
New Bounds for Keyed Sponges with
Extendable Output: Independence between

Capacity and Message Length

Yusuke Naito1 and Kan Yasuda2

1 Mitsubishi Electric Corporation
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Secure Platform Laboratories
yasuda.kan@lab.ntt.co.jp

Abstract. We provide new bounds for the pseudo-random function se-
curity of keyed sponge constructions. For the case c ≤ b/2 (c the capacity
and b the permutation size), our result improves over all previously-
known bounds. A remarkable aspect of our bound is that dependence
between capacity and message length is removed, partially solving the
open problem posed by Gaži et al. at CRYPTO 2015. Our bound is essen-
tially tight, matching the two types of attacks pointed out by Gaži et al.
For the case c > b/2, Gaži et al.’s bound remains the best for the case of
single-block output, but for keyed sponges with extendable outputs, our
result partly (when query complexity is relatively large) provides better
security than Mennink et al.’s bound presented at ASIACRYPT 2015.

Keyword: PRF, XOF, game playing, coefficient H technique, lazy sam-
pling, multi-collision, Stirling’s approximation.

1 Introduction

The sponge construction today, though being originally introduced as a mode
for keyless hash functions [7], is drawing more and more attention in the secret-
key setting. The primary reason seems to lie in the flexibility: the keyed sponge
construction has been modified in a variety of ways such as duplexing [6], par-
allelism [3] and full-state (i.e. the rate being equal to the permutation size)
absorption [9, 19]. However, one of the reasons why the sponge construction was
so attractive in the first place was that it inherently possessed the capability of
extendable output.

FIPS 202 [17] standardizes two sorts of extendable output functions (XOFs):
SHAKE128 and SHAKE256, which have a permutation size of b = 1600 bits and
capacity values of c = 256, 512 bits, respectively. FIPS 202 states:

XOFs are a powerful new kind of cryptographic primitive that offers the
flexibility to produce outputs with any desired length. ... In practice, the
use of an XOF as a key derivation function (KDF) could preclude the
possibility of related outputs, by incorporating the length and/or type of

the derived key into the message input to the KDF. In that case, a dis-
agreement or misunderstanding between two users of the KDF about the
type or length of the key they are deriving would almost certainly not
lead to related outputs.

To confirm the above statement in a more formal way, we need to investigate
the security of the KDF as a pseudo-random function (PRF).

Previous PRF Bounds. Several different types of PRF bounds are known for
keyed sponges. Security parameters of keyed sponges include the permutation
size b, the capacity c, the rate r := b− c, and the key length k. The main focus
remains on the capacity value c, because usually it is this parameter that defines
a dominant term in a bound. Nevertheless, none of the previous bounds has been
shown to be strictly tight in relation to parameter c, as explained below.

The PRF security of keyed sponges can be derived from the indifferentiability
of the sponge construction. The indifferentiability of the sponge construction [7]
crucially depends on the capacity c, and hence so does the derived PRF bound.
Roughly, the indifferentiability-based PRF bound has a dominant term of the
form (ℓq +Q)2/2c, where parameter ℓ is the maximum length of an adversarial
query, parameter q the maximum number of construction (online) queries to the
keyed sponge C, and parameter Q the maximum number of primitive (offline)
queries to the underlying permutation P .

Note that we are working in the ideal model [1, 13, 16] where the underlying
permutation P is regarded as a random permutation. In practice, P is a fixed
permutation; hence Q corresponds to the time complexity of the adversary, mea-
suring how many times the adversary could perform offline computation of P .

The above indifferentiability-based PRF bound is rather loose, and the ac-
tual PRF security of keyed sponges should be much higher, as first noticed
by Bertoni et al. [8]. Later, Andreeva et al. [1] successfully removed the term
Q2/2c and obtained a bound which was basically

(
(ℓq)2 +µQ

)
/2c. Here, µ is an

adversarial parameter called “multiplicity” and lies somewhere between 2ℓq/2r

and 2ℓq.

Concurrently, Gaži et al. [13] provided a “nearly tight” bound [16] which was
roughly of the form (q2 + ℓq + qQ)/2c. Gaži et al. also pointed out two attacks
matching q2/2c and qQ/2c, respectively. They observed that their bound “only
mildly depends on the length” when ℓ is sufficiently small [13] but left it open
whether their bound was tight for all cases, especially when ℓ is large. It should
be noted that Gaži et al. [13] only treated the case of single-block output, and
their method did not seem to be easily extendable to the case of multiple-block
output [16].

For the case of extendable output, recently Mennink et al. [16] has provided
another bound which is essentially (ℓq2 + µQ)/2c. While definitely improving
Andreeva et al.’s

(
(ℓq)2 + µQ

)
/2c, Mennink et al.’s bound does not come close

to Gaži et al.’s (q2 + ℓq + qQ)/2c, at least for the case of single-block output.

2

Table 1. Comparison of target keyed sponge constructions

Key Extendable

Inner Outer output

Bertoni et al. [8] — X X
Chang et al. [11] X X X
Andreeva et al. [1] X X X
Gaži et al. [13]a — X —

Mennink et al. [16]b X — X
This paper X X X

a Gaži et al. [13] treat the case where the rate values are different between absorb-
ing and squeezing phases. Only the rate r for the squeezing phase appears in the
bound; the rate for absorbing phase does not affect security in their analysis.

b Mennink et al. [16] study the case of full-state absorption, i.e. the rate for ab-
sorbing phase is equal to the permutation size except for the first call of the
underlying permutation.

Consequently, it seems that there is still room for improvement. It might be
possible to come up with a tighter PRF bound for keyed sponges, especially for
the case of extendable output.

Inner- and Outer-Keying. There are two ways of keying the sponge con-
struction. The difference between the two methods is analogous to the one be-
tween NMAC and HMAC [4]. The first method, which is like NMAC, is called
the inner-keyed sponge [1]. This replaces (part of) the inner IV with a secret
key K ∈ {0, 1}k, so that k ≤ c. The inner-keyed sponge was proposed by
Chang et al. [11] who showed that it has a certain advantage in the standard-
model security.

