
Secure Audit Logs with Verifiable Excerpts
– Full Version

Gunnar Hartung

Karlsruhe Institute of Technology, Karlsruhe, Germany
gunnar.hartung@kit.edu

Abstract. Log files are the primary source of information when the
past operation of a computing system needs to be determined. Keeping
correct and accurate log files is important for after-the-fact forensics, as
well as for system administration, maintenance, and auditing. Therefore,
a line of research has emerged on how to cryptographically protect the
integrity of log files even against intruders who gain control of the logging
machine.

We contribute to this line of research by devising a scheme where one can
verify integrity not only of the log file as a whole, but also of excerpts.
This is helpful in various scenarios, including cloud provider auditing.
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1 Introduction

Log files are append-only files recording information on events and actions within
a computer system. They are essential for digital forensics, intrusion detection
and for proving the correct operation of computers.

However, their evidentiary value can be severely impaired if it is unclear
whether they have been tampered with. It is therefore imperative to protect log
files from unauthorized modification. This need has been widely recognised for
a long time, see for example [19, p. 10], [25, Sections 18.3, 18.3.1], [12, Section
8.6].

However, to actually prove a claim e.g. in court with the help of a log file
is problematic even if the log file’s integrity is unharmed, since the log file
may contain confidential information that must not be disclosed. Furthermore,
a large fraction of log entries may be irrelevant. Filtering these out significantly
facilitates the log file analysis.

In this work, we therefore propose a logging scheme that can support the
verification of excerpts from a log file. Creating an excerpt naturally solves both
problems: Log entries that contain confidential and/or irrelevant data can simply
be omitted from the excerpt. Excerpts created with our scheme remain verifiable,
and therefore retain their probative force. Let us illustrate their use with two
examples.



Example 1 (Banking). Consider a bank B that provides financial services to its
customers. In order to prove correct behaviour of its computer systems, the bank
maintains log files on all transactions on customers’ accounts.

When a customerA accuses the bank of fraud or incorrect operation, the bank
will want to use its log files to disprove A’s allegations. However, submitting the
entire log file as evidence to court is not an option, as this would compromise the
confidentiality of all transactions recorded, including the ones of other customers.
Besides, the log file may also be prohibitively large.

One might alternatively hand the log entries to an independent expert wit-
ness, who verifies the log file integrity and then testifies before court on the
correct or incorrect operation of the bank. However, this approach eliminates
public verifiability, does not solve the problem of the log file size, and still puts
the confidentiality of the transactions of all customers at unnecessary risk, even
if the expert witness is bound to protect the confidentiality of transactions.

Yet another solution would be to have the entire log file encrypted (under
different keys) and to only reveal keys for those log entries that are of interest to
the court’s proceedings. This would retain the confidentiality of other customers’
bank transactions while allowing for public verifiability. But still, this approach
does not solve the problem of the log size.

Utilizing a logging scheme with verifiable excerpts, however, the problem at
hand is simple: The bankB generates an excerpt from its log files, containing only
information on the transactions on A’s account and possibly general information,
e.g. about the system state. This excerpt is then submitted to court, where it can
be verified by the judge and everyone else. If the verification succeeds, the judge
may safely consider the information from the excerpt in his/her deliberation.

Example 2 (Cloud Auditing). Imagine an organisation O that would like to use
the services of a cloud provider, e.g. for storage. O may be legally required to
pass regular audits, and must therefore be able to provide documentation of all
relevant events in its computer systems. Therefore, the cloud provider C must
be able to provide O with verifiable log files, which can then be included in O’s
audit report.

Now, if C was to hand over all its log files to O, this would reveal details
about other customers’ usage of C’s services, which would most likely violate
confidentiality constraints. Furthermore, once again, the entire log files may be
too large for transmission by regular means.

Here, as above, audit logging schemes with verifiable excerpts can solve the
problem at hand easily. With these, C could simply create an excerpt containing
only information that is relevant for O from its log files. This would solve the
confidentiality issue while simultaneously lightening the burden induced by the
log file’s size, while the excerpt can still be checked by the auditors.

Background. We consider a scenario where there is a single data logger (e.g.
a server or a system of multiple servers), who is initially trusted to adhere to a
specified protocol, but feared to be corrupted at some point in time. We would



like to guarantee that after the logger has been corrupted, it cannot manipulate
the log entries created before the corruption.

Preventing the modification of log data usually requires dedicated hardware,
such as write-once read-many-times drives (so-called WORM drives) or contin-
uous feed printers. Since employing such hardware may not always be a viable
option, cryptographers and computer security researchers have taken on the
task to create schemes or protocols to verify the integrity of log files, see e.g.
[7], [26], [6], [16], [29], [21], [3], [32], [34]. These schemes cannot protect log data
from actual modification, but they can be used to detect modifications, while
being purely implemented in software. Knowing if and what log data has been
tampered with is very valuable information for a forensic investigation.

In order to enable verification, the logger must create a verification key when
the logging process is started. This verification key can then be distributed to a
set of verifiers, or even published for everyone to see. Since the logger is trusted
at the beginning of the process, the verification key is chosen honestly.

In our specific setting, we want the logger to be able to create excerpts from
its log files. These excerpts should be verifiable by everyone in possession of
the verification key. We demand that it be hard for the adversary to create an
excerpt whose content deviates from the information logged honestly while the
logger was uncorrupted, yet passes the verification.

Once an attacker has taken control over a system, (s)he may access any cryp-
tographic keys stored within that system, including keys used to create proofs
of integrity and authenticity, such as MACs and digital signatures. Using these
keys, an attacker can easily forge such proofs, and arbitrarily modify log files
without being detected. This renders standard cryptographic schemes useless.

To mitigate this problem, researchers have devised schemes (e.g. [7], [5], [6],
[2], [18], [23], [11], [28], [36], [1], [17]) that guarantee “forward integrity” [7]. Such
schemes use a series of secret keys sk0, . . . , skT−1 (instead of a single constant
secret key) for authentication and integrity protection, where each key ski+1 can
be computed from the previous key ski via a specified update procedure. Given
i ∈ {0, . . . , T − 1}, the verification algorithm then checks whether the data at
hand was indeed authenticated using key ski. The verification fails if the data
has not been authenticated at all or has been authenticated under a different
key skj with j 6= i.

Informally speaking, a scheme has forward integrity if obtaining one of these
secret keys ski does not help in forging a proof of authenticity and integrity with
respect to any previous key skj with j < i. Digital signature schemes as well as
MACs that have forward integrity are also called forward-secure.

In this work, we will focus on logging systems that use digital signatures.
These have two important advantages over MAC-based logging schemes: Firstly,
anyone in possession of the public key pk can verify their integrity, i.e. log files
can be verified publicly. Secondly, verifiers can not modify the log file without
detection. Due to the symmetric nature of MACs, this is possible for MAC-
based schemes. On the downside, signature-based logging schemes are usually
less efficient than MAC-based schemes.



A secure log file, also called secure audit log, can be built from forward-secure
signatures schemes as follows [7]. When a new log file is created, the scheme
generates a key pair (sk0, pk). The public key is copied and either published or
distributed to a set of verifiers (e.g. auditors). When the logging system is put
into operation, log entries are signed with key sk0, and the resulting signatures
are stored along with the log file. At some point in time (for example after a
certain amount of time has passed or a certain number of log entries have been
signed), the signer updates the secret key sk0 to sk1, securely erases1 sk0 and
continues signing log entries with sk1 instead of sk0. At a later point in time,
the signer updates sk1 to sk2, deletes sk1 and continues to work with sk2, and
so on. The time interval in which all log entries are signed using the secret key
ski is called the i-th epoch.

When an attacker A takes control over the system during epoch i (and hence
may obtain the secret key ski), the forward security of the digital signature
scheme or MAC used guarantees that A cannot modify log entries signed in pre-
vious epochs without being detected. Note that A can trivially forge signatures
for the current epoch i and all future epochs by using the regular signing and
updating procedures. However, once A has taken control over the system, (s)he
also controls the input to the logging system, and so this cryptographic “weak-
ness” does not give A more capabilities than it had without the forward-secure
signature scheme. When the log file needs to be verified later, everyone who is
in possession of pk (or can securely retrieve a copy of it) can run the verification
algorithm to see if the log file has been tampered with.

The scheme described above is highly simplified and has several weaknesses.
Therefore, actual proposals in the literature as well as current implementations
usually employ a combination of the following additional measures.

– Log entries are usually stored together with a timestamp, to detect reordering
attacks. [7], [21]

– Many schemes count the number of log entries and add the counter values
(sequence numbers) to the signatures. This helps determine the order of log
entries (that reflect real events in the system) if the log entries do not contain
timestamps themselves (or the timestamps have too coarse resolution). [7],
[21], [32], [34]

– Some authors (e.g. [26], [21]) have proposed to use hash chains, where each
log entry is augmented by the hash value the previous log message, which
in turn contains the hash value of the previous log message, and so on. This
detects reordering attacks as well as deletions of log entries (except from the
end of the log file).

– Some schemes add “epoch markers” to the log file to mark an epoch switch.
A verifier can then determine which key index i to use for verifying a log
entry by counting the number of epoch markers before the log entry. [7]

1 Erasure of secret keys must be complete and irrecoverable to guarantee security, i.e.,
the secret keys must actually be overwritten or destroyed, instead of just removing
(file) pointers or links to the secret key.



– If a scheme performs epoch switches independently of the amount of time
passed since the last epoch switch, it may be sensible to just add a log entry
containing the current time in regular intervals. Such log entries are called
metronome entries. [16]

– Some schemes additionally employ encryption to protect the confidentiality
of log messages, e.g. [26], [16]

In our work, we add epoch markers and sequence numbers to log entries.
(Event types may also be given by the application.) We abstract from other
features. For our purposes, a (plain) log message is just a string of bits m ∈
{0, 1}∗. This bit string may contain timestamps and/or event types, may be
formatted in any fashion and may be encrypted or not. Log messages may
also be categorized (e.g. by the event type), in which case they contain a set
N of category names that the log message belongs to. Our scheme supports log
entries belonging to any number of categories. (See section 4 for more details.)
We focus on the secure storage of log entries, instead of also considering the
secure transmission of log entries to a logging server, since this problem is mostly
orthogonal to the storage problem.

