
Spooky Encryption and its Applications

Yevgeniy Dodis
NYU

Shai Halevi
IBM Research

Ron D. Rothblum
MIT

Daniel Wichs
Northeastern University

March 10, 2016

Abstract

Consider a setting where inputs x1, . . . , xn are encrypted under independent public keys.
Given the ciphertexts {ci = Encpki(xi)}i, Alice outputs ciphertexts c′1, . . . , c

′
n that decrypt to

y1, . . . , yn respectively. What relationships between the xi’s and yi’s can Alice induce?
Motivated by applications to delegating computations, Dwork, Langberg, Naor, Nissim and

Reingold [DLN+04] showed that a semantically secure scheme disallows signaling in this setting,
meaning that yi cannot depend on xj for j 6= i . On the other hand if the scheme is homomorphic
then any local (component-wise) relationship is achievable, meaning that each yi can be an
arbitrary function of xi. However, there are also relationships which are neither signaling nor
local. Dwork et al. asked if it is possible to have encryption schemes that support such “spooky”
relationships. Answering this question is the focus of our work.

Our first result shows that, under the LWE assumption, there exist encryption schemes sup-
porting a large class of “spooky” relationships, which we call additive function sharing (AFS)
spooky. In particular, for any polynomial-time function f , Alice can ensure that y1, . . . , yn
are random subject to

∑n
i=1 yi = f(x1, . . . , xn). For this result, the public keys all depend on

common public randomness. Our second result shows that, assuming sub-exponentially hard in-
distinguishability obfuscation (iO) (and additional more standard assumptions), we can remove
the common randomness and choose the public keys completely independently. Furthermore,
in the case of n = 2 inputs, we get a scheme that supports an even larger class of spooky
relationships.

We discuss several implications of AFS-spooky encryption. Firstly, it gives a strong counter-
example to a method proposed by Aiello et al. [ABOR00] for building arguments for NP from
homomorphic encryption. Secondly, it gives a simple 2-round multi-party computation protocol
where, at the end of the first round, the parties can locally compute an additive secret sharing
of the output. Lastly, it immediately yields a function secret sharing (FSS) scheme for all
functions.

We also define a notion of spooky-free encryption, which ensures that no spooky relationship
is achievable. We show that any non-malleable encryption scheme is spooky-free. Furthermore,
we can construct spooky-free homomorphic encryption schemes from SNARKs, and it remains
an open problem whether it is possible to do so from falsifiable assumptions.

Contents

1 Introduction 3
1.1 Technical Overview . 4
1.2 Related Work . 8

2 Definitions 8
2.1 Local, No-Signaling, and Spooky Relations . 8
2.2 Spooky Encryption . 9
2.3 Additive-Function-Sharing Spooky Encryption . 10

3 LWE-Based Spooky Encryption 12
3.1 Learning with Errors (LWE) and Multi-Key FHE . 12
3.2 LWE-Based AFS Spooky Encryption . 13
3.3 Beyond AFS-2-Spooky Encryption . 14

4 piO based Spooky Encryption 16
4.1 Tools . 16
4.2 Two-Key Spooky Encryption from piO . 19
4.3 piO based Multi-key Spooky Encryption . 23

5 From 2-Input to n-Input AFS-Spooky 24

6 Applications of Spooky Encryption 25
6.1 Counter Example for the [ABOR00] Heuristic . 25
6.2 2-Round MPC from AFS-Spooky Encryption . 27
6.3 Function Secret Sharing . 28

7 Spooky-Free Encryption 29
7.1 Application: Succinct 1-round Arguments for NP . 30
7.2 Non-Malleable Encryption is Spooky-Free . 32
7.3 Homomorphic Spooky-Free Encryption . 33

References 37

A Proof of Theorem 17 41

1 Introduction

Imagine Alice and Bob, standing on different planets light years apart. They are “simultaneously”
given some input bits x1 and x2 respectively, and must answer by outputting bits y1 and y2

respectively. Classical physics allows them to implement local (component-wise) strategies where
y1 is an arbitrary function of x1 and y2 is a function of x2. On the other hand, the impossibility of
faster-than-light communication disallows signaling strategies, meaning that the distribution of y1

cannot depend on the value of x2 and vice versa.
However, there are strategies that are neither local nor signaling. For example, perhaps Alice

and Bob want to ensure that y1, y2 are random bits subject to y1 ⊕ y2 = x1 ∧ x2. In this case, the
distribution of y1 does not depend on x2 (and vice versa) so the strategy is not signaling, but it’s
also not local. Surprisingly some such strategies which are neither signaling nor local are achievable
using quantum mechanics, if Alice and Bob share an entangled quantum state. Einstein referred
to this phenomenon as “spooky action at a distance”.

In this work, we consider an analogous scenario, first considered by Dwork et al. [DLN+04],
where the separation between x1, x2 is enforced not via physical distance but by encrypting these
bits under two independent public keys.1 Here Alice gets the two ciphertexts c1 ← Encpk1(x1), c2 ←
Encpk2(x2), and outputs two other ciphertexts c′1, c

′
2 which are decrypted as yi ← Decski(c

′
i), i = 1, 2.

As in the physical analogy, here too we can rule out signaling strategies (if the encryption is
semantically secure), and can implement local strategies (if the encryption is homomorphic). But
can we replace the entangled state from above by a special “spooky encryption scheme” that would
allow Alice to implement spooky strategies? Answering this question is the focus of this work, and
we obtain the following results:

• Assuming the hardness of learning with errors (LWE), there exists a secure encryption scheme
in which Alice can implement a wide class of spooky strategies that we call additive function
sharing (AFS) spooky. Namely, for any two-argument function f : ({0, 1}∗)2 → {0, 1}, Alice
can convert encryption of inputs ci ← Encpki(xi) to encryption of outputs yi ← Decski(c

′
i),

ensuring that y1 ⊕ y2 = f(x1, x2), except for a small error probability.

This construction, described in Section 3, is an almost immediate consequence of the LWE-
based multi-key FHE scheme from [CM15, MW16], and it inherits from that multi-key scheme
its dependence on a common random string. Namely, the public/secret key-pairs must be
generated relative to some common public randomness. Also, the error probability in this
spooky scheme depends on the LWE approximation factor: For polynomial approximation
factor we get a polynomially-small error probability, and to get negligible error we must
assume LWE hardness with a super-polynomial approximation factor.

• In Section 4 we describe a spooky scheme that supports arbitrary two-input spooky relations
on short inputs, as well as a very wide class of two-input spooky relations on long inputs. This
construction uses probabilistic indistinguishability obfuscation (piO), which is an extension
of iO to probabilistic circuits recently introduced by Canetti et al. [CLTV15], in conjunction
with lossy encryption schemes which are homomorphic and ensure circuit privacy against
malicious adversaries. This construction works in the plain model without common-random
string and has no error, and it can be realized based on exponentially strong iO, exponentially
strong PRFs, and DDH.

1Dwork et al. consider a PIR scheme rather than an encryption scheme but the translation is immediate.

3

• In Section 5 we describe a transformation from a scheme that supports only two-input spooky
relations on one-bit inputs to one that supports AFS spooky relations on arbitrary number of
inputs (of arbitrarily length each). This transformation can be applied to both our LWE-based
and piO-based constructions from above.

• We show several implications of (AFS-)spooky encryption. On a negative, it gives a strong
counter-example to a method proposed by Aiello et al. [ABOR00] for building succinct ar-
guments for NP from homomorphic encryption, resolving a question posted by [DLN+04].
On a positive, it immediately yields a function secret sharing (FSS) scheme for all func-
tions [BGI15, GI14], and also gives a simple 2-round multi-party computation protocol where,
at the end of the first round, the parties can locally compute an additive secret sharing of the
output. These application are discussed in Section 6.

• We also study in Section 7 the concept of spooky free encryption, i.e., an encryption scheme
where we can prove that no spooky strategy is feasible. We show that any non-malleable en-
cryption scheme is spooky-free, and also build spooky-free homomorphic encryption schemes
from SNARKs. It remains an open problem to construct spooky-free homomorphic encryp-
tion under more standard assumptions. Spooky-free homomorphic encryption can be used to
instantiate the approach of Aiello et al. to get succinct arguments for NP.

1.1 Technical Overview

1.1.1 LWE-based construction

Our LWE-based construction builds on the multi-key FHE scheme from [CM15, MW16]. In that
scheme (after some syntactic massaging) secret keys and single-key ciphertexts are vectors in Znq ,
and decryption consists of computing the inner product modulo q, w = 〈~s,~c〉, then rounding to the
nearest multiple of q/2, outputting zero if w is closer to 0 or one if w is closer to q/2.

That scheme, however, also supports homomorphic computation across ciphertexts relative to
different keys. Roughly, it features a “lifting procedure” where a dimension-n ciphertext vector
relative to one key ~si is “lifted” to a dimension `n vector ~c′ = (~c′1, . . . , ~c′`) relative to the con-
catenated key ~s′ = (~s1, . . . , ~s`) of dimension `n. These lifted ciphertexts can still be computed on,
and the decryption procedure proceeds just as before, except using the higher-dimension vectors.

Namely, to decrypt ~c′ using ~s′, one first computes the inner product w′ =
〈
~s′, ~c′

〉
modulo q, then

rounds to the nearest multiple of q/2. In other words, we compute the individual inner products

wi =
〈
~si, ~c′i

〉
, then add them all up and round to the nearest multiple of q/2.

We observe (cf. Lemma 3.2) that for the special case of two keys, ` = 2, instead of adding the
wi’s and then rounding, we can first round each wi to the nearest multiple of q/2 and then add, and
this yields the same result with high probability. Specifically, the error probability is propositional
to the rounding error for the overall sum w′. Hence by setting the parameters so that w′ is very
close to a multiple of q/2, we can ensure very low error probability.

This observation immediately yields additive function sharing (AFS) spooky encryption for
two-argument functions: We just directly use the scheme from [CM15, MW16] to encrypt the
two arguments x1, x2 under two keys, then use the multi-key evaluation procedure to compute a
multi-key ciphertext ~c′ = (~c′1, ~c′2) encrypting the value f(x1, x2). Viewing each ~c′i as a single-
key ciphertext, we just apply the usual decryption procedure of inner-product and rounding to

4

each of them, and the resulting two bits are an additive secret sharing of f(x1, x2), except with a
small error probability. The error probability can be made negligible by relying on LWE with a
super-polynomial approximation factor.

1.1.2 piO-based construction

The LWE-based construction from above inherits from the underlying FHE scheme [CM15, MW16]
its dependence on common public randomness, and it suffers from a small probability of error
(depending on parameters, this may or may not be negligible). In Section 4 we show that using iO
we can construct an AFS encryption scheme without CRS and without errors, and moreover we
can support arbitrary spooky relations on two bits, not just additive sharing. For this overview,
however, let us focus on the simpler task of constructing AFS spooky scheme for the multiplication
function MULT(b1, b2) = b1 · b2.

The starting point of the construction takes a homomorphic encryption scheme (Gen,Enc,Dec,Eval)
and adds to the public key an obfuscation of the randomized functionality that decrypts, computes
the functions f , and re-encrypts secret-sharing of the result. Specifically, let us denote for any
x1, y1 ∈ {0, 1} the function fx1,y1(x2) = x1 · x2 ⊕ y1, and consider the following randomized pro-
gram:

Program Psk1,pk1(c1, pk2, c2)

1. y1 ← {0, 1}. 4. c′2 = Eval(pk2, fx1,y1 , c2).
2. c′1 ← Encpk1(y1). 5. Output (c′1, c

′
2).

3. x1 = Decsk1(c1).

Given the two pairs (pk1,Encpk1(x1)), (pk2,Encpk2(x2)), and access to the program Psk1,pk1 , we
can run use Psk1,pk1(c1, pk2, c2) to get two ciphertexts c′1 and c′2, encrypting y1, y2, respectively, such
that y1⊕ y2 = x1 · x2. We would like, therefore, to add an obfuscation of Psk1,pk1 to the public key,
thereby obtaining AFS spooky multiplication.

As described, however, this construction is not even secure when Psk1,pk1(c1, pk2, c2) is only
accessed by a perfect black box. The reason is that if the underlying homomorphic encryption is
not circuit private, then the evaluated ciphertext c′2 could leak information about x1. To fix this
issue, we require the use of circuit-private homomorphic encryption in this construction. In fact,
since the adversary could run the program Psk1,pk1(c1, pk2, c2) on arbitrary inputs of its choice, we
need a stronger notion of circuit privacy against malicious adversaries [OPP14], that guarantees
privacy even if the public-key and ciphertext given to the evaluation algorithm are generated
adversarially.

Using a malicious circuit private homomorphic encryption scheme, the construction above would
be secure if the program Psk1,pk1(c1, pk2, c2) is accessed as a perfect black box (e.g., using VBB
obfuscation). However, we would like to rely on the weaker notion of indistinguishability obfuscation
(iO), or rather probabilistic iO [CLTV15] (since we are dealing with a randomized program). To do
so, we need to somehow argue that the secret key sk1 that is encoded within the program Psk1,pk1 is
hidden by the weaker obfuscation. To that end we use a technique introduced in the recent work of
Canetti et al. [CLTV15]. In one of our hybrids we replace pk1 with a lossy public-key that reveals
nothing about y1. Once we do that we can use (probabilistic) iO to switch to a program that does
not contain sk1 which implies that the iO indeed hides sk1.

5

Finally, we point out that the construction above only uses homomorphic computations for
single-bit functions fx,y : {0, 1} → {0, 1} (in addition to probabilistic iO), and there are only four
such function (identity, negation, constant 0 and constant 1). A secure and malicious-circuit-private
encryption scheme that supports these operations was constructed by Naor and Pinkas [NP01] based
on the DDH assumption.

1.1.3 From 2-spooky to n-spooky

Both the LWE and piO based constructions above only support two-argument spooky relations.
Specifically the LWE-based scheme only supports AFS-spooky relations for two-argument functions,
and the piO-based scheme supports a large class of spooky relations but again, only on two inputs.
We extend the supported spooky relations by showing how to transform a scheme that supports
multiple hops of AFS-spooky two-input multiplication and single-key additive homomorphism, into
a leveled AFS spooky scheme for any number of inputs of any length.

The transformation is inspired by the Goldreich-Micali-Wigderson MPC protocol [GMW87]:
Suppose that we are given n public keys pk1, . . . , pkn, bit-by-bit encryptions of the input values
Encpki(xi), and an arithmetic circuit C : ({0, 1}∗)n → {0, 1} that we want to evaluate (i.e., to
produce encrypted shares of C(x1, . . . , xn)). We process the circuit gate by gate, while maintaining
the invariant that for every wire w we produce ciphertexts Encpk1(w1), . . . ,Encpkn(wn) such that
⊕i∈[n]wi is equal to the wire w’s value. The wires are processed inductively in the following natural
way:

1. For an input wire holding a bit b, which is part of the j’th input xj , we take the ciphertext c
that encrypts b relative to pkj , and append to it the ciphertexts ci ← Encpki(0) for all i 6= j.
Clearly the ciphertexts (c1, . . . , cj−1, c, cj+1, . . . , cn) are encryptions of an additive sharing of
the wire’s value b.

2. For an addition gate with input wires u, v and output wire w, by induction we already have
Encpk1(u1), . . . ,Encpkn(un) and Encpk1(v1), . . . ,Encpkn(vn). Using just an additive homomor-
phism on each key individually, we can produce Encpk1(u1 ⊕ v1), . . . ,Encpkn(un ⊕ vn) which
is the desired secret sharing.