The second method, which is like HMAC, is called the outer-keyed sponge [1].
This is nothing but the sponge construction itself that processes the input K∥M
(i.e. a message prefixed by a secret key K) and hence does not have a limita-
tion on the key size k. A first analysis of the outer-keyed sponge was given by
Bertoni et al. [8]. The obvious advantage of this method, besides key length, is
that we can make use of existing sponge constructions that have been already
implemented as hash functions.

Our Contributions. We provide new PRF bounds for keyed sponges with
extendable output, under the condition that the rate and capacity remain the
same for absorbing and squeezing phases. We treat both inner- and outer-keyed
sponges (cf. Table 1). Previous PRF bounds and our results are summarized in
Table 2.

– Case c ≤ b/2. This case includes SHAKE128 and SHAKE256. In this case,
our bound improves over all previously-known PRF bounds. For the inner-
keyed sponge, our bound is qualitatively better than the previous two bounds

3

by Andreeva et al. [1] and by Mennink et al. [16]. For example, if k = c (which
is the case that provides the highest security for the inner-keyed sponge),
then the previous bounds contained (ℓq2 + µQ)/2c, whereas our bound only
contains (ℓq + q2 + qQ)/2c. On the other hand, for the outer-keyed sponge,
observe that the term related to capacity in our bound becomes roughly (q2+
qQ)/2c, which is dominant in many scenarios. Note the absence of ℓq here; we
remove the dependence between capacity c and message length ℓ, partially
answering the open question posed by Gaži et al. [13]. Together with the two
attacks pointed out by Gaži et al. [13] whose complexities were roughly q2/2c

and qQ/2c, we see that our bound is strictly tight in terms of parameters q
and Q. Furthermore, for the outer-keyed sponge, the remaining parameter
ℓ is restricted only by the term ℓ2q2/2b, whereas previous bounds contained
ℓq/2c or ℓ2q2/2c. Hence, our bound has a qualitatively weaker restriction
on ℓ, under the condition c ≤ b/2.

– Case c > b/2. This is the case for lightweight hash functions, such as
Quark [2], SPONGENT [10] and PHOTON [14]. In this case, our contribution
is more subtle. For single-block output, Gaži et al.’s bound [13] remains
the best, beating our bound as well as Mennink et al.’s [16]. However, for
multiple-block output, our result improves over Mennink et al.’s [16] which
has been the best known bound for extendable output. The two bounds are
incomparable due to the parameter µ, but roughly speaking, we see that
our bound becomes better when query complexity is relatively large. For
simplicity, assume k = c and put µ = 2ℓq. Then Mennink et al.’s bound
becomes roughly (ℓq2 + ℓqQ)/2c, whereas our bound has a dominant term

of
(
(ℓq2 + ℓqQ)/2b

)1/2
. By comparison, our bound becomes smaller when

ℓq2 + ℓqQ > 2c−r.

For our proofs we take an approach different from previous work. We first make
use of the game-playing technique, introducing just one intermediate game be-
tween the real and ideal worlds. Our transition between the games heavily relies
on the coefficient H technique of Patarin [18]. To evaluate probabilities of “bad”
events, we make extensive use of lazy sampling. As pointed out by Bellare and
Rogaway [5], the lazy sampling of random functions with many constraints can
be tricky. We show how to carefully lazy-sample input/output points for underly-
ing permutations with certain restrictions. Lastly, we adopt techniques developed
by Jovanovic et al. [15] for bounding the size of multi-collisions and for finally
optimizing the bound (or “balancing” the terms).

2 Preliminaries

2.1 Notation

Let {0, 1}∗ be the set of all bit strings, and for an integer d ≥ 0, let {0, 1}d
be a set of d-bit strings. Let 0d denotes the bit string of d-bit zeroes. For a
bit string x ∈ {0, 1}d, let x[i, j] be the substring of x from i-th bit to j-th bit,

4

Table 2. Comparison of PRF bounds for keyed sponges. In the bounds, parameter κ is
key length in blocks, i.e. κ := k/r; parameter µ is the multiplicity, i.e. 2ℓq/2r ≤ µ ≤ 2ℓq;
parameter t ≥ 1 can be arbitrary; the number e is Napier’s constant 2.71828 · · · ; the
function λ is defined as λ(x) := x/2k if κ = 1 and λ(x) := min{ϵ1, ϵ2} if κ ≥ 2, where
ϵ1 := (x2/2c+1) + (x/2k) and ϵ2 := (1/2b) + x(12b/2r)κ/2.

Inner-keyed (k ≤ c)

Andreeva et al. [1]
(ℓq)2

2c
+

µQ

2k

Mennink et al. [16]
2ℓq2

2c
+

µQ

2k
+

2(ℓq)2

2b

This paper (c ≤ b/2)
3q2 + qQ+ 2r(q +Q)

2c
+

ℓq +Q

2k
+

(3 + 32e2r−2)ℓ2q2

2b

This paper (c > b/2)

(
18eℓq(q +Q)

2b

)1/2

+
3q2 + qQ+ 2r(q +Q)

2c

+
ℓq +Q

2k
+

3ℓ2q2

2b

Outer-keyed

Indifferentiability [7]
2(κ+ ℓq +Q)2

2c
+

Q

2k

Andreeva et al. [1]
(ℓq)2 + 2µQ

2c
+

2κQ

2b
+ λ(Q)

Gaži et al. [13]
6bq2 + 8ℓq + qQ

2c
+

(6t+ 17)ℓq2 + 7ℓqQ+ 2q

2b

+
136ℓ4q2

22b
+

2(ℓq)t+1

2bt
+ λ(ℓq +Q)

This paper (c ≤ b/2)
3q2 + 2qQ+ 2r(q +Q)

2c

+
(3.5 + 32e2r−2)ℓ2q2 + 2qQ+ 2κQ

2b
+ λ(Q)

This paper (c > b/2)

(
18eℓq(q +Q)

2b

)1/2

+
3q2 + 2qQ+ 2r(q +Q)

2c

+
3.5ℓ2q2 + 2qQ+ 2κQ

2b
+ λ(Q)

where 1 ≤ i ≤ j ≤ d. For a finite set X, x
$←− X means that an element is

randomly drawn from X and is set to x. For a set X, Perm(X) is the set of all
permutations on X. For sets X and Y , Func(X,Y) is the set of all functions:
X → Y . We denote by ∅ an empty set. For sets X and Y , X ← Y means that

set Y is assigned to set X, and X
∪←− Y means X ← X ∪ Y .