Previous and Related Work. The oldest mentioning of protocols to protect
the integrity of log files appears to be due to Futoransky and Kargieman [14,15],
but passed mostly unnoticed.

The study of cryptographic mechanisms to protect log files has been brought
to wider attention by Bellare and Yee [7] in 1997. Motivated by the task to verify
the operation of an initially trusted machine in an untrusted and potentially
adversarial environment, they introduced the notion of forward integrity for
MAC schemes. Intuitively, this notion requires that, if the trusted machine is
corrupted at some point in time Tc, but uncorrupted before that point in time,
then all modifications of log entries added (sufficiently long) before Tc can be
detected with very high probability.

Bellare and Yee developed a simple scheme of forward-secure MACs (based
on a key-chain generated by a pseudorandom function) and augmented that
scheme with sequence numbers and epoch markers to add protection against the
deletion of individual log entries.

Schneier and Kelsey [26,27] devised a more concrete scheme for secure logging
using MACs. (The MAC key is continuously evolved using a hash function,
similar to Bellare and Yee’s scheme.) Schneier and Kelsey assume an untrusted
machine U collecting the log entries, a trusted machine T that holds the initial
MAC key (and thus can verify the complete log) and a semi-trusted log verifier V .
Their scheme includes encryption of log entries and a mechanism for T to grant
the semi-trusted verifier V read access to individual log entries.

Building on their scheme, Holt [16] designed Logcrypt. Holt used a construc-
tion similar to the Schneier-Kelsey scheme, but proposed to substitute digital
signatures for the MACs used by Schneier and Kelsey. While this change de-
creases performance, it allows for publicly verifiable log files, since the verifica-



tion key can be made public. Public verifiability may be an essential feature in
some applications, such as cryptographic voting schemes.

Marson and Poettering [24] devised “Seekable Sequential Key Generators” for
a secure logging scenario (using MACs). These “SSKGs” basically form a hash
chain based on a one-way function, where one can efficiently “seek forward”, i.e.
given the i-th element in the chain, one can quickly compute the n-th element
for each n ≥ i without having to evaluate the one-way function n− i times.

Ma and Tsudik [21,22] have shown that Schneier’s and Kelsey’s semi-trusted
verifier V can easily be tricked into accepting a modified log file. This was termed
a “delayed detection attack”, since the fully trusted verifier T can indeed de-
tect such tampering, but is considered to check the log file at a later point in
time. Moreover, Ma and Tsudik showed a “truncation attack” on the previous
schemes, where the attacker deletes one or more log entries from the tail of the
log file. (This truncation attack also applies to Logcrypt, which was already ac-
knowledged in [16]. Holt proposed to use metronome entries to deal with this
issue.)

In response to these attacks, Ma and Tsudik devised “forward secure se-
quential aggregate” signatures (FssAgg signatures). These are closely related
to aggregatable signatures (like the B(G)LS scheme [9,10,8]), but impose an
order on the set of aggregated messages by requiring that each message shall
be signed together with a counter.2 In order to achieve forward security, they
combine several instances of the B(G)LS scheme, where the secret keys are not
chosen independently, but the secret key for each epoch is the hash value of the
secret key for the previous epoch. (The hash function needs to be modelled as
a random oracle to allow for provable security.) However, the public key size of
their scheme is linear in the number of epochs T .

Later on, Ma [20] devised further FssAgg signature schemes that offer dif-
ferent tradeoffs in efficiency and build on other hardness assumptions than the
B(G)LS scheme.

Since FssAgg schemes are public-key primitives, the verification key can be
given to any verifier, preventing delayed detection attacks. Moreover, since only
one (aggregated) signature needs to be kept in order to verify the log file, trun-
cation attacks can be detected, as long as the attacker cannot “deaggregate”
signatures for individual log entries from the aggregate signature.

While providing a single aggregate signature for the complete log file averts
truncation attacks, it also eliminates the possibility to check the integrity of in-
dividual log entries without checking the entire log file. In order to re-enable the
verifier to do so, Ma and Tsudik modified their scheme to include an individual
signature for each log entry as well as an aggregated signature for all log en-
tries. This forced them to reconsider the deaggregation problem and strengthen

2 The term “sequential aggregate signatures” is also used to denote aggregate signature
schemes where aggregation is not a public, ad-hoc operation (where given any two
sets M0,M1 of messages and the corresponding signatures σ0, σ1 it is possible to
derive σ for M := M0 ∪M1), but where only the signer of a message m can create
an aggregated signature for M := M0 ∪ {m}.



their security notion to so-called “immutable forward-secure sequential aggregate
signatures”.

Driven by performance considerations on the signer side, Yavuz, Peng and Re-
iter [32,33] designed a scheme called “Blind-Aggregate-Forward” (BAF). While
BAF has a very efficient signing procedure, the size of the public verification key
is linear in the maximum number of supported epochs. While this is a sensible
trade-off for applications where signers are subject to tight resource constraints
(such as wireless sensors), it may be undesirable in other applications.

Another scheme by Yavuz, Peng and Reiter is LogFAS [34,35]. The veri-
fication algorithm for LogFAS requires less computational effort than BAF’s
verification algorithm, but the sizes of signing and verification keys for LogFAS
are linear in the number of supported log entries. This might make LogFAS a
reasonable choice for applications where the signer needs to generate signatures
quickly, but has sufficient storage (e.g. a server facing a high load).

Waters et al. [30] focus on encryption of log entries in a way that allows for
efficient keyword-search in the log file. They do not develop new techniques to
guarantee log file integrity, or to guarantee the integrity of the “excerpt” of the
log file that is returned by a keyword-search. Therefore, their contribution is
orthogonal to ours. (In fact, combining their scheme with ours would be very
interesting.)

Stathopoulos et al. [29] take a management point of view on secure logging.
They build upon the Schneier and Kelsey scheme and add another trusted au-
thority which is given signatures of the current log file state at regular intervals.
This gives an additional way of detecting modifications to log files.

Wensheng et al. [31] build a web service for secure audit logs. They also build
on Schneier’s and Kelsey’s scheme, but use the Trusted Computing Base to store
cryptographic keys.

The notion of excerpts from log files has not been explicitly considered before.
We note, though, that LogFAS [34,35] can support the verification of arbitrary
subsequences of log files. However, this is more an accidental property of the
LogFAS construction than due to an explicit design goal, and furthermore, sys-
tems that can verify every subsequence are in general not suited for our example
applications, as will be discussed in Section 3.

Closest to our work is the scheme by Crosby and Wallach [13], who devised
a method for secure logging that allows for controlled deletion of certain log
entries while keeping the remaining log entries verifiable. However, their scheme
relies on frequent communication between the log server and one or more trusted
auditors that need to store “commitments” to the log file, whereas our scheme
can be used non-interactively. Furthermore, they did not formulate a security
notion and consequently did not give a proof of security for their scheme.

Finally, we point out a survey paper on secure logging by Accorsi [3], which
gives an overview on some of the older schemes mentioned above.

Our Contribution. Our contribution is twofold: Firstly, we develop a model
for secure logging with verifiable excerpts. The ability to verify excerpts can be



useful (i) to provide full confidentiality and privacy of most of the log entries,
even when a subset of the log entries needs to be disclosed, (ii) to save resources
during transmission and storage of the excerpt, and (iii) to ease manual review
of log files. We also develop a strong, formal security notion for such schemes.

Secondly, we propose a novel audit logging scheme that allows for verification
of excerpts. Our scheme may be used to verify both the correctness of all log
entries contained in an excerpt as well as the completeness of the excerpt, i.e.
the presence of all relevant log entries in the excerpt. We rely on the application
software to define which log entries are relevant for the excerpts. Our scheme
makes efficient use of a forward-secure signature scheme, which is used in a
black-box fashion. Therefore, our scheme can be instantiated with an arbitrary
forward-secure signature scheme and thereby tuned to meet specific performance
goals, and be based on a wide variety of hardness assumptions. We analyse
our scheme formally and give a perfectly tight reduction to the security of the
underlying forward-secure signature scheme.

Outline. Section 2 introduces preliminary definitions and some notation. In
Section 3, we develop a formal framework to reason about log files with ex-
cerpts, and give a security definition for such schemes. Section 4 presents our
construction, proves that it fulfills the security notion from Section 3, and anal-
yses the overhead imposed by our scheme. It also compares our scheme to other
schemes from the literature. Finally, Section 5 concludes the paper.

2 Preliminaries, Notation and Conventions

Sequences. Let S = 〈s0, . . . , sl−1〉 = 〈si〉l−1i=0 be a finite (possibly empty) se-
quence over some domain D. Then |S| := l ∈ N0 denotes the length of S.
We write v ∈ S to indicate that v is contained in S, i.e., there exists an
i ∈ {0, . . . , l − 1} such that v = si. The empty sequence is 〈〉. The concatenation
of two finite sequences S1, S2 is denoted as S1 ‖S2. If s ∈ D is a single element,
we write S1 ‖ s as a shorthand for S1 ‖〈s〉. If S = 〈s0, . . . , sl−1〉 is a sequence of
length l ∈ N0 and P = 〈s0, . . . , sm−1〉 for some m ≤ l, then P is a prefix of S.
If I := 〈i0, . . . , in−1〉 is a (possibly empty) finite, strictly increasing sequence of
numbers ij ∈ {0, . . . , l − 1} (for all j ∈ {0, . . . , n− 1}, with n ∈ N0, n < l), we
call I an index sequence for S and S′ = 〈si0 , . . . , sin−1〉 the subsequence of S
induced by I.

Definition 1 (Operations on Subsequences). Let S = 〈s0, . . . , sl−1〉; let
I = 〈i0, . . . , iv−1〉, J = 〈j0, . . . , jw−1〉 be two index sequences for S, and let
T = 〈si0 , . . . , siv−1

〉, U = 〈sj0 , . . . , sjw−1
〉 be the subsequences of S induced by I

and J , respectively. Then:

T ∪ U
is the subsequence of S that contains exactly those elements sk for which
k ∈ I or k ∈ J or both, in the order of increasing k ∈ {0, . . . , l − 1},



T ∩ U
is the subsequence of S that contains exactly those elements sk for which
k ∈ I and k ∈ J , in the order of increasing k ∈ {0, . . . , l − 1}.

