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1École normale superieure, France, Paul.Kirchner@ens.fr
2Universite Rennes 1 and Institut Universitaire de France,

Pierre-Alain.Fouque@ens.fr

February 29, 2016

Abstract

Enumeration algorithms in lattices are a well-known technique for solving the Short
Vector Problem (SVP) and improving blockwise lattice reduction algorithms. Here, we
propose a new algorithm for enumerating lattice point in a ball of radius 1.156λ1(Λ) in
time 3n+o(n), where λ1(Λ) is the length of the shortest vector in the lattice Λ. Then,
we show how this method can be used for solving SVP and the Closest Vector Problem
(CVP) with approximation factor γ = 1.993 in a n-dimensional lattice in time 3n+o(n).
Previous algorithms for enumerating take super-exponential running time with poly-
nomial memory. For instance, Kannan algorithm takes time nn/(2e)+o(n), however ours
also requires exponential memory and we propose different time/memory tradeoffs.

Recently, Aggarwal, Dadush, Regev and Stephens-Davidowitz describe a random-
ized algorithm with running time 2n+o(n) at STOC’ 15 for solving SVP and approx-
imation version of SVP and CVP at FOCS’15. However, it is not possible to use a
time/memory tradeoff for their algorithms. Their main result presents an algorithm
that samples an exponential number of random vectors in a Discrete Gaussian distribu-
tion with width below the smoothing parameter of the lattice. Our algorithm is related
to the hill climbing of Liu, Lyubashevsky and Micciancio from RANDOM’ 06 to solve
the bounding decoding problem with preprocessing. It has been later improved by
Dadush, Regev, Stephens-Davidowitz for solving the CVP with preprocessing problem
at CCC’14. However the latter algorithm only looks for one lattice vector while we
show that we can enumerate all lattice vectors in a ball. Finally, in these papers, they
use a preprocessing to obtain a succinct representation of some lattice function. We
show in a first step that we can obtain the same information using an exponential-time
algorithm based on a collision search algorithm similar to the reduction of Micciancio
and Peikert for the SIS problem with small modulus at CRYPTO’ 13.
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1 Introduction

A lattice Λ is defined as the set of all integer combinations of some linearly independent
vectors b1, . . . ,bn of Rn. Finding a shortest non-zero vector in a lattice is a well-known
difficult computational problem, a.k.a. the Shortest Vector Problem (SVP). The SVP
problem has also been shown NP-hard to approximate with randomized reduction [5, 22]
to constant factor. In [19], Khot shows that SVP is hard to approximate within factor

2(logn)1/2−ε for any ε > 0, unless NP has randomized quasipolynomial time algorithms, and
by Haviv and Regev [16] to an almost polynomial factor, 2(logn)1−ε .

If we turn our attention to finding a short lattice vector within some multiplicative
factor exponential in the dimension, the LLL algorithm discovered by Lenstra, Lenstra and
Lovász in 1982 solves this problem in polynomial time [20]. Namely, it returns a non-zero
vector of length at most 2nλ1(Λ), where λ1(Λ) is the length of a shortest vector. Then,
Schnorr proposed a hierarchy of polynomial-time algorithms achieving better approximation
factors but increasing the running time, also known as BKZ or block reduction algorithms
in [34]. The approximation factor achieves by Schnorr’s algorithms is 2O(n(log logn)2/ logn) and
has been improved by Ajtai et al. in [6] to 2O(n log logn/ logn) in polynomial-time. The LLL
and BKZ algorithms use a lattice reduction technique that applies successive elementary
transformations to the input basis in order to make them shorter and more orthogonal.

In 2001, Ajtai, Kumar and Sivakumar propose the first algorithm to solve the SVP prob-
lem in 2O(n) time and space using a sieving technique [6]. Ten years later, Micciancio and
Voulgaris proposed also exponential Õ(4n)-time and Õ(2n)-space algorithm based on com-
puting Voronoi cells [25] and the ListSieve-Birthday runs in time 22.465n+o(n) with 21.233n+o(n)

space [31]. Finally, Aggarwal, Dadush, Regev, Stephens-Davidowitz at STOC 2015 propose
in [2] a SVP algorithm running in time 2n+o(n) and in [3]. Some heuristic algorithms have
been proposed to improve the running time [27, 26, 38, 40]. Very recently, Becker et al. solve
heuristically SVP in time 20.292n+o(n) and memory 20.208n+(n) [9].

Enumeration is a more basic technique to solve lattice problems that dates back to
the early 1980s with the work of Pohst [28], Kannan [18], Finke and Pohst [13]. Many
improvements have been proposed later [35, 30, 25, 14]. Kannan enumeration runs in time
nn/2e+o(n) with poly(n) [15]. This technique consists in performing an exhaustive search for
the best integer combination of the basis vectors. They consequently run in exponential-time
(or worse) but find the shortest vector and not an approximation. More efficient pruning
techniques have been proposed by Gama, Nguyen and Regev in [14]. To date, though
standard enumeration has superexponential complexity, it is still the fastest method for low
dimensional lattices due to its polynomial memory complexity.