2.2 Security Definition

Through this paper, a distinguisher D is a computationally unbounded prob-
abilistic algorithm. It is given query access to one or more oracles O, denoted
DO. Its complexity is solely measured by the number of queries made to its

5

0b-
k

m1 m2 z

P

mn

P P P

s1t1 tn sn tn+1 sn+1 tn+l���-1 n+l���-1ss0
K

Fig. 1. IKSponge Construction

oracles. For integers k > 0 and τ > 0, let FK : {0, 1}∗ → {0, 1}τ be a keyed
hash function based on a permutation having keys K ∈ {0, 1}k. The security
proof will be done in the ideal model, regarding the underlying permutation as

a random permutation P $←− Perm({0, 1}b) for an integer b > 0. We denote by
P−1 its inverse.

PRF-Security. The PRF-security of FK is defined in terms of indistinguisha-
bility between the real world and the ideal world. In the real world, D has query

access to FK , P, and P−1 for a key K
$←− {0, 1}k and P $←− Perm({0, 1}b). In

the ideal world, it has query access to a random function R, P, and P−1, for

R $←− Func({0, 1}∗, {0, 1}τ) and P $←− Perm({0, 1}b). After D’s interaction, it
outputs y ∈ {0, 1}. The event is denoted by D ⇒ y. We define the advantage
function as

Advprf
F (D) = Pr[DFK ,P,P−1

⇒ 1]− Pr[DR,P,P−1

⇒ 1].

We call queries to FK/R “online queries” and queries to (P,P−1) “offline
queries.” Though this paper, without loss of generality, assume that D is de-
terministic and makes no repeated query.

3 Inner Keyed Sponge and the PRF-Security

3.1 Inner Keyed Sponge Construction

The inner keyed sponge construction uses the sponge function as the underlying
function. By IKSponge we denote the construction. Hereafter, we explain the
sponge construction, and the IKSponge construction.

Sponge Construction. The sponge function is a permutation-based one. For
an integer b > 0, let P ∈ Perm({0, 1}b) be the underlying permutation. By
SpongeP , we denote the sponge function using P . For integers r > 0 and c ≥ 0
with r + c = b, r is a bit length so-called rate and c is a bit length so-called
capacity. For an input m ∈ {0, 1}∗, the output SpongeP (m) = z is calculated as
follows. Firstly, a bit string pad(|m|) is appended to the suffix of m such that
the bit length of m∥pad(|m|) becomes a multiple of r and the last r-bit block
is not 0r. The example of the padded string is m∥pad(|m|) = m∥1∥0∗, which

6

means that 1 and the minimum number of zeroes so that the bit length becomes
a multiple of r. Secondly, the padded bit string is partitioned into r-bit blocks
m1, . . . ,ml, where ml ̸= 0r. Thirdly, b-bit internal state s is updated by the
following procedure.

s← 0b; for i = 1, . . . l do s← P (mi∥0c ⊕ s)

Finally, the ℓout × r-bit string z is produced by the following procedure.

z ← s[1, r]; for i = 1, . . . ℓout − 1 do s← P (s); z ← z∥s[1, r]

IKSponge Construction. For an integer k with 0 < k ≤ c, let K ∈ {0, 1}k be a
secret key. By IKSpongePK , we denote IKSponge with P having K. IKSpongePK
is SpongeP with the initial value 0b−k∥K. Concretely, for a message m, the
response IKSpongePK(m) = z is denoted as follows.

1. Partition m∥pad(|m|) into r-bit blocks m1, . . . ,mn

2. s0 ← 0b−k∥K
3. For i = 1, . . . , n do ti ← mi∥0c ⊕ si−1; si ← P (ti)
4. z ← sn[1, r]
5. For i = 1, . . . , ℓout − 1 do tn+i ← sn+i−1; sn+i ← P (tn+i); z ← z∥sn+i[1, r]
6. Return z

The figure 1 shows the procedure to calculate IKSpongePK(m).

3.2 PRF-Security of the IKSponge Construction

We show the PRF-security of IKSponge in the ideal permutation model.

Theorem 1. Let D be a distinguisher which makes q online queries of r-bit
block length at most ℓin and Q offline queries. Then, for any parameter ρ, we
have

Advprf
IKSponge(D) ≤ ℓq +Q

2k
+

3q2 + qQ+ 2ρ(q +Q)

2c
+

3ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

,

where ℓ = ℓin + ℓout − 1 and e = 2.71828 · · · is Napier’s constant.

Corollary 1 (Case c ≤ b/2). We assume c ≤ b/2. Then, we put ρ = r, and
without loss of generality, assume r ≥ 2 (otherwise r = c = 1 and b=2). Since
r ≥ b/2, we have

Advprf
IKSponge(D) ≤ 3q2 + qQ+ 2r(q +Q)

2c
+

(3 + 32e2r−2)ℓ2q2

2b
+

ℓq +Q

2k
.

In Appendix A, we show how to obtain Corollary 1 from Theorem 1.

7

m1 m2 zmn

s1t1 tn sn tn+1 sn+1 t sn+l���-1g1 gn
gn+1 g

n+l���-1
n+l���-10b-

k
K

s0

Fig. 2. L2 Construction

Corollary 2 (Case c > b/2). We assume c > b/2, and put

ρ = max

{
r,
(

2e×ℓq
2r−c(q+Q)

)1/2
}
. Then we have

Advprf
IKSponge(D) ≤

(
32eℓq(q +Q)

2b

)1/2

+
3q2 + qQ+ 2r(q +Q)

2c
+

3ℓ2q2

2b
+

ℓq +Q

2k
.

In Appendix B, we show how to obtain Corollary 2 from Theorem 1.