Note that if S contains duplicates, then there may be different index sequences
inducing the same subsequence. Therefore, the operations from Definition 1 are
only well-defined if the index sequences I and J are given. In this work, we will
omit specifying I and J when they are clear from the context.

Example 3. Let S = 〈s0, . . . , s5〉, and let I := 〈0, 3, 5〉, J := 〈2, 3, 4〉 define
the subsequences T and U of S. Then we have T ∪ U = 〈s0, s2, s3, s4, s5〉 and
T ∩ U = 〈s3〉. Note that even if, e.g. s4 = s5, we would still have T ∩ U = 〈s3〉,
since the operations are defined based in the indices i of the elements si in the
sequence S, not based on the equality in the domain D.

General Notation. A log entry m is a bit string, i.e. m ∈ {0, 1}∗. Log entries
are also called log messages or just messages. The concatenation operation on
bit strings is also denoted by ‖, just as the concatenation of sequences. A log file
M = 〈m0, . . . ,ml−1〉 is a finite, possibly empty sequence of log entries.3

We write X := V for a deterministic assignment operation. In contrast,
X ← V is used when V is a finite set and X is chosen uniformly at random
from V , or V is a probabilistic algorithm and X is assigned the output of that
algorithm. All random choices are considered to be independent. We write PPT
for “probabilistic polynomial time”. Throughout this paper, κ ∈ N0 is the se-
curity parameter. All algorithms are implicitly given 1κ as an additional input.
The set of all polynomials p : N0 → N0 which are parameterized by κ is poly(κ).

A function f : N→ R≥0 is called negligible iff for each constant c ∈ N there
exists a number nc ∈ N such that f(n) ≤ n−c for all n ≥ nc. We write f(n) ≤
negl(n) if so. A function g : N→ [0, 1] is called overwhelming if g′(n) := 1−g(n)
is negligible.

Forward-Secure Signature Schemes.

Definition 2 (Key-Evolving Signature Scheme, based on [5]). A key-
evolving digital signature scheme Σ = (KeyGen,Update,Sign,Verify) is a tuple
of PPT algorithms, which are described as follows.

KeyGen(T )
receives an a priori upper bound T on the number of epochs as input. It
generates and outputs a pair of keys, consisting of the initial private signing
key sk0 and the public verification key pk.

Update(ski)
takes a secret key ski as input, evolves it to ski+1 and outputs ski+1. The
old signing key ski is then deleted in an unrecoverable fashion. If i ≥ T − 1,
the behaviour of Update may be undefined.

3 Note that M = 〈m0, . . . ,ml−1〉 6= m0 ‖ . . . ‖ml−1, i.e. we consider the log entries in
M to be distinguishable.



Sign(ski,m)
computes and outputs a signature σ for a given message m ∈ {0, 1}∗, using
a secret key ski.

Verify(pk,m, i, σ)
checks if σ is a valid signature under public key pk, created with the i-th
secret key, for a given message m. If it deems the signature valid, it outputs
1, otherwise it outputs 0.

We require correctness in the sense that for each security parameter κ ∈ N0, for
each polynomial bound T := T (κ) ∈ poly(κ) on the number of epochs, for each
index i ∈ {0, . . . , T − 1}, and each message m ∈ {0, 1}∗ the following equation
holds with overwhelming probability:

Verify(pk,m, i,Sign(ski,m)) = 1 ,

where (sk0, pk) ← KeyGen(T ), and ski = Updatei(sk0), i.e. ski is the initial
secret key sk0 updated i times. The probability is measured over the randomness
used by the algorithms KeyGen, Update, Sign and Verify (if any).

We assume without loss of generality that the message space of each signa-
ture scheme is {0, 1}∗. If a signature scheme only supports a signature space
M 6= {0, 1}∗, we assume the presence of a collision resistant hash function
H : {0, 1}∗ → M. We also assume that the algorithms Update and Sign have
access to the public key and that the index i of a secret key ski can be extracted
from ski efficiently.

The security notion for key-evolving signature schemes is mostly similar to
the standard notion of existential unforgeability under chosen message attacks,
but slightly more complicated, due to the presence of different epochs. It captures
the “forward security” property.

Definition 3 (Forward-Secure Existential Unforgeability under Cho-
sen Message Attacks). The notion of forward-secure existential unforgeability
under chosen message attacks is defined based on an experiment parameterized
by a key-evolving signature scheme Σ = (KeyGen,Update,Sign,Verify), a PPT
adversary A, the number of epochs T := T (κ) ∈ poly(κ) and the security param-
eter κ.

Setup Phase.
The experiment begins by creating a pair of keys (sk0, pk)← KeyGen(T ), and
initializing a counter i := 0. Afterwards A is called with inputs pk and T .

Query Phase.
During the experiment, A may adaptively issue queries to the following three
oracles:

Signature Oracle.
On input m ∈ {0, 1}∗, the signature oracle computes the signature σ =
Sign(ski,m) for m using the current secret key ski. It returns σ to A.



Epoch Switching Oracle.
Whenever A triggers the NextEpoch oracle, the experiment sets ski+1 ←
Update(ski) and i := i + 1. The oracle returns the string “OK” to the
adversary. A may invoke this oracle at most T − 1 times.

Break In.
Once in the experiment, the attacker may query a special BreakIn oracle
that stores the current epoch number as iBreakIn := i and returns the
current secret key ski to the adversary. After A has invoked this oracle,
it is no longer allowed any oracle queries (neither to the BreakIn oracle,
nor to its other oracles).4

Forgery Phase.
Finally, the attacker outputs a forgery (m∗, i∗, σ∗). The experiment outputs
1 iff Verify(pk,m∗, i∗, σ∗) = 1, m∗ was not submitted to the signature oracle
during epoch i∗, and i∗ < iBreakIn. (Let iBreakIn := ∞ if A did not use
its BreakIn oracle.) If any of these conditions is not met, the experiment
outputs 0.

We say that A wins an instance of this experiment iff the experiment outputs 1.
A key-evolving signature scheme Σ = (KeyGen,Update,Sign,Verify) is said to
be forward-secure existentially unforgeable under chosen message attacks (or
FS-EUF-CMA-secure) if for each PPT adversary A and each T ∈ poly(κ) the
above experiment outputs 1 with only negligible probability (in κ).

3 Secure Logging with Verifiable Excerpts

We now develop a formal model for log files with excerpts. Obviously, given
a log file M , an excerpt E is a subsequence of M . However, a scheme where
each subsequence of M can be verified5 is not sufficient for our applications,
since the provider of the excerpt could simply omit some critical log entries.
Put differently, such a scheme may guarantee correctness of all log entries in the
excerpt, but it does not guarantee that all relevant log entries are present.

To address this problem, we introduce categories. Each log entry is assigned
to one or more categories, which may also overlap. Each category has a unique
name ν ∈ {0, 1}∗. We require that when a new log entry m is appended to the
log file, one must also specify the names of all categories that m is assigned to.

We return to our banking example from Section 1 to illustrate the use of
such categories. The bank B introduces a category CA for each customer A,
and then adds each log entry concerning A’s account to CA. The problem of
checking the completeness of the excerpt for A’s account is thereby reduced
to checking the presence of all log entries from the category CA and possibly

4 This restriction is without loss of generality, since the adversary knows skiBreakIn

after this query and can thus create signatures as well as all subsequent secret keys
by itself. Also, triggering the NextEpoch oracle after the BreakIn oracle would have
no consequences on the outcome of the game.

5 LogFAS [34,35] offers such a capability.



from other categories containing general information. Of course, categories may
also be added based on other criteria, such as the event type (e.g. creation and
termination of an account, deposition or withdrawal of funds, and many more).
Note that the set of categories is not fixed in advance; rather the bank must
be able to add new categories on-the-fly, as it gains new customers. The use of
categories is similar in the cloud provider example.

3.1 Categorized Logging Schemes

Definition 4 (Categorized Messages and Log Files). A categorized mes-
sage (also categorized log entry) m = (N,m′) is a pair of a finite, non-empty
set N6 of category names ν ∈ {0, 1}∗ and a log entry m′ ∈ {0, 1}∗. A categorized
log file M = 〈m0, . . . ,ml−1〉 is a finite, possibly empty sequence of categorized
log entries m.

When it is clear from the context that we mean categorized log entries or cat-
egorized log files, we will omit the term “categorized” for the sake of brevity.
In particular, this section as well as the following one will mainly be concerned
with categorized log entries and categorized log files.

Definition 5 (Categories). A category with name ν ∈ {0, 1}∗ of a categorized
log file M = 〈(Ni,m′i)〉

l−1
i=0 is the (possibly empty) subsequence C of M that

contains exactly those log entries (Ni,m
′
i) ∈ M where ν ∈ Ni. C is denoted by

C(ν,M). C’s index sequence I(ν,M) is the (possibly empty, strictly increasing)
sequence that contains all i ∈ {0, . . . , l − 1} for which ν ∈ Ni.

Definition 6 (Excerpts). Given a categorized log file M = 〈mi〉l−1i=0 and a finite
set N of category names, the excerpt for N is E(N,M) =

⋃
ν∈N C(ν,M). The

index sequence I(N,M) is the (possibly empty, strictly increasing) sequence of
all i with i ∈ I(ν,M) for at least one ν ∈ N .

Clearly, C(ν,M) is induced by I(ν,M), and E(N,M) is induced by I(N,M). In
the following, we will mostly omit the second parameter, since it will be clear
from the context. Moreover, we make the convention that there is a category
named “All” such that C(All) = M , i.e. All ∈ N0 ∩ . . .∩Nl−1. As a special case
of excerpts, we obtain M as an excerpt for the categories N = {All}.

