follows that stR’ = sti p after the update, satisfying the

conclusion of the lemma. |

Theorem 36. If = € SL is robust then the transformed protocol 7' is post-network robust.
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The high-level argument here is as follows. For robustness it suffices to show that if the initiator has some state IS then the
corresponding responder either has the same state or derived it in a previous session and did not erase it. Since updates
occur upon receipt of a message depending on the previous state, parties can never move more than one update out of sync.
We therefore just need to show that required states are not erased by the responder before they are needed. This comes
down to a careful case analysis on the triggers for such an erasure.
Proof : If 7t is not post-network robust, then by definition this means that there exists some network adversary A such that, after
A terminates, either(i) the running of C (the benign adversary that causes a pair of matching sessions between A and B and
then terminates) does not result in A and B deriving the same session key, or (ii) C is unable to even create a matching session
between A and B. The latter case is ruled out by Corollary The former case is dealt with by Lemma the initial message
sent by C has a state which is already known to B, and hence by construction the protocol accepts and derives equal session keys. H
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