4 Proof of Theorem 1

We prove the PRF-security of IKSpongePK via three games. We denote these
games by Game 1, Game 2, and Game 3. For i ∈ {1, 2, 3}, we let Gi :=
(Li,P,P−1) to which D has query access in Game i. Note that in each game,

P is independently drawn as P $←− Perm({0, 1}b). We let L1 := IKSpongePK and
L3 := R. Hence we have

Advprf
IKSponge(D) =

2∑
i=1

(
Pr[DGi ⇒ 1]− Pr[DGi+1 ⇒ 1]

)
. (1)

Hereafter, we upper-bound Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1] for i ∈ {1, 2}. Note
that we define L2 before Pr[DG1 ⇒ 1]− Pr[DG2 ⇒ 1] is evaluated.

In the following proof, for α ∈ {1, . . . , Q}, we denote an α-th offline query by
xα or yα, and the response by yα or xα, where yα = P(xα) or xα = P−1(yα).
For α ∈ {1, . . . , q}, we denote an α-th online query by mα and the response
by zα. We also use superscripts for other values defined by online queries, e.g.,
n1, t11, s

1
1, n

2, t21, s
2
1, etc.

4.1 Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

We start by defining L2. Let G1,G2, . . . ,Gℓ
$←− Func({0, 1}b, {0, 1}b) be random

functions. Let K
$←− {0, 1}k be a secret key. For an online query m ∈ {0, 1}∗, the

response L2(m) = z is defined as follows.

1. Partition m∥pad(|m|) into r-bit blocks m1, . . . ,mn

8

2. s0 ← 0b−k∥K
3. For i = 1, . . . , n do ti ← mi∥0c ⊕ si−1; si ← Gi(ti)
4. z ← sn[1, r]
5. For i = 1, . . . , ℓout−1 do tn+i ← sn+i−1; sn+i ← Gn+i(tn+i); z ← z∥sn+i[1, r]
6. Return z

The figure 2 shows the procedure to calculate L2(m).

Transcript. Let τL = {(m1, z1), . . . , (mq, zq)} be the set of query-response pairs

defined by online queries and τP = {(x1, y1), . . . , (xQ, yQ)} be the set of query-
response pairs defined by offline queries. Additionally, we define sets τ1, . . . , τℓ.
For i ∈ {1, . . . , ℓ}, let τi =

∪q
α=1{(tαi , sαi)} be the set of all input-output pairs

at the i-th block defined by online queries. Note that for α ∈ {1, . . . , q}, i ∈
{1, . . . , ℓ} if (tαi , sαi) is not defined then {(tαi , sαi)} is an empty set.

This proof permits D to obtain these sets and a secret key K after D’s
interaction but before it outputs a result. We let τ1..ℓ =

∪ℓ
i=1 τi. Then D’s

transcript is summarized as τ = {τL, τP , τ1..ℓ,K}.
Let T1 be the transcript in Game 1 obtained by sampling K

$←− {0, 1}k and

P $←− Perm({0, 1}b). Let T2 be the transcript in Game 2 obtained by sampling

K
$←− {0, 1}k, P $←− Perm({0, 1}b), G1,G2, . . . ,Gℓ

$←− Func({0, 1}b, {0, 1}b). We call
τ valid if an interaction with their oracles could render this transcript, namely,
Pr[Ti = τ] > 0 for i ∈ {1, 2}. Then Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] is upper-
bounded by the statistical distance of transcripts, i.e.,

Pr[DG1 ⇒ 1]− Pr[DG2 ⇒ 1] ≤ SD(T1,T2) =
1

2

∑
τ

|Pr[T1 = τ]− Pr[T2 = τ]| ,

where the sum is over all valid transcripts.

Coefficient H Technique. We upper-bound the statistical distance by using the
coefficient H technique [18, 12]. In this technique, firstly, we need to partition
valid transcripts into good transcripts Tgood and bad transcripts Tbad. Then we
can upper-bound the statistical distance SD(T1,T2) by the following lemma.

Lemma 1 (Coefficient H Technique). Let 0 ≤ ε ≤ 1 be such that for all

τ ∈ Tgood, Pr[T1=τ]
Pr[T2=τ] ≥ 1− ε. Then, SD(T1,T2) ≤ ε+ Pr[T2 ∈ Tbad].

The proof of the lemma is given in [12]. Hence, we can upper-bound Pr[DG1 ⇒
1]−Pr[DG2 ⇒ 1] by defining good and bad transcripts and by evaluating ε and
Pr[T2 ∈ Tbad].

Good and Bad Transcripts. We define Tbad that satisfies one of the following
conditions.

– hittx,sy ⇔ ∃(t, s) ∈ τ1..ℓ, (x, y) ∈ τP s.t. t = x ∨ s = y
– hittt ⇔ ∃i, j ∈ {1, . . . , ℓ} with i ̸= j s.t. ∃(ti, si) ∈ τi, (tj , sj) ∈ τj s.t. ti = tj
– hitss ⇔ ∃(t, s), (t′, s′) ∈ τ1..ℓ s.t. t ̸= t′ ∧ s = s′

Tgood is defined such that the above conditions are not satisfied.

9

Upper-Bound of Pr[T2 ∈ Tbad]. We start by defining additional conditionsmcollT ,
mcollS , and colltt. Firstly, we define mcollT and mcollS which are (q+ ρ)- and ρ-
multi-collision conditions for sets T and S, respectively. Here, T keeps all inputs

to G2, . . . ,Gℓ, and S keeps all outputs of G1, . . . ,Gℓ, where T :=
∪q

α=1

∪nα+ℓout−1
i=2 {tαi }

and S :=
∪q

α=1

∪nα+ℓout−1
i=1 {sαi }. Note that sets T and S do not keep duplex el-

ements, and T does not keep inputs to G1. Then the conditions are defined as

mcollT ⇔ ∃t(1), t(2), . . . , t(q+ρ) ∈ T s.t. t(1)[1, r] = t(2)[1, r] = · · · = t(q+ρ)[1, r]

mcollS ⇔ ∃s(1), s(2), . . . , s(ρ) ∈ S s.t. s(1)[1, r] = s(2)[1, r] = · · · = s(ρ)[1, r]

where ρ is a free parameter which was described in Theorem 1. We let mcoll :=
mcollT ∨mcollS . Secondly, we define colltt which is a collision condition for inputs
to a random function in L2. The condition is defined as follows.

colltt ⇔∃α, β ∈ {1, . . . , q} with α ̸= β, i ∈ {2, . . . ,min{nα, nβ}+ ℓout − 1}

s.t. tαi−1 ̸= tβi−1 ∧ tαi = tβi .