In the following, we adopt the convention that variables with two indices are
an “aggregate” of values ranging from the first to the second index, i.e. σ0,j is
the aggregate of σ0, . . . , σj . In our case, this aggregate is simply a sequence of
the individual values, i.e. σ0,j := 〈σ0, . . . , σj〉, M0,j := 〈m0, . . . ,mj〉. However,
σ0,j may in general also be an actual aggregate signature, as in [21].

Definition 7 (Categorized Key-Evolving Audit Log Scheme). A catego-
rized key-evolving audit log scheme is a quintuple of probabilistic polynomial time
algorithms Σ = (KeyGen,Update,Extract,AppendAndSign,Verify), where:

6 This is intended as the upper case greek letter ν, which unfortunately looks identical
to the upper case latin letter n.



KeyGen(T )
outputs an initial signing key sk0, a permanent verification key pk, and an
initial signature σ0,−1 for the empty log file. T is the number of supported
epochs.

Update(ski,M, σ)
evolves the secret key ski for epoch i to the subsequent signing key ski+1 and
then outputs ski+1. ski is erased securely. Update may also use and modify
the current log file M as well as the current signature σ, e.g. by adding epoch
markers or metronome entries.

Extract(ski,M0,j−1, σ0,j−1, N)
takes a log file M0,j−1 together with a signature σ0,j−1 for M0,j−1 and a
set N of category names and outputs a signature σ for the excerpt E(N) =
E(N,M0,j−1), computed with the help of ski.

AppendAndSign(ski,M0,j−1,mj , σ0,j−1)
takes as input the secret key ski, the current log file M0,j−1, its signature
σ0,j−1 and a new log entry mj and outputs a signature σ0,j for M0,j :=
M0,j−1 ‖mj.

Verify(pk,N,E, σ)
is given the verification key pk, a set N = {ν0, . . . , νn−1} of category names,
an excerpt E and a signature σ. It outputs 1 or 0, where 1 means E =
E(N,M), and 0 means E 6= E(N,M). Again, by choosing N = {All}, one
can verify the entire log file up until epoch i.

We require correctness in the following sense: For each κ ∈ N0, T = T (κ) ∈
poly(κ), l = l(κ) ∈ poly(κ), each sequence M0,l = 〈m0, . . . ,ml〉 of categorized
log entries, each increasing sequence I = 〈i0, . . . , il〉 with ij ∈ {0, . . . , T − 1},
for each set of category names N , and for pk, σ created by the process described
below, we have that:

Pr [Verify(pk,N,E(N,M0,l), σ) = 1] is overwhelming in κ,

where the probability is measured over the coins used by Verify (if any) and
the coins used by KeyGen, Update, AppendAndSign and Extract in the process
below. The process for creating pk and σ is as follows:

1. Let (sk0, pk, σ0,−1)← KeyGen(T ), i := 0, M0,−1 := 〈〉, and σ := σ0,−1.
2. Iterate over all j ∈ {0, . . . , l} in increasing order:

(a) While ij > i, compute ski+1 ← Update(ski,M0,j−1, σ) and set i := i+1.
(b) Set σ ← AppendAndSign(skij ,M0,j−1,mj , σ).
(c) Set M0,j := M0,j−1 ‖mj.

3. Output pk and σ ← Extract(skil ,M0,l, σ,N).

The process used for the definition of correctness models regular usage of Σ.
Here, the mj are the log entries to be added, and each ij corresponds to the
epoch during which mj is added to the log file.

Note that we require Verify to validate excerpts without actually “knowing”
the complete log file. This is the main difficulty that our construction must
overcome.



3.2 General Remarks

Remark 1 (Reset Attacks). It is quite obvious that once an attacker has seen a
valid signature σ for a log file M from some point in time t0, (s)he can reset the
entire log file to M and restore the previous signature σ once (s)he has control
over the log server. Since one requires that Verify(pk, {All},M, σ) = 1 at t0, we
cannot expect Verify(pk, {All},M, σ) = 0 at some later point in time t1, unless
Verify has an additional trusted input such as the current time or the number
of messages that have been added to the log file so far.

But even if Verify has such a trusted input, it is questionable whether one
wants excerpts to become invalid over time, and if so after what amount of time.
This appears to be an aspect that depends heavily on the envisaged application.

We therefore take a different path and let excerpts remain (cryptographically)
valid for an indefinite amount of time. It is then up to the application to decide
whether an excerpt is “fresh enough”. This is sufficient for both our examples,
where only an a posteriori verification of events is required, and everyone can
see whether an excerpt spans the time period of interest.

Remark 2 (Secret Keys for Generation of Excerpts). In our model, creating an
excerpt from a log file M and a corresponding signature σ requires a secret key.
This is a helpful measure against adversaries that do not get to know a secret
key, but does not offer protection against adversaries that do obtain a secret key
(using their BreakIn oracle).

Consider our model, where the secret key may be used in the extraction
algorithm. In a sane design, this secret key may only be used to authenticate
some information by signing it. (Using a secret signing key for anything else than
signing a message would violate sensible and well-established design principles.)
Now suppose that an excerpt is generated in epoch i, but the last log entry
to be included in the excerpt was added in epoch j < i. Now, since skj has
been deleted already, the only secret key available in epoch i is ski. So whatever
information is signed during the extraction process can only be signed under ski.

However, by then, the attacker may already have broken into the server and
stolen the secret key ski. Now the adversary may use this secret key to sign any
false claim during the extraction algorithm. This information will be accepted
by the verification algorithm, since it has a valid signature.

Thus, even if some information is authenticated with a signing key in the ex-
traction process, that information can not be trusted to be true, if one considers
an adversary that obtains a secret key at some point in time. Then, however,
there is no need to sign it in the first place, and no need to use a signing key in
the extraction procedure.

While the discussion above is highly informal, we believe it plausibly demon-
strates that “adding new signatures” during the extraction does not offer any
increased security against adversaries that obtain a secret key.

Our reason for still using the secret key during extraction is the added pro-
tection against attackers that do not obtain the secret key. If one requires the
entire excerpt to be signed together with a timestamp and the set of categories



being requested, then an adversary trying to create a signature for any excerpt
must forge a new signature, which is very hard without the secret key.

3.3 Security Model

We now define our security notion for categorized key-evolving audit log schemes.
It is similar to the above definition for key-evolving signature schemes, but ad-
justed to the append-only setting and to support extraction queries by the at-
tacker.

Definition 8 (Forward-Secure Existential Unforgeability under Cho-
sen Log Message Attacks). For a categorized key-evolving audit log scheme
Σ = (KeyGen,Update,Extract,AppendAndSign,Verify), a PPT adversary A,
the number of epochs T := T (κ) ∈ poly(κ) and the security parameter κ ∈ N0,
the security experiment FS-EUF-CLMA-ExpΣ,A,T (κ) is defined as follows:

Setup Phase.
The experiment generates the initial secret key, the public key and the initial
signature as (sk0, pk, σ0,−1) ← KeyGen(T ). It initializes the epoch counter
i := 0, the message counter j := 0, and the log file M0,−1 := 〈〉. It then starts
A with inputs pk, T and σ0,−1.

Query Phase.
During the query phase, the adversary may adaptively issue queries to the
following four oracles:

Signature Oracle.
Whenever A submits a message mj to the signature oracle, the experi-
ment appends that message to the log file by setting M0,j := M0,j−1 ‖mj

and updates the signature to

σ0,j ← AppendAndSign(ski,M0,j−1,mj , σ0,j−1) .

It then sets j := j + 1. The oracle returns the new signature σ0,j.
Extraction Oracle.

On input of a set N of category names, the experiment creates a signature
σ ← Extract(ski,M0,j−1, σ0,j−1, N) for the excerpt E := E(N,M0,j−1)
and gives (E, σ) to the adversary.

Epoch Switching Oracle.
Upon a query to the NextEpoch oracle, the experiment moves to the
next epoch, updating the secret key (and possibly the log file and its sig-
nature) to ski+1 ← Update(ski,M0,j−1, σ0,j−1) and incrementing the
epoch counter i := i+ 1. The oracle returns the updated log file M ′ and
signature σ′ to the attacker. This oracle may be queried at most T − 1
times.

Break In.
Optionally, the adversary may use its BreakIn oracle to retrieve the cur-
rent secret key ski. After this, it may no longer issue queries to any of



its oracles.7 The experiment sets iBreakIn := i. (Let iBreakIn := ∞ if A
never queried this oracle.)

Forgery Phase.
At the end of the experiment, A outputs a non-empty set N∗ of categories,
a forged excerpt E∗ for N∗, and a forged signature σ∗ of E∗.

We say that A wins the experiment, iff the following conditions hold.

– The signature is valid, i.e. Verify(pk,N∗, E∗, σ∗) = 1.
– The signature is non-trivial, i.e. it meets the following requirements:
• E∗ has not been part of an answer of the extraction oracle to A for

the categories N∗. More formally, if N0, . . . , Nk are the sets of cate-
gory names that A used to call its extraction oracle and E0, . . . , Ek
are the excerpts returned by the oracle, then we require (N∗, E∗) /∈
{(N0, E0), . . . , (Nk, Ek)}.

• If A used its BreakIn oracle to obtain a secret key ski, let Ei = E(N∗,Mi),
where Mi is the log file at the time of switching from epoch iBreakIn−1 to
epoch iBreakIn. (Formally, Mi is the log file returned by the most recent
call to the NextEpoch oracle, so Mi includes all changes made by the
Update algorithm. We let Mi := 〈〉 if A never called the NextEpoch or-
acle.) We require that Ei is not a prefix of E∗. Put differently, E∗ must
not just be a continuation/extension of Ei.

We say that A lost the experiment, iff A did not win the experiment. A catego-
rized key-evolving audit log scheme Σ is said to be FS-EUF-CLMA-secure, iff
for all T = T (κ) ∈ poly(κ) and all probabilistic polynomial time attackers A the
probability for A winning the above experiment is negligible in κ.

