
Co-location detection on the Cloud

Mehmet Sinan İnci, Berk Gulmezoglu, Thomas Eisenbarth, Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
{msinci,bgulmezoglu,teisenbarth,sunar}@wpi.edu

Abstract. In this work we focus on the problem of co-location as a
first step of conducting Cross-VM attacks such as Prime and Probe or
Flush+Reload in commercial clouds. We demonstrate and compare three
co-location detection methods namely, cooperative Last-Level Cache (LLC)
covert channel, software profiling on the LLC and memory bus locking.
We conduct our experiments on three commercial clouds, Amazon EC2,
Google Compute Engine and Microsoft Azure. Finally, we show that
both cooperative and non-cooperative co-location to specific targets on
cloud is still possible on major cloud services.

Keywords: Co-location in Cloud, Software Profiling, Cache Covert Chan-
nel, Performance Degradation Attacks, Memory Bus Locking

1 Motivation

As the adoption of cloud computing continues to increase at a dizzying speed, so
has the interest in cloud-specific security issues. A new security issue due to cloud
computing is the potential impact of shared resources on security and privacy
of information. An example is the use of caches to circumvent ASLR [10], one of
the most common techniques to prevent control-flow hijacking attacks. Several
other works target the exploitability of cryptography in co-located systems under
increasingly generic assumptions. While early works such as [23] still required
attacker and victim to co-reside on the same core within a processor, latest
works [12,16] work across cores and managed even to drop the memory de-
duplication requirement of Flush+Reload attacks [21,7,13]. Besides extracting
cryptographic keys, there are plenty of other security issues explored in other
related studies. Irazoqui et al. [15] study the potential of reviving the partially
fixed Lucky 13 attack [8] by exploiting co-location.

All of the above attacks rely on the attacker’s ability to co-locate with a po-
tential victim. While co-location is an immediate consequence (bug or feature?)
of the benefits of cloud computing (better utilization of resources, lower cost
through shared infrastructure etc.), whether exploitable co-location is possible
or easy has so far not been studied in detail. In his seminal work, Ristenpart et
al. [17] studied the general feasibility of co-location in Amazon EC2, the biggest
public cloud service provider (CSP) then and now, in detail. However, the cloud
landscape has changed significantly since then: The EC2 has grown exponen-
tially and operates data centers around the globe. A myriad of competitors have
popped up, all competing for the rapidly growing customer base [9]. CSPs are

also more aware of the potential security vulnerabilities and have since worked
on making their systems leak less information across VM boundaries. Further-
more, in their experiments, both co-located parties were colluding to achieve
co-location. That is, both parties were willingly involved in communicating with
the other to detect co-location. While being of high importance to show the
feasibility in the first place, trying to co-locate with a specific and most likely
unwilling target can be considerably harder. Since that initial work, until very
recently only little work has dealt with a more detailed study on the difficulty of
co-location. Therefore, we believe, the problem of co-location in cloud requires
further in depth analysis examining different detection methods under diverse
scenarios and access levels for the attacker.

1.1 Our Contribution

In this work we revisit the problem of co-location in public IaaS clouds. In
particular we:

– study the co-location problem under two threat models in the Amazon EC2
Cloud, Google Cloud Engine and Microsoft Azure.

– develop a novel LLC software profiling tool that can detect an application or
a library run by the non-cooperating co-located victim in the cloud, without
the use of the memory de-duplication or any other memory sharing methods.

– demonstrate three co-location methods and compare their success rates on
three popular public clouds.

2 Related Work

In the last few years a several methods were proposed to detect co-location in
commercial clouds [17,22,6,24,11]. These works use methods such as deducing co-
location from instance and hypervisor IP address, hard disk drive performance
degradation, network latency and L1 cache covert channel. However, in response
to these works, most of the proposed techniques have been closed by public
cloud administrators. Later Zhang et al. [22] were able to determine whether
a particular user’s VM had someone else co-residing in the same physical core.
In particular, they utilized the well known Prime and Probe cache based side-
channel technique to guess this information. However, the technique was applied
in the upper level caches, thereby limiting its applicability to a physical core
rather than the entire CPU or the machine. Furthermore, the technique was not
tested in commercial clouds.