3. For a multiplication gate with input wires u, v and output wire w, again by induction we al-
ready have Encpk1(u1), . . . ,Encpkn(un) and Encpk1(v1), . . . ,Encpkn(vn). Using the AFS spooky
multiplication we compute an encrypted tensor product of the ~u and ~v vectors. Namely, for
every i, j we use spooky multiplication to compute(

Encpki(xi,j),Encpkj (yi,j)
)
← SpookyMult

(
Encpki(ui),Encpkj (uj)

)
,

such that xi,j ⊕ yi,j = ui · vj . Then we collapse this tensor product back into an n-vector
using the additive homomorphism relative to each key separately. That is, for every i ∈ [n]
we can compute a ciphertext Encpki(wi) such that wi =

⊕
j∈[n] xi,j ⊕

⊕
j∈[n] yj,i.

We observe that these ciphertexts form a secret sharing of u · v. Indeed, adding up the
plaintexts we get:

⊕
i∈[n]

⊕
j∈[n]

xi,j ⊕
⊕
j∈[n]

zj,i

 =
⊕
i,j∈[n]

(xi,j ⊕ yi,j) =
⊕
i,j∈[n]

ui · vj = (
⊕
i

ui) · (
⊕
j

vj) (1)

6

which is indeed the result of the multiplication gate.

Thus, if the scheme can support 2d interleaved hops of (two-key) spooky multiplication and
(single-key) additive homomorphism then it is an AFS-spooky scheme for the class of all depth d
arithmetic circuits. We note that the resulting scheme does not depend on the number of inputs
or their length, and it only depends on the complexity of C inasmuch as the underlying scheme
depends on the depth of the evaluated circuit. We also mention that the LWE-based scheme does
not naturally allow multiple hops, but we can easily extend it to allow this via bootstrapping.

1.1.4 Applications of Spooky Encryption

In Section 6 we describe both positive and negative applications of spooky encryption. On the
positive, it immediately yields a function secret sharing (FSS) scheme for all functions [BGI15,
GI14]. Previously such a general function secret sharing scheme was only known to follow from
sub-exponentially hard indistinguishability obfuscation [BGI15] whereas we can base it on LWE
(using our LWE based spooky encryption).

Spooky encryption also gives a simple 2-round multi-party computation protocol. Roughly,
AFS-spooky encryption lets each party broadcast an encryption of its input under its own key, then
everyone individually performs the AFS-spooky evaluation locally, each party can locally decrypt
and recover a share of the output, and the output is recover using another round of communication.
There are some technicalities that should be addressed for this idea to work, and perhaps the easiest
way of addressing them is to use AFS-spooky encryption to construct multi-key FHE with threshold
decryption (TMFHE) (as defined in [MW16]), which can then be used to get a two-round protocol
as shown in [MW16]. Using our obfuscation based construction (which does not require a CRS),
this gives the first 2-round semi-honest secure MPC protocol in the plain model.2

On the negative side, AFS-spooky encryption yields a counter-example for the transformation of
Aiello et al. [ABOR00] from multi-prover (MIP) to single-prover protocols. Their idea was to send
all of the MIP queries to a single prover, but encrypted under independents keys of a homomorphic
encryption scheme. The single prover can homomorphically implement the actions of the MIP
provers on the individual encrypted queries, and hopefully the fact that the queries are encrypted
under independent keys means that no cross-influence is possible. It is easy to see that spooky
encryption violates this hope (by its very nature). Moreover, we show that this transformation
can lead to a total break of soundness - in Section 6.1 we show how using AFS-spooky encryption
can lead to an unsound single-prover protocol, when the transformation is applied to a simple
two-prover protocol for graph 3-colorability.

1.1.5 Spooky-Free Encryption

Finally, in Section 7 we discuss the notion of spooky-free (SF) encryption, which provably ensures
that any correlation that an attacker can induce between the original messages (m1, . . . ,mn) and
“tampered messages” (m′1, . . . ,m

′
n), can be simulated by a “local simulator” that produces m′i

only as a function of mi (and some shared randomness). See Definition 7.1. To validate this
definition, we show that a spooky-free FHE suffices to prove the security of the natural approach

2In contrast, [GGHR14] and [MW16] construct 2-round protocols in the CRS model. As for security against a
malicious adversary, [KO04] show that 5 rounds are necessary in the plain model (with respect to black-box proofs
of security).

7

of Aiello et al. [ABOR00], which was discussed above, of converting a succinct MIP into a succinct
one-round argument discussed above. Indeed, spooky-freeness ensures that the attacker cannot
cause more damage from seeing all n ciphertexts than what it could have done by seeing each
plaintext independently.

We then turn to the systematic study of spooky-free encryption. First, we show that spooky-
freeness implies semantic security. On the other hand, a very weak form of non-malleability (called
1-non-malleability here, or 1-bounded CCA security in [CHH+07]) implies spooky-freeness. How-
ever, since the scheme is non-malleable, it is inherently not homomorphic and so we cannot use it
to obtain a delegation scheme via the foregoing approach. See Section 7.2.

Indeed, to instantiate the approach of Aiello et al. constructing succinct arguments for NP, we
need a homomorphic encryption scheme which is spooky free. As a proof of concept, in Section 7.3
we show how to built such a homomorphic spooky-free encryption using succinct non-interactive ar-
guments of knowledge (SNARKs [GW11, BSW12]), true-simulation-extractable NIZKs [DHLW10]
and regular FHE. While the use of SNARKs makes this construction uninteresting in the appli-
cation to succinct arguments, the clean definition of SF-encryption, coupled with our “proof of
concept” implementation, might open the door for future constructions that will be more useful.

1.2 Related Work

The starting point for this line of work is the natural approach, suggested by Aiello et al. [ABOR00],
for constructing a secure delegation scheme by combining a multi-prover interactive proof-system
(MIP) with a homomorphic encryption scheme as described above. This intuition was questioned
by Dwork et al. [DLN+04] and our work confirms, under reasonable cryptographic assumptions,
that indeed, the approach of [ABOR00] is not necessarily secure.

An approach to overcoming this barrier was taken by Kalai et al. [KRR13, KRR14]. They
designed a specific MIP (for P) that is sound even against arbitrary no-signaling adversaries. Since
semantic-security rules out signaling strategies, they obtain a secure delegation protocol for any
language in P.

Multi-key FHE. A notion that is related to spooky-encryption, introduced by López-Alt et al. [LTV12]
is that of multi-key FHE. In a multi-key FHE, similarly to a spooky encryption scheme, the ho-
momorphic evaluation procedure gets as input n ciphertexts encrypted under different keys. The
difference is that the output of the evaluation in a multikey FHE is a single ciphertext that can only
be decrypted by combining all the n keys. In contrast, in a spooky encryption scheme the result of
the spooky evaluation is n ciphertexts, c1, . . . , cn where each ci is encrypted under the ith original,.
Thus, spooky encryption can be thought of as a specific type of multi-key FHE.

2 Definitions

2.1 Local, No-Signaling, and Spooky Relations

We say that two distributions D1, D2 over a (finite) universe U are ε-close if their statistical distance
1
2 ||D1 − D2||1 is at most ε, and denote it by D1

ε
≈ D2. We write D1 ≡ D2 to denote that the

distributions are equivalent. We say that D1, D2 are δ-far if their statistical distance is at least δ.

8

Definition 2.1. Let f : {0, 1}`1×· · · {0, 1}`n → {0, 1}`′1×· · · {0, 1}`′n be a randomized mapping from
n input to n outputs. For input ~x = (x1, . . . , xn) to f , we denote the i’th component of the output
by f(~x)i, and more generally for a subset I ⊂ [n] we denote the projected input by ~xI = (xi : i ∈ I)
and the projected output by f(~x)I = (f(~x)i : i ∈ I).

• f is local if there exist n randomized “component mappings” fi : {0, 1}`i → {0, 1}`′i such
that for all (x1, . . . , xn) ∈ {0, 1}`1 × · · · {0, 1}`n, the distribution f(x1, . . . , xn) is a product
distribution f(x1, . . . , xn) ≡ f1(x1)× · · · × fn(xn).

• f is no-signaling if for every subset I ∈ [n] and every two inputs ~x, ~x′ with the same I
projection, ~xI = ~x′I , the corresponding projected distributions are equal, f(~x)I ≡ f(~x′)I .

• We say that f is ε-spooky for some ε > 0 if it is no-signaling, but for every local f ′ there
exists some input ~x such that f(~x) and f ′(~x) are at least ε-far.

These definitions extends to an ensemble of mappings F = {fk : k ∈ N}, with the mapping parame-
ters n, `i, `

′
i and the distance bound ε possibly depending on the ensemble parameter k. In this case

we say that F is spooky if the fk’s are ε-spooky for a non-negligible ε.

As an example, consider the randomized function f(x1, x2) = (y1, y2) where y1, y2 are uniformly
random subject to y1⊕y2 = x1∧x2. This function is no-signaling since the distributions f(x)1 and
f(x)2 are individually uniform, no matter what x is. However, it’s easy to show that for any local
function f ′ = (f ′1, f

′
2) there is an input x = (x1, x2) such that Pr[f ′1(x1)⊕ f ′2(x2) = x1 ∧ x2] ≤ 1/2.

Therefore The function f is ε-spooky for ε = 1/2.

2.2 Spooky Encryption

A public-key encryption scheme consists of a tuple (Gen,Enc,Dec) of polynomial-time algorithms.
The key-generation algorithm Gen gets as input a security parameter κ ∈ N and outputs a pair of
public/private keys (pk, sk). The encryption algorithm Enc gets as input the public-key pk and a bit
m ∈ {0, 1}poly(κ) and outputs a ciphertext c, whereas the decryption algorithm Dec gets as input the
private-key sk and the ciphertext c and outputs the plaintext bit m. The basic correctness guarantee
is that Pr[Decsk(Encpk(m)) = m] > 1− negl(k), where the probability is over the randomness of all
these algorithms. The security requirement is that for every pair of polynomial-sized adversaries
(A1, A2) it holds that

Pr
(pk,sk)←Gen(1κ)

b←{0,1}

[
(m0,m1)← A1(pk) s.t. |m0| = |m1|

A2 (pk,Encpk(mb)) = b

]
≤ 1

2
+ negl(κ).

If the message space consists of just a single bit then we say that the scheme is a bit encryption
scheme.

Definition 2.2 (Spooky Encryption). Let (Gen,Enc,Dec) be a public-key bit-encryption scheme
and Spooky-Eval be a polynomial-time algorithm that takes as input a (possibly randomized) circuit
with n = n(κ) inputs and n outputs, C : ({0, 1}∗)n → ({0, 1}∗)n, and also n pairs of (public-key,
ciphertext), and outputs n ciphertexts.

9

Let C be a class of such circuits, we say that (Gen,Enc,Dec, Spooky-Eval) is a C-spooky encryption
scheme if for every security parameter κ, every randomized circuit C ∈ C, and every input ~x =
(x1, . . . , xn) for C, the distributions

SPOOK[C, x1, . . . , xn]
def
=(Dec(sk1, c
′
1), . . . ,Dec(skn, c

′
n)) :

∀i ∈ [n] (pki, ski)← Gen(1κ),
~ci ← Enc(pki, xi),

(c′1, . . . , c
′
n)← Spooky-Eval(C, (pki,~ci)i)


and C(x1, . . . , xn) are close upto a negligible distance in κ.

We note that the name spooky encryption stems from the application of Definition 2.2 to cir-
cuits C that compute spooky mappings. Indeed, as shown by Dwork et al. [DLN+04], the semantic
security of (Gen,Enc,Dec) implies that only (almost) no-signaling C’s can be realized, and every
homomorphic scheme can realize C’s that compute product mappings.

Spooky Encryption with CRS. We say that (Gen,Enc,Dec,Spooky-Eval) is a C-spooky en-
cryption scheme with CRS if Definition 2.2 is satisfied except that we allow all algorithms (and the
adversary) to get as input also a public uniformly distributed common random string.

2.3 Additive-Function-Sharing Spooky Encryption

An important special case of spooky encryption allow us to take encryptions ci ← Encpki(xi)
under n independent keys of inputs x1, . . . , xn to an n-argument function f , and produce new
ciphertexts under the same n keys that decrypt to additive secret-shares of y = f(x1, . . . , xn). An
encryption scheme that supports such “non-interactive sharing” is called additive-function-sharing
spooky encryption (or AFS-spooky). Several variants of this concept are defined below:

• We can either insist on getting a random secret sharing of y, or contend ourselves with any
secret sharing. Below we call the latter variant weak AFS-spooky, and the former is strong
AFS-spooky (or just AFS-spooky).

• Similarly to homomorphic encryption schemes, we can have either a leveled variant where key-
generation receives an additional depth parameter d and the result supports only circuits of
depth upto d, or a fully AFS-spooky scheme that supports any circuit with a fixed parameter
setting.

• We can either allow non-negligible error probability (i.e., the probability that the computation
fails to produce a secret-sharing of the right output y), or insist on a negligible error proba-
bility. Below we denote by ε-AFS-spooky the variant where the error probability is bounded
by some ε (that need not be negligible), and the variant with negligible error probability is
just AFS-spooky.

• Sometimes we want to consider only two-argument functions f(x1, x2), a scheme that only
supports two-argument functions is called AFS-2-spooky.

Definition 2.3 (AFS-Spooky). Let E = (Gen,Enc,Dec,Spooky-Eval) be a scheme where (Gen,Enc,Dec)
is a semantically secure public-key bit-encryption.

10

• E is a weak ε-additive-function-sharing-spooky (weak-ε-AFS-Spooky) if for every boolean cir-
cuit C computing an n-argument function f : ({0, 1}∗)n → {0, 1}, and any set of inputs
x1, . . . , xn for C, it holds that

Pr

 n⊕
i=1

yi = C(x1, . . . , xn) :
(pki, ski)← Gen(1κ),~ci ← Enc(pki, xi),
(c′1, . . . , c

′
n)← Spooky-Eval(C, (pki,~ci)i),

yi ← Dec(ski, c
′
i)

 ≥ 1− ε(κ).

If the above only holds for n ≤ 2 (two-argument functions) then we say that E is weak-ε-AFS-
2-Spooky.

• E is ε-AFS-(2)-Spooky if it is weak ε-AFS-(2-)Spooky, and in addition any n−1 of the shares
yi above are distributed ε-close to uniform.

• E is ε-leveled-(weak-)AFS-(2-)Spooky if the Gen procedure receives an additional depth param-
eter 1d, and then the conditions above hold only for circuits of depth upto d.

• E is (leveled-/weak-)AFS-(2-)Spooky if it is ε-(leveled/weak) AFS-(2-)Spooky for some negli-
gible function ε(κ).

Relation to Definition 2.2, and more variants. The variants from Definition 2.3 above
are all special cases of the more general Definition 2.2. In particular, an AFS-Spooky scheme is
C-spooky relative to a class C that contains a randomized circuit Cf for every n-input function
f : ({0, 1}∗)n → {0, 1}, where the output distribution of Cf (x1, . . . , xn) is negligibly close to
random n-out-of-n additive secret-sharing of the value f(x1, . . . , xn). Similarly weak-AFS-Spooky
is C-spooky relative to a similar class C, except the output of Cf can be any additive secret-sharing
of f(x1, . . . , xn), not necessarily a random one.