1.1 Related Work

Many recent works on lattice problems [4] use the periodic Gaussian function f : Rn →
R+ given by f(t) = ρ(Λ + t)/ρ(Λ), where ρ(A) =

∑
x∈A exp(−π||x||2). This function is

described in figure 1. The basic properties of this function are recalled in [11]. For a lattice
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Λ of dimension n the f function is about zero for points at distance greater than
√
n,

while at distance less than
√

log n, the function is non-negligible. The function f can be
approximated using a list L∗ of vectors wi in the dual lattice Λ∗ of polynomial size N :
fL∗(t) = (1/N)

∑N−1
i=0 cos(2π〈wi, t〉).

Figure 1: The periodic
Gaussian function f .
The picture is taken
from [11]

In [24], Micciancio and Peikert describe a reduction between the
Short Independent Vector (SIVP) problem and the Short Integer
Solution (SIS) problem. Given a random matrix A ∈ Zn×mq for
m = poly(n), q = poly(n) and β > 0, the SIS problem consists in
finding a nonzero integer vector z ∈ Zm such that Az = 0 mod q and
||z|| ≤ β, where || · || denotes the Euclidean norm. Ajtai shows that
for some parameters, SIS enjoys a remarquable worst-case/average-
case hardness reduction: solving it on average with noticeable prob-
ability is at least as hard as approximating some lattice problems
in dimension n in the worst-case, to within poly(n) factors. Peikert
and Micciancio show that SIS retains its hardness with a modulus
q nearly as small as the solution bound β. The main argument of
this new reduction is to use Gaussian sampling for reducing a set of
independent lattice points at each stage. To generate smaller lattice
points in a lattice, random points are combined using the advice
given by the collision search oracle.

In [11], Dadush, Regev and Stephens-Davidowitz propose a new
algorithm to solve the Closest Vector (CVP) problem in lattice with preprocessing. They
were able to extend the algorithm of Liu, Lyubashevsky and Micciancio [21] for a point
closer to a lattice point than all points. The previous algorithm allows to solve the Bounded
Distance Decoding (BDD) problem and the basic idea is to perform a hill climbing from the
point close to a lattice point, where the distance is bounded by

√
log(n)/n, which means

that the periodic Gaussian function is non-negligible at this point.
The work of Aggarwal et al. [2] is very interesting since it solves the DGS hard problem:

sampling an exponential number of random lattice vectors according to a probability dis-
tribution following a Discrete Gaussian with width smaller than the smoothing parameter
of the lattice. If the width is above this parameter, the Gaussian behaves as a continuous
Gaussian, while below it, the distribution becomes closer to a point distribution in 0. They
have been able to generate 2n/2 vectors according to this distribution and they gave a ran-
domized algorithm, since they can generate shortest nonzero vector with a probability larger
than 2−n/2. Consequenly, the overall time and memory complexity of their algorithm is in
2n+o(n).

1.2 Our Contributions

We present here a high-level overview of our algorithms. We first show that we can gen-
erate the list L∗ enabling the approximation of the function f using the output of the
Micciancio-Peikert reduction algorithm. The collision finding algorithm required by the Dis-
crete Gaussian Sampling algorithm is the Generalized Birthday Algorithm [36] which requires
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exponential time algorithms in this setting. Later, we show that the advice L∗ can be used to
perform the hill climbing algorithm and perform an enumeration algorithm. This is the first
time that enumeration is performed in such a way. From this algorithm, we derive a SVP
and CVP algorithm using the results of [11]. Our results are somewhat less efficient than
theirs [2] since we need 3n+o(n) time and memory, compared to 2n+o(n). However, contrary
to this result, we also provide a time-memory tradeoff that is not possible with [2]. To do
so, it is enough to replace the Generalized Birthday Algorithm by exhaustive search. For
a standard deviation of the Gaussian σ above the smoothing parameter of the lattice by a
factor q ≥ 2, we can sample from DΛ,σ in time qO(n) and memory qO(n/q2) with negligible
statistical distance.

Enumeration algorithms are interesting to study since they allow to solve SVP and in [17]
to solve the lattice isomorphism problem. Our second contribution is a new algorithm for
enumerating all lattice points in a ball of radius 1.156λ1(Λ) which implies a new algorithm
for SVP and γ-CVP in 3n+o(n). Contrary to Kannan enumeration, the running time is better
but we need exponential memory. We also show that we can have a time/memory tradeoff
with polynomial memory which is however worse than Kannan algorithm.