Then we have

Pr[T2 ∈ Tbad] ≤Pr[hittx,sy ∨ hittt ∨ hitss]

≤Pr[hitss] + Pr[colltt] + Pr[mcollS] + Pr[mcollT |¬colltt]
+ Pr[hittx,sy|¬mcoll] + Pr[hittt ∧ ¬(colltt ∨mcoll)] . (2)

IWe upper-bound Pr[hitss]. Note that |τ1..ℓ| ≤ ℓq holds, and for all (t, s) ∈ τ1..ℓ

s is randomly drawn from {0, 1}b. Hence we have Pr[hitss] ≤
(
ℓq
2

)
× 1

2b
= 0.5ℓ2q2

2b
.

IWe upper-bound Pr[hittx,sy|¬mcoll]. Note that hittx,sy implies that

∃α ∈ {1, . . . , q}, i ∈ {1, . . . , nα + ℓout − 1}, β ∈ {1, . . . , Q} s.t. tαi = xβ ∨ sαi = yβ .

We then consider the following cases.

Case 1 ⇔ hittx,sy ∧ tαi = xβ ∧ i = 1:
Note that tα1 has the form tα1 = mα

1 ∥0c⊕0b−k∥K. Since K is randomly drawn
from {0, 1}k, the probability that Case 1 holds is at most Q

2k
.

Case 2 ⇔ hittx,sy ∧ tαi = xβ ∧ i ̸= 1:
By ¬mcollT , the number of elements in T whose first r bits are equal to
xβ [1, r] is at most q + ρ. We note that for some r-bit block Mα, tαi has
the form tαi = Mα∥0c ⊕ sαi−1, where Mα is 0r or a message block. Since
sαi−1[r + 1, b] is randomly drawn from {0, 1}c, the probability that Case 2

holds is at most (q+ρ)Q
2c .

Case 3 ⇔ hittx,sy ∧ sαi = yβ :
By ¬mcollS , the number of elements in S whose first r bits are equal to
yβ [1, r] is at most ρ. Since sαi [r + 1, b] is randomly drawn from {0, 1}c, the
probability that Case 3 holds is at most ρQ

2c .

10

t

=/
�

mγ

t1 t

1 nγ

nγ

m1 m

t1 tnγ

α α

γ γ

αα

= =

α��� �����

γ��� ����� mγ

t tnγ+1
γ

j*−1
γ tj*

γ

mnγ+1
α

nγ

tnγ+1
α

=

mγ
1 nγmγ

mα
j*−1=0r

tj*−1
α

=

j*
α

m =0rα
j* /=0r

T1

0b-
k

K

s0

0b-
k

K

s0

Fig. 3. Procedures for set T1 and prefix=mα

Hence we have

Pr[hittx,sy|¬(hitux,wy ∨mcoll)] ≤ Q

2k
+

(q + 2ρ)Q

2c
.

IWe upper-bound Pr[mcollS]. Fix s ∈ {0, 1}r and s(1), s(2), . . . , s(ρ) ∈ S. Since
they are randomly drawn from {0, 1}b, the probability that s(1)[1, r] = s(2)[1, r] =
· · · = s(ρ)[1, r] = s holds is at most

(
1
2r

)ρ
. By s ∈ {0, 1}r and |S| ≤ ℓq, we have

Pr[mcollS] ≤ 2r ×
(
ℓq

ρ

)
×

(
1

2r

)ρ

≤ 2r ×
(
eℓq

ρ
× 1

2r

)ρ

,

using Stirling’s approximation (x! ≥ (x/e)x for any x).

I We upper-bound Pr[mcollT |¬colltt]. First we partition set T into two sets
T1 and T2. Roughly speaking, T1 keeps all inputs to random functions whose
first r bits can be controlled by message blocks. The figure 3 (with the boxed
statement) depicts the procedure of L2 corresponding with T1, which considers
γ-th and α-th online queries with γ < α and nγ < nα (nγ and nα are the query
lengths in blocks at the γ-th and α-th online queries, respectively) such that
these message blocks satisfy the condition: ∃j∗ ∈ {nγ +1, . . . , nγ + ℓout − 1} s.t.
mα

1 = mγ
1 ,m

α
2 = mγ

1 , . . . ,m
α
nγ = mγ

nγ ,mα
nγ = 0r, . . . ,mα

j∗−1 = 0r,mα
j∗ ̸= 0r. We

call the condition between the α-th and γ-th online queries “prefix condition.”
In this case, tαj∗ becomes an element of T1. Since s

α
j∗−1 = sγj∗−1 holds and before

the α-th online query a distinguisher can find sγj∗−1[1, r] which is the part of
output blocks at the γ-th online query, he can assign any value to tαj∗ [1, r] by
using the message block mα

j∗ . We call the input tαj∗ “controllable input,” and T1

keeps all controllable inputs. The definitions of these sets are given as follows.

T1 :=
{
tαj∗ ∈ T : (α ∈ {2, . . . , q}) ∧

(
∃γ ∈ {1, . . . , α− 1} s.t.

(
nγ < nα

)
∧
(
∀j ∈ {1, . . . , nγ} : mα

j = mγ
j

)
∧
(
∃j∗ ∈ {nγ + 1, . . . , nγ + ℓout − 1} s.t.

(∀j ∈ {nγ + 1, . . . , j∗ − 1} : mα
j = 0r) ∧ (mα

j∗ ̸= 0r)
))}

11

m1 m2 mn
β β β

β zβ

s0

Fig. 4. Lazy sampling random functions in Case 2, where black boxes represent out-
puts defined at the β-th query and gray boxes represent outputs defined after D’s
interaction.