We note that other variants are also possible (and sometimes useful), for example we can consider
a non-binary function f , or secret-sharing modulo some p > 2 (or even more general forms of secret
sharing). In particular, for the negative example in Section 6 to the multi-prover-to-single-prover
transformation, it is convenient to consider a function f that outputs a color c ∈ {0, 1, 2} and a
secret-sharing modulo 3 of that color (and it is sufficient to use ε-leveled-weak-AFS spooky scheme,
even for some constant ε < 1/2.

Weak vs. Strong AFS-Spooky Schemes. We observe that the distinction between the strong
and weak variants of AFS-spooky is unimportant, indeed there is an easy transformation from any
weak AFS-spooky scheme into a strong one. Hence in the sequel we will only be concerned with
realizing the weak variant, but will allow ourselves to rely on the strong variant whenever needed.

Lemma 2.4. There is a transformation that turns any weak AFS-spooky scheme E into a AFS-
spooky scheme E ′, by only adding one bit to each ciphertext and only a small constant number of
operations to each procedure.

Proof. Let E = (Gen,Enc,Dec,Spooky-Eval) be a AFS-spooky scheme, the new scheme E = (Gen,Enc′,
Dec′,Spooky-Eval′) has the same key-generation as E , and the encryption, decryption, and evalua-
tion are modified as follows.

• Enc′(pk,m) first runs the underlying encryption procedure to get c ← Enc(pk,m), then out-
puts the ciphertext c′ = (0, c).

11

• Spooky-Eval′(C, (pki, (bi, ci)i)) runs the underlying evaluation procedure to get (c′1, . . . , c
′
n)←

Spooky-Eval′(C, (pki, ci)i). Then it chooses n bits b′1, . . . , b
′
n uniformly at random subject to

b′1 ⊕ · · · ⊕ b′n = 0, and outputs ((b′1, c
′
1), . . . , (b′n, c

′
n)).

• Dec(pk, (b, c)) runs the underlying decryption to get m′ ← Dec(sk, c). Then it outputs m =
m′ ⊕ b.

This modification adds a random additive secret-sharing of 0 to the original secret sharing of y,
thus transforming the arbitrary sharing of y into a random sharing of the same y.

Deterministic Spooky Evaluation. As described, the transformation in the proof of Lemma 2.4
results in a randomized spooky-evaluation procedure, but it can be easily made deterministic by
having the encryption procedure append the necessary random bits to the ciphertexts, and using
these bits as the randomness needed for the secret-sharing during spooky-evaluation. In fact, the
same technique can be used to derandomize any Spooky-Eval procedure, so we can always assume
without loss of generality that our Spooky-Eval procedures are deterministic.

3 LWE-Based Spooky Encryption

3.1 Learning with Errors (LWE) and Multi-Key FHE

The LWE assumption roughly says that adding just a little noise to a set of linear equations makes
them hard to solve. In our context, we consider equations modulo some integer q and the noise
consists of numbers whose magnitude is much smaller than q, as expressed via a noise distribution
χ that yields such “small numbers” with high probability. Below we identify Zq with the symmetric
interval [−q/2, q/2) and let [x]q denote the reduction of x modulo q into this interval.

Definition 3.1 (Learning With Errors [Reg09]). Let n = n(κ), q = q(κ) ∈ Z be functions of
the security parameter κ and χ = {χ(κ)}κ be a distribution ensemble over Z. The decision-LWE
assumption with parameters (n, q, χ) says that for any polynomial m = m(κ) ∈ Z, the following two
distribution ensembles are computationally indistinguishable

LWE [n,m, q, χ]
def
=

{
(A,~b) : A← Zn×mq , ~s← Znq , ~e← χm, b := [~sA+ ~e]q

}
,

and U [n,m, q]
def
=

{
(A,~b) : A← Zn×mq , ~b← Zmq

}
(i.e., uniform over Z(n+1)×m

q).

For α = α(κ) ∈ (0, 1), the α-DLWE assumption asserts the existence of parameters n, q, χ as above
with n polynomial in κ, such that e← χ yields |e| < αq with overwhelming probability.

Note that the α-DLWE assumption becomes stronger as α gets smaller, and it is known to be false
in the extreme case where α = 2−Ω(n) using lattice-reduction techniques. On the other hand, we
have ample evidence to belive the α-DLWE assumption with α = 1/poly(n) [Reg09, Pei09, BLP+13],
and it is commonly belived to hold also for super-polynomially (and perhaps even sub-exponentially)
small α’s.

We show that assuming hardness of the learning-with-errors problem, there exists a function-
secret sharing (in the common-random-string model) for any n-argument function f . Our construc-
tion builds on the multi-key fully homomorphic encryption construction of Mukherjee and Wichs
[MW16], which is a simplification of the Clear-McGoldrick scheme from [CM15]. We summarize
the properties of this construction that we need for our purposes.

12

Theorem 1 ([CM15, MW16]). Assuming the hardness of α-DLWE (for some α(κ)), there exists a
multi-key homomorphic encryption with the following properties:

• The construction works in the common-random-string model. For parameters n,m, q =

poly(κ), all instances have access to a uniformly random matrix A ∈ Z(n−1)×m
q .

• For any depth parameter d, the scheme supports multi-key evaluation of depth-d circuits using
public keys of size d · poly(κ), while secret keys are vectors ~s ∈ Znq , regardless of the depth
parameter.

Specifically, there is an efficient procedure Eval that is given as input:

– Parameters d, ` ∈ N, and ` public keys that support depth-d computations;

– A depth-d circuit computing an `-argument boolean function f : ({0, 1}∗)` → {0, 1};
– Public keys (pk1, . . . , pkn) and fresh encryptions (bit-by-bit) of each argument xi ∈
{0, 1}∗ under key pki, denoted ci ← Encpki(xi).

On such input, the Eval procedure outputs a dimension n`-vector, ~c′ = (~c′1 . . .~c
′
`) (with each

~c′i ∈ Znq),3 such that for the secret keys ~si corresponding to pki it holds that

∑̀
i=1

〈
~si,~c

′
i

〉
= bq/2c · f(x1, . . . , xn) + e (mod q)

for some error e ∈ Zq with |e| < αq · poly(κ).

By further making a circular-security assumption, there exists a scheme that supports evaluation
of circuits of any depth without growing the public keys.

3.2 LWE-Based AFS Spooky Encryption

Below we show that under the decision-LWE assumption we can construct AFS-spooky encryp-
tion schemes (in the common-random-string model). Namely, for every n-argument function
f(x1, . . . , xn), given encryption of the arguments under n independent public keys, we can com-
pute an encryption of shares under the same keys of an additive secret-sharing of the output
y = f(x1, . . . , xn).

Theorem 2. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-2-Spooky encryption
scheme for ε = α · poly(κ). Further making a circular-security assumption, we get a (non-leveled)
ε-AFS-2-spooky encryption scheme.

Proof. We show that the encryption scheme from Theorem 1 is already essentially a leveled weak
AFS-2-spooky encryption scheme. Specifically, Theorem 1 tells us that given the description of
a depth-d circuit C, computing a 2-argument function f : ({0, 1}∗)2 → {0, 1}, together with two
public-key and corresponding bit-by-bit encryptions, ci ← Encpki(xi), the Eval procedure yields
(~c′1,~c

′
2)← Eval(C, (pk1, c1), (pk2, x2)) such that 〈sk1,~c

′
1〉+ 〈sk2,~c

′
2〉 = y · q/2 + e (mod q), where the

ski’s are the secret keys corresponding to the pki’s, y = f(x1, x2), and |e| < αq · poly(κ) = εq.

3Referring to [MW16, Sec. 5.4], the vector ~c′i is the result of the product Ĉ(i)× Ĝ−1(~̂wT), without the added noise
term esmi .

13

Denote vi = [〈ski,~c
′
i〉]q for i = 1, 2 and v = [v1 +v2]q. Lemma 3.2 below says that instead of first

adding the vi’s and then rounding to the nearest multiple of q/2, we can first round and then add,
and this will yield the same result except with error probability of at most 2ε. The only catch is
that Lemma 3.2 assumes that v1, v2 are chosen at random subject to their sum modulo q being v,
whereas in our case we do not have this guarantee. To account for this, we modify our Spooky-Eval
procedure, letting it choose a random shift amount δ ∈ Zq and adding/subtracting it from v1, v2,
respectively.

In more detail, we change the encryption, decryption, and evaluation in a manner somewhat
similar to the proof of Lemma 2.4. Namely, the encryption algorithm Enc′ outputs the pair (~c, 0)
rather than just the ciphertext vector ~c, and the decryption algorithm Dec′, given a pair (~c, δ)
first computes the shifted inner product v := [δ + 〈sk,~c〉]q and then outputs 0 if |v| < q/4 and 1
otherwise.

The Spooky-Eval procedure, given as input C and (pki, c̃i), i = 1, 2, first strips the 0’s from all
the pairs (~c, 0) in the encrypted c̃i’s retaining only the underlying ciphertexts c1, c2. It then applies
the undelying evaluation procedure to get

(~c′1,~c
′
2)← Eval(C, (pk1, c1), (pk2, x2)).

Next it chooses a uniform δ ∈ Zq and returns the two ciphertexts (~c′1, δ) and (~c′2,−δ). It is now
clear that the values v1, v2 that are obtained during decryption are indeed individually random
(over the choice of δ), but their sum modulo q does not depend on δ.

Applying Lemma 3.2 and denoting yi = Dec′sk((~c
′
i, δi)), we have y1 ⊕ y2 = C(x1, x2) except

with error probability at most 2ε (over the choise of δ). This yeilds a leveled 2ε-AFS-2-Spooky
encryption scheme (using the leveled version of Theorem 1), or a “fully” 2ε-AFS-2-Spooky (if we
also assume circular security).4

Lemma 3.2. Fix some modulus q ∈ Z, bit b ∈ {0, 1}, and a value v ∈ Zq such that v = b · q/2 + e
(mod q) for some bounded error |e| < q/4. Consider choosing v1, v2 uniformly at random in Zq
subject to v1 + v2 = v (mod q), and denote vi = bi · q/2 + ei (mod q) with bi = [dv1 · 2/qc]2 ∈ {0, 1}
and |ei| ≤ q/4. Then Prv1,v2 [b1 ⊕ b2 = b] > 1− 2(|e|+ 1)/q.

Proof. Consider first the case b = 0 and v = e ≥ 0. For this case consider choosing at random
v1 ∈ Zq and setting v2 = [v− v1]q = [e− v1]q. It is easy to check that the condition b1⊕ b2 = b = 0
is satisfied whenever we have

v1, v2 ∈
(−q

4
+ e,

q

4

)
or v1, v2 ∈

[−q
2
,
−q
4

)
∪
(q

4
+ e,

q

2

)
.

The only error regions are v1, v2 ∈ (−q4 ,
−q
4 +e) and v1, v2 ∈ (q4 ,

q
4 +v), and (depending on rounding)

also upto half of the points v1 ∈ {−q4 ,
−q
4 + e, q

4 ,
q
4 + e} ∩ Z. The proofs for the other three cases

((b = 0, e < 0), (b = 1, e > 0), (b = 1, e < 0)) are symmetric.

3.3 Beyond AFS-2-Spooky Encryption

The construction from Theorem 2 does not directly extend to functions with more than two ar-
guments, since Lemma 3.2 no longer holds for more than two vi’s (even for the no-error case of

4We note that the addition of the δ shift in fact yields directly the “strong” version of AFS-2-spooky.

14

e = 0). Instead, we can use the GMW-like transformation that was sketched in the introduction
and is described in detail in Section 5 to get a general AFS-spooky scheme.

Recall that the 2-to-`-spooky transformation alternates between two forms of sharing: the
“standard” form in which a value y on some wire is represented by a sequence of ciphertexts
(ci = Encpki(yi))i such that

∑
yi = y (mod 2), and an “extended” form which is essentially an

encryption of a tensor product of two yi-sequences. Going from “standard” to “extended” is done
using spooky evaluation of all the pairwise multiplications, and going back to “standard” is done
using homomorphic addition (with respect to each key separately).

To support this transformation, we need an AFS-2-spooky scehme which is multi-hop (in the
sense of [GHV10]), i.e. we need to apply the spooky evaluation procedure not just to fresh ci-
phertexts, but also to evaluated ciphertexts that resulted from previous applications of spooky
evaluation. However, the AFS-2-spooky scheme as described in Theorem 2 does not meet this con-
dition, since that scheme can only process fresh cipehrtexts. (This is an artifact of the underlying
multi-key FHE scheme from [CM15, MW16], in which only fresh cipehrtexts can be processed in a
multi-key fashion.)

To get a multi-hop scheme, we note that we can apply the same bootstrapping-based transfor-
mation as in [GHV10, Theorem 4], which transforms any compact fully-homomorphic scheme to a
multi-hop one.5 That is, by publishing fresh encryption of the secret keys ski under public keys pk′i,
one can evaluate any function f(x1, . . . , x`) on any collection of decryptable ciphertexts ci (such
that Decski(ci) = xi) by evaluating the function

Ff,c1,...,c`(sk1, . . . , sk`) = f
(
Decsk1(c1), . . . ,Decsk`(c`)

)
on the fresh encryption of the ski’s. Applying this transformation in d layers of interleaved AFS-2-
spooky multiplications and single-key addition (and setting the parameters so that the total error
probability in all the AFS-2-spooky multiplicatoins is still small enough), we obtain a cryptosystem
that supports the transformation from Theorem 9.

Theorem 3. Assuming the hardness of α-DLWE, there exists a leveled FHE scheme that sup-
ports d interleaved levels of AFS-2-spooky multiplicatoins and single-key addition, with total error
probability ε = α · d · poly(κ).

Proof. The cryptosystem from Theorem 1 is augmented by generating d+2 secret/public key pairs
(sk(i), pk(i)), i = 0, 1, . . . , d + 1, and adding to the public key fresh encryption of each sk(i) under
pk(i+1) for i = 0, . . . , d. Namely, c̃(i) = Encpk(i+1)(sk(i)). Ciphertexts in the new cryptosystem are
labeled by a level number between 0 and d, where a level-i cipehrtext is decryptable using the secret
key sk(i). Fresh encryption are at level 0, and they are encrypted using the first public key pk(0).

Joining the addition layer after the i’th iteration to the multiplication layer in the i + 1’st
iteration, we get d levels of AFS-2-spooky evaluation of `2 function of the form

fi,j
(
(xi,1, . . . , xi,`), (xj,1, . . . , xj,`)

)
=
(⊕̀
k=1

xi,k
)
·
(⊕̀
k=1

xj,k
)
,

and a final layer of single-key evaluation of homomorphic addition. Each of these functions at each
level t is evaluated by applying the Eval procedure to functions of the form

F̃c1...,c`,c′1...,c′`(sk, sk′) =
(⊕̀
k=1

Decsk(ck)
)
·
(⊕̀
k=1

Decsk′(c
′
k)
)
,

5The transformation in [GHV10] is described for single-key FHE schemes, but it applies also to multi-key schemes.

15

evaluated on the fresh encryptions c̃
(t)
i , c̃

(t)
j .

Corollary 4. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-spooky encryption
scheme for ε = α ·d ·poly(κ). Further making a circular-security assumption, we get a (non-leveled)
ε-AFS-spooky encryption scheme.