1.3 Techniques

The Discrete Gaussian Sampling (DGS) is a well-known problem introduced in [32] and
corresponds to generate discrete Gaussian samples from a lattice. Recently, Aggarwal et
al. [2] solves it for any Gaussian width, even below the smoothing parameter. Here, we only
use sampling above the smoothing parameter, while [2] develops a new technique to sample
below it. To this end, we use the technique developed by Micciancio and Peikert [24] using
efficient collision finding algorithms [36, 12]. We describe an exponential-time algorithm for
DGS in time qO(n) and memory qO(n/q2) for some integer 2 ≤ q ≤ n1/5. The main idea
consists in sampling random lattice vectors, and reducing the length of lattice vectors by
iteratively finding smaller and smaller lattice basis. In comparison, the DGS algorithm of [2]
runs in 2n/2+o(n) time and space and outputs 2n/2 samples. For q = 3, we have a O(2n)
time algorithm to solve SIS. If we push the idea to its limit, we have an algorithm in time
nn/4+o(n) with polynomial memory given a random oracle and using Floyd’s cycle algorithm.

Theorem 1.1. For any σ = Ω(
√
n/q/λ1(Λ∗)), ε = 2−Ω(n) and q ≤ n1/5, it is possible to

sample from DΛ,σ with statistical distance ε, time qO(n) and memory qO(n/q2).

The idea of our new enumeration algorithm originates from the classical reduction of
the Learning With Errors (LWE) problem to bounded decision decoding [33]. A Fourier
transform is used to solve LWE, but it does not use properties of the samples enforced by
the reduction. We show that one can divide the standard deviation by the modulus p of the
LWE, so that the radius of enumeration is multiplied by p.
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2 Preliminaries

Any vector x ∈ Rn has an Euclidean norm ||x||2 =
∑n−1

i=0 x
2
i . We denote by ln the neperian

logarithm and log the binary logarithm. To analyze the success probability of our algorithms,
we will use the following lemma, which is proven in [29]:

Lemma 2.1. Let P and Q be two distributions over S, such that |P (x)−Q(x)| ≤ δ(x)P (x)
with δ(x) ≤ 1/4 for all x ∈ S. Then :

DKL(P ||Q) ≤ 2
∑
x∈S

δ(x)2P (x).

Theorem 2.2 (Pinsker’s inequality). Let P and Q be two distributions over S, and their sta-
tistical distance defines as DSD = (1/2) ·

∑
x∈S |P (x)−Q(x)|. Then DSD ≤

√
DKL(P ||Q)/2.

An algorithm has a negligible probability of failure iff its probability of failure is 2−Ω(n).

2.1 Lattice Background and Problems

A lattice Λ ⊂ Rn is the set of all integer linear combinations Λ(b1, . . . ,bn) =
∑

i bi ·xi (where
xi ∈ Z) of a set of linearly independent vectors b1, . . . ,bn called the basis of the lattice. If
B = [b1, . . . ,bn] is the matrix basis, lattice vectors can be written as Bx for x ∈ Zn. The
length of a shortest non-zero vector in Λ is denoted λ1(Λ). For a lattice Λ, the ith successive
minimum of Λ is the radius of the smallest ball, centered in 0, such that it contains i vectors
of the lattice Λ linearly independent. Given a lattice Λ, we define the dual lattice, denoted
Λ∗ as the set of x ∈ Rn such that 〈x,Λ〉 ⊂ Zn. We have Λ∗∗ = Λ.

A matrix B can be Gram-Schmidt orthogonalized in B̃, and its norm ||B|| is the maximum
of the norm of its columns. Gram-Schmidt orthogonalization of a non-singular square matrix
B is the unique decomposition as B = L · B̃∗, where L is a lower triangular matrix with unit
diagonal and B̃∗ consists of mutually orthogonal rows. For each i ∈ [1, n], we call πi the
orthogonal projection over span(b1, . . . ,bi−1)⊥. In particular, one has πi(bi) = b∗i , which is

the ith row of B̃.

Definition 2.3. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice Λ ⊂ Zn. The goal is to output a vector y ∈ Λ satisfying
‖y‖ = λ1(Λ).

Definition 2.4. For any approximation parameter γ = γ(n) ≥ 1, the search problem γ-CVP
(Closest Vector Problem) is defined as follows: The input is a basis B for a lattice Λ ⊂ Zn
and a point x. The goal is to output a vector y ∈ Λ satisfying ‖x− y‖ ≤ γ · d(Λ,x).

Definition 2.5. The search problem r-Enum (Enumeration Problem) is defined as follows:
The input is a basis B for a lattice Λ ⊂ Zn, a point x and a radius r. The goal is to output
all vectors y ∈ Λ satisfying ‖x− y‖ ≤ r · λ1(Λ).