Shortly later, Bates et al. [6] demonstrated that a malicious VM can inject
a watermark in the network flow of a potential victim. In fact, this watermark
would then be able to broadcast co-residency information. Again, even if the
technique proved to be extremely fast (less than 10 seconds), it was never tested
in commercial clouds. Recently, Zhang et al. [24] demonstrated that Platform as a
Service (PaaS) clouds are also vulnerable to co-residency attacks. They used the

Flush+Reload cache side channel technique together with a non-deterministic
finite automaton method to infer co-location with a particular server. The tech-
nique proved to be effective in commercial PaaS clouds like DotCloud or Open-
Shift, but would never work in IaaS clouds where the memory de-duplication
features are not implemented, as in most of the commercial IaaS clouds.

Finally, in Inci et al. [11] demonstrated that many of the previously utilized
techniques in [17] are no longer exploitable. Nevertheless, they prove to detect
co-location across cores in Amazon EC2 by monitoring the usage of the LLC
with the Prime and Probe technique. To enable the co-location test, the authors
make use of hugepages commonly available in commercial clouds. This feature
provides a large memory space for the attacker to move and hit necessary ad-
dresses to prime cache sets. Also in 2015, Varadarajan et al. [19] investigated
co-location detection in public clouds by triggering and detecting performance
degradations of a web server using the memory bus locking mechanism. Simulta-
neously Xu et al. [20] used the same memory bus locking mechanism to explore
co-location threat in Virtual Private Cloud (VPC) enabled cloud systems.

3 Threat Models

Here we briefly outline two attacks scenarios for cross-VM attacks on public
clouds. The main difference between the two scenarios is whether the target
is predetermined or not. As we shall see, this makes a significant difference in
terms of the requirements and cost of a successful attack. We provide concrete
examples for both scenarios.

Random Victim
In this scenario there are four steps:

1. Co-location: The attacker spins instances on the cloud until it is deter-
mined that the instance is not alone; i.e. is co-located with another VM.
Here the goal is to maximize the probability and thereby reduce the cost
of co-locating with a viable target. Cheaper instances that use fewer CPU
cores tend to share the same hardware in greater numbers. Therefore these
instances have a better chance of co-location with other customers. Since we
do not discriminate between targets, this step is rather easy to achieve.

2. Vulnerable Software Identification: The attacker detects a software
package in the co-resident VM vulnerable to cross-VM attacks by monitoring
corresponding LLC sets of libraries, e.g. an unpatched version of a crypto-
graphic library. Cache access/performance and more broadly fingerprinting
based techniques do exist in the literature to make successful attacks in the
cloud environment [18,24,14]. Here, instances with lower number of tenants
are less noisy therefore have higher success rate of library detection and the
actual attack.

3. Cross-VM Secret Extraction: Here the attacker runs one of the cross-
VM attacks [11,12] on the identified target. By exploiting cross-VM leakage
the attacker would be able to recover a sensitive information ranging from

specialized pieces of information such as cryptographic keys, to higher level
information such as browsing patterns, shopping cart, system load or any
sensitive information of value. Noise plays a significant role in reliability of
the extraction technique. Since co-location (first step) is easy to achieve, it
is (almost) always advisable to opt for a less populated low noise instance
to improve the chance of a successful attack in the later steps.

4. Value Extraction: The result is some sensitive information that can be
turned into value with additional mild effort. For example, some information
is valuable in its own right and can be converted into money with little or no
effort, e.g, bitcoins, credit card information, credentials for online banking.
Some others require further effort such as TLS session encryption key (secret
key), e.g. for a Netflix streaming session. If the recovered secret is a private
key of a public key encryption scheme (e.g. RSA secret key used a TLS
handshake) the attacker needs the identity of the owner (website/company)
to have further use for the secret key. In this case he may check the private key
against public key repositories for noise correction and target identification.