4 piO based Spooky Encryption

In this section we show a construction based on probabilistic iO, in conjunction with lossy ho-
momorphic encryption, that can support many 2-key spooky relations, even beyond AFS-spooky.
Compared to our LWE-based construction from Section 3, the construction here does not need a
CRS and has no error probability, and it supports more spooky distributions. On the other hand,
we are making a much stronger assumption here, and also we need a different scheme for different
spooky relations.6

The construction in this section supports in particular the functionality that we need for our
generic transformation from Section 5 that turns an AFS-2-spooky scheme to an AFS-n-spooky
one. The resulting AFS-n-spooky also does not need a CRS and has no error probability. Moreover,
for that case we have a single scheme supporting all AFS-spooky relations.

Organization of this Section. In Section 4.1 we introduce our tools, defining probabilistic indis-
tinguishability obfuscation (using a slightly weaker variant of the definition of Canetti et al. [CLTV15])
and lossy homomorphic encryption with malicious circuit privacy. In Section 4.2 we describe and
prove our construction for 2-input spooky encryption scheme, and finally in Section 4.3 we show
how to obtain a multi-input AFS-spooky encryption.

4.1 Tools

4.1.1 Probabilistic Indistinguishability Obfuscation.

Our construction uses probabilistic iO, a notion that was recently introduced by Canetti et al. [CLTV15].
Loosely speaking, this is an obfuscator for probabilistic circuits with the guarantee that the obfus-
cations of any two “equivalent” circuits are computationally indistinguishable.

Canetti et al. define several variants of piO, where the main distinction is the precise formulation
of what it means for circuits to be equivalent. Our definition corresponds to a (weakened variant) of
their X-Ind piO (which can be realized assuming sub-exponentially secure iO and sub-exponentially
secure OWF, see Theorem 5 below). Roughly, our variant only considers pairs of circuits with
the property that for every input, their output distributions are identical, while the definition in
[CLTV15] allows a small statistical gap.

To formally define piO, we consider a (possibly randomized) PPT sampling algorithm S that
given as input a security parameter 1κ, outputs a triple (C0, C1, z), where C0 and C1 are randomized
circuits (to be obfuscated) and z is some auxiliary input. We say that a sampler S is an equivalent-
circuit-sampler if with probability 1 it outputs circuits C0 and C1 such that for every x the circuits
C0(x) and C1(x) generate identical distributions.

6We can extend the construction so that a single scheme can handle several spooky relations, as long as there is
some way of representing relations where we can verify that a given relation is no-signaling.

16

Definition 4.1 (Probabilistic Indistinguishable Obfuscation (piO), [CLTV15]). A probabilistic in-
distinguishability obfuscator is a probabilistic polynomial-time algorithm piO that, given as input a
security parameter 1κ and a probabilistic circuit C, outputs a circuit C ′ = piO(1κ, C) (which may
be deterministic) of size at most |C ′| = poly(κ, |C|) such that the following two properties hold:

1. For every individual input x, the distribution C(x) and
(
piO(1κ, C)

)
(x) are identical.7

2. For every equivalent-circuit-sampler S, the following two distribution are computationally
indistinguishable:

{(C0, C1, piO(1κ, C1), z) : (C0, C1, z)← S(1κ)} c
= {(C0, C1, piO(1κ, C2), z) : (C0, C1, z)← S(1κ)}

We note that our correctness guarantee is incomparable to that given by [CLTV15]. Indeed,
motivated by their PRF based construction, the [CLTV15] definition basically requires that no PPT
adversary can distinguish between oracle access to C and to piO(1κ, C) (so long as the adversary is
not allowed to repeat its queries). On the one hand our definition is weaker in that it only considers
each input individually, but on the other hand it is stronger in that it requires that for each such
individual input the distributions are identical. Our correctness guarantee can be easily obtained
using the [CLTV15] construction by using an underlying PRF {fs}s with the property that fs(x)
is individually uniformly random for every x. The latter can be easily obtained by taking any PRF
and xor-ing its output with a fixed random string.

Theorem 5 ([CLTV15]). Assume the existence of a sub-exponentially indistinguishable indistin-
guishability obfuscator for circuits and a sub-exponentially secure puncturable PRF. Then, there
exists a probabilistic indistinguishability obfuscator.

4.1.2 Lossy Encryption

Loosely speaking, a lossy encryption scheme is an encryption scheme in which public-keys are
indistinguishable from “lossy keys,” and ciphertexts generated using such lossy keys contain no
information about their plaintext.

Definition 4.2 ((Perfectly) Lossy Encryption). We say that an encryption scheme (Gen,Enc,Dec)

is lossy if there exists a PPT algorithm G̃en that on input 1κ outputs p̃k such that:

• The distribution p̃k is computationally indistinguishable from a public-key pk generated by
Gen(1κ).

• For every two equal-length messages m0 and m1, the distributions Enc
(

p̃k,m0

)
and Enc

(
p̃k,m1

)
are identically distributed for every p̃k← G̃en(1κ).

A natural relaxation allows for some negligible statistical deviation in the second condition.
For our proof to work however we insist on perfectly lossy encryption and throughout this work
whenever we say lossy encryption we mean perfectly lossy. We note that (perfectly) lossy encryption
can be based on any perfectly re-randomizing encryption which in turn can be based on Quadratic
Residuosity or DDH.

Remark 4.3. If an encryption scheme is lossy then it is semantically secure.

7The latter distribution is defined also over the randomnees of piO. Note that this does not imply that the joint
distribution for multiple inputs will be the same in the two cases.

17

4.1.3 Malicious Circuit-Private Encryption

A public-key encryption scheme (Gen,Enc,Dec), with message space {0, 1}`, is a homomorphic
encryption scheme for a class of Boolean circuits C on `-bit inputs if there exists a PPT algorithm
Eval, such that for every key-pair (pk, sk), circuit C ∈ C and ciphertext c = Encpk(x), where
x ∈ {0, 1}`, on input (C, c) the algorithm Evalpk outputs c∗ such that Decsk(c

∗) = C(x). If the
length of c∗ does not depend on C then we say that the scheme is compact.

As noted in the introduction, our construction requires a homomorphic encryption scheme that
has malicious circuit privacy, a notion recently studied by Ostrovsky et al. [OPP14], which means
that the ciphertext c∗ does not reveal any non-trivial information about the circuit C which was
used to generate it, even for an adversarially designed public-key pk and ciphertext c.

Previous works (e.g., [OPP14]) consider an unbounded simulation based definition. However, for
our application we cannot afford unbounded simulation and so we settle for an indistinguishability
based definition.8

Definition 4.4 ((Perfect) Malicious Circuit Privacy). A homomorphic encryption scheme (Gen,Enc,
Dec,Eval) for a class of circuits C has perfect malicious circuit privacy if for every alleged public-
key pk (including those not in the support of Gen), and ciphertext c∗ (including those not in the
support of Gen, Enc), there exists an “effective plaintext” x ∈ {0, 1}` such that for every two cir-
cuits C1, C2 ∈ C with C1(x) = C2(x), it holds that Evalpk(C1, c) and Evalpk(C2, c) are identically
distributed (where the probability is only over the randomness of Eval).

Of course one could allow some negligible statistical deviation between the two distributions
in the definition but as was the case for lossy encryption, for our application we cannot allow any
such deviation.

Naor and Pinkas [NP01] constructed a 2-message oblivious transfer protocol with perfect secu-
rity against a malicious receiver based on the DDH assumption (see presentation in [HL10, Section
7.2] which also shows that the construction satisfies the indistinguishability based definition). The
[NP01] protocol can be easily transformed into a (non-compact) homomorphic encryption scheme
with malicious circuit privacy for inputs of logarithmic length. A folklore construction combines
the latter with an information theoretic variant of Yao’s garbled circuit for NC1 [IK00] to obtain
malicious circuit privacy for logarithmic depth circuits.

Theorem 6 (Folklore). Assuming the hardness of DDH, there exists a lossy homomorphic encryp-
tion scheme with malicious circuit privacy for NC1 circuits.

The fact that the encryption scheme can be lossy follows from the fact that the encryption algo-
rithm in [NP01] basically just generates DDH tuples. We can make the scheme lossy by generating
a single DDH triple as part of the public-key and re-randomizing it in the encryption procedure
(rather than generating a fresh DDH tuple). The indistinguishable lossy key will contain a random
triplet of group element which do not form a DDH tuple.

Remark 4.5. Ostrovsky et al. [OPP14] show that using their unbounded (statistical) simulation
based definition, there exists a scheme for any poly-size circuit assuming compact FHE in addition
to DDH (or any bounded-depth circuit assuming leveled FHE). We believe that the their techniques
should apply also to our (perfect) indistinguishability based definition but we leave this to a future
revision.

8Note that there are known impossibility results for achieving efficient simulation, see [OPP14] and references
therein.

18

Homomorphic Evaluation of Randomized Circuits. For our application, we need to handle
randomized circuits rather than deterministic ones. We extend the syntax of homomorphic eval-
uation to support evaluating a randomized circuit: For a randomized circuit C on `-bit inputs, a
public key pk, and ciphertext c that allegedly encrypts the input to C, we let Evalpk(C, c) denote
the distribution which is induced by choosing randomness r for C, defining C[r](·) = C(· ; r), and
then outputting Evalpk(C[r], c). We rely on the following lemma (which is folklore, although we
could not find a proof of it in the literature).

Lemma 4.6. Let (Gen,Enc,Dec,Eval) be a homomorphic encryption scheme for a class of ran-
domized circuits C, that enjoys perfect malicious circuit privacy.

Then, for every alleged public-key pk and ciphertext c, there exists an “effective plaintext”
x ∈ {0, 1}` such that for every two circuits C1, C2 ∈ C for which the output distributions C1(x)
and C2(x) are identical, it holds that also the two distributions Evalpk(C1, c) and Evalpk(C2, c) are
identical.

Proof. This lemma follows by mapping the randomness of the two circuits. First, we can assume
without loss of generality that both circuits rely on the same randomness space (e.g., by considering
the joint space which is the Cartesian product of the spaces for the two circuits). Denote this
joint randomness space by R. Since C1(x; r) and C2(x; r) are identically distributed (over the
choise of r ∈ R), there exists a permutation π over R such that for every r ∈ R it holds that
C1(x; r) = C2(x;π(r)) (as deterministic circuits).

Note that the distribution Evalpk(C1, c) is a convex combination of the distributions Evalpk(C1[r], c)
for the different r’s, and Evalpk(C2, c) is a convex combination of the distributions Evalpk(C2[π(r)], c).
We conclude the proof by appealing to the circuit privacy of the encrypiton scheme.

4.2 Two-Key Spooky Encryption from piO

Our construction relies on a property of two-input relations that we call re-sampleability. Roughly,
it should be possible to sample efficiently from the distribution of the second coordinate conditioned
on a particular fixed value for the first coordinate.

Definition 4.7 (Efficiently Re-Sampleable). A randomized polynomial-size circuit C : {0, 1}`1 ×
{0, 1}`2 → {0, 1}`′1 × {0, 1}`′2 is efficiently re-sampleable if there exists a polynomial-size random-
ized “resampling circuit” RSC , such that for any input (x1, x2) to C, the distribution C(x1, x2) is
identical to the “resampled distribution” {(y1, y

′
2) : (y1, y2)← C(x1, x2), y′2 ← RSC(x1, x2, y1)} .

We construct a 2-key spooky scheme that supports any 2 input/output circuit that is both
efficiently re-sampleable and no-signaling.

Theorem 7 (2-Key Spooky Encryption from piO). Let C : {0, 1}`1 × {0, 1}`2 → {0, 1}`′1 × {0, 1}`′2
be an efficiently re-sampleable no-signaling circuit, with re-sampling circuit RSC . If there exist (1)
piO, and (2) a perfectly-lossy homomorphic encryption scheme that can evaluate C and RSC , and
is perfectly malicious circuit private, then there exists a C-spooky encryption scheme, which is also
perfectly lossy (and hence semantically secure).

We stress that the encryption scheme that we need for Theorem 7 must be able to evaluate C
and RSC and be perfectly malicious circuit private, but it need not be compact. Theorem 6 gives
such a scheme for NC1 circuits based on DDH and as noted in Remark 4.5, we believe that a scheme

19

that supports any poly-size circuit can be constructed assuming both DDH and FHE (note that
[CLTV15] show that full-fledged FHE can be built based on piO).

Remark 4.8 (Almost No-Signaling). We note that for Theorem 7 we need C to be perfectly no-
signaling, specifically we need C(x, y)1 and C(x, y′)1 to be identically distributed for all x, y, y′. A
natural relaxation of no-signaling circuits, considered in previous works (e.g., [DLN+04, KRR13,
KRR14]), allows these distributions to be statistically close (rather than identical). Such circuit is
called almost no-signaling.

Dwork et al. (using a slightly different terminology) showed that a semantically secure scheme
can only be spooky for almost no-signaling circuit. The question of constructing a scheme that
supports also almost no-signaling circuits is left to future work.

4.2.1 Proof of Theorem 7

Let piO be a probabilistic indistinguishability obfuscator and let (Gen,Enc,Dec) be the encryption

scheme from the theorem statement. Let G̃en be the corresponding lossy key generation algorithm
and Eval the homomorphic evaluation algorithm with malicious circuit privacy.

Each instance of our construction uses two public/secret keys pairs, where only the first pair is
used for “normal encryption and decryption,” and the other pair is only used for spooky evaluation.
In addition to the two pairs, the public key also contains an obfuscated program that implements
spooky evaluation using the secret key. That obfuscated program has a secret key hard-wired, and
given two ciphertexts c1, c2 it decrypt the first one, then evaluates the re-sampling circuit RSC
homomorphically on the other. A complete description of the resulting scheme is found in Fig. 1.

We first show that the scheme supports spooky evaluation of the circuit C and then show that
it is a lossy encryption scheme (and in particular is semantically secure).

Lemma 4.9. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky, Spooky-Eval) is C-spooky.

Proof. The spooky evaluation procedure gets as input two public-keys pk-spooky1 =
(
pk11, pk21, P̃1

)
,

pk-spooky2 =
(
pk12, pk22, P̃2

)
, and matching ciphertexts c1 = Enc-Spooky(pk-spooky1, x1) and

c2 = Enc-Spooky(pk-spooky2, x2) (for some inputs x1, x2 to C). It simply runs the obfuscated
program P̃1 = piO(1κ, P [sk11, pk21]) on input (c1, pk12, c2) and returns its output.

By construction and using the correctness of piO, this procedure outputs c′1 and c′2 such
that c′1 ← Enc(pk21, y1), where y1 ←

(
C(x1, 0

`2)
)

1
, and c′2 ← Evalpk12(RS[x1, y1, r], c2), where

RS[x1, y1, r](x2) ≡ RSC(x1, x2, y1; r). By the no-signaling property y1 is distributed identically to
y′1 ←

(
C(x1, x2)

)
1

and so c′2 is distributed as Evalpk12(RS[x1, y
′
1, r], c2). Hence

Dec-Spooky(sk-spooky1, c
′
1) = Decsk11

(
Enc(pk21, y

′
1)
)

= y′1

and Dec-Spooky(sk-spooky2, c
′
2) = RS[x1, y

′
1, r](x2) = RSC

(
x1, x2, y

′
1; r
)

2
.

By definition of the re-sampling procedure, the joint distribution
(

Dec-Spooky(sk-spooky1, c
′
1),

Dec-Spooky(sk-spooky2, c
′
2)
)

is identical to C(x1, x2), as required.

Lemma 4.10. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky) is a perfectly lossy encryption
scheme.

20

The probabilistic circuit P [sk1, pk2](c1, pk, c):

Hardwired: a private-key sk1 and a public-key pk2.
Input: a ciphertext c1 (presumably under pk1),

and additional (presumably matching) public-key pk and ciphertext c.