If r ≥ 1, then the size of output might be exponential [39] but is at most 2(d2re)n. For
simplicity, we assume that the size of the input is polynomial in the dimension.
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2.2 Discrete Gaussian distribution

We define ρs(x) = exp(−π||x||2/s2) and ρs(S) =
∑

x∈S ρs(x) (and similarly for other func-
tions). The discrete gaussian distribution DE,s over a set E and of parameter s is such that
the probability DE,s(x) of drawing x ∈ E is equal to ρs(x)/ρs(E). For simplicity, DE denotes

the distribution DE,1. We define fs(x) = ρs(Λ+x)
ρs(Λ)

. Using a Poisson summation on both term,
it is immediate to prove that

fs(x) =

∑
y∈Λ∗ cos(2π〈x,y〉)ρ1/s(y)∑

y∈Λ∗ ρ1/s(y)
≤ 1.

Definition 2.6. The smoothing parameter ηε of the lattice Λ is the smallest s such that
ρ1/s(Λ

∗) = 1 + ε.

The following lemma was proved in [7] and for completeness we recall its proof in appendix.

Lemma 2.7. For a lattice Λ, c ∈ Rn, and t ≥ 1,

ρ((Λ + c) \ B(0, t
√

n
2π

))

ρ(Λ)
≤ exp

(
− n(t2 − 2 ln t− 1)/2

)
≤ exp

(
− n(t− 1)2/2

)
.

The following lemmata were proved in [24, 11].

Lemma 2.8 ([11]). For ε = 2−Ω(n), we have ηε = Θ(
√

log(1/ε)/λ1(Λ∗)).

Proof. We have ρ1/s(Λ
∗) ≥ 1 + 2 exp(−πs2λ1(Λ∗)2), so that ηε ≥

√
ln(2/ε)/π/λ1(Λ∗). The

previous lemma gives for t = 1 +
√

2 ln((1 + ε)/ε)/n that if λ1(Λ∗) ≥ t
√
n/2π, then ρ(Λ∗) ≥

1 + ε. By scaling the lattice, we can see that ηε ≤ t
√
n/2/π/λ1(Λ∗) =

√
ln((1+ε)/ε)/π+

√
n/2/π

λ1(Λ∗)
.

The result follows from these two bounds.

Lemma 2.9 ([11]). For ε ≤ 1 and t > 1, we have ηεt2 ≤ tηε.

Proof. Since ε ≤ 1,

∑
x∈Λ∗\{0}

exp(−πη2
ε ||x||2)t

2

<

( ∑
x∈Λ∗\{0}

exp(−πη2
ε ||x||2)

)t2
= εt

2

.

Lemma 2.10 ([24, Theorem 3.3]). Let Λ be a lattice, ε < 1/4, z ∈ Zm and non zero, s ≥√
2||z||∞ηε. Let yi be independent vectors with distributions DΛ+ci,s. Then the distribution

of
∑m−1

i=0 ziyi is close to Dgcd(z)Λ+
∑m−1
i=0 ci,||z||s with KL-divergence of 2ε2.

Proof. Micciancio and Peikert proved in [24] that we can apply Theorem 2.1 with δ = ε.

Lemma 2.11 ([2]). There is an algorithm that takes as input a lattice Λ ⊂ Rn and a
parameter s ≥

√
2η1/2(Λ) and outputs 2n/2 i.i.d. samples from a distribution whose statistical

distance to DΛ,s is at most 2−Ω(n) using 2n/2+o(n) time and space.
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2.3 Lattice algorithms

Lemma 2.12 ([10, Lemma 2.3]). Given a basis A of a lattice Λ and a parameter s ≥
||Ã||

√
ln(2n+ 4)/π, the Sample algorithm, samples in polynomial time a point according

to the distribution DΛ,s.

The algorithm MakeBasis corresponds to a slight modification of [23].

Lemma 2.13 ([23, lemma 7.1]). Given a basis of a lattice, the MakeBasis algorithm
searches for n linearly independent lattice points amongst the first n2 points of its input and
outputs in polynomial time a basis A of the lattice such that ||Ã|| is at most the maximum
norm of the input vectors.

Lemma 2.14. If it is possible to solve r-Enum for r ≥ 1, then it is possible to solve SVP
and

√
1 + 1/(r2 − 1)-CVP.

Proof. Enumerating in a ball centered at the origin and of radius λ1 is clearly enough to
solve SVP. The second statement is immediate from [11, theorem 6.1].

3 Discrete Gaussian Sampling (DGS) Algorithm

Micciancio and Peikert propose in [24] a new Discrete Gaussian Sampling using a SIS solver.
We describe an exponential-time algorithm for this task in time qO(n) and memory qO(n/q2)

for some integer 2 ≤ q ≤ n1/5 by instantiating the SIS solver with a subexponential-time
algorithm similar to Wagner’s algorithm [36]. The main idea consists in sampling random
lattice vectors, and reducing the length of lattice vectors by iteratively finding smaller and
smaller lattice basis. In comparison, the DGS algorithm of Dadush, Regev and Davidowitz-
Stephens runs in 2n/2+o(n) time and space and outputs 2n/2 samples.