Targeted Victim
This is the complementary scenario where we are given some identification in-
formation about the target.

1. IP Extraction: The attacker wants to focus its cycles on a server or a group
servers that belong to an individual, cloud backed business, e.g. Dropbox or
Netflix, or group/entity, e.g. dissidents of a political party. Here we assume
that the attacker is capable of resolving the identification information to an
IP or group of IPs of the target. In practice, this can be achieved rather
easily by using public information and by using simple commonly available
network tools such as traceroute/tracepath, nmap etc.

2. Targeted Co-location: The attacker creates instances on the cloud until
one is co-located with the target instance on the same physical machine.
The identification information of the victim, e.g. IP address, is used for co-
location detection. For instance, using the IP the attacker can query the
server creating CPU load and then run co-location tests. While co-location
detection will be easier in this scenario due to the trigger; we will need many
more trials to land on the same physical machine as the victim1. Neverthe-
less, we can accelerate targeted co-location by searching, for instance, only
in the same region as the victim instance using the publicly available AWS
IP lists [2]. Further, we can obtain finer grain information about the target’s
location simply by running traceroute or tracepath on the victim IP.

3. Vulnerable Software Identification: Since we know the identity of our
target, it is safe to assume that we have some rudimentary understanding
of the victim’s setup including OS, communication and security protocols

1 Note that if the physical machine is already filled with the maximum number of
allowed instances, then co-location may not be possible at all. In this case a clever
albeit costly strategy would be to first mount a denial of service attack causing the
target instance to be replicated and then try co-locating with the replicas.

used etc. Even if this is not the case, it would be possible to run a discovery
stage to survey the victim machine using its IP and by detecting process
fingerprints through cross-VM leakage.

4. Value Extraction: The attacker exploits cross-VM leakage to recover sen-
sitive information. Further processing may allow to enhance quality of the
recovered data using publicly available information. For instance, a noisy
private key can be processed with the aid of the public key contained in the
certificate belonging to the target to remove any imperfections.

4 Overview: Co-location Detection Methods

4.1 LLC Covert Channel

The LLC is shared across all cores in most modern CPUs and is semi-transparent
to all VMs running on the same machine. By semi-transparent, we mean that all
VMs can utilize the entire LLC but cannot read each other’s data. We exploit
this behavior to establish a covert channel between VMs in cloud. The covert
channel works by two VMs writing to a specific set-slice pair in the LLC and
detecting each others accesses. LLC set address can easily be deduced from
the virtual addresses available to VMs using hugepages as done in [12,16,11].
The cache slice on the other hand, cannot be determined with certainty unless
the slice selection algorithm of the CPU is known. However, the covert channel
can still work by priming more sets accessing lines that go to the targeted set,
regardless of its slice.

Prime and Probe: In the LLC, the number of lines required to fill a set is equal
to the LLC associativity. However, when multiple users access the same set, one
will notice that fewer than 20 lines are needed to observe evictions due to low
associativity. By running the following test concurrently on multiple instances,
we can verify co-location. The test is as follows:

– Calculate the set number by using the address bits that are not affected by
the virtual to physical address translation. Prime a memory block M0 in the
set

– Access more memory blocks M1,M2, . . . ,Mn that go to the same set. Note
that since the slice selection algorithm for the specific CPU is necessary to
address a set/slice pair with certainty, the number of memory blocks n needs
to be larger than the set associativity times the number of slices

– Access the memory block M0 and check for eviction from the LLC. If evicted,
we know that the required b memory blocks that fill the set are among the
accessed memory blocks M1,M2, . . . ,Mn.

– Starting from the last memory block accessed, remove one block and repeat
the above protocol. If M0 still has high access time, Mi does not reside in
the same slice. If b0 is now located in the cache, we know that bi resides in
the same cache slice as b0 and therefore go to the same set.