T2 :=T\T1

Note that for any α1, α2, . . . , αi ∈ {1, . . . , q} with α1 < α2 < · · · < αi and with
the prefix relations, the number of controllable inputs is at most i− 1, because
set T1 does not keep duplex elements. Hence, we have |T1| ≤ q − 1, and thereby
Pr[mcollT |¬colltt] is upper-bounded by the probability that a ρ-multi-collision
occurs in T2 under the condition ¬colltt, that is, ∃t(1), t(2), . . . , t(ρ) ∈ T2 s.t.
t(1)[1, r] = t(2)[1, r] = · · · = t(ρ)[1, r]. Hereafter, we upper-bound the ρ-multi-
collision probability under the condition ¬colltt.

Fix t ∈ {0, 1}r and tαi ∈ T2 with α ∈ {1, . . . , q} and i ∈ {2, . . . , nα+ℓout−1}.
We upper-bound the probability that tαi [1, r] = t holds under the condition
¬colltt. We consider the following cases.

Case 1 ⇔ (tαi [1, r] = t) ∧ (nα + 1 ≤ i):
By nα + 1 ≤ i, tαi = sαi−1 holds, where sαi−1 = Gi−1(t

α
i−1). By ¬colltt, sαi−1

is randomly drawn from at least 2b − q values. Thus, the probability that
Case 1 holds is at most 2c

2b−q
.

Case 2 ⇔ (tαi [1, r] = t) ∧ (2 ≤ i ≤ nα):
In the evaluation, we lazy sample random functions G1, . . . ,Gℓ that is con-
sistent with the condition ¬colltt. The procedure is shown bellow.
– At the β-th online query with β ∈ {1, . . . , q}, the following procedure is

performed.
• For j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [1, r] is randomly drawn from
{0, 1}r.

– After D’s interaction, the following procedure is performed.
• For all β ∈ {1, . . . , q} and j ∈ {1, . . . , nβ − 1}, if tβj is a new input

to Gj then sβj is randomly drawn from {0, 1}b, keeping the condition
¬colltt.
• For all β ∈ {1, . . . , q} and j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [r + 1, b] is
randomly drawn from {0, 1}c, keeping the condition ¬colltt.

The figure 4 depicts the above procedure. Without loss of generality, assume
that q < 2c (If q ≥ 2c then the advantage of Theorem 1 becomes 1 or more).
Note that for each random function, there are at most q inputs, and for
a ∈ {0, 1}r, there are 2c elements in {0, 1}b whose first r bits are equal to a.

Thus, for all β ∈ {1, . . . , q} and j ∈ {nβ , . . . , nβ+ℓout−1}, sβj [r+1, b] can be
defined such that it is consistent with the condition ¬colltt. Thus, the above
procedure realizes random functions G1, . . . ,Gℓ that are consistent with the
condition ¬colltt.

12

For 2 ≤ i ≤ nα, tαi has the form tαi = mα
i ∥0c⊕sαi−1. By the above procedure,

sαi−1 is randomly drawn from at least 2b−q values after D’s interaction (i.e.,
after mα

i is determined). Hence, the probability that tαi [1, r] = t holds is at
most 2c

2b−q
.

We next fix t(1), t(2), . . . , t(ρ) ∈ T2 and t ∈ {0, 1}r. By the above evaluations,
the probability that t(1)[1, r] = t(2)[1, r] = · · · = t(ρ)[1, r] = t holds is at most(

2c

2b−q

)ρ

≤
(

2
2r

)ρ
, assuming q ≤ 2b−1. By t ∈ {0, 1}r and |T2| ≤ ℓq, we have

Pr[mcollT |¬colltt] ≤ 2r ×
(
ℓq

ρ

)
×
(

2

2r

)ρ

≤ 2r ×
(
eℓq

ρ
× 2

2r

)ρ

,

using Stirling’s approximation (x! ≥ (x/e)x for any x).

IWe upper-bound Pr[colltt]. We denote by collαtt the condition where at the α-th
online query colltt holds. Then we have

Pr[colltt] ≤
q∑

α=2

Pr[collαtt ∧ ¬coll
α−1
tt] ≤

q∑
α=2

Pr[collαtt|¬coll
α−1
tt] .

Next we fix α ∈ {2, . . . , q}, and upper-bound Pr[collαtt|¬coll
α−1
tt], which is the

probability that colltt holds at the α-th online query when it does not hold up to
the (α−1)-th online query. In order to upper-bound the probability, we consider
two cases with respect to the following condition.

prefix=mα ⇔∃γ ∈ {1, . . . , α− 1} s.t.
(
nγ < nα

)
∧
(
∀j ∈ {1, . . . , nγ} : mγ

j = mα
j

)
∧
(
∃j∗ ∈ {nγ + 1, . . . , nγ + ℓout − 1} s.t.

mα
nγ+1 = 0r, . . . ,mα

j∗−1 = 0r,mα
j∗ ̸= 0r

)
.

We call such γ-th online query “prefix online query” of the α-th query, and
such j∗ “distinct point.” The figure 3 (without the boxed statement) depicts the
procedures of L2 corresponding with the condition. In this evaluation, similar
to Case 2 of Pr[mcollT |¬colltt], we lazy sample random functions G1, . . . ,Gℓ that
are consistent with the condition ¬collα−1

tt . The procedure is shown bellow.

– At the β-th online query with β ∈ {1, . . . , α− 1}, the following procedure is
performed.
• For all j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [1, r] is randomly drawn from
{0, 1}r.

– At the α-th online query, the following procedure is performed.
• For all β ∈ {1, . . . , α− 1},
∗ for all j ∈ {1, . . . , nβ−1}, if tβj is a new input to Gj then the response

sβj is randomly drawn from {0, 1}b, keeping the condition ¬collα−1
tt ,

∗ for all j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [r + 1, b] is randomly drawn

from {0, 1}c, keeping the condition ¬collα−1
tt .