We use the Micciancio and Peikert lemma 2.10 to estimate the distribution of a linear
combination of independent lattice vectors generated by some Gaussian distributions with
width larger than the smoothing parameter of the lattice. In the Sampling algorithm, we
use recursively this lemma to combine lattice vectors and reduce their length.

The next lemma and theorem show that in the Sampling algorithm, we can reduce
the width of the Gaussian distribution by using the GBA algorithm (Generalized Birthday
Algorithm), a.k.a. Wagner algorithm. The input of the GBA algorithm is a list L0 of

m = 2wrqn/w pairs (xi, ai)0≤i≤m−1 where xi is sampled as a Gaussian vector in the lattice
generated by A with width s and ai = A−1xi. The aim of this algorithm is to find a vector
z = (z0, . . . , zm−1) so that the second component of

∑m−1
i=0 ziai cancels and ||z|| as small as

possible.

Lemma 3.1. In Sampling, if s ≥
√

2ηεq(q/2
w/2)r−1, then |Lr| ≥ qn/w and the statistical

distance between the elements of Lr and DΛ,s is less than rε
√
m, where m = 2wrqn/w.
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Algorithm 1 Generalized Birthday Algorithm

function GBA(L0)
w = blog(q2 − 1)c
` = n/w . Assume this is an integer
for i = 0 to w − 1 do

Empty t
for all (x, a) ∈ Li do

r = (ai`, . . . , ai`+`−1) mod q
if t[r] = ∅ then

t[r]← (x, a)
else
Li+1 ← ((x, a)− t[r]) :: Li+1

t[r]← ∅
end if

end for
end for
for all (x, a) ∈ Lw do
Lout ← (x/q, a/q) :: Lout

end for
return Lout

end function

Algorithm 2 Gaussian sampling

function Sampling(A,σ)
w ← blog(q2 − 1)c
r ← dlog(C

√
n log(n))/ log(q/2w/2)e

m← 2wr+1qn/w

repeat
s← max(||Ã||C

√
log(n), σ(q/2w/2)r)

L0 ← ∅
for i = 0 to m− 1 do

x← Sample(A, s)
L0 ← (x,A−1x) :: L0

end for
for j = 0 to r − 1 do

Lj+1 ← GBA(Lj)
end for
A←MakeBasis(A, Lr)

until s = σ(q/2w/2)r

return Lr
end function

8



Proof. We can note that in the GBA algorithm, we have

|Li| ≥ (|Li−1| − qn/w)/2.

Then, by induction, we can show that |Li| + qn/w ≥ (|L0| + qn/w)/2i. Thus, we get that in
the Sampling procedure, |Lr| ≥ (m+ qn/w)/2wr > qn/w since |L0| = m = 2wr+1qn/w.

We can easily check that if GBA outputs (x, a), then x = Aa and since GBA depends
only on the input coefficient vectors modulo q, we can apply lemma 2.10 to show that
if the input distribution of x is DΛ,s, the output distribution has a KL-divergence of 2ε2

with DΛ,s2w/2/q if s ≥
√

2qηε. By induction, we can then show using Theorem 2.2 that the
statistical distance between Li and DΛ,s(2w/2/q)i is at most i

√
mε.

Theorem 3.2. Assuming σ ≥
√

22w/2ηε for ε < 1/10, Sampling returns in time nO(1)m
more than qn/w elements such that the statistical distance between their distribution and DΛ,σ

is less than rε
√
m with probability of failure smaller than rnε

√
m+ 2−Ω(n).

Proof. At each reduction step of GBA, the size of the list is divided by at least two, so that
we can compute Lr from L0 in time O(mn). Then, we can set C to 0.68, so that Sample
takes polynomial time.

If the elements of Lr were sampled as DΛ,s with s ≥
√

2ηε, then [32, corollary 3.16] shows
that MakeBasis would fail with probability at most 2−Ω(n). Also, using Theorem 2.7, the
norms of the first n2 lattice points of Lr would be at most s

√
n/π, except with probability

at most 2−Ω(n).
We can deduce that each iteration of Sampling in this idealized model divides ||Ã|| by

at least (q/2w/2)r/(C
√
n log n/π) ≥ 2. Therefore, there are only a polynomial number of

iterations before s = σ(q/2w/2)r. We conclude with the previous lemma.

Corollary 3.3. For any σ ≥
√

22w/2ηε/k, q = o(
√
n/ log n) and positive integer k, it is

possible to sample qn/w elements from DΛ,σ in time (k + o(k))nqn/w with statistical distance
and probability of failure bounded by ε2o(n)qn/w.