1. Decrypt x1 ← Decsk1(c1);a

2. Choose randomness r, r′ ← {0, 1}∗ for C and RSC , respectively;

3. Set y1 ← C(x1, 0
`2 ; r)1 and encrypt c′1 ← Encpk2(y1);

4. Define the circuit RS[x1, r, r
′](x2) ≡ RSC(x1, x2,

=y1︷ ︸︸ ︷
C(x1, 0

`2 ; r)1; r′);

5. Compute homomorphically c′2 ← Evalpk(RS[x1, r, r
′], c).

6. Output
(
(2, c′1), (1, c′2)

)
.b

piO based Spooky Encryption

• Gen-Spooky(1κ):

1. Select (pk1, sk1) , (pk2, sk2)← Gen(1κ), and set P̃ ← piO(1κ, P [sk1, pk2]).

2. Output the secret key sk-spooky = (sk1, sk2) and public key pk-spooky =
(

pk1, pk2, P̃
)

.

• Enc-Spooky
(

(pk1, pk2, P̃), x
)

: Output
(
1,Encpk1(x)

)
.

• Dec-Spooky
(
(sk1, sk2), (tag, c)

)
: If tag = 1 output Decsk1(c), else output Decsk2(c).

• Spooky-Eval
(
(pk11, pk21, P̃1), c1, (pk12, pk22, P̃2), c2,

)
: Output P̃1(c1, pk12, c2).

a We assume that Dec always returns some value, even if c1 is not a valid ciphertext.
b The tags “2”, “1” signal to the decryption algorithm which secret key to use.

Figure 1: piO based Spooky Encryption

The probabilistic circuit P ′[sk1, pk2](c1, pk, c):

The same as P [sk1, pk2](c1, pk, c), but setting c1 ← Encpk2(0`1) in Step 3 rather than c1 ← Encpk2(y1).

The probabilistic circuit P ′′[pk2]:

Hardwired: a public-key pk2.
Input: a ciphertext c1, a public-key pk and a ciphertext c (presumably under pk).

1. Encrypt c′1 ← Encpk2(0`1).

2. Choose randomness r ← {0, 1}∗ for C, and define f [r](·) ≡ C(0`1 , · ; r)2.

3. Compute homomorphically c′2 ← Evalpk(f [r], c).

4. Output
(
(2, c1), (1, c′2)

)
.

Figure 2: The Probabilistic Circuits P ′[sk1, pk2] and P ′′[pk2]

21

Proof. We need to show that there is an alternative key-generation procedure ˜Gen-Spooky, produc-
ing public keys that are indistinguishable from the real ones, but such that ciphertexts encrypted
relative to these keys contain no information about the encrypted plaintext.

The main challenge in establishing the lossiness of the scheme is in showing that the public-
keys are indistinguishable from lossy keys despite the obfuscated programs in the public-key (which
depend on the corresponding secret keys). Toward that end, we will (gradually) show that these
obfuscated programs are computationally indistinguishable from programs that do not depend on
the secret keys.

Below we state and prove a few claims, where we consider the distributions (pk1, sk1), (pk2, sk2)←
Gen(1κ) and p̃k1, p̃k2← G̃en(1κ), where G̃en is the lossy key-generation of the underlying encryption
scheme.

Claim 4.10.1.
(

pk1, pk2, piO(1κ, P [sk1, pk2])
)

c
=
(

pk1, p̃k2, piO(1κ, P [sk1, p̃k2])
)

.

Proof. Follows from the indistinguishability between standard and lossy public-keys of the under-
lying scheme (see Definition 4.2).

Claim 4.10.2.
(

pk1, p̃k2, piO(1κ, P [sk1, p̃k2])
)

c
=
(

pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])
)

, where P ′[sk1, p̃k2]

is similar to P [sk1, p̃k2] except that it encrypts 0`1 rather than y1 in Step 3, see Fig. 2.

Proof. Follows from the fact that p̃k2 is a lossy public-key and therefore Enc
p̃k2

(0`1) and Enc
p̃k2

(y1)

are identically distributed (cf. Definition 4.2).

We proceed to the main claim:

Claim 4.10.3.
(

pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])
)

c
=
(

pk1, p̃k2, piO(1κ, P ′′[p̃k2])
)

, where the program

P ′′[p̃k2], defined in Fig. 2, does not have the secret key sk1 (hence it cannot recover x1 or com-
pute y1), so it evaluates homomorphically C(0`1 , x2)2 rather than RSC(x1, x2, y1) on c = Encpk(x2).

Proof. We will show that for every valid secret key sk1 and arbitrary public key p̃k2, the randomized
programs P ′[sk1, p̃k2] and P ′′[p̃k2] are functionally identical, in the sense that their outputs are
identically distributed for every input. The claim will then follow from the fact that piO is a
probabilistic indistinguishability obfuscator (see Definition 4.1).

Note that the first output c′1 = Encpk(0
`′1) is generated identically by the two programs, and is

independent of everything else that happens in these programs, so we only need to show that the
second output c′2 is identically distributed. To show this, we first establish that c′2 is an encryption
under pk of a value y2 that is distributed identically in the two programs, and then we appeal to
the malicious circuit-privacy of the underlying scheme to conclude that also c′2 itself is identically
distributed.

For starters, fix some arbitrary x1 ∈ {0, 1}`1 and x ∈ {0, 1}`2 , and consider the following
distributions

D1[x1, x] =
{
y1 ← C(x1, 0

`2)1, output y2 ← RSC(x1, x, y1)
}
, // Output distribution of P ′

D2[x1, x] =
{
y1 ← C(x1, x)1, output y2 ← RSC(x1, x, y1)

}
,

D3[x1, x] =
{

output y2 ← C(x1, x)2

}
,

D4[x] =
{

output y2 ← C(0`1 , x)2

}
. // Output distribution of P ′′

22

Since C is a no-signaling circuit then we have D1[x1, x] = D2[x1, x] and D3[x1, x] = D4[x], and since
RC is the re-sampling circuit for C then we also have D2[x1, x] = D3[x1, x]. We therefore conclude
that the two distributions D1[x1, x] and D4[x] are identical for every x1, x.

Now consider x1 = Decsk1(c1) and x the “effective plaintext” for pk, c (which must exist since

the underlying scheme is malicious circuit-private). Recall that the second output of P ′[sk1, p̃k2]

consists of a homomorphic evaluation of D1[x1, x], while the second output of P ′′[p̃k2] consists
of homomorphic evaluation of D4[x]. Applying Lemma 4.6, we conclude that these outputs are
identically distributed.

Having established that the output distributions of P ′[sk1, p̃k2] and P ′′[p̃k2] are identical (for
every input), Claim 4.10.3 follows because piO is a probabilistic indistinguishability obfuscator.

Claim 4.10.4.
(

pk1, p̃k2, piO(P ′′
p̃k2

)
)

c
=
(

p̃k1, p̃k2, piO(P ′′
p̃k2

)
)

.

Proof. This claim too follows from the indistinguishability between standard and lossy public-keys
of the underlying scheme (see Definition 4.2).

Combining Claims 4.10.1-4.10.4, we conclude that the two distributions
(

pk1, pk2, piO(Psk1,pk2)
)

and
(

p̃k1, p̃k2, piO(P ′′
p̃k2

)
)

are computationally indistinguishable. We complete the proof of Lemma 4.10

by observing that keys drawn from the latter distribution are lossy, since the key p̃k1 is lossy, the
Enc-Spooky procedure just uses the underlying encryption procedure with p̃k1, and the program
P ′′[pk2] that we obfuscate is independent of p̃k1.

4.3 piO based Multi-key Spooky Encryption

To obtain a multi-key spooky encryption scheme we would like to invoke our general transforma-
tion from 2-key spooky encryption to n-key spooky encryption (see Theorem 9). The scheme in
Theorem 7 can clearly be instantiated to support spooky multiplication. To use Theorem 9 how-
ever, we need it to also multiple hops of both (single-key) additive homomorphism and spooky
multiplication. This is obtained by the following lemma:

Lemma 4.11. Assume existence of (1) piO and (2) a lossy encryption scheme that is homomorphic
for all one-bit to one-bit functions with perfect malicious circuit privacy.

Then, for every d = d(κ), there exists an encryption scheme that supports d interleaved levels
of AFS-2-spooky multiplications and single-key additions.

Proof Sketch. To obtain an additive homomorphism, we use a construction of Canetti et al. [CLTV15]
which, assuming piO, transforms any lossy encryption into a d-leveled FHE. This is done by tak-
ing d copies of keys of the original lossy scheme and publishing d − 1 obfuscated programs where
the ith obfuscated program takes as input two ciphertexts encrypted under the ith key, decrypts
them (using the ith private-key which is hard-wired) applies one operation (AND, XOR, NAND,
etc.) and encrypts the result under the (i+ 1)th key. Using the fact that the scheme is lossy,
Canetti et al. show that the piO obfuscation hides the hard-wired private keys and semantic
security is maintained.

For our application, we need to compute multiple spooky multiplications, and then sub them
up with single-key addition. To get n-input AFS-spooky we need to sum up n ciphertexts, which
can be done using an addition tree of depth d = log n.

23

Looking more closely at the [CLTV15] construction, we observe that by setting d = i log n we
can already support i interleaving hops of (single-key) additive homomorphism and 2-input spooky
multiplications. This follows from the fact that the [CLTV15] transformation has the property that
after every additive homomorphic operation, we obtain a fresh ciphertext (under a new-key).

Using the scheme from Lemma 4.11 and applying Theorem 9, we obtain the following result:

Theorem 8 (n-Key Spooky from piO). Assume existence of (1) piO and (2) a lossy encryption
scheme that is homomorphic for all single-bit to single-bit functions with perfect malicious circuit
privacy. Then there exists a leveled AFS-spooky encryption scheme.

5 From 2-Input to n-Input AFS-Spooky

Below we describe our transformation from AFS-2-spooky to AFS-n spooky scheme, inspired by
the GMW MPC protocol [GMW87] (see the presentation in [Gol04, Section 7]).

Theorem 9 (2-Spooky to n-Spooky). Let d = d(κ) and assume that there exists a public-key bit-
encryption scheme that supports 2d (interleaving) hops of (1) single-key compact additive homo-
morphism and (2) two-key spooky multiplication. Then, that same scheme is a d-level AFS-spooky
encryption.

Proof. Let (Gen,Enc,Dec) be the encryption scheme in the theorem statement, let Spooky-Mult be
the spooky multiplication PPT algorithm and let Eval be the single-key homomorphic evaluation
algorithm (that supports compact additive homomorphism). We show a procedure that given as
input:

1. A depth-d, fan-in-2, n-input arithmetic circuit over GF (2), C : ({0, 1}∗)n → {0, 1};

2. n public-keys pk1, . . . , pkn; and

3. n ciphertexts c1, . . . , cn, where cj = Enc(pkj , xj),

outputs a sequence of ciphertexts c′1, . . . , c
′
n such that

∑
j∈[n] Decskj (c

′
j) = C(x1, . . . , xn) (where all

arithmetic is over GF(2)).
The procedure processes the circuit wire by wire. We maintain the invariant that whenever a

wire w is processed, the procedure generates ciphertexts c
(w)
1 , . . . , c

(w)
n such that

∑
j∈[n] Decskj (c

(w)
j)

is the correct value of the wire w (when the circuit C is evaluated on input (x1, . . . , xn). Further-

more, if the wire w is at distance i from the input then c
(w)
1 , . . . , c

(w)
n have passed at most 2i hops of

homomorphic operations. In particular, at the end of the process the procedure will have generated
the sequence of ciphertexts cout

1 , . . . , cout
n such that

∑
j∈[n] Decskj (c

out
j) is equal to the output value

of the circuit, as required. We proceed to describe how the wires are (inductively) processed.
Consider an input wire w, corresponding to an input bit b which is part of the ith input xi,

and for which we are given the input ciphertext c = Encpki(b). For that wire we set c
(w)
i = c and

c
(w)
j = Encpkj′ (0) for all j 6= i. Hence,

∑
j∈[n] Decskj (c

(w)
j) = Decski(c) = b, which is the correct

value for the wire w.

24

Consider a gate g with input wires u, v and output wire w. Let bu (resp., bv) be the value
on the wire u (resp., v) when C is evaluated on input (x1, . . . , xn). By induction, we have al-

ready generated ciphertexts c
(u)
1 , . . . , c

(u)
n and c

(v)
1 , . . . , c

(v)
n such that

∑
j∈[n] Decskj (c

(u)
j) = bu and∑

j∈[n] Decskj (c
(v)
j) = bv.

For the case that g is an addition gate, we set c
(w)
j = Eval

(
pkj ,⊕, c

(u)
j , c

(v)
j

)
and we get:∑

j∈[n]

Decskj (c
(w)
j) =

∑
j∈[n]

Decskj (Evalpkj (⊕, c
(u)
j , c

(v)
j)) =

∑
j∈[n]

Decskj (c
(u)
j) ⊕ Decskj (c

(v)
j) = bu ⊕ bv,

which is the correct value for the wire w. Furthermore, each new ciphertext was obtained by just
a single homomorphic operation.

Now consider the case that g is a multiplication gate. We first compute auxiliary ciphertexts

(fj,j′ , gj,j′) = Spooky-Mult(pkj , pkj′ , c
(u)
j , c

(v)
j′), for every j, j′ ∈ [n]. We then set

c
(w)
j = Evalpkj (⊕, fj,1, . . . , fj,n, g1,j , . . . , gn,j).

We obtain that:∑
j∈[n]

Decskj
(
c

(w)
j

)
=
∑
j∈[n]

Decskj
(
Evalpkj (⊕, xj,1, . . . , xj,n, y1,j , . . . , yn,j)

)
=
∑
j∈[n]

∑
j′∈[n]

Decskj (fj,j′)⊕ Decskj (gj′,j)

=
∑
j∈[n]

∑
j′∈[n]

Decskj (c
(u)
j) · Decskj (c

(v)
j′)

=
(∑
j∈[n]

Decskj (c
(u)
j)
)
·
(∑
j′∈[n]

Decskj (c
(v)
j′)
)

= bu · bv,

which is the correct value for the wire w (where the fourth equality is due to the Spooky-Mult
guarantee). Furthermore, each new ciphertext was obtained by applying two hops of homomorphic
operations.

6 Applications of Spooky Encryption

We describe below both positive and negative applications of spooky encryption. We begin in
Section 6.1 by showing how to use it to construct a counter-example to the transformation of Aiello
et al. [ABOR00] from multi-prover to single-prover protocols. Then, in Section 6.2 we show how
to use it to get two-round secure computation protocols. Finally, in Section 6.3 we describe how
we obtain a function secret sharing scheme [BGI15] for all functions.

6.1 Counter Example for the [ABOR00] Heuristic

Building on [DLN+04], we show that AFS-2-spooky encryption gives a counter-example to a natu-
ral method proposed by Aiello et al. [ABOR00] for building succinct arguments for NP, resolving

25

a question posed by [DLN+04]. The suggestion of Aiello et al. [ABOR00] was to take any multi-
prover interactive proof-system (MIP) and to use that proof-system using only a single prover by
sending all of the MIP queries encrypted under independents keys of a homomorphic encryption
scheme.9 The fact that the scheme is homomorphic allows the honest prover to answer the differ-
ent queries (homomorphically) and the intuition was that the use of different keys means that only
local homomorphisms are possible. Dwork et al. [DLN+04] questioned this intuition and raised the
question of whether there exist spooky encryption schemes that allow for other kinds of attacks
which can break the soundness of the [ABOR00] protocol. We show that this is indeed the case:
there exists an MIP (suggested by [DLN+04]) which, when combined with any AFS-2-spooky en-
cryption scheme via the [ABOR00] transformation, yields an insecure protocol. The MIP that we
use is based on a PCP for 3-coloring due to Petrank [Pet94]:

Theorem 10. [Pet94] There exists a universal constant ε > 0 such that distinguishing between the
following two types of graphs is NP complete:

• G is 3-colorable.