13

β��� ����� 	β <α

m1 m2 mn

β β β
β

α��� �����
m1 m2 mn

α αα

zβ

zαα

β��� ����� 	β = γ, β <α

m1 m2

�
mn

β β β
β

m1 m2 mn
γ γγ

γ��� �����

α��� �����
m1 m2 mn

α αα mj
α

zβ

== = = = =/

zγ

0r 0r

=

∗

γ

γ

m1 mn
γ γ γ=m1

α =mnγα

mj +1
α
∗

(j*-1)-th
block

j*-th
block

������mα
=

������mα
=

s0

s0

s0

s0

s0

Fig. 5. Lazy sampling random functions in the evaluation of Pr[collαtt|¬collα−1
tt], where

black boxes represent outputs defined up to the (α − 1)-th query and gray boxes
represent outputs defined at the α-th query.

• For j ∈ {1, . . . , nα+ℓout−1}, if tαj is a new input to Gj then the response

sαj is randomly drawn from {0, 1}b.
The top (resp., the bottom) of the figure 5 depicts the above procedure un-
der the condition prefix=mα (resp., ¬prefix=mα). Then we evaluate the probability
Pr[collαtt|¬coll

α−1
tt] as follows.

Case 1 ⇔ collαtt under the condition ¬collα−1
tt ∧ ¬prefix=mα :

For i ∈ {2, . . . , nα+ℓout−1}, let collα,itt be the condition where collαtt holds at

the i-th block of the α-th online query, and let coll≤α,i−1
tt := collα,2tt ∨coll

α,3
tt ∨

· · · ∨ collα,i−1
tt . Note that for i ∈ {2, . . . , nα + ℓout − 1}, collα,itt ∧ ¬coll

≤α,i−1
tt

is the condition where collαtt holds at the i-th block of the α-th online query
for the first time. (i.e., collαtt does not hold up to the (i − 1)-th block), and
thus

collαtt ⇔
nα+ℓout−1∨

i=2

(collα,itt ∧ ¬coll
≤α,i−1
tt) ,

14

where collα,2tt ∧ ¬coll
≤α,1
tt := collα,2tt . In the following, for i ∈ {2, . . . , nα +

ℓout − 1}, we assume that coll≤α,i−1
tt does not hold, and thus upper-bound

the probability that collα,itt holds under the condition ¬collα−1
tt ∧¬coll≤α,i−1

tt ∧
¬prefix=mα . By p1,i, we denote the probability. Note that for some r-bit string
Mα tαi has the form tαi = Mα∥0c ⊕ sαi−1, where Mα is a message block or

0r. By the condition ¬coll≤α,i−1
tt , tαi−1 is a new input to Gi−1, and thereby

sαi−1 is randomly drawn from {0, 1}b after Mα is determined. Hence, we have
p1,i ≤ (α− 1)× 1

2b
, and thereby Pr[Case 1] ≤ ℓ× (α− 1)× 1

2b
.

Case 2 ⇔ collαtt under the condition ¬collα−1
tt ∧ prefix=mα :

In this analysis, we use the conditions collα,itt and coll≤α,i−1
tt defined above.

For i ∈ {2, . . . , nα + ℓout − 1}, we assume that coll≤α,i−1
tt does not hold,

and thus upper-bound the probability that collα,itt holds under the condition
¬collα−1

tt ∧ ¬coll≤α,i−1
tt ∧ prefix=mα . By p2,i, we denote the probability. We

assume that the γ-th online query (γ ∈ {1, . . . , α − 1}) is the prefix online
query of the α-th online query, and j∗ is the distinct point. If there are two
or more prefix online queries of the α-th online query then we consider the
prefix online query such that the distinct point is maximum.

– Firstly, we consider the case of i ∈ {2, . . . , j∗ − 1}. By prefix=mα , tαi = tγi
holds. By the condition ¬collα−1

tt ∧ ¬coll≤α,i−1
tt , we have p2,i = 0.

– Secondly, we consider the case of i = j∗. Note that tαj∗ [r+1, b] = sαj∗−1[r+
1, b] holds, and by the lazy sampled random functions, sαj∗−1 is randomly

drawn from at least 2b − q values. Thus we have p2,i ≤ (α− 1)× 2r

2b−q
.

– Finally, we consider the case of i ∈ {j∗+1, . . . , nα+ℓout−1}. In this case,
for some r-bit string Mα, tαi has the form tαi = Mα∥0c ⊕ sαi−1, where
Mα is a message block or 0r. Since j∗ is maximum and by the condition
¬coll≤α,i−1

tt tαi−1 is a new input to Gi−1, s
α
i−1 is randomly drawn from

{0, 1}b after Mα is determined. Hence, we have p2,i ≤ (α− 1)× 1
2b
.

Hence, we have Pr[Case 2] ≤ (α− 1)×
(

2r

2b−q
+ ℓout

2b

)
.

Finally, we assume that q ≤ 2b−1. We then have

Pr[colltt] ≤
q∑

α=2

(α− 1)×max

{
ℓ

2b
,

(
2r

2b − q
+

ℓout
2b

)}
≤ q2

2c
+

0.5ℓq2

2b
.

IWe upper-bound Pr[hittt ∧¬(colltt ∨mcoll)]. We start by defining the following
condition.

hitK ⇔ ∃α ∈ {1, . . . , q}, i ∈ {2, . . . , nα + ℓout − 1} s.t. tαi [r + 1, b] = 0c−k∥K

Then we have

Pr[hittt ∧ ¬(colltt ∨mcoll)] ≤ Pr[hitK] + Pr[hittt ∧ ¬(colltt ∨mcoll) ∧ ¬hitK] .

Since K is randomly drawn from {0, 1}k, we have Pr[hitK] ≤ ℓq
2k
.

15

Next, we upper-bound Pr[hittt ∧ ¬(colltt ∨ mcoll) ∧ ¬hitK]. Note that hittt
implies that

∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , nα + ℓout − 1}, j ∈ {1, . . . , nβ + ℓout − 1}

s.t. i ̸= j ∧ tαi = tβj .

For α ∈ {1, . . . , q}, we define a condition where hittt holds up to the α-th online
query. The concrete definition is given bellow.

hitαtt ⇔∃β, γ ∈ {1, . . . , α}, i ∈ {1, . . . , nβ + ℓout − 1}, j ∈ {1, . . . , nγ + ℓout − 1}

s.t. i ̸= j ∧ tβi = tγj .