Proof. We filter the output of Sampling: samples in kΛ are divided by k, others are dis-
carded. The probability for x sampled according to DΛ,σ to be in the coset x + kΛ is
proportional to f(x) which is maximized in 0, so that Pr[x ∈ kΛ] ≥ k−n.

As log(q/2w/2) ≥ log(q/
√
q2 − 1) = − log(1− 1/q2)/2 ≥ 1/(3q2), we have r = o(n/ log n)

since r ≤ log(C
√
n log(n)/π)/ log(q/2w/2) < 3q2 log(C

√
n log(n)/π) and q = o(

√
n/ log n).

Hence, m = 2o(n)qn/w and the result follows by repeating Sample kn times.

If we replace GBA by exhaustive search (or more efficient algorithms [12, 37]) where
vectors from the previous solutions are removed, we have the following result.

Theorem 3.4. For any σ ≥
√

2qηε/k, q = o((n/ log(n))1/4) and positive integer k, it is pos-
sible to sample qn/q

2
/kn elements from DΛ,σ in time q5n, with memory q5n/q2 with statistical

distance and probability of failure bounded by εq5n/q2.
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Algorithm 3 Exhaustive search

function ES(L)
Let B be the n× k matrix of the concatenation of the a for all (x, a) ∈ L
w ← q2 − 1
while k ≥ q2+n/bw/2c do

for all y ∈ {−1, 0, 1}k, 0 < ||y|| < q do
if By = 0 mod q then
Lout ← (

∑
i xiyi/q, Ay/q) :: Lout

Remove (xi, ai) from L and ai from B for all i with yi 6= 0
end if

end for
end while
return Lout

end function

Proof. By the pigeonhole principle, ES will find a new output if
(

k
bw/2c

)
≥ qn + 1, so that it

terminates.
One may then redo the previous proofs with r = dlog(C

√
n log n)/ log(q2/w)e = o(

√
n log(n))

and m = 2wrqn/bw/2c. Since b(q2 − 1)/2c ≥ q2/4, and wr = 2o(
√
n log3(n)) while qn/bw/2c =

2Ω(
√
n log3(n)), we have m ≤ q5n/q2 for a sufficiently large n. Hence, the running time is

bounded by nO(1)(2m)w ≤ q5n.

For example, with q = 3, we can consider w = 8, hope that lists of size qn/(w−1)+o(n) =
O(20.226n) are sufficiently large, and solve the SIS problem in time q5n/8+o(n) = O(21.333n)
using the algorithm of [12]. Using a tower of lattices as in [2, Section 5], it might be possible
to use w = q2 while the SIS problem is over a space a bit larger than qn. This shows that
the algorithm may be more practical that it seems to be.

Corollary 3.5. For any σ = Ω(
√
n/q/λ1(Λ∗)), ε = 2−Ω(n) and q ≤ n1/5, it is possible to

sample from DΛ,σ with statistical distance ε, time qO(n) and memory qO(n/q2).

Proof. Theorem 2.7 proves that, with ε′ = ε2−2nk−n, ηε′ = O(
√
nk/λ1(Λ∗)). We then apply

the previous theorem with k = O(q) sufficiently large and ε′, and repeat the corresponding
algorithm nkn times.

If we push the previous idea to its limit, we can even use polynomial memory using
Floyd’s cycle finding algorithm to replace ES.

Theorem 3.6. Let D be a distribution over a set E of size N . Let g : E → E such that
all g(x) are sampled independently with the distribution D. Then, using O(

√
nN) calls to

g, we can find x 6= y such that g(x) = g(y) with polynomial memory, except with probability
2−Ω(n) +O( 4

√
n/N).

10



Proof. The algorithm samples uniformly u0 ∈ E. Then, we use Floyd’s cycle finding algo-
rithm with the sequence defined by ui+1 = g(ui). Let K = 2d

√
nNe. If the sequence does

not cycle in its first K elements, or if u0 is in cycle, the algorithm fails. Else, we can deduce
from the size of the cycle x and y in K calls to g.
Let p =

∑
i≤K/2D(ui). Then, Pr[D(ui) ≤ 1/(3N)] ≤ 1/(3

∑
j<iD(uj)) for any i ≤ K/2

and these events are independents. Therefore, either p ≥ 2
3
, or, using the Hoeffding in-

equality, at most 2K/3 − 1 events occured except with probability 2−Ω(n). Thus, we have
p ≥ min(

√
n/N/9, 2

3
).

The probability that there is no collision amongst the first K elements is therefore at most
(1 − p)K/2 ≤ exp(pK/2). If n ≥ N , then the theorem is vacuous, else exp(pK/2) = 2−Ω(n).
The probability that there exists 1 ≤ i ≤ K such that u0 = ui is at most KD(u0). We have
Pr[D(u0) ≥ 1/

√
KN ] ≤

√
K/N and therefore, the probability that u0 is in the cycle is at

most 2
√
K/N = O( 4

√
n/N).