– Once the b memory blocks that fill a slice are identified, we just access
additional memory blocks and check whether one of the primed b memory
blocks has been evicted, indicating that they collide in the same slice.

The covert channel works by continuously accessing data that goes to a spe-
cific cache set and measuring the access time to determine if a newly accessed
data has evicted an older entry from the set. Due to this continuous cache line
creation, when the second party makes accesses to the monitored set, they are
detected. In general, if there is no noise present, the number of evicted lines in
the set is equal to the associativity of the cache, assuming a first-in first-out
(FIFO) cache replacement policy is employed.

When two instances try to fill the same set, they have to access many more
number of data blocks to fill the specified cache hence detecting the co-location.
Using the number of blocks necessary to fill a specific set with and without
another instance interfering, we calculate a co-location confidence ratio.

4.2 Software Profiling on LLC

The software profiling method works in a realistic setting with minimal assump-
tions. The method works in a non-cooperative scenario where the target does not
participate in a covert communication and continues its regular operation. The
method does not require memory de-duplication or any form of shared libraries.
It employs the Prime and Probe to monitor and profile a portion of the LLC
while a targeted software is running. As for the memory addressing, we profile
the targeted code address as a relative address to the page boundary. Since the
targeted library will be page aligned, target code’s relative address (the page
offset) will remain the same between runs. Using this information, we can re-
duce our search space in the detection stage. Therefore, we need to monitor only
320 different set-slice pairs such as Xmod64 = Y where X is 320 different set
numbers(because of 10 core and 32 different set numbers which satisfy the equa-
tion) and Y is the first 6 bits(the first 6 bits of the LLC set number is directly
converted to physical address) of the set number for the desired function.

For the RSA detection, the slice-selection algorithm of the CPU is required
to locate the targeted multiplication code in the LLC. Without the algorithm, it
is not possible to deduce and monitor potential cache sets. For our experiments,
we have used the algorithm that was reverse engineered by Inci et. al in [11].

The first step of the profiling is to monitor the targeted LLC sets while the
profiled code, the software is not running. After the regular operation of sets are
observed, the RSA request is sent to several IP addresses.

– Profiling Stage Before the detection stage is started all 320 set-slice pairs are
profiled several times and the average access time to 20(20 way set associa-
tivity) lines for each set-slice paare calculated.

– Detection Stage In detection stage, we send an RSA decryption request to
several IPs to find the co-located IPs with the attacker victim. After trig-
gering the decryption we begin to monitor the portion of LLC to observe

the difference between before the decryption and after the decryption. If
we see the difference in some of the set-slice pairs then they are recorded
as candidate co-located VMs. After we narrow the IP list, we trigger AES
encryption and start to monitor another portion of the LLC to see the dif-
ference. If there is a co-located VM in the IP list we can see the one of the
T-table accesses in the LLC and we can find the co-located VMs.

4.3 Memory Bus Locking

The memory bus locking method exploits atomic instructions therefore we’ll
explain these special instructions shortly in the following section.

Atomic Operations: Atomic operations are defined as indivisible, uninter-
rupted operations that appear to the rest of the system as instant. When op-
erating directly on memory or cache, an atomic operation prevents any other
processor or I/O device from reading or writing to the operated address. This
isolation ensures computational correctness and prevents data races. While all
instructions on single thread systems are automatically atomic, there is not
guarantee of atomicity for regular instructions in multi-thread systems as used
in almost all modern systems. In these systems, an instruction can be interrupted
or postponed in favor of another task. The rescheduling, interruption and op-
erating on the same data may cause hazards in the pipeline. Hence the atomic
operations are especially useful on multi-thread systems and parallel processing.

In older x86 systems, processor always locks the memory bus completely
until the atomic operation finishes, whether the data resides in the cache or
in the memory. While insuring atomicity, the process results in a significant
performance hit. In newer systems prior to Intel Nehalem and AMD K8, memory
bus locking was modified to reduce this penalty. In these systems, if the data
resides in cache, only the cache line that holds the data is locked. This lock
results in a very insignificant system overhead compared to the performance
penalty of memory bus locking. However, when the operated data surpasses
cache line boundary and resides in two cache lines, more than a single cache line
has to be locked. In order to do so, memory bus locking is again employed.