• Every 3-coloring of G has at least ε fraction of monochromatic edges.

This PCP leads to the following natural MIP protocol between a verifier V and two non-
communicating provers P1 and P2 (who, in case G is 3-colorable, also have access to the same
3-coloring of G).

1. V chooses a random edge (u, v) ∈ E, then with probability 1/3 it sets q1 = u and q2 = v,
with probability 1/3 it sets q1 = u and q2 = u, and with probability 1/3 it sets q1 = v and
q2 = v. V sends q1 to P1 and q2 to P2.

2. Each Pi sends the color ai ∈ {0, 1, 2} of the vertex qi (encoded as two bits).

3. V accepts if q1 = q2 and a1 = a2, or if q1 6= q2 and a1 6= a2.

Completeness is immediate. For soundness, let G be a graph such that every 3-coloring miscolors
more than an ε fraction of the edges, where ε is the constant from Theorem 10. Fix prover strategies
P1 and P2 that make the verifier accept G with probability 1 − ε/6. As usual, we may assume
without loss of generality that P1 and P2 are deterministic (by fixing their coins to those that
maximize the acceptance probability of G). Hence they define colorings P1, P2 : V (G) → {0, 1, 2}
of the graph.

For at least a 1−ε/2 fraction of edges (u, v) it must hold that P1(u) = P2(u) and P1(v) = P2(v)
(else the verifier rejects with probability greater than ε/6). Combining this fact with our assumption
on every 3-coloring of G (and in particular P1) we obtain that for at least an ε/2 fraction of edges
P1(u) = P2(v). Thus, with probability ε/6 the verifier rejects.

Insecurity of the 3-coloring MIP. Composed the foregoing MIP with any AFS-2-spooky encryp-
tion scheme yields an insecure protocol. More specifically, the cheating prover is given ciphertexts
c1 = Encpk1(q1) and c2 = Encpk2(q2). Loosely speaking, using the spooky evaluation algorithm it

9Actually, the original suggestion in [ABOR00] was to use a PCP (rather than an MIP). Dwork et al. [DLN+04]
show that using PCPs is not sound and raise the question of whether soundness can be obtained by replacing the
PCP with an MIP.

26

can produce ciphertexts Encpk1(a1) and Encpk2(a2) for bits a1, a2 ∈ {0, 1} such that a1 = a2 if and
only if u = v. It sends as its answers to V the ciphertext

(
Encpk1(0),Encpk1(a1)

)
as its answer to

the first query and
(
Encpk1(0),Encpk1(a2)

)
as its answer to the second query (the extra encryption

of 0 is used simply because the verifier expects an answer with 2 bits).
Now, if the verifier choose q1 = u and q2 = v (corresponding to the first of the three possibilities)

then q1 6= q2 and so a1 6= a2 and the verifier accepts. Otherwise, (i.e. if q1 = q2) then we have that
a1 = a2 and again the verifier accepts. Hence, we have shown a strategy that breaks the soundness
of the scheme with probability 1.

Remark 6.1. The above MIP has a large (yet constant) soundness error. We can obtain an MIP
with soundness error (say) 1/2 by repeating the base MIP O(1/ε) times (using O(1/ε) provers).
Applying the Aiello et al. [ABOR00] transformation to the resulting MIP still yields an insecure
protocol since the cheating prover can attack each base MIP separately.

6.2 2-Round MPC from AFS-Spooky Encryption

AFS-spooky encryption seems to be a useful tool for minimally-interactive multi-party protocols:
it lets each party broadcast an encryption of its input under its own key, then everyone individually
performs the AFS-spooky evaluation locally, and each party can locally decrypt and recover a
share of the output (relative to an additive n-out-of-n secret-sharing scheme). Finally another
round of communication can be used to recover the secret from all the shares. Implementing this
the approach requires attention to some details, such as ensuring that the spooky evaluation is
deterministic (so that all the parties arrive at the same sharing) and making the shares simulatable
(which can be done by having each party distribute a random additive sharing of 0 in the first round
and then adding all their received shares to their spooky generated share before broadcasting it in
the second round).

A different (but similar) avenue for implementing 2-round MPC, is by reducing AFS-spooky
encryption to multi-key FHE with threshold decryption (TMFHE). This primitive was recently
formalized by Mukherjee and Wichs [MW16], who showed how to use it to generically construct
2-round MPC. Just like spooky encryption, a TMFHE scheme can homomorphically process n
ciphertexts c1, . . . , cn, encrypting values x1, . . . , xn under independent public keys pk1, . . . , pkn,
producing for any function f a ciphertext c∗ = Eval(f, (pk1, c1), . . . , (pkn, cn)). The ciphertexts
c∗ cannot be decrypted by any single secret keys ski individually, but each party can compute a
partial decryption yi = PartDecski(c

∗) and these y’s can be combined to get y = FinDec(y1, . . . , yn) =
f(x1, . . . , xn). For security, Mukherjee and Wichs required that for each individual i, the partial
decryption yi can be simulated given the evaluated ciphertext c∗, the final output y and the secret
key skj for j 6= i (see [MW16] for formal definitions).

We observe that an AFS-spooky encryption with perfect correctness immediately yields a
TMFHE scheme. The homomorphic evaluation procedure Eval of the TMFHE runs the Spooky-Eval
procedure of the AFS-spooky encryption and sets c∗ = (c′1, . . . , c

′
n) to be the resulting ciphertexts.

The partial decryption procedure PartDecski(c
∗) outputs yi = Decski(c

′
i) and the combination proce-

dure FinDec(y1, . . . , yn) outputs y =
⊕n

i=1 yi. For security, we observe that each partial decryption
yi can be simulated given c∗ = (c′1, . . . , c

′
n), y and skj for j 6= i by computing yj = Decskj (c

′
j) and

setting yi = y ⊕ (
⊕

j 6=i yj).
10 This proves the following theorem.

10We note that imperfect correctness of the AFS-spooky scheme will translate into a security problem for the
TMFHE scheme, as the simulated yi will have a different distribution than the real ones.

27

Theorem 11. An AFS-spooky encryption scheme with perfect correctness implies a multi-key FHE
with threshold decryption (TMFHE).

Using the above theorem and the results of [MW16] which constructs a 2-round MPC from
TMFHE, we get the following corollaries.

Corollary 12. Assuming the existence of a weak AFS-spooky encryption scheme:

• There exists a 2-round MPC protocol with semi-honest security. If the encryption scheme is
in the plain model then so is the MPC protocol and if the encryption scheme requires a CRS
then so does the MPC protocol.

• Furthermore, assuming the existence of NIZKs in the CRS model, there exists a 2-round MPC
protocol with malicious security in the CRS model.

Combining this with our construction of AFS-spooky encryption without a CRS from iO, we
get the first construction of a 2-round semi-honest MPC protocol in the plain model.

Corollary 13. Assume existence of (1) piO and (2) a lossy encryption scheme that is homomorphic
for all single-bit to single-bit functions with perfect malicious circuit privacy. Then, there exists a
2-round MPC protocol with semi-honest security in the plain model.

6.3 Function Secret Sharing

Function secret sharing (FSS), recently introduced by Boyle, Gilboa and Ishai, allows a dealer to
split a function f into k succinctly described functions f̂1, . . . , f̂k such that (1) any strict subset
of the f̂i’s reveals nothing about f and (2) for any x it holds that the values f̂1(x), . . . , f̂k(x) are
an additive secret sharing of f(x). Boyle et al. gave constructions under standard assumptions for
certain restricted families of functions and a general construction for any poly-size circuit, based
on piO. We show how to construct such a general FSS scheme given any AFS-spooky encryption
scheme. In particular, we obtain a leveled FSS scheme assuming only LWE.

To construct such an FSS scheme, the dealer first generates a k-out-of-k secret sharing f1, . . . , fk
of the description of the function f . The dealer also generates k key pairs (pki, ski)i∈[k] for the AFS

spooky scheme and publishes f̂i
def
=
(
ski, pk1, . . . , pkk,Encpk1(f1), . . . ,Encpkk(fk)

)
as the ith share.

Assuming the scheme is semantically secure, any strict subset of the f̂i’s hides the original function
f (upto its description length).

For the FSS functionality, given an input x we can consider the circuit Cx that takes as input k
shares of a function f , adds them up and applies the resulting function to the input x (which, say,
is hardwired). To evaluate f̂i on x, we run the spooky evaluation algorithm, which we assume wlog
is deterministic, on Encpk1(f1), . . . ,Encpkk(fk) with respect to the circuit Cx. Thus, given each f̂i
separately, we can generate the same ciphertexts c1, . . . , ck which are encryptions of an additive
secret sharing of f(x). Each function f̂i can then be used to decrypt ci and publish its share of
f(x).

A De-Centralized View. We remark that the above construction can be viewed as a de-
centralized FSS. More specifically, we may have some k (not necessarily secret or functional) shares
f1, . . . , fk of a function f , where each share is owned by a different player. Player i can generate
a key pair (pki, ski) and broadcast (pki,Encpki(fi)) to all other players. Using our scheme, after
learning the input x, the players can (non-interactively) generate an additive secret sharing of f(x).

28

7 Spooky-Free Encryption

We turn now to study spooky-free encryption, i.e. an encryption scheme that ensures that no spooky
relations can be realized by an adversary. The formal definition roughly states that any correlation
that an attacker can induce between the original messages (m1, . . . ,mn) and “tampered messages”
(m′1, . . . ,m

′
n), can be simulated by a “local simulator” that produces m′i only as a function of mi

(and some shared randomness).

Definition 7.1 (Spooky-Free Encryption). An encryption scheme (Gen,Enc,Dec) is spooky-free if
for every PPT adversary A there exists a PPT simulator S such that for all PPT message distri-
butions D, the two distributions REALD,A(κ) and SIMD,S(κ) specified below are computationally
indistinguishable:

REALD,A(κ): 1. Sample (m1, . . . ,mn, α)← D(1κ); // α is auxiliary information

2. Choose (pki, ski)← Gen(1κ) and set ci ← Encpki(mi) for i = 1, . . . , n;
3. Let (c′1, . . . , c

′
n)← A(pk1, . . . , pkn, c1, . . . , cn);

4. Set m′i = Decski(ci) for i = 1, . . . , n;
5. Output (m1, . . . ,mn,m

′
1, . . . ,m

′
n, α).

SIMD,S(κ): 1. Sample (m1, . . . ,mn, α)← D(1κ); // α is auxiliary information

2. Sample a random tape r and let m′i = S(1κ, 1n, i,mi; r) for i = 1, . . . , n;
3. Output (m1, . . . ,mn,m

′
1, . . . ,m

′
n, α).

It is not hard to see that spooky-freeness for n ≥ 2 implies semantic security. As a small subtlety,
here the attacker must choose the messages it claims to distinguish before seeing the public-key,
since the message sampler D does not know anything public keys used in the real experiment (we
defined it this way, as stronger security was not needed for our delegation application). Of course,
this minor difference from standard semantic security is without loss of generality when the message
space is polynomial small (e.g., for bit encryption).

Lemma 7.2. A spooky-free scheme for n ≥ 2 is semantically secure (in the “selective” sense
discussed above).

Proof. Suppose that a scheme (Enc,Dec,Gen) is not semantically secure, and let B be an attacker
than can distinguish Encpk(x0) from Encpk(x1). We use B to construct a sampler D and attacker
A that can fool any simulator S with non-negligible probability. We assume that D and A (and S)
know the messages x0 and x1 whose encryption B can distinguish.
D draws at random m1 ← {x0, x1} and sets mi := 0 for i > 1. Upon seeing n ciphertexts

c1, . . . , cn, A gives c1 to B, asking him to guess whether it encrypts x0 or x1. Let σ be the guess
that B makes, then we know that m1 = xσ with probability ≥ 1/2 + ε. A then sets c′i = ci for all
i 6= 2, and sets c′2 to be a fresh encryption of xσ under pk2.

As we can see, the output of the real experiment has the tuple (m1,m
′
2) distributed as (xb, xσ),

where b is a random bit and σ = b with probability ≥ 1/2 + ε. On the other hand, the simulator
for the second message m′2 is only given m2 = 0 as the input, and has to guess σ′ s.t., Pr[b = σ′] ≥
1/2 + ε, which is impossible information-theoretically.

Below we show in Section 7.1 that spooky-free homomorphic encryption is exactly the ingre-
dient needed to instantiate the idea of Aiello et al. [ABOR00] for converting general multi-prover

29

(MIP) systems into single-prover arguments.11 Then in Section 7.2 we show that non-malleable
encryption is always spooky-free (albeit without any homomorphic capabilities). Finally, in Sec-
tion 7.3 we construct a spooky-free FHE scheme using a strong security component called succinct
non-interactive argument of knowledge (SNARK).12

Spooky-Free Encryption with CRS. Definition 7.1 can be naturally extended to the common-
reference-string model. We use this relaxation in Section 7.3 to gain somewhat better efficiency
(at the price of a slightly harder proof of security). We stress that, unlike the setting of spooky
encryption from Section 3, using CRS is not done to gain extra (say, homomorphic) functionality
for our spooky-free scheme, and our construction remains spooky-free (but slower) if all the public
keys are chosen completely independently.

7.1 Application: Succinct 1-round Arguments for NP

Here we formalize the transformation suggested by Aiello et al. [ABOR00] (and cryptanalyzed
by Dwork at al. [DLN+04]), and show that homomorphic spooky-free encryption is the missing
ingredient which is needed to realize that transformation.

Definition 7.3 (Multi-Prover Interactive Proofs (MIP) for NP). An n-prover interactive proof
(MIP) for an NP relation R consists of PPT algorithms (V = (V1, V2), P1, . . . , Pn). Given a state-
ment (x,w) ∈ R, the interactions between V and P1, . . . , Pn has the following syntax:

• The verifier generates queries (q1, . . . , qn)← V1(1κ, x) and remembers its secret state α.

• Each prover is given the query qi and computes an answer ai ← Pi(1
κ, x, w, qi).

• The verifier runs V2(x, (q1, . . . , qn), (a1, . . . , an), α) and outputs 1 (accept) or 0 (reject).

We require that the MIP satisfies the following properties:

Completeness: For any (x,w) ∈ R, the interactions between V and P1, . . . , Pn results with V
outputting 1.

Soundness: For any x 6∈ R and any (not necessarily efficient) malicious provers P ′1, . . . , P
′
n, the

probability that V outputs 1 after interacting with P ′1, . . . , P
′
n on x is negligible in κ.

(Succinctness): The communication complexity
∑

i(|qi|+ |ai|) = poly(κ) · polylog(|x|+ |w|).

It is well known (e.g., by combining results in [BGKW88, BFLS91, FRS94], see also Section 6
or [DLN+04]) that there exists a succinct 2-prover MIP for any language in NP.