Corollary 3.7. For any σ ≥ n1/2−o(1)/λ1(Λ∗) and ε = n−Ω(n), given a random oracle, it
is possible to sample from DΛ,σ with statistical distance ε, time nn/4+o(n) and polynomial
memory.

Proof. Let g(x) = A−1SampleH(x)

(
A, s

)
mod q where the random bits used in Sample

come from H(x) and H is a function from (Z/qZ)n to the set of bit strings of suitable
polynomial length, sampled uniformly. Using the previous theorem, we can find a collision in
g in O(

√
nqn/2) calls to g, except with negligible probability which reveals x and y sampled

independently under DqΛ+c,s for some c. Then, using Theorem 2.10, the distribution of
(x − y)/q is close to DΛ,

√
2s/q. Setting q = dC

√
2n log ne, we may now proceed just like in

Sampling. Finally, choosing some k = no(1) to filter the samples gives the result.

In practice, we would use any sufficiently hard pseudo-random function as a random
oracle. We can even build a pseudo-random function assuming worst-case hardness of lattice
problems with a much higher dimension [8].

4 Enumeration algorithms

In this section, we first describe the Enumerate algorithm, which allows to enumerate all
lattice vectors within a ball of radius about λ1(Λ) and then, we apply it to solve the SVP
problem in time 3n+o(n). The time-memory trade-off algorithms are simplified version of it,
with a different sampler.
Let L∗ be a list with N independent samples from DΛ∗ and fL∗(x) = 1

N

∑N−1
i=0 cos(2π〈wi,x〉),

ρ(Λ) = 1 + ε with ε ≤ 2−n, sε =
√

ln(1/ε)/π ≤ n and select some N = O(n log(1/ε)/
√
ε).

The following theorem was proven in [11] (sε was taken slightly larger than in our defi-
nition, but the theorem is still correct) :

Theorem 4.1 ( [11, Proposition 3.2]). Except with probability 2−Ω(n),∣∣∣∣∣∣∣∣∇fL∗(x)

2πfL∗(x)
+ x

∣∣∣∣∣∣∣∣ ≤ ε(1−2δ(x))/4||x||
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holds simultaneously for all x ∈ Rn with δ(x) = max(1/8, ||x||/sε) and ||x|| ≤ (1/2 −
2/(πs2

ε))sε.

Combined with rounding, we can deduce the following theorem :

Theorem 4.2. For ε ≤ 2−n, except with probability 2−Ω(n), for all x such that dist(x,Λ) ≤
(1/2− 3 log(n)/n)sε,

Round

(
L∗,
∇fL∗(x)

2πfL∗(x)
+ x

)
is the closest lattice point to x, where Round takes polynomial time.

Proof. First of all, the Round algorithm selects n linearly independent vectors within L∗.
Then, using algorithm of lemma 2.13, one can build a matrix A, such that ||A|| ≤

√
n/2,

except with probability 2−Ω(n). Finally, we round according to the lattice the input point:
Round(L∗, t) = A−tbAtte.

One can check that when x is shifted by a lattice point, the result is shifted by this
lattice point ; so that we only have to prove the result when 0 is the closest lattice point. If
||x|| ≤ (1/2− 5 log(n)/n)sε, we have∣∣∣∣∣∣∣∣∇fL∗(x)

2πfL∗(x)
+ x

∣∣∣∣∣∣∣∣ ≤ ε1/4−δ(x)/2||x||.

If ||x|| ≤ sε/8, the right hand side is smaller than ε3/16n ≤ n−1/2 as soon as n ≥ 8. Else,
it is smaller than ε3 log(n)/(2n)n ≤ n−1/2. As a result, using the Cauchy-Schwarz inequality,⌊
At

(
∇fL∗ (x)
2πfL∗ (x)

+ x

)⌉
= 0.

The Enumerate algorithm allows to find all lattice points close to x within a distance
bounded by (1/2−3 log(n)/n)sε given the succinct representation of the dual lattice and the
function fL∗ . The main idea consists in performing a gradient ascent from x as in [21, 11].

Lemma 4.3. Given x, Enumerate returns all As such that ||As−x|| ≤ p(1/2−3 log n/n)sε
in time O(n2pn + n3/

√
ε).

Proof. Let z be sampled according to DΛ∗ and v = As − x. Therefore, we can write
〈z,x〉 = 〈z,As〉 − 〈z,v〉 = 〈Atz, s〉 − 〈z,v〉 and since z ∈ Λ∗, Atz ∈ Zn.
Since E[exp(2iπ(〈Atz, s〉−〈z,x〉)/p)] = E[exp(2iπ〈z,v/p〉)], we get <(f [s mod p]) = fL∗(v/p).
Moreover, <(grad[j][s mod p]) = (2π∇fL∗(v/p))j, and therefore, if we have ||As − x|| ≤
p(1/2− 3 log n/n)sε, pRound(L∗,y + (x−A(s mod p))/p) + A(s mod p) = As.