After Intel Nehalem and AMD K8, shared memory bus was replaced with
multiple buses with non-uniform memory access bridge between them. While
getting rid of the memory bottleneck for multiprocessor systems, this also inval-
idated the memory bus locking. Now, when a multi-line atomic cache operation
has to be performed, all CPUs has to coordinate and flush their ongoing memory
transactions. This emulation of memory bus locking results in a significant per-
formance hit. We employ this mechanism to slow down a server process running
in the cloud and detect co-location without cooperation from the victim side.

ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, DEC, FADDL, INC,
NEG, NOT, OR, SBB, SUB, XADD, XOR are some of the instructions de-
fined in x86 architecture that can be executed atomically with a lock prefix.
Also, XCHG instruction executes atomically when operating on a memory lo-
cation, regardless of the LOCK use. In order to maximize the flushing penalty,

we tested all atomic instructions available to the platforms and measured how
long each instruction takes to execute. Since the flushing is succeeded with the
atomic operation itself, longer the instruction executes, stronger the performance
hit becomes.

Cache Line Profiling Stage: Our attack is CPU-agnostic and therefore re-
quires a short preliminary cache profiling stage. With this profiling step, we do
not need the knowledge of the specific CPU or the cache line size. In order to
obtain a data that spans multiple cache lines, we first allocate a block of small,
page-aligned memory using malloc. After the allocation, we start performing
atomic operations on this block in a loop of 256 since no modern cache line is
expected to be larger than 256 bytes. In each loop, we move our access pointer
from the beginning of the allocated memory by one and record execution times.
When we observe an execution time larger than the pre-calculated average, we
record the address. After all 256 addresses are tested, we obtain a list of addresses
that span across multiple cache lines and trigger a CPU flushing. Later during
the locking stage, we operate only on these addresses rather than a continuous
array, making the method more efficient.

Dual Socket Problem Memory bus locking works on systems with multiple
CPU sockets. Even further, our tests on these systems show that the bus locking
penalty clearly reveals whether the target and the attacker run in the same socket
or not. Note that this information is significant to the attacker. An architectural
attack using the LLC requires the attacker and the target to be running in the
same socket.

Figure 1 show the memory access times of a dual socket system with two
Intel Xeon E5-2609 CPUs. Figure 1(a) shows the memory access time, hence the
slowdown during 1 to 8 active memory bus locks running in parallel. Our exper-
iments show that there is no significant difference in performance degradation
between implementing the lock on 1,2 or 3 parallel threads. However after 4, we
see over a 1000 clock cycles of additional access time penalty. As for the 8 lock
scenario, the additional access time delay is due to both memory bus locking
and the performance bottleneck on the CPU.

Figure 1(b) shows the memory performance degradation of a multiple socket
system. For these experiments, we have used a system with dual Intel Xeon 2609
with 2 cores, 4 threads each CPU.

5 Experimental Approach and Results

5.1 Co-location Results in Commercial Clouds

In all three aforementioned commercial clouds, we have launched 4 accounts with
20 instances per account, achieving co-location in each cloud. Also note that, we
only classify the instances running in the same CPU socket as co-located and
ignore the ones running on different sockets.

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

0

400

1200

2000

2800

3600

No lock 1 lock 2 locks 3 locks 4 locks 5 locks 6 locks 7 locks 8 locks

(a)

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

2300

2400

2500

2600

2700

2800

Different socket lock
Same socket lock

(b)

Fig. 1. a) Membus locking performance degradation on multi socket machine b) Red
and blue lines represent the memory access time when the attacker resides in the same
socket (different core) and different sockets respectively.