Let us review the above definition. As for standard security notions, we let the
adversary completely determine the input to the cryptographic scheme, except
for the keys. In our case, this input consists of the messages being submitted
to the log (using the signature oracle) as well as the timing of these messages
(controlled by the order in which A submits these to the signing oracle as well
as the NextEpoch oracle). While such a powerful adversary may be unrealistic
in most real-world scenarios, giving the adversary such power in the experiment
results in a stronger security notion. We only allow the attacker to move forward
in time, i.e., we assume the attacker does not have a time machine.

Moreover, we grant the adversary access to any signature that is created dur-
ing the experiment by returning the signature created by the signature queries,
as well as the updated signatures created during epoch switches. Furthermore,
the adversary may explicitly request a signature for any excerpt. This models
a scenario where the attacker might learn signatures from court proceedings,
where the bank needs to prove its correct behaviour.

The adversary wins the experiment if it manages to output a forged signature
σ∗ together with a forged excerpt E∗ for any categories N∗ of its choice. We want
to exclude trivial wins from our definition, and therefore require that E∗ was

7 Again, this restriction is without loss of generality, see footnote 4 on page 11.



never requested by A as an excerpt for the categories N∗. Again, this is similar
to standard security notions.

Furthermore, we must add an additional restriction if A obtained a secret
key ski. We require that E∗ is not simply an extension of the “real” excerpt Ei
up until the end of epoch i− 1, or, stating this the other way round, that Ei is
not a prefix of the forged excerpt E∗. This restriction is necessary, since creating
such extensions is trivial, given the secret key ski. The adversary simply needs
to run the algorithms AppendAndSign and Extract (and possibly Update) of Σ,
given the signature σi from the epoch switch to epoch i (returned to A by the
NextEpoch oracle) and the secret key ski.

Observe that our security model allows a log file to be truncated to the state
of the most recent epoch switch, counting this as a trivial attack. As explained
in Remark 1 on page 14 such attacks are always possible.

We acknowledge this is a weakness of our model, but argue that it is a com-
mon one. We do not know of schemes that actually offer protection against
such attacks, except the [21,22] scheme where log entries can not be individually
verified. (Ma and Tsudik [21,22] also propose schemes that offer individual ver-
ification. These schemes, however, only offer protection against attackers that
try to truncate the log file to a state before the most recent “anchor point”. The
epoch markers of our scheme can be viewed as such “anchor points”.) Thus, our
model does not stand back when compared to previous work.

It is an open question to develop a scheme where log entries can be verified
individually and all truncation attacks are hard to perform. This question is
subject to ongoing research.

4 Our Scheme

We now describe a scheme that realizes the above security notion. We call it
SALVE, for “Secure Audit Log with Verifiable Excerpts”. The main ingredient
for SALVE8 is a forward-secure signature scheme. Let us briefly describe the
basic ideas underlying our construction.

Sequence Numbers per Category.
Instead of adding only global sequence numbers, we augment signatures with
sequence numbers (counters) cν for each category ν. In particular, the se-
quence numbers for the category All work as global sequence numbers.

Signing Counters.
Each log entry is signed along with the sequence numbers belonging to the
categories of the log entry. All these counters are increased by one after the
log entry has been signed. During verification, one checks if the counters of
each category ν supposed to be present in the excerpt form the sequence
〈0, . . . , cν − 1〉. This way, one can detect duplicate log entries, log entries
missing between present ones, and reordering attacks.

8 “This is what passes for humor amongst cryptographers.” [4]



Epoch Markers with Counters.
Additionally, we sign all counters that have changed during an epoch i to-
gether with the epoch markers created at the end of epoch i. These epoch
markers are signed using the secret key, which is then evolved using the
Update algorithm. This provides protection against truncation attacks that
try to truncate the log file to a state before the last epoch switch. Epoch
markers are added to an additional, reserved category named EM. By con-
vention, EM is contained in all excerpts.

4.1 Formal Description

We introduce some additional notation. When signing multiple counter values,
we will sign a partial map f : {0, 1}∗ → N0, which is formally modelled as a set
f of pairs (ν, cν) ∈ {0, 1}∗ × N0, signifying that the counter value of category
ν is cν , or f(ν) = cν . For each category name ν, there is at most one pair
in f that has ν as the first component. We also write such partial maps as
{ν0 7→ cν0 , . . . , νn 7→ cνn}. A key of f is a bit string ν ∈ {0, 1}∗ for which f(ν)
is defined. The set of keys for f is keys(f) := {ν ∈ {0, 1}∗ | ∃c ∈ N0 : (ν, c) ∈ f}.

We assume that SALVE uses an efficient encoding scheme to map pairs to
bit strings. We require that there are no pairs (f,m′) and (N,E) (where m′ ∈
{0, 1}∗, f is a partial mapping f : {0, 1}∗ → N0, N is a finite set of bit strings,
and E is a sequence of categorized log messages) that are encoded to the same
bit string.

SALVE. Let ΣFS = (KeyGenFS,UpdateFS,SignFS,VerifyFS) be a key-evolving
signature scheme. The key-evolving categorized audit log scheme SALVE is given
by the following algorithms:

KeyGen(T )
creates a key pair by running (sk0, pk) ← KeyGenFS(T + 1). The initial
signature is the empty sequence σ0,−1 := 〈〉. The output is (sk0, pk, σ0,−1).

AppendAndSign(ski,M0,j−1,mj = (Nj ,m
′
j), σ0,j−1)

is called to create a new signature σ0,j when a new log entry mj = (Nj ,m
′
j)

is appended to the current log file M0,j−1 = 〈m0, . . . ,mj−1〉. Besides M0,j−1
and mj , it also receives the current secret key ski and the current signature
σ0,j−1 as input.
We assume EM /∈ Nj , except when AppendAndSign is called from the
Update algorithm (see below), and All ∈ Nj .
AppendAndSign first determines the current counter values cν for all ν ∈ Nj
(the total count of all log entries previously added to these categories). These
counter values may be cached or determined by searching for the most recent
log entry added to each category. Let cν := 0 if the category ν has never
occurred before.
Next, AppendAndSign creates the partial map fj = {ν 7→ cν | ν ∈ Nj}, com-
putes σ′j ← SignFS(ski, (fj ,m

′
j)), and appends σj := (fj , σ

′
j) to σ0,j−1 to

obtain σ0,j := 〈σ0, . . . , σj−1, σj〉. It outputs σ0,j .



Update(ski,M0,j−1, σ0,j−1)
is called at the end of each epoch i with the current secret key ski, the
current log file M0,j−1 and the current signature σ0,j−1. It has two tasks: it
must append an epoch marker to M0,j−1 (and its accompanying signature
to σ0,j−1) and update the secret key.
In order to create the epoch marker, it determines the set N of all cat-
egories that have received a new log entry during epoch i and the total
number of log entries cν in each of these categories (including log entries
from previous epochs). Again, this information may be cached. It then
creates the set of all these counters f ′j := {ν 7→ cν | ν ∈ N} and encodes
(“End of epoch ” ‖ i, f ′j) =: m′j as a bit string m′j in some unique fash-
ion. The epoch marker (which is a categorized log entry) is set to mj :=
({All,EM},m′j) and appended to M0,j−1. Next, the Update algorithm com-
putes a signature σ0,j ← AppendAndSign(ski,M0,j−1,mj , σ0,j−1) for the log
file including the epoch marker mj .
Finally, if i < T , Update computes ski+1 ← UpdateFS(ski), securely erases
ski and outputs ski+1. Otherwise it deletes ski and outputs ski+1 := ⊥.

Extract(ski,M0,j , σ0,j , N)
is tasked to create a signature for the excerpt E(N) from the log file M0,j and
the signature σ0,j = 〈σ0, . . . , σj〉. We assume that we always have EM ∈ N .
The signature mostly consists of the individual signatures for all log messages
in the excerpt, including the epoch markers, but also contains a newly gener-
ated signature for the entire excerpt. More formally, let K := I(N,M0,j), l :=
|K|. Then Extract computes the signature σE ← SignFS(ski, (N,E)), and
outputs σ := 〈σk1 , . . . , σkl , σE〉 as the signature for E.

Verify(pk,N,E, σ)
must check the correctness of the excerpt E = 〈(N0,m

′
0), . . . (Nl−1,m

′
l−1)〉

(with l ∈ N0) for the categories N based on the public key pk and the
signature σ = 〈(f0, σ′0), . . . , (fl−1, σ

′
l−1), σE〉. We assume that we always have

EM ∈ N . If EM /∈ N , the signature is rejected as invalid.
The algorithm will use counters c′ν for all categories ν ∈ N to keep track of
the number of log entries in each that have been contained in the excerpt.
These counters will be compared with the actual counters from the signa-
tures. As a first step, Verify initializes its counters c′ν := 0 for all ν ∈ N . If
All /∈ N , it also sets c′All := 0. It then performs the following checks for each
entry mj ∈ E, in the order of increasing j:

– It checks whether the signature for the individual log entry is valid:

VerifyFS(pk, (fj ,m
′
j), c

′
EM, σ

′
j) = 1 , (1)

– whether mj belongs to one of the requested categories:

Nj ∩N 6= ∅ , (2)

– whether mj ’s set of category names Nj is unchanged:

keys(fj) = Nj , and (3)



– whether the counter values signed together with the message are as ex-
pected:

fj(ν) = c′ν for all ν ∈ N ∩Nj . (4)

– If All /∈ N , it checks whether

fj(All) ≥ c′All (5)

and sets c′All := fj(All) + 1.
– If mj is an epoch marker, i.e. EM ∈ Nj , then Verify decodes m′j to

reconstruct f ′j . It then checks whether

f ′j(ν) = c′ν for all ν ∈ keys(f ′j) ∩N . (6)

If any of these checks fail, Verify outputs 0. If they pass, Verify increments
c′ν by one for all ν ∈ N ∩Nj . The verification procedure then continues with
the next j, until (including) j = l − 1.
– Finally, Verify checks whether

VerifyFS(pk, (N,E), c′EM, σE)
?
= 1 , (7)

and outputs 1 if so, and 0 otherwise.

A few notes are in order here:

1. Firstly, observe that for all log entries mj , the number of epoch markers cEM

in the log file (or an excerpt) before mj is identical to the number i of the
epoch in which mj was signed.