Definition 7.4 (One-Round Succinct Argument). A one-round succinct argument (ORSA) for an
NP relation R consists of PPT algorithms (Gen,Ver,Prove). We require that the argument satisfies
the following properties:

11An alternate route for instantiating the [ABOR00] idea due to [KRR13, KRR14] is to use special types of MIP,
which satisfy a stronger soundness condition, together with any (possibly spooky) homomorphic encryption scheme.

12Of course, this construction does not give any new one-round delegation schemes, since SNARKs trivially imply
the existence of such a scheme directly (i.e., without building spooky-free encryption). Still, if better constructions
of spooky-free FHE are found, they would immediately imply new delegation schemes for NP.

30

Completeness: For all (x,w) ∈ R,

Pr[Versk(x, π) = 1 : (pk, sk)← Gen(1κ, x), π ← Provepk(x,w)] = 1.

Selective Soundness: For any PPT adversary P , any polynomial p(·) and any ensemble {xκ}
with |xκ| = p(κ) and xκ 6∈ R we have:

Pr[Versk(x, π) = 1 : (pk, sk)← Gen(1κ, x), π ← P (1κ, pk)] = negl(κ).

Succinctness: We say that the scheme is succinct if |pk|+ |sk|+ |π| = poly(κ) · polylog(|x|+ |w|).

The Aiello et al. construction transforms a succinct MIP Π for a relation R into a candidate suc-
cinct one-round argument Π̂ for R using an FHE scheme (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval).
The idea is to take the different queries that the MIP verifier sends to its prover, encrypt them
under different FHE keys, and send to the prover. The prover can then execute the MIP provers
homomorphically on the encrypted inputs, returning the encrypted answers to the verifier, who
decrypts them and checks. As we show below, spooky-freeness is exactly the condition that we
need to ensure that the single prover cannot relate the different ciphertexts in any meaningful way.

For the sake of improved efficiency and potential generality, we will allow several instances of
the FHE schemes to use a common reference string CRS ← CRSGen(1κ). The transformation is
given below:

• The verifier generates queries (q1, . . . , qn)← V1(1κ, x), and remembers secret state α.

• The verifier generates a CRS ← CRSGen(1κ), and n independent (modulo shared CRS) key
pairs (pki, ski)← FHE.Gen(CRS).

• The verifier computes ci ← FHE.Enc(pki, qi) and sends (CRS, pk1, . . . , pkn, c1, . . . , cn) to the
prover.

• Inside each ciphertext ci, the prover implements the FHE.Eval homomorphic procedure using
the i-th MIP prover’s algorithm Pi (and possibly CRS), generating new ciphertext c′i.

• The verifier gets n ciphertexts c′1 . . . c
′
n, and decrypts them into n plaintexts ai ← Deci(c

′
i).

• The verifier runs the original MIP verifier V2 on inputs (q1, . . . , qn, a1, . . . an, α) and outputs
its decision.

Theorem 14. If the FHE scheme (Gen,Enc,Dec) is spooky-free and Π is a succinct MIP for a
language R, then Π̂ is a succinct one-round argument for R.

Proof. Completeness is obvious, and succinctness follows immediately from the succinctness of the
MIP argument. Hence, we turn to selective soundness.

Given a malicious prover P for the one-round argument, we define the message sampler D and an
adversary A for the spooky-free game, as follows. D runs V1 and sets (m1, . . . ,mn) = (q1, . . . , qn),
where qi are the questions prepared by V1. It also keeps the secret side information α.

To define A, we continue the execution above, and generate n ciphertexts ci, as expected,
sending them all to P (together with public keys and optional CRS). P mauls them to c′1, . . . , c

′
n,

and this is defined to be the output of A. We also let ai = Deci(c
′
i).

31

By the spooky-freeness of FHE, we know that the joint distribution of (q1, . . . , qn, a1, . . . , an, α)
can be simulated by the spooky-free simulator S, who generates ai only as the function of qi (and
shared randomness). But then the execution with the simulator defines n valid non-communicating
provers Pi for the MIP game, whose soundness implies that the soundness of the one-round succinct
argument.

Remark 7.5. We note that the succinct one-prover argument that we construct inherits many extra
properties that the MIP system may have. For example, if queries qi can be generated independent
of the instance x in the MIP proof, the same will be true for the one-round argument (which now
becomes a “designated-verifier, non-adaptive SNARG”). Similarly, if the MIP is also a proof of
knowledge, then so will be our argument system.

7.2 Non-Malleable Encryption is Spooky-Free

We show that any non-malleable encryption is spooky-free. Actually, this is already true for one
of the weakest notions of non-malleable encryption, where the adversary can access the decryption
oracle just once.

Definition 7.6 (1-Bounded Non-Malleability). A public key encryption scheme (Gen,Enc,Dec) is
1-non-malleable (1-NM) if for every PPT A we have |Pr[NMGameA,0(κ) = 1]−Pr[NMGameA,1(κ) =
1]| ≤ negl(κ) where we define the game NMGameA,b(κ) as follows:

• Generate (pk, sk)← Gen(1κ) and give pk to A.

• A chooses two messages m0,m1 with |m0| = |m1|.

• Compute c← Encpk(mb) and give c to A.

• A chooses c′ with c′ 6= c and gets Decsk(c
′).

• A outputs a bit b′ which is the output of the game.

Theorem 15. Any 1-non-malleable public-key encryption scheme is spooky-free.

Proof. For any adversary A we define a simulator S(1κ, 1n, i,m; r) as follows:

• Use the randomness r to sample the following values: for j = 1, . . . , n choose (pkj , skj) ←
Gen(1κ), cj ← Encpkj (0) and set (c′1, . . . , c

′
n)← A(pk1, . . . , pkn, c1, . . . , cn).

• If c′i = ci, then output m, else output Decski(ci).

Let D be any message sampler. We define a sequence of intermediate hybrids to show the
indistinguishability of REALD,A(κ) and SIMD,S(κ). Let Hybrid 0 be REALD,A(κ). Let Hybrid
i be the same as Hybrid 0 except that for j ≤ i:

• Instead of setting cj ← Encpkj (mj) we set cj ← Encpkj (0).

• If c′j = cj then instead of setting m′j = Decskj (cj) we set m′j = mj .

32

It’s easy to show that Hybrid i − 1 is indistinguishable from Hybrid i by the non-malleable
security with public key pki. In particular, the only difference between these hybrids is whether
ci ← Encpki(mi) or ci ← Encpki(0) (in both hybrids, if c′i = ci, we set m′i = mi). Furthermore, the
secret key ski is only used to decrypt a single ciphertext c′i 6= ci during the course of the hybrids.

Therefore Hybrid 0, which is REALD,A(κ), is indistinguishable from Hybrid n, which is
SIMD,S(κ). This proves the theorem.

It is also well known that 1-NM encryption can be generically built from any semantically secure
encryption scheme [CHH+07]. Thus,

Corollary 16. Assuming the existence of semantically secure public-key encryption, there exists
spooky-free encryption.

7.3 Homomorphic Spooky-Free Encryption

We now show how to construct a spooky-free fully homomorphic encryption scheme, using three
strong components: a fully homomorphic encryption scheme (FHE [RAD78, Gen09]), a true-
simulation-extractable non-interactive zero-knowledge argument (tSE-NIZK [DHLW10]), and a
succinct non-interactive argument of knowledge (SNARK [GW11, BSW12]).

As a high level, we use FHE to achieve the required homomorphism, tSE-NIZK arguments to
ensure “non-malleability across keys” (which, as we saw, implies “spooky-freeness” in the non-
homomorphic setting), and SNARKs to ensure that any ciphertext mauling due to the added ho-
momorphism can be “traced back” to mauling the original ciphertexts, which we know is impossible
due to the non-malleability mentioned above.

We formally state our construction below, but mention that a special instantiation of our
scheme13 is essentially identical to a scheme proposed by Boneh, Segev and Waters [BSW12] in the
context of targeted malleability. In the latter problem, the goal is to have a (single key) homomorphic
encryption scheme which only allows restricted types of homomorphic operations. Although this
is a different goal than spooky free encryption, it turns out that essentially the same construction
can serve both goals. Our (more general) construction also works for the application of [BSW12],
and we use a slightly more modular presentation.14

For simplicity, we describe a construction which is only 1-hop and which only allows homo-
morphic evaluations over a single (multi-bit) ciphertext. However, it is easy to extend this to
multiple hops and homomorphic evaluations over multiple ciphertexts, along the lines described by
[BSW12]. For better efficiency, our spooky-free FHE shares the same CRS for both the tSE-NIZKs
and SNARKs. This makes arguing security a bit harder, but still possible for our scheme. In
particular, our scheme remains a spooky-free FHE if each encryption scheme chooses its own CRS
for tSE-NIZKs and SNARKs.

7.3.1 tSE-NIZK arguments and SNARKs

We use the definition of true-Simulation-Extractable Non-Interactive Zero-Knowledge (tSE-NIZK)
argument of Dodis et al. [DHLW10], which captures various notions of simulation-soundness [Sah99]

13Specifically, of the tSE-NIZK component using an FHE scheme and an adaptive simulation-sound NIZK. We
note, though, that using our simpler construction, no FHE is needed to implement the tSE-NIZK, and more efficient
instantiations are possible [DHLW10].

14E.g., we avoid explicitly using the Naor-Yung double encryption trick [NY90], burying it into low-level imple-
mentations of tSE-NIZKs.

33

and extractability [SP92, CLOS02, PR08a, PR08b, Gro06] and lets us abstract away some of the
details of the construction. Intuitively, tSE-NIZK strengthens the soundness condition by requiring
an extractor Ext, which (using a CRS-related trapdoor) is able to extracts a witness w∗ from any
any convincing proof, even if the prover previously saw many simulated proofs for arbitrary true
statements.

Definition 7.7 (tSE-NIZK). A tSE-NIZK argument for an NP relation R consists of three algo-
rithms (NIZK.CRSGen,NIZK.Prove,NIZK.Ver) with syntax:

• (CRS, tk, ek)← NIZK.CRSGen(1κ): Creates a common reference string (CRS) CRS, an equiv-
ocation trapdoor key tk, and extraction key ek to the CRS.

• π ← NIZK.ProveCRS(x,w): Assuming R(x,w) = 1, creates a proof π certifying this fact.

• 0/1← NIZK.VerCRS(x, π): Verifies whether or not the proof π is correct.

We require that the following three properties hold (we omit CRS subscript for brevity):

Completeness: For any (x,w) ∈ R, if (CRS, tk, ek)← NIZK.CRSGen(1κ) , π ← NIZK.P rove(x,w),
then NIZK.Ver(x, π) = 1.

Composable Zero-Knowledge: There exists PPT simulator NIZK.Sim such that, for any PPT
adversary A we have

∣∣Pr[A wins]− 1
2

∣∣ ≤ negl(κ) in the following game:

• The challenger samples (CRS, tk, ek)← NIZK.CRSGen(1κ) and gives (CRS, tk) to A.

• The adversary A chooses (x,w) ∈ R and gives these to the challenger.

• Challenger rejects if (x,w) 6∈ R; otherwise, it samples π0 ← NIZK.Prove(x,w), π1 ←
NIZK.Sim(x, tk), b← {0, 1} and gives πb to A.

• The adversary A outputs a bit b̃ and wins if b̃ = b.

True-Simulation-Extractability: There exists a PPT algorithm NIZK.Ext(x, π, ek) such that for
all P ∗ we have Pr[P ∗ wins] ≤ negl(κ) in the following game:

1. Key Generation: The challenger runs (CRS, tk, ek) ← NIZK.CRSGen(1κ) and gives
CRS to P ∗.

2. Simulation queries: P ∗ is given access to the true-simulation oracle: a query to this
oracle consists of a pair (x,w); the oracle checks if (x,w) ∈ R; if true, it ignores w, and
outputs a simulated argument NIZK.Sim(x, tk), and otherwise outputs ⊥.

3. Adversary Output: P ∗ outputs a tuple (x∗, π∗).

4. Extraction: The challenger runs w∗ ← NIZK.Ext(x∗, π∗, ek).

5. P ∗ wins if NIZK.Ver(x∗, π∗) = 1 and the value x∗ was not part of a true-simulator query.

Dodis et al. [DHLW10] also showed several constructions of tSE-NIZKs for all of NP from traditional
encryption and NIZK schemes.

In contrast, SNARKs are a much stronger knowledge-based assumption, which cannot be black-
box constructed from any falsifiable assumption [GW11] (with adaptive soundness).

34

Definition 7.8 (SNARK). A Succinct Non-interactive ARgument or Knowledge (SNARK) for an
NP relation R consists of PPT algorithms (SNARK.CRSGen,SNARK.Prove,SNARK.Ver) where

• CRS← SNARK.CRSGen(1κ): Creates a common reference string (CRS) CRS.

• π ← SNARK.ProveCRS(x,w): Assuming R(x,w) = 1, creates a proof π certifying this fact.

• 0/1← SNARK.VerCRS(x, π): Verifies whether or not the proof π is correct.

We require that the following properties (we omit CRS subscript for brevity):

Completeness: For any (x,w) ∈ R:

Pr[SNARK.Ver(x, π) = 1 : CRS← Gen(1κ), π ← SNARK.Prove(x,w)] = 1.

(Adaptive) Knowledge Extraction: for every PPT algorithm P there here exists a PPT ex-
tractor SNARK.ExtP such that

Pr

 SNARK.Ver(x, π) = 1
and R(x,w) = 0

∣∣∣∣∣∣
CRS← SNARK.CRSGen(1κ)

π ← P (1κ,CRS; r)
w ← SNARK.ExtP (1κ,CRS; r)

 ≤ negl(κ).

Succinctness: The proof is short: |π| = poly(κ) · polylog(|x|+ |w|).

7.3.2 Constructing of Spooky-Free FHE

We set up tSE-NIZK for the relation RNIZK = {(x = (pk, c), w = (m, r)) : c = FHE.Encpk(m; r)},
and SNARK for the relation

RSNARK =

{(
x = (CRS, pk, c′),
w = (f, c, π)

)
:

c′ = FHE.Evalpk(f, c),
NIZK.Ver(CRS, (pk, c), π) = 1

}
.

We construct a spooky-free FHE scheme (SF.CRSGen, SF.Gen, SF.Enc, SF.Dec, SF.Eval) as
follows:

• CRS← SF.CRSGen(1κ): Run (CRS1, tk, ek)← NIZK.CRSGen(1κ) and CRS2 ← SNARK.CRSGen(1κ).
Set CRS = (CRS1,CRS2).

• (pk, sk)← SF.Gen(1κ): Run (pk, sk)← FHE.Gen(1κ).

• C ← SF.Encpk(m): Run c ← FHE.Encpk(m; r) and π1 ← NIZK.Prove(CRS1, (pk, c), (m, r)).
Output C = (0, c, π1).

• C ′ ← SF.Eval(f, C): Parse C = (0, c, π1). Compute c′ = FHE.Evalpk(f, c),
π2 ← SNARK.Prove(CRS2, (CRS1, pk, c′), (f, c, π1)). Output C ′ = (1, c′, π2).

• m← SF.Decsk(C): Parse C = (b, c, π).
If b = 0 and NIZK.Ver(CRS1, (pk, c), π) = 0 then output ⊥.
If b = 1 and SNARK.Ver(CRS2, (CRS1, pk, c), π) = 0 then output ⊥.
Else output Decsk(c).

35

Theorem 17. Given a secure FHE, tSE-NIZK and SNARK schemes, the above construction is a
spooky-free FHE scheme.