Amazon EC2: In Amazon EC2 we used m3.medium instance types that have
balanced CPU, memory and network performance. This instance type holds 1
vCPU, 3.75 GB of RAM and 4 GB of SSD storage. According to Amazon EC2
Instance Types web page [1], these instances use 10 core Intel Xeon E5 2670 v2
(Ivy Bridge) processors.

Out of 80 instances launched, we have obtained 7 co-located pairs and one
triplet verified by the tests. Moreover, we have tried to co-locate with instances
that have launched previously. Surprisingly, we have been able to co-locate with
instances that have launched 6 months prior.

Google Compute Engine: In GCE, we used n1-standard-1 type instances
running on 2.6 GHz Intel Xeon E5 (Sandy Bridge), 2.5 GHz Intel Xeon E5 v2
(Ivy Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) processors according to [3].
Out of 80 instances launched, we have obtained 4 co-located pairs.

Instance Number
0 20 40 60 80

C
on

fid
en

ce
 R

at
io

0

0.5

1

Fig. 2. GCE LLC Test Confidence Ratio Comparison

Microsoft Azure: In Azure, we used ’extra small’ A0 instance types with 1
virtual core, 750 MB RAM, maximum 500 IOPS and 20 GB disk storage that
is not specified as neither SSD nor HDD [4]. Out of 80 instances launched, we
have obtained only 4 instances that were co-located. However, this was due to
the highly heterogeneous CPU pool that Azure employs. Our first account had
instances with AMD Opteron CPUs while the second had Intel E5 2660 v1 and
the last two had Intel E5 2673 v3. Naturally, we could only achieve co-location
among instances that have the same CPU model. Out of 40 Intel E5 2673 v3
instances, we detected 4 co-located instances.

5.2 LLC Covert Channel

The confidence ratio is highest at 1 as seen in Figure 2. There are 8 instances that
have higher than 50% confidence ratio among 80 instances and the co-located
pairs are found by binary search at the end. Hence, they are confirmed that they
are co-located with each other.

5.3 LLC Software Profiling

We conducted our LLC Software Profiling experiments on the co-located Ama-
zon EC2 instances with 10 core Ivy Bridge processors. As for the software target,
in order to demonstrate the versatility of the attack we choose RSA (Libgcrypt
version 1.6.2) that uses sliding window exponentiation and AES (OpenSSL ver-
sion 1.0.1g, C implementation) using T-tables. Note that the detection method
is not limited to these targets since the attacker can run and profile any software
in his VM instance and perform the attack.

For the RSA detection, the slice-selection algorithm of the CPU is required
to locate the targeted multiplication code in the LLC. In our experiments, we
have used the algorithm that was reverse engineered by Inci et. al in [11]. The
first step of the profiling is to monitor the targeted LLC sets while the profiled

Number of PnP ×104
0 0.5 1 1.5 2 2.5 3

A
cc

es
s

T
im

e

0

50

100

150

200

(a) RSA Pattern

Number of Traces
0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

T
im

e

60

80

100

120

140

160

180

200

(b) AES Pattern

Fig. 3. Blue line is idle and red line is with the RSA decryption/AES encryption access
times

code, RSA is not running. After the regular operation of sets are observed, the
RSA request is sent to several IP addresses, starting from attacker’s own subnet.
As soon as the request is sent, the profiling starts and traces are recorded by the
Prime and Probeİf there is an RSA decryption running in the other instance,
the pattern of multiplication can be observed as in Figure 3. In general, the
multiplication is performed between 2000-8000 traces. Therefore, for each set-
slice pairs we find the difference between two profiles. In Figure 4, the difference
between the profiles are illustrated for two co-located instances. Both figures
show that there are two set-slice pairs with significantly higher access times
(4 8 cycles) in average of 10 experiments. Hence, it can be concluded that these
two sets are used by RSA decryption and this candidate instance is probably
co-located with the attacker.