2. Excerpts created by SALVE are signed with the most recent secret key avail-
able. The verification algorithm implicitly checks for truncation attacks by
using the number of epoch markers in the excerpt as the assumed epoch in
which the excerpt has been created (see equation 7). Thus, the final signature
σE serves as an implicit proof that the signer knows the key of epoch c′EM.
Truncating a log file (or an excerpt) to an epoch before the break-in there-
fore requires forging a σE supposedly created with a previous secret key, and
thus breaking the security of ΣFS.

3. If the verification algorithm had the current epoch number i as an additional
trusted input, it could also check whether i = c′EM. This would strengthen
the verification algorithm considerably.

4. Generally, given an excerpt E for some set of categories N , it is easy to
create an excerpt for a subset of these categories, or to add other categories
to E. However, creating a valid signature σ for the new excerpt is hard,
because the set of category names N is included in the signature σE ←
SignFS(ski, (N,E)). We view this as a feature, as it prevents an attacker
from tampering with excerpts.

5. Much information required by the above algorithms (e.g. current counter
values and the set of categories modified since the last epoch switch) can
be cached by an implementation. This way, our scheme can be implemented
very efficiently.



6. If we want SALVE to support T epochs, the underlying forward-secure sig-
nature scheme ΣFS must support T + 1 epochs. SALVE uses the secret keys
of the first T epochs of ΣFS to actually sign log entries. When the last of
these epochs is over, the log file is closed and can not take any more log
entries. The secret key of the remaining epoch supported by ΣFS is then
used to sign excerpts from the closed log file.

Example 4 (Signing and Updating). We return to our bank example. When the
log file is created, the KeyGen algorithm creates a pair of keys (sk0, pk) and
initializes the signature σ0,−1 := 〈〉 for the empty log file M0,−1 = 〈〉.

Let m0 := (N0 = {All, “customer id 1”, “account creation”},m′0) be the first
entry added to the log file. The new log file is M0,0 = 〈m0〉. The AppendAndSign
algorithm is called to create a signature for M0,0.

It first determines the number of log entries in the categories ν ∈ N0 so far.
Since there have been no log entries before, we have cAll = 0, ccustomer id 1 = 0
and caccount creation = 0.

It therefore sets f0 := {All 7→ 0, “customer id 1” 7→ 0, “account creation” 7→
0}, and stores σ0 := (f0, σ

′
0 ← SignFS(sk0, (f0,m

′
0))) as the individual signature

for the log entry m0. The signature for M0,0 is 〈σ0〉.
Now let m1 := (N1 = {All, “customer id 1”, “deposit”},m′1) be the second

log entry. When this log entry is added to M0,0, we get M0,1 = 〈m0,m1〉.
Again, one needs to create a signature for m1 (and the new log file M0,1).

In order to compute the signature for m1, the AppendAndSign algorithm de-
termines the counter values cAll = 1, ccustomer id 1 = 1 and cdeposit = 0. These
are transformed into f1 := {All 7→ 1, “customer id 1” 7→ 1, “deposit” 7→ 0}. The
signature for m1 is σ1 := (f1,SignFS(sk0, (f1,m

′
1))). This is appended to σ0,0 to

obtain σ0,1 = 〈σ0, σ1〉, the signature for M0,1.
Now suppose there is an epoch switch from epoch 0 to epoch 1. The Update

algorithm is called. It first collects the counter values of all categories that have
had a log entry added to them in epoch 0. These counter values are cAll = 2,
ccustomer id 1 = 2, caccount creation = 1, cdeposit = 1, and encodes them to f ′2 :=
{All 7→ 2, “customer id 1” 7→ 2, “account creation” 7→ 1, “deposit” 7→ 1}. It then
encodes the tuple (“end of epoch 0”, f ′2) as a bit string m′2. This bit string is
converted to a categorized log message m2 := (N2 = {All,EM},m′2) by assigning
it to the categories All and EM.

Next, m2 is to be appended to the log file. The Update algorithm computes
the new signature σ0,2 as before: It determines the counter values cAll = 2,
cEM = 0, and sets f2 := {All 7→ 2,EM 7→ 0}. It then creates the signature
σ′2 ← SignFS(sk0, (f2,m

′
2)) and appends σ2 := (f2, σ

′
2) to σ0,1. The result is

σ0,2 = 〈σ0, σ1, σ2〉. Observe that since m′2 contains f ′2 and m′2 has been signed,
the number of log entries in all categories is authenticated with sk0.

Before Update terminates, it evolves sk0 to sk1 ← UpdateFS(sk0), and se-
curely erases sk0.

Now assume that one adds two messages in epoch 1: The first one is m3 :=
(N3 = {All, “customer id 2”, “account creation”},m′3) and the second is m4 :=
(N4 = {All, “customer id 1”, “withdrawal”},m′4). The corresponding counters



are f3 = {All 7→ 3, “customer id 2” 7→ 0, “account creation” 7→ 1} and f4 =
{All 7→ 4, “customer id 1” 7→ 2, “withdrawal” 7→ 0}. We skip to the next epoch
switch, as the signatures σ3 and σ4 are created as above.

At the epoch switch from epoch 1 to epoch 2, Update is called. It first con-
structs

f ′5 = {All 7→ 5, “account creation” 7→ 2, “customer id 1” 7→ 3,

“customer id 2” 7→ 1, “withdrawal” 7→ 1} .

Observe that the counter for the category “deposit” is not contained in f ′5,
since there was no log entry in that category during epoch 1. Update creates
a categorized log message m5 from f ′5, signs it (resulting in σ5), and appends
m5 and σ5 to the log file M0,4 and the signature so far σ0,4, respectively. It
then computes sk2 ← Update(sk1), deletes sk1 in an unrecoverable fashion and
outputs sk2.

Example 5 (Excerpts and Verification). Say someone requested an excerpt for
any log entries regarding customer 2. Then one creates an excerpt for the cate-
gories N = {“customer id 2”,EM}. (Recall that by convention, we have EM ∈ N
when the extraction algorithm is called.)

The excerpt to be output is E := 〈m2,m3,m5〉, since m2,m5 ∈ C(EM) and
m3 ∈ C(“customer id 2”). Thus, the signature σ for E contains σ2, σ3 and σ5.
The last component of σ is a signature σE for N and the sequence that is E.
This last component is necessary to prevent attackers not having a secret key
from freely “combining” signatures for different excerpts. For example, without
the additional signature over all log entries in E, if an attacker had signatures for
excerpts for the categories N1 and N2, then it were trivial to create a signature
for the adversary to create a signed excerpt for N1 ∪N2.

The verification algorithm gets 〈m2,m3,m5〉 and 〈σ2, σ3, σ5, σE〉 as input,
along with the excerpt signature σ and the public key pk. It verifies whether
σ2, σ3 and σ5 are valid form2,m3,m5 using VerifyFS. Note that all epoch markers
are included in the excerpt, so Verify can determine the epoch in which these
messages were signed by counting the number of epoch markers occuring before
the respective message. (In our description above, this is just cEM.)

The verification algorithm also checks whether keys(fj) = Nj . To understand
this, observe that Nj is not signed directly during the signature algorithm, but
implicitly (since fj is signed). If one omitted this check, an adversary might
tamper with the categories Nj of the excerpt without the verification algorithm
detecting this.

Verify also checks that all counters in fj match the expected values.
As a last step, Verify checks the signature over the entire excerpt E together

with the set of categories N for which this excerpt was created. For this check,
it determines the epoch number based on the number of epoch markers in the
excerpt.

Lemma 1. SALVE is correct.



Proof. We need to show that all checks of Verify pass, when Verify is called with
a regularly created signature σ = 〈σ0, . . . , σl, σE〉.

First let us gather some simple observations:

1. Verify correctly counts the number of entries it has seen for each category
ν ∈ N as c′ν . c′ν is also the sequence number expected to be found in the
next log message belonging to category ν.

2. In particular, c′EM contains the number of epoch markers it has encountered
so far, which is equal to the epoch during which the next message should
have been signed (see note 1 on page 20).

3. Similar to observation 1, c′All is the minimum sequence number in the cate-
gory All expected to be found next.

Now let us show that the checks of Verify pass. For each j ∈ {0, . . . , k}, check
1 will pass with overwhelming probability, due to the correctness of ΣFS, and
because of observation 2.

Check 2 will always hold true, because Extract only considers messages that
are contained in the excerpt, cf. Definition 6. Check 3 will also pass, because of
the construction of fj in the AppendAndSign algorithm.

Check 4 will pass because for each ν ∈ Nj , AppendAndSign has set fj(ν)
to the number of log entries contained in category ν, all of these entries are
contained in the excerpt, and Verify counts these (as c′ν) correctly.

A similar argumentation shows that check 6 is successful.
If All /∈ N , check 5 verifies that the counters for the category All that are

signed together with each log entry form a strictly increasing sequence. (If All ∈
N , this is already verified by check 4. Furthermore, check 4 also verifies that the
counter values are consecutive.) This is always the case for excerpts created by
the regular mechanism, so this check will never fail.

Finally, equation 7 will be fulfilled with overwhelming probability, because
of the correctness of ΣFS.

In total, Verify will only reject a signature if one of the calls to VerifyFS

outputs 0. For each j ∈ {0, . . . , l}, let Aj be the event that VerifyFS outputs
0 in check 1 for j, and let AE be the event that VerifyFS outputs 0 in check 7.
Applying a union bound, we get

Pr [Verify outputs 0] = Pr [A0 ∨ . . . ∨Al ∨AE ]

≤ Pr [AE ] +

l∑
j=0

Pr [Aj ] .

Since each of the probabilities Pr [Aj ] and Pr [AE ] is negligible, and l is bounded
by a polynomial in the security parameter, the result is negligible as well. This
means that Pr [Verify outputs 1] is overwhelming.

In particular, if ΣFS has perfect correctness (i.e. VerifyFS always accepts
a regularly created signature), then Pr [Verify outputs 0] = 0, and therefore
Pr [Verify outputs 1] = 1. ut



4.2 Security Analysis

We now analyse the security of our scheme above. The following theorem states
our main result:

Theorem 1 (Security of SALVE). If there exists a PPT attacker A that wins
the FS-EUF-CLMA experiment against SALVE with probability εA, then there
exists a PPT attacker B that wins the FS-EUF-CMA game against ΣFS with
probability εB = εA.