We present a formal proof in Appendix A, here giving a high-level sketch. As we mentioned,
spooky-freeness implies semantic security for n ≥ 2, so we only need to check the compactness
of the FHE and then show its spooky-freeness. For the former, it immediately follows from the
succinctness of SNARK, which means that the size of the SNARK proof π2 output by the Eval
routine is indeed compact as compared to the size of f .

We next turn to spooky-freeness. The main challenge here is to use various security properties
of tSE-NIZK and SNARK to slowly transform the real spooky-free game into an indistinguishable
game, where no individual decryption keys ski are used, except either: (a) an attacker copied the
challenge ciphertext ci; or (b) the attacker honestly applied the FHE Eval procedure to a challenge
ciohertext ci. Once accomplished, we can use the semantic security of the FHE to replace real
encryption of messages mi with encryptions of 0, after which we can easily define the required
simulator S who will use its message mi only to cover the two obvious cases (a) and (b) mentioned
above.

To do this transition from the real to the simulated game, we use the following high-level hybrids
(each of which is usually composed of n smaller hybrids, one for each encryption component):

• Hybrid 0. Original real game where real witnesses are uses for all tSE-NIZKs and real
decryption keys are used to decrypt.

• Hybrid 1. Replace all real proofs π1 with simulated proofs, using the trapdoor tk. Notice,
simulated proofs are used on true statement, and composable zero-knowledge of tSE-NIZKs
is used to argue security.

• Hybrid 2. Recall, the attacker A can maul ciphertext C = (0, c, π1) into C ′ = (b, c′, π′) two
ways. (a) By keeping b = 0 (thus still using NIZKs), or (b) Making c = 1 and using SNARKs.
In this second case, we use the knowledge extraction property of SNARKs to argue that
the attacker must know a ciphertext c∗, a mauling function f∗ and normal NIZK π∗ s.t. the
message m′ encoded by c′ is f∗(m∗), where m∗ is decryption of c∗ and π∗ is a valid tSE-NIZK.
Thus, on a high level, we effectively reduced the mauling case (b) above to mauling case (a),
except we need to apply the extracted function f∗ to the result m∗ to get m′i.

• Hybrid 3. This formalized here, where instead of decrypting c′ in case of mauling type (b)
above, we return f∗ applied to the decryption of c∗ extracted from the attacker.

• Hybrid 4. Now that we only need to worry about maulings of type (a) (so we ignore
discussing type (b) now, as it is handled similarly, except applying f∗ to the result), we are
ready to eliminate using the decryption key sk by using the tSE-NIZK extractor. Here we are
allowed to use it since the attacker only sees simulated proofs of true statement (as done in
Hybrid 1). This allows one to eliminate using the secret key sk, except in the obvious case
when the attacker copied the actual ciphertext ci (either in c′ in case (a), or c∗ in case (b)),
which are handled specially.

• Hybrid 5. Now we can use the semantic security of FHE to replace the real encryptions of
mi by enryptions of 0.

36

• The resulting game no longer uses the decryption oracle, removes all information about the
messages (m1, . . . ,mn), except when the attacker copied the message, or honestly applied
some (already extracted) homomorphic evaluation to the ciphertext. This leads to the obvious
simulator S, completing the proof.

Acknowledgments

This work was done in part while the authors were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant #CNS-1523467.

The first author was partially supported by gifts from VMware Labs and Google, and NSF
grants 1319051, 1314568, 1065288, 1017471.

The second author was supported in part by the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-0236.

The third author was partially supported by NSF Frontier “TWC: TTP Option: Frontier:
Collaborative: MACS: A Modular Approach to Cloud Security” - CNS1413920 Simons Foundation
- Agreement Dated 6-5-12.

The last author was supported in part by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964.

References

[ABOR00] William Aiello, Sandeep Bhatt, Rafail Ostrovsky, and S. Raj. Rajagopalan. Fast verifi-
cation of any remote procedure call: Short witness-indistinguishable one-round proofs
for NP. In ICALP: Annual International Colloquium on Automata, Languages and
Programming, 2000.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 337–367. Springer, 2015.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover in-
teractive proofs: How to remove intractability assumptions. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 113–131, 1988.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

37

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In Shafi Goldwasser, editor, Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 350–366.
ACM, 2012.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded cca2-secure encryption. In
Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture
Notes in Computer Science, pages 502–518. Springer, 2007.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In John H. Reif, editor, Proceed-
ings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 494–503. ACM, 2002.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pages 468–497, 2015.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from
learning with errors. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 630–656. Springer, 2015.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Effi-
cient public-key cryptography in the presence of key leakage. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, Decem-
ber 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages
613–631. Springer, 2010.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for NP and spooky interactions. Unpublished manuscript, available at
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf, 2004.

[FRS94] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover
interactive protocols. Theor. Comput. Sci., 134(2):545–557, 1994.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178.
ACM, 2009.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory

38

http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf

of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i -hop homomorphic encryp-
tion and rerandomizable Yao circuits. In Tal Rabin, editor, Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August
15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages
155–172. Springer, 2010. http://eprint.iacr.org/2010/145.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 640–658. Springer, 2014.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229, 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology -
ASIACRYPT 2006, 12th International Conference on the Theory and Application of
Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceed-
ings, volume 4284 of Lecture Notes in Computer Science, pages 444–459. Springer,
2006.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108, 2011.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, 2010.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304, 2000.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
335–354, 2004.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In STOC, pages 565–574, 2013.

39

http://eprint.iacr.org/2010/145

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round mutliparty computation via multi-
key FHE. In Eurocrypt 2016, to appear, 2016. http://eprint.iacr.org/2015/345,
accessed Jan 2016.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washing-
ton, DC, USA., pages 448–457, 2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 427–437. ACM, 1990.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously
circuit-private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 536–553. Springer, 2014. Available from https://eprint.

iacr.org/2013/307.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009.

[Pet94] Erez Petrank. The hardness of approximation: Gap location. Computational Com-
plexity, 4:133–157, 1994.

[PR08a] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Com-
put., 37(6):1891–1925, 2008.

[PR08b] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Com-
put., 37(6):1891–1925, 2008.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

40

http://eprint.iacr.org/2015/345
https://eprint.iacr.org/2013/307
https://eprint.iacr.org/2013/307

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 543–553. IEEE Computer
Society, 1999.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In 33rd Annual Symposium on Foundations of Com-
puter Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 427–436.
IEEE Computer Society, 1992.

A Proof of Theorem 17

Since spooky-freeness implies semantic security for n ≥ 2, so we only need to check the compactness
of the FHE and then show its spooky-freeness. For the former, it immediately follows from the
succinctness of SNARK, which means that the size of the SNARK proof π2 output by the Eval
routine is indeed compact as compared to the size of f .

We next turn to spooky-freeness. For any adversary A and sampler D, let Hybrid 0 denote
the distribution (m1, . . . ,mn,m

′
1, . . . ,m

′
n, α) produced by the real game REALD,A(κ). Instead of

defining simulator S directly, we will produce a series of hybrids, each indistinguishable from the
previous, until we arrive at a hybrid whose code defines a legitimate simulator S.

Hybrids 1.1-1.n. Recall, in Hybrid 0 the tSE proofs πi (for i = 1 to n) were generated using
the honest tSE-proof NIZK.Prove(CRS1, (pki, ci), (mi, ri)). In this hybrid we generate these i proofs
running the simulator Sim((pki, ci), tk) instead.

By the composable zero-knowledge property of tSE-NIZKs, all these hybrid are computation-
ally indistinguishable from each other, since the composable zero-knowledge property holds even
conditioned on the equivocation key tk used to generate simulated proofs. We denote Hybrid 1.n
by Hybrid 1, noting that in this hybrid all the n tSE proofs π1,1, . . . , π1,n are generated by the
simulator Sim(·, tk).

Hybrids 2.1-2.n. Before defining Hybrid 2.i, we define a malicious prover Pi. This prover, on
input CRS2, simulates the complete run of Hybrid 1 (including running D, generating all the
public/secret keys (pki, ski), generating (CRS1, ek, tk), etc.), up until the attacker A mauls n real
ciphertexts (C1, . . . , Cn) into (C ′1, . . . , C

′
n). Pi then parses C ′i = (bi, c

′
i, π
′
i). If bi = 0 (no Eval was

run), or bi = 1 but the SNARK proof π′ does not verify, then Pi aborts. Otherwise, it outputs a
valid statement-proof pair (xi = (CRS1, pki, c

′
i), π

′
i) for RSNARK .

By the knowledge extraction property of SNARKs, there is a PPT extractor Exti = ExtPi
which, when taking the randomness of Pi above, outputs a witness wi = (f∗i , c

∗
i , π
∗
i) s.t. c′i =

FHE.Evalpki(f
∗
i , c
∗
i) (which implies Deci(c

′
i) = f∗i (Deci(c

∗
i))) and NIZK.Ver(CRS1, (pki, c

∗
i), π

∗
i) = 1.

Having defined Pi and Exti above, we can now define Hybrid 2.i as follows. As in the defi-
nition of Pi, we simulate the complete run of Hybrid 1 (including running D, generating all the
public/secret keys (pki, ski), generating (CRS1, ek, tk), etc.), up until the attacker A mauls n real
ciphertexts (C1, . . . , Cn) into (C ′1, . . . , C

′
n). Also, for j > i, we do the same as in Hybrid 1. For

j ≤ i, however, we examine the ciphertext C ′i = (bi, c
′
i, π
′
i). If bi = 0 (no Eval was run), or bi = 1

but the SNARK proof π′ does not verify, we again proceed as in Hybrid 1. However, if bi = 1 and

41

the SNARK proof π′ verifies, we use the knowledge extractor Exti = ExtPi which, when taking the
randomness of Pi above, outputs a witness wi = (f∗i , c

∗
i , π
∗
i) s.t. c′i = FHE.Evalpki(f

∗
i , c
∗
i) (which

implies Deci(c
′
i) = f∗i (Deci(c

∗
i))) and NIZK.Ver(CRS1, (pki, c

∗
i), π

∗
i) = 1.

Once again, all these hybrids are indistinguishable due to the knowledge extraction property of
the SNARK. We denote Hybrid 2.n by Hybrid 2.

Hybrid 3. Notice, the decryption algorithm Deci(c
′
i) is only run in Hybrid 2 in two situations:

(a) the mauled ciphertext C ′i = (0, c′i, π
′
i) and π′i tSE-verifies; or (b) C ′i = (1, c′i, π

′
i), π

′
i SNARK-

verifies, and the extractors Exti has extracted values (f∗i , c
∗
i , π
∗
i) s.t. c′i = FHE.Evalpki(f

∗
i , c
∗
i) (which

implies Deci(c
′
i) = f∗i (Deci(c

∗
i))) and NIZK.Ver(CRS1, (pki, c

∗
i), π

∗
i) = 1.

In Hybrid 3, we change rule (b) above, and instead will output f∗i (Deci(c
∗
i)). As we note

above, this produces the same output distribution as Hybrid 2.

Hybrids 4.1-4.n. Notice, we have the following invariants at the end of Hybrid 3. First, the
attacker A only sees simulated proofs of true statements (see Hybrid 1). Second, whenever we
decrypt some ciphertext using ski (either in case (a) or (b) above), we have a valid tSE-proof
(either π′i if bi = 0, or π∗i if b1 = 1) w.r.t. RNIZK). In Hybrid 4.i, instead of calling the
actual decryption algorithm Deci of such a ciphertext, we will use the extractor Ext from the
true-simulation-extractable NIZK, which, using the extraction key ek, will attempt to extract the
message from the ciphertext.

One subtlety here is that the extraction procedure might not work when given a ciphertext
on which a simulated proof was given. Fortunately, our simulator knows the plaintext mi, so it
will know what to do in such a case. More precisely, we apply the following modified decryption
procedure in Hybrid 4 (where, for brevity, we ignore the second randomness output r when running
Ext, instead only using the message output):

• When bi = 0, NIZK π′i verifies and c′i 6= ci, set m′i ← Ext((pki, c
′
i), ek);

• When bi = 0, NIZK π′i verifies and c′i = ci, set m′i = mi;

• When b1 = 1, NIZK π∗i verifies and c∗i 6= ci, set m′i ← f∗i (Ext((pki, c
∗
i), ek));

• When bi = 1, NIZK π′i verifies and the tuple c′i = c∗i , set m′i = f∗i (mi);

• otherwise set m′i = ⊥.

From the discussion above, we see that all the hybrids above are computationally indistinguishable
because of the true simulation-extractability property, as the attacker only sees simulated proof of
true statements, and the extractor Ext should succeed extracting on any proof not output for the
tSE-oracle. We denote Hybrid 4.n by Hybrid 4.

Hybrids 5.1-5.n. Finally, we see that Hybrid 4 does not use the decryption algorithm at all,
instead running various extractors Exti and Ext to output the correct messages. Hence, we can
now use the semantic security of FHE, and start replacing real FHE-encryptions of m1, . . . ,mn by
encryptions of 0. Doing it for all n ciphertexts, we eventually arrive at the following final Hybrid
5:

• Sample (m1, . . . ,mn, α)← D(1κ).

42

• Run (CRS1, tk, ek) ← NIZK.CRSGen(1κ) and CRS2 ← SNARK.CRSGen(1κ). Set CRS =
(CRS1,CRS2).

• Run (pk, sk)← FHE.Gen(1κ).

• Run ci ← FHE.Encpk(0; ri) and πi ← NIZK.Sim(CRS1, (pk, ci), tk). Set Ci = (0, ci, πi).

• Let (C ′1, . . . , C
′
n)← A(pk1, . . . , pkn, c1, . . . , cn).

• Parse C ′i = (bi, c
′
i, π
′
i).

• If bi = 0 and π′i does not tSE-verify, set mi = ⊥. Else

• If bi = 0 and c′i 6= ci, set m′i = Ext((pki, c
′
i), π

′
i, ek). Else

• If bi = 0 and c′i = ci, set m′i = mi. Else

• If bi = 1, and π′i does not SNARK-verify, set mi = ⊥. Else

• Let (f∗i , c
∗
i , π
∗
i)← Exti(CRS2, (c

′
i, π
′
i); randomness).

• If c∗i 6= ci, set m′i = f∗i (Ext((pki, c
∗
i), ek)). Else

• (If c∗i = ci,) set m′i = f∗i (mi).

From this description, we see that Hybrid 5 is equivalent to the simulated setting in the Definition
of spooky-free encryption, where the simulator S can use shared randomness to sample all the
common values (encryption/decryption key, various trapdoors, etc.), will run A on a bunch of
encryptions of 0, but only needs to know the i-the message mi to generate m′i. This completes the
proof.

43

	Introduction
	Technical Overview
	Related Work

	Definitions
	Local, No-Signaling, and Spooky Relations
	Spooky Encryption
	Additive-Function-Sharing Spooky Encryption

	LWE-Based Spooky Encryption
	Learning with Errors (LWE) and Multi-Key FHE
	LWE-Based AFS Spooky Encryption
	Beyond AFS-2-Spooky Encryption

	piO based Spooky Encryption
	Tools
	Two-Key Spooky Encryption from piO
	piO based Multi-key Spooky Encryption

	From 2-Input to n-Input AFS-Spooky
	Applications of Spooky Encryption
	Counter Example for the ABOR00 Heuristic
	2-Round MPC from AFS-Spooky Encryption
	Function Secret Sharing

	Spooky-Free Encryption
	Application: Succinct 1-round Arguments for NP
	Non-Malleable Encryption is Spooky-Free
	Homomorphic Spooky-Free Encryption

	References
	Proof of Theorem 17