After we obtain IP addresses of several co-location candidates, we trigger
AES encryption by sending random ciphertexts and at the same time monitor
the LLC. For this part of the detection stage, since AES encryption is much
faster than RSA decryption we can only catch one access to monitored T-table
position. Hence, we send 100 AES encryption requests to each instance in the IP

list. If there is 90% cache miss for one of the set-slice pairs, it can be concluded
that the AES encryption is performed by the co-located instance, as seen in
Figure 3(b).

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-2

0

2

4

6

8

(a) RSA Analysis for the first co-located instance

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-4

-2

0

2

4

6

8

(b) RSA Analysis for the second co-located instance

Fig. 4. The difference of clock cycles between base and RSA decryption profiling for
each set-slice pairs over 10 experiments

5.4 Memory Bus Locking

Slowdown due to memory bus locking for various applications is shown in Table 1.
As the table shows, more frequent the application makes memory accesses, more
significant it is hit by the memory bus locking. For example, the GnuPG which
mostly does ALU calculations with few memory accesses only slow down by 29%.
An Apache web server that loads content from memory on the other hand has
a slowdown by the factor of 4.28.

In addition to specific software performance degradation, we also measured
the effect of multiple locks executed in parallel. To do so, we run the memory
bus locking operations in parallel in varying number of CPU cores using the
openmp parallel programming API [5]. Figure 5(d) shows the memory access
times when 0 to 8 locks run in parallel. As the figure shows, the first lock does

slowdown the memory accesses by 100% while the second and third locks do not
further degrade the memory performance. However, after fourth and fifth locks,
we observe an even more significant degradations.

Process Xeon 2640v3 Slowdown

Apache 4.28x
PHP 0.1x
GnuPG 0.29x
HTTPerf 0.29x
Memory Access 5.38x
RAMSpeed int 5.01x
RAMSpeed fp. 4.88x
Media Stream 2.36x

Table 1. Application slowdown on an Intel Xeon 2640v3 due to Memory Bus locking
triggered on a single core.

5.5 Comparison of Detection Methods

As explained in Section 3, co-location in the cloud can be exploited in both
random and targeted victim co-location scenarios. Malicious Eve can directly
look for attack vectors to steal information from her neighbors or she can go
after a specific target and spin up instances until she is co-located with the
target. However, if the detection method does not provide reliable results, the
attacker can discard the co-located instances or have false positives due to noise.
Therefore a useful and efficient co-location detection method is essential.

Worst Case Average Best Case
Detection Method

Memory Bus Locking OPD* 0.1x 3.28x 6.1x
LLC Covert Channel 53% 73.5% 93%
LLC Software Profiling 50% 70% 90%

Table 2. Comparison of co-location detection methods. *OPD: Observed Performance
Degradation

The Table 2 shows that all three methods inspected in this study work with
high accuracy in a real commercial cloud setting. All methods work with mini-
malistic requirements, no hypervisor access or specific hardware. In comparison,
while the memory bus locking has the least clear co-location signal in the worst
case, other two methods are more prone to the LLC noise. Also, as seen in

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

600

800

1000

1200

1400

1600

1800
No lock
1 lock

(a) Amazon EC2

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

300

400

500

600

700

800

900

No lock
1 lock

(b) GCE

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

0

200

400

600

800

1000

1200

1400

No lock
1 lock active
2 locks active
3 locks active
4 locks active

(c) Microsoft Azure

No locking 1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core

M
em

or
y

A
cc

es
s

T
im

e

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

(d) Lab setup using Intel Xeon E5 2660 v3

Fig. 5. Membus locking performance degradation on a) Amazon EC2 m3.medium in-
stance b) GCE n1-standard1 instance c) Microsoft Azure A0 instance d) Intel E5-
2660v3

Table 1 the memory bus locking gives stronger signal with applications with
frequent memory accesses. So for the uncooperative co-location scenario, de-
pending on the workload of the target instance, one can use either the memory
bus locking or the software profiling to detect co-location with high accuracy.