Proof. LetA be an attacker having success probability εA in the FS-EUF-CLMA
experiment against SALVE. We construct an adversary B that tries to break the
FS-EUF-CMA-security of the underlying scheme ΣFS, using A as a component.

Therefore, B must simulate the FS-EUF-CLMA-experiment with SALVE
for A. B does this as follows.
B receives a public key pk and the number of epochs T as input. It sets

i := 0, j := 0, M0,−1 := 〈〉, σ0,−1 := 〈〉. It then starts executing A with input
(pk, T − 1, σ0,−1).

When A issues an oracle query, B reacts as follows:

Signature Queries
When A requests that a new message mj = (Nj ,m

′
j) shall be added to the

log file, B collects the counter values cν for all ν ∈ Nj , initializing them to 0 if
the category ν has not occured before. It builds fj := {ν 7→ cν | ν ∈ Nj} and
submits (fj ,m

′
j) to the signature oracle in the FS-EUF-CMA-experiment.

This oracle answers with a signature σ′j for (fj ,m
′
j). B combines this with fj

to get σj := (fj , σ
′
j). Then B sets σ0,j := σ0,j−1 ‖σj , M0,j := M0,j−1 ‖mj ,

returns σ0,j to A, and increments j := j + 1.
Excerpt queries

When A requests a signature for an excerpt for the categories N , B proceeds
as follows.
B first builds E(N,M0,j). Next, B collects the individual signatures σk for
all mk ∈ E. (More formally, let l = |E|, and let I(N,M0,j) = 〈k1, . . . , kl〉
again denote the index sequence of the excerpt E with respect to M0,j .) B
submits (N,E) to the signature oracle in the FS-EUF-CMA experiment to
obtain σE . It returns σ = 〈σk1 , . . . , σkl , σE〉 to A.

Epoch Switching
When A requests an epoch switch from epoch i to epoch i + 1 in the
FS-EUF-CLMA experiment, B creates the epoch marker just as in the Update
algorithm: It first determines the set N of categories that had a log entry
added to them during epoch i, collects the counters cν for all ν ∈ N , builds
fj := {ν 7→ cν | ν ∈ N} and sets m′j := (“End of epoch ” ‖ i, f). It then simu-
lates the AppendAndSign algorithm for mj := ({All,EM},m′j) as described
above and obtains a signature σj for mj . It updates the log file and the
signature to M0,j := M0,j−1 ‖mj and σ0,j := σ0,j−1 ‖σ0,j ,
Finally, it calls the epoch switching oracle in the FS-EUF-CMA-experiment,
and increments i := i+ 1. It returns M0,j and σ0,j to A.



Breaking In
WhenA requests the current secret key ski in the FS-EUF-CLMA-experiment,
B obtains it from its own oracle in the FS-EUF-CMA-experiment and passes
it to A.

It is easy to see that the joint distribution of all values occuring in B’s simulation
of the FS-EUF-CLMA-experiment (A’s “view”) matches the distribution in the
real FS-EUF-CLMA-experiment.

At the end of the experiment, A outputs a forged excerpt E∗, a set of cat-
egories N∗ and a forged signature σ∗ for E∗. If A outputs an invalid or trivial
forgery, then B outputs ⊥ and aborts. Otherwise, B determines which of the fol-
lowing cases has occured and acts as described for each case. For this distinction,
we let c∗EM be the number of log entries (N∗j ,m

′∗
j ) in E∗ with EM ∈ N∗j .

Case 1: E∗ contains c∗EM < iBreakIn epoch markers.
Note that this case also captures the event that A does not obtain a secret
key at all (because then iBreakIn =∞).
In this case, B outputs m∗ := (N∗, E∗) as its message, the number i∗ := c∗EM

of epoch markers in E∗ as the epoch number, and the last element σ∗E of the
sequence σ∗ as its forged signature for m∗. σ∗E must be a valid signature for
(N∗, E∗), since otherwise Verify would have rejected the signature σ∗ after
checking equation 7.
All queries that B submitted to its signature oracle during epoch cEM (if
any) were either of the form (fj ,m

′
j) for some messages (including epoch

markers) mj = (Nj ,m
′
j) or of the form (N,E) for extraction queries. Be-

cause of the encoding, all of B’s signature queries (fj ,m
′
j) for log messages

(Nj ,m
′
j) differ from (N∗, E∗) (which is a tuple of a set of bitstrings and a

sequence of categorized log messages) . Also, since E∗ is a non-trivial forgery
in the FS-EUF-CLMA game, B did never request a signature for (N∗, E∗)
in epoch i∗. Finally, since i∗ < iBreakIn, B’s output is a non-trivial forgery in
the FS-EUF-CMA experiment.
Hence, B’s output is valid and non-trivial, so B wins the FS-EUF-CMA
game.

Case 2: E∗ contains c∗EM ≥ iBreakIn epoch markers.
Let Mi and Ei be as in Definition 8, that is, Mi is the log file returned by A’s
most recent call to the epoch switching oracle, and Ei is the excerpt for the
categories N∗ of Mi. Observe that if A broke in during epoch iBreakIn = 0,
then we had Mi = 〈〉 by definition, and so Ei = 〈〉, which is a prefix of all
excerpts E∗ that A may have created. Thus, any forgery of A were trivial,
and A could not win the game. In the following, we may therefore assume
iBreakIn > 0.
Let E∗i be the prefix of E∗ up until (including) the iBreakIn-th epoch marker
(the iBreakIn-th log message (N∗j ,m

′∗
j ) with EM ∈ N∗j ). We know that Ei

is not a prefix of E∗i , since otherwise Ei would also be a prefix of E∗ in
contradiction to A’s forgery not being trivial.
Let Ei = 〈mj〉l−1j=0, E∗i = 〈m∗j 〉

l∗−1
j=0 , m∗j = (N∗j ,m

′∗
j ) for all j ∈ {0, . . . , l∗ − 1}

and mj = (Nj ,m
′
j) for all j ∈ {0, . . . , l − 1}. B builds the sequences S∗ =



〈(f∗0 ,m′∗0 ), . . . , (f∗l∗−1,m
′∗
l∗−1)〉 (taking the f∗j from the signatures σ∗j ∈ σ∗)

and S = 〈(f0,m′0), . . . , (fl−1,m
′
l−1)〉 (taking the fj from the signatures σj it

constructed during the simulation). Note that S contains exactly B’s oracle
queries during epochs 0 through iBreakIn − 1, restricted to those messages
that belong to at least one of the categories N∗. Also observe that S∗ 6= S,
since we otherwise had E∗i = Ei (by equations 2 and 3), in contradiction to
Ei not being a prefix of E∗i .
The key observation is that there must be a (f∗k ,m

′∗
k ) ∈ S∗ with (f∗k ,m

′∗
k ) /∈ S

(k ∈ {0, . . . , l∗ − 1}). Suppose for the sake of a contradiction that there is no
such pair. Then S∗ consists entirely of pairs that also occur in S. Obviously,
S∗ can not contain duplicate pairs (f∗k ,m

′∗
k ), since the verification algorithm

would have rejected the excerpt when checking that counters always increase
(equations 4 and/or 5). Since S∗ contains only pairs also contained in S,
contains no duplicates, and S∗ 6= S, S∗ is missing at least one tuple from S. If
S∗ is missing an epoch marker from S, but contains no duplicates and no new
epoch markers, then the number of epoch markers in S∗ is at most iBreakIn−1,
in contradiction to the construction of S∗ (which contains exactly iBreakIn

epoch markers). So S∗ is missing some regular log entry. But then Verify
had failed when checking the counters in equation 6, which is impossible if
A’s output was valid.
So we have established that S∗ contains a pair (f∗k ,m

′∗
k ) /∈ S. B searches

for this pair, and outputs it as the message. It also outputs the number of
epoch markers in S∗ before (f∗k ,m

′∗
k ) as the epoch number i∗ and σ′∗k as the

signature.
This is a valid signature, since equation 1 holds. It remains to show that this
is a non-trivial forgery. Firstly, the number of epoch markers before (f∗k ,m

′∗
k )

is at most iBreakIn−1, so the signature σ′∗k is valid for an epoch i∗ < iBreakIn.
Secondly, B has never requested (f∗k ,m

′∗
k ) from its signature oracle, since

(f∗k ,m
′∗
k ) /∈ S, where S is exactly the set of B’s signature queries for all

messages belonging to at least one of the categories N∗, such as m∗k. Hence,
B wins the FS-EUF-CMA game in case 2, since it outputs a non-trivial and
valid forgery.

Since B’s simulation of the FS-EUF-CLMA game for A is perfect, B wins
both in case 1 and in case 2, and one of these cases occurs whenever A outputs
a valid and non-trivial signature, we have εB = εA. Also, B runs in polynomial
time, as A does. ut

Corollary 1. If ΣFS is FS-EUF-CMA-secure, and SALVE uses proper encod-
ings, then SALVE is FS-EUF-CLMA-secure.

4.3 Performance Analysis

In this section, we analyse the runtime and storage overhead of SALVE. Our
findings are derived from the algorithms described in section 4.1. Since SALVE
can be instantiated with an arbitrary forward-secure signature scheme ΣFS, we



give our findings with regard to algorithm runtime in terms of calls to algorithms
of ΣFS, and our findings in regard to storage overhead in terms of key and
signature sizes of ΣFS, respectively. Table 1 summarizes our findings.

Table 1. Performance characteristics of SALVE in relation to ΣFS. We use sets, se-
quences and bit strings instead of their size and length, respectively, to relieve notation.