Then the following inequation holds.

Pr[hittt ∧ ¬(colltt ∨mcoll) ∧ hitK]

≤
q∑

α=1

Pr[hitαtt ∧ ¬hit
α−1
tt ∧ ¬(mcoll ∨ colltt) ∧ ¬hitK]

≤
q∑

α=1

Pr[hitαtt ∧ ¬hit
α−1
tt ∧ ¬mcoll ∧ ¬hitK |¬colltt] .

First fix α ∈ {1, . . . , q}, and upper-bound the probability Pr[hitαtt∧¬hit
α−1
tt ∧

¬mcoll ∧ ¬hitK |¬colltt]. In this evaluation, we lazy sample random functions
G1, . . . ,Gℓ by the similar way to the evaluation of Pr[colltt]. The procedure is
shown bellow, and the figure 5 depicts the procedure.

– At the β-th online query with β ∈ {1, . . . , α− 1}, the following procedure is
performed.
• For all j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [1, r] is randomly drawn from
{0, 1}r.

– At the α-th online query, the following procedure is performed.
• For all β ∈ {1, . . . , α− 1},
∗ for all j ∈ {1, . . . , nβ−1}, if tβj is a new input to Gj then the response

sβj is randomly drawn from {0, 1}b, keeping the condition ¬colltt,
∗ for all j ∈ {nβ , . . . , nβ + ℓout − 1}, sβj [r + 1, b] is randomly drawn
from {0, 1}c, keeping the condition ¬colltt.

• For j ∈ {1, . . . , nα+ℓout−1}, if tαj is a new input to Gj then the response

sαj is randomly drawn from {0, 1}b, keeping the condition ¬colltt.
In this evaluation, we consider two cases with respect to the condition prefix=mα

which was defined in the analysis of Pr[colltt]. In addition, the following analyses
use the terms “prefix online query” and “distinct point.”

Case 1 ⇔ hitαtt∧¬hit
α−1
tt ∧¬mcoll∧¬hitK under the condition ¬colltt∧¬prefix=mα :

For i ∈ {1, . . . , nα + ℓout − 1}, let hitα,itt be the condition where hitαtt holds at
the i-th block of the α-th online query, that is,

hitα,itt ⇔(∃β ∈ {1, . . . , α− 1}, j ∈ {1, . . . , nβ + ℓout − 1} s.t. i ̸= j ∧ tαi = tβj)

∧ (∃j ∈ {1, . . . , i− 1} s.t. tαi = tαj).

16

Then hitαtt ⇒
∨nα+ℓout−1

i=1 hitα,itt . In the following, for i ∈ {1, . . . , nα+ℓout−1},
we upper-bound the probability that hitα,itt ∧¬hitα−1

tt ∧¬mcoll∧¬hitK holds
under the condition ¬colltt ∧ ¬prefix=mα . By p1,i, we denote the probability.
– Firstly, we consider the case of i = 1. In addition to the condition
¬colltt∧¬prefix=mα , we assume that hitK does not hold, and don’t consider
the condition ¬hitα−1

tt ∧ ¬mcoll. Since tα1 has the form tα1 = (mα
1 ∥0c) ⊕

(0b−k∥K), the probability that hitα,1tt holds under the condition ¬colltt ∧
¬prefix=mα ∧ ¬hitK is 0 and thus we have p1,1 = 0.

– Secondly, we consider the case of i ≥ 2. In this case, we don’t consider
the condition ¬hitα−1

tt ∧¬mcoll∧¬hitK . Note that for an r-bit string Mα,
tαi has the form tαi = Mα∥0c ⊕ sαi−1, where Mα is a message block or
0r. Since sαi−1 is randomly drawn from at least 2b − q values after Mα

is defined, the probability that hitα,itt holds under the condition ¬colltt ∧
¬prefix=mα is at most (ℓ−1)(α−1)+(i−1)

2b−q
≤ (ℓ−1)α

2b−q
, and thus we have p1,i ≤

(ℓ−1)α
2b−q

.

Hence, we have Pr[Case 1] ≤ (ℓ− 1)× (ℓ−1)α
2b−q

.

Case 2 ⇔ hitαtt∧¬hit
α−1
tt ∧¬mcoll∧¬hitK under the condition ¬colltt∧prefix=mα :

In this analysis, we use the condition hitα,itt for i ∈ {1, . . . , nα + ℓout − 1},
defined in Case 1. We let hit≤α,i−1

tt := hitα−1
tt ∨ hitα,1tt ∨ · · · ∨ hitα,i−1

tt , where
hitα,0tt := hitα−1

tt . Then the following holds:

hitαtt ∧ ¬hit
α−1
tt ⇒

nα+ℓout−1∨
i=1

(hitα,itt ∧ ¬hit
≤α,i−1
tt) .

In this evaluation, we don’t consider the condition ¬hitK , and thus for i ∈
{1, . . . , nα+ ℓout−1}, upper-bound the probability that hitα,itt ∧¬hit

≤α,i−1
tt ∧

¬mcoll holds under the condition ¬colltt ∧ prefix=mα . By p2,i, we denote the
probability. We assume that the γ-th online query (γ ∈ {1, . . . , α−1}) is the
prefix online query of the α-th online query, and j∗ is the distinct point. If
there are two or more prefix online queries of the α-th online query then we
consider the prefix online query such that the distinct point is maximum.
– Firstly, we consider the case of i < j∗. In this case, we don’t consider the

condition ¬mcoll, and assume that hit≤α,i−1
tt does not hold in addition

to the condition ¬colltt ∧ prefix=mα . By prefix=mα , tαi = tγi holds, and by

¬hit≤α,i−1
tt , hitγtt does not hold. Hence, hitα,itt does not hold under the

condition ¬colltt ∧ prefix=mα ∧ hit≤α,i−1
tt , and thus we have p2,i = 0.

– Secondly, we consider the case of i = j∗. In this analysis, we don’t
consider the condition ¬hit≤α,i−1

tt , and assume that mcoll does not hold
in addition to the condition ¬colltt ∧ prefix=