6 Conclusion

In conclusion, we represent three co-location detection methods working in some
of the most popular commercial clouds (Amazon EC2, Google Compute Engine,
Microsoft Azure) and compare their efficiencies. In addition, for the first time
we have achieved targeted co-locations in Amazon EC2 Cloud by applying the
LLC software profiling for AES and RSA processes. For the memory bus locking
method, we have observed that frequent memory accesses lead to more significant
degradation. As for the cache covert channel, we show that the method works
in a cooperative scenario with high accuracy. And finally we presented the LLC
software profiling technique that can be used for variety of purposes including
co-location detection without the help of memory de-duplication or cooperation
from the victim side.

7 Acknowledgments

This work is supported by the National Science Foundation, under grants CNS-
1318919 and CNS-1314770.

References

1. Amazon EC2 Instances, http://aws.amazon.com/ec2/instance-types/
2. AWS IP Address Ranges, http://docs.aws.amazon.com/general/latest/gr/

aws-ip-ranges.html

3. Google Compute Engine Instance Types, https://cloud.google.com/compute/

docs/machine-types

4. Microsoft Azure Sizes for virtual machines, https://azure.microsoft.com/en-

us/documentation/articles/virtual-machines-size-specs/

5. The OpenMP API specification for parallel programming
6. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: On detecting

co-resident cloud instances using network flow watermarking techniques. Int. J. Inf.
Secur. 13(2), 171–189 (2014), http://dx.doi.org/10.1007/s10207-013-0210-0

7. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah... Just a Little Bit”:
A Small Amount of Side Channel Can Go a Long Way. In: CHES. pp. 75–92 (2014)

8. Fardan, N.J.A., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols. In: Security & Privacy, 2013. pp. 526–540

9. Gaudin, S.: Public cloud market ready for ’hypergrowth’ period. Computerworld
Article (April 2014), http://www.computerworld.com/article/2488572/cloud-

computing/public-cloud-market-ready-for--hypergrowth--period.html

10. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy. pp. 191–205. http://dx.doi.org/10.1109/SP.2013.23

11. Inci, M.S., Gülmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Tech. rep., IACR
Cryptology ePrint Archive (2015)

12. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A shared cache attack that works
across cores and defies VM sandboxing?and its application to AES. IEEE S&P
(2015)

13. Irazoqui, G., İnci, M.S., Eisenbarth, T., BerkSunar: Fine grain cross-vm attacks
on xen and vmware. In: 2014 IEEE Fourth International Conference on Big Data
and Cloud Computing, BDCloud 2014, Sydney, Australia, December 3-5, 2014. pp.
737–744. http://dx.doi.org/10.1109/BDCloud.2014.102

14. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: Crypto
library detection in cloud. Proceedings on Privacy Enhancing Technologies 1(1),
25–40 (2015)

15. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 Strikes Back. pp.
85–96. ASIA CCS ’15 (2015)

16. Liu, Fangfei and Yarom, Yuval and Ge, Qian and Heiser, Gernot and Lee, Ruby
B: Last-level cache side-channel attacks are practical. In: IEEE S&P. pp. 605–622
(2015)

17. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: CCS ’09. pp.
199–212

18. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to the
guest OS. In: Proceedings of the Fourth European Workshop on System Security.
p. 1. ACM (2011)

19. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th USENIX Security Symposium
(USENIX Security 15)(Washington, DC. pp. 913–928 (2015)

http://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
http://dx.doi.org/10.1007/s10207-013-0210-0
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for--hypergrowth--period.html
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for--hypergrowth--period.html
http://dx.doi.org/10.1109/SP.2013.23
http://dx.doi.org/10.1109/BDCloud.2014.102

20. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security. pp. 929–944 (2015)

21. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack. In: (USENIX Security 14). pp. 719–732

22. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis. In: IEEE: Security & Privacy (2011)

23. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS 2012. pp. 305–316 (2012)

24. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel at-
tacks in paas clouds. In: CCS. pp. 990–1003 (2014)

	Co-location detection on the Cloud