Algorithm Runtime

KeyGen 1×KeyGenFS + O(1)
AppendAndSign 1× SignFS + O(Nj(logNj + logNtotal) +m′j)
Update 1×UpdateFS + 1× SignFS + O(Nepoch logNtotal)
Extract 1× SignFS + O(R logN)
Verify (E + 1)×VerifyFS + O(R logN)

Datum Size

Secret Key 1× skFS + 0
Public Key 1× pkFS + 0
Log File Signature (M + i)× σFS + O(R)
Excerpt Signature (E + i+ 1)× σFS + O(R)

Throughout our analysis, let M denote the current log file, i be the current
epoch, R be the total number of associations between log entries and categories

(i.e. R :=
∑|M |−1
j=0 |Nj |), E be the excerpt being signed by the Extract algorithm

or verified by Verify, Ntotal be the set of (the names of) all categories that have
been used so far, and Nepoch be the set of (the names of) the categories that
have received a new log entry in the epoch being ended by the update procedure.
Our runtime analysis assumes that:

– All sequence numbers cν and category names ν have size O(1), i.e. there
is an a-priori-bound on the length of these. We stress that we make this
assumption purely to simplify the analysis. Our scheme can handle sequence
numbers and category names of arbitrary length.

– The implemenation always stores sets N of category names in an ordered
fashion in order to achieve a unique representation. Maps fj are ordered as
well, by Nj .

– The implementation caches sequence numbers in balanced binary trees. In
this case, lookup, insertion and update operations to the cache take log |Ntotal|
time units. This is a conservative assumption, since the same operations have
an expected cost of O(1) time units for hash-table based caches.

– The implementation caches the names of all categories that have received a
new log message in the current epoch. Let this set be denoted by Nepoch.

– We also assume that encoding and decoding pairs (fj , σ
′
j) to and from {0, 1}∗

takes time O(|fj |+
∣∣σ′j∣∣).



Algorithm Runtime Analysis

Key Generation.
The runtime of the KeyGen algorithm is dominated by the call to KeyGenFS,
which creates a key for T + 1 time periods. All other computations can be
done in O(1) time units.

Message Signing.
The AppendAndSign algorithm must determine the current counter values
cν for all ν ∈ Nj in order to create the mapping fj . We assume that the
algorithm first sorts Nj in order to achieve a unique representation. This
can be done in O(|Nj | log |Nj |) time units. Looking up all counter values
takes O(|Nj | log |Ntotal|) time units. Encoding fj to a binary string takes
time O(|fj | +

∣∣m′j∣∣) = O(|Nj | +
∣∣m′j∣∣). The signing of the tuple then takes

one call to SignFS.
Updating the Secret Key.

The Update algorithm accesses the cached set Nepoch and looks up the corre-
sponding counter values cν . This takes at most O(|Nepoch| log |Ntotal|) time
units. It then calls the AppendAndSign algorithm, and thus inherits its run-
time costs. Note that Nj is constant for this call, so |Nj | = 2 can be disre-
garded in the O notation. Finally, it performs a call to UpdateFS.

Extraction of Excerpts.
Extract first sorts N in time O(|N | log |N |). It then scans through M to
find relevant log entries. For each log entry mj = (Nj ,m

′
j), the algorithm

can check if Nj ∩ N = ∅ with at most |Nj | lookup operations in N . Thus,

scanning the entire log file takes O(
∑l−1
j=0 |Nj | log |N |) = O(R log |N |) time

units, where l := |M |.
Verification.

The verification algorithm takes |E|+ 1 calls to VerifyFS for checks 1 and 7.
Checks 2 and 4 take O(|Nj | log |N |) operations per iteration, check 3 only
O(|Nj |). Check 5 can be done in O(|fj |) = O(|Nj |) time units.
For check 6, let Nepoch,j be the set of categories that received at least one
new entry during epoch j. Then all checks of this type can be implemented
in time O(

∑i−1
j=0 |Nepoch,j | log |N |).

In total, we have (|E|+ 1) calls to VerifyFS, and

O

 l−1∑
j=0

|Nj | log |N |+
i−1∑
j=0

|Nepoch,j | log |N |


= O

 l−1∑
j=0

|Nj |+
i−1∑
j=0

|Nepoch,j |

 log |N |


= O(R log |N |)

other operations.

Storage Overhead In the following, we analyze the storage overhead imposed
by SALVE.



Key Sizes.
The sizes of SALVE’s public and secret keys are the same as ΣFS’s.

Log File Signature Size.
A signature for an log file M consists of |M | + i signatures of ΣFS, as well

as the maps fj , which take O(
∑l−1
j=0 |Nj |) = O(R) bits.

Excerpt Signature Size.
The signature for an excerpt E consists of each log entry’s individual signa-
ture, including the signatures for all epoch markers, and a final signature on
the pair (N,E). We thus have |E| + i + 1 signatures of ΣFS. Furthermore,
we have |E|+ i maps fj , which take at most O(R) bits in total.

Comparison to Other Schemes We now compare the efficiency of SALVE
to the performance of other schemes in the literature. In particular, we compare
to the scheme by Ma and Tsudik [21,22] and the Logcrypt scheme by Holt [16],
since both constructions are generically built on an underlying signature scheme,
too. We also compare to the BAF [32,33] and LogFAS [34] schemes by Yavuz
et al.

However, Ma and Tsudik require a signature scheme that is not only forward-
secure, but can also sequentially aggregate signatures, while Holt’s scheme uses
a standard digital signature without special properties such as forward-security
or sequential aggregation.9 SALVE can be seen in between these two, as SALVE
requires the underlying signature scheme to be forward-secure, but does not
require the aggregation property.

The different requirements on the underlying signature scheme make it very
hard to compare these schemes fairly. For example, the aggregate signature
scheme used by Ma and Tsudik hides the amount of work required to verify
a signature behind just one call to the aggregate verification algorithm. Com-
parison is complicated further by the issue that both Ma and Tsudik as well as
Holt propose to perform an epoch switch every time a log entry has been added.
(This is a case in which SALVE performs badly. However, given the linear over-
heads imposed by LogCrypt and Ma’s and Tsudik’s schemes, their schemes are
not very practical in this case, neither.)

Comparing these three schemes to BAF and LogFAS is even harder, since
BAF and LogFAS are not generically built on an arbitrary signature scheme
(possibly requiring additional properties), but use very concrete hardness as-
sumptions and constructions. (Actually, LogFAS does use a signature scheme
generically, but requires more concrete hardness assumptions in addition.)

Table 2 shows our results. For Logcrypt, SALVE, the scheme by Ma and
Tsudik as well as LogFAS, KeyGen, Sign, Verify, Update, Asig and Aver refer
to the costs to call the respective underlying signature scheme’s algorithm. Simi-
larly, |sk| , |pk| , |σ| refer to the sizes of the underlying scheme’s secret key, public
key and signatures, respectively. For Logcrypt, n ∈ N is a parameter that can

9 Holt implicitly constructs a forward-secure scheme from it by building a long certifi-
cation chain, that is embedded in the log file. The forward-secure scheme is a simple
variant of the “Long Signature” scheme from [5, Section 2].



be chosen freely. For BAF and LogFAS, ModExp, ModMul and ModAdd refer
to the costs of modular exponentiation, multiplication and addition respectively,
and H refers to the cost of evaluating a hash function on a relatively short input.
BigInt refers to the size of a large integer value.10

Comparison with Logcrypt and the MT scheme. We see that SALVE is competi-
tive with Logcrypt and the scheme by Ma and Tsudik in terms of key generation
time, log entry signing time, as well as secret and public key size. It performs
only slightly worse than these schemes for the key evolution and verification
algorithms. (All forward-secure sequential aggregate signature schemes that we
know of require at least O(|M |) operations. These operations may be modular
squarings or even pairing evaluations.)

In terms of storage overhead for the log file SALVE beats Logcrypt, but
can not level with the scheme by Ma and Tsudik, since they use (sequential)
aggregate signatures.

Note that the aggregation approch by Ma and Tsudik comes with two se-
vere drawbacks: Firstly, their scheme can not verify any log entry individually
without verifying the entire log file. Secondly, if a single log entry is modified,
verification of the entire log file fails, and all information stored in the log file
must be considered to be forged by the adversary. Ma and Tsudik recognize these
drawbacks, and devise an alternative “immutable” scheme that solves these is-
sues. The modified scheme has (|M |+1)×|σ| storage overhead, which is notably
but not far better than SALVE.

Comparison with BAF and LogFAS. As stated before, comparing SALVE to BAF
and LogFAS is very hard, since SALVE may have very different performance
characteristics depending on the underlying signature scheme ΣFS.

LogFAS is very efficient in log file verification time. We expect SALVE to be
slower than LogFAS in this regard. LogFAS also has a very efficient key evolution
procedure (because all epoch keys are pre-computed during key generation) and
a moderate signature creation time. However, this high efficiency in selected
regards is paid for with key generation time and secret key size that are linear
in T , and very large signature size. We expect SALVE to easily outperform
LogFAS in these parameters.

BAF, in contrast to LogFAS, is heavily optimized for an efficient signing
procedure. It also has an efficient key evolution algorithm, a modest secret key
size and a very compact signature, that is independent of |M |, just as the scheme
by Ma and Tsudik. (BAF therefore carries the same backdraws.) These enjoyable
performance properties of BAF are paid for with a very expensive key generation
algorithm and an extreme public key size.

10 BAF and LogFAS use prime-order subgroups of a prime field where the discrete
logarithm problem is intractable with current methods and equipment. In order not
to complicate our analysis further, we do not differentiate between integers in the
size of the group order (at least 160 bits) and integers in the size of the prime field
size (at least 1024 bits). One may conservatively assume that all of these integers
are 160 bits in size, referring only to the group order.



Table 2. Comparison of SALVE with other Secure Logging Schemes.
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5 Conclusion

It is a desirable feature of secure logging schemes to have verifiable excerpts.
We have defined a security notion for such logging schemes, and proposed a new
scheme that provably fulfills this notion. Our scheme can be instantiated with
an arbitrary forward-secure signature scheme, and can therefore be tuned to
specific performance requirements and based on a wide variety of computational
assumptions.

Future work will be directed at constructing logging schemes that stop all
truncation attacks while allowing for verification of individual log entries.

Acknowledgements. I would like to thank Jörn Müller-Quade and my colleagues
and friends Alexander Koch, Tobias Nilges and Bernhard Löwe for helpful discus-
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