Theorem 4.4. Let t ≥ 1 such that a = (t2 − 2 ln t − 1)/4. Assume we have an oracle
which samples from DΛ∗,σ for any σ ≥ ηexp(−2an). Then, it is possible to enumerate all lattice
points within a ball of radius (1 + o(1))p

√
a/tλ1 in time exp(an+ o(n)) and negligible failure

probability.
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Algorithm 4 Enumerate

function Enumerate(x,L∗)
for all z ∈ L∗ do

a← A−1z mod p
f [a]← f [a] + exp(2iπ〈z,x〉/p)
for j = 0 to n− 1 do

g[j][a]← g[j][a] + xj exp(2iπ〈z,x〉/p)
end for

end for
f ← FastFourierTransform(f)
for j = 0 to n− 1 do

grad[j]← FastFourierTransform(g[j])
end for
Lout ← ∅
for all s ∈ (Z/pZ)n do

for j = 0 to n− 1 do
yj ← <(grad[j][s])/<(f [s])

end for
Lout ← (pRound(L∗,y + (x−As)/p) + As) :: Lout

end for
return Lout

end function

13



Proof. Let ε = exp(−2an)/2. Using LLL [20], it is possible to find λ ∈ [1, 2n/2]λ1(Λ). Because
of Theorem 2.8, we can deduce η ∈ [1, 2n]ηε(Λ

∗). We then run the previous algorithm by
scaling the problem of a factor η(1 + 1/n)i for i integer from 0 to n2. Let i ≤ n2 be the
largest integer such that ηε(Λ

∗) ≥ η(1 + 1/n)i = ηε′(Λ
∗). Because ηε ≤ (1 + 1/n)ηε′(Λ

∗), we
have using Theorem 2.9 ε ≥ ε′(1+1/n)2 . Therefore, sε′ ≥ sε/(1 + 1/n). Using Theorem 2.7 and
the previous lemma, it is possible to enumerate in a ball of radius

p(1/2− 3 log(n)/n)
√

2na/πηε/(1 + 1/n) ≥ (1 + o(1))p
√
a/tλ1.

Corollary 4.5. It is possible to solve 1.156-Enum in time 3n+o(n). Also, for any r = ω(1),
we can solve r-Enum in time (2r)n+o(n).

Proof. Use the previous theorem with p = 3 and t = 2.7194 >
√

2, and the exact fast gaussian
sampler of [2] recalled in Theorem 2.11. For the second claim, use t =

√
min(r, n) = ω(1)

so that
√
a/t = 1/2 + o(1) and sε ≤ n, and we can then set p = (2 + o(1))r.

Corollary 4.6. For any q = o((n/ log n)1/4), q ≥ 2, it is possible to solve r-Enum in time
(rq)O(n), using a memory of size qO(n/q2) and with negligible probability of failure. Also, with
a random oracle, we can solve r-Enum in time (rn1/4)n+o(n) and polynomial memory.

Proof. Use p = O(r), t = 2, in Theorem 4.4 where the Fourier transforms are computed
naively, with polynomial memory. Repeat the Fourier transforms p times, so that the failure
probability is pO(n)2−pΩ(n) = 2−Ω(n). The sampler is given by Theorem 3.5.

For the second claim, use the sampler of Theorem 3.7.

To illustrate this tradeoff, we can remark that if q = log n, we have a time complexity of

2O(n log logn) and memory complexity of 2
O
(
n log logn

log2 n

)
which is more efficient than Kannan but

uses much more memory.
For comparison, Kannan algorithm can solve r-Enum in time O(r)nnn/(2e)+o(n) or for

r ≥
√
n, in time O(r)n[15].
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A Proof for lemma 2.7

Proof. For any s ≥ 1, using Poisson summation :

ρs(Λ + c)

ρ(Λ)
=sn

∑
x∈Λ∗ ρ1/s(x) exp(2iπ〈x, c〉)

ρ(Λ∗)

≤ sn
∑

x∈Λ∗ ρ1/s(x)∑
x∈Λ∗ ρ(x)

≤ sn.

Then,

snρ(Λ) ≥ρs
(

(Λ + c) \ B
(

0, t

√
n

2π

))
≥ exp(t2(1− 1/s2)n/2)ρ

(
(Λ + c) \ B

(
0, t

√
n

2π

))
.

And therefore, using s = t :

ρ((Λ + c) \ B(0, t
√

n
2π

))

ρ(Λ)
≤ exp(−n(t2(1− 1/s2)− 2 ln s)/2)

= exp(−n(t2 − 2 ln t− 1)/2)

≤ exp(−n(t− 1)2/2),

where the last inequality stems from ln t ≤ t− 1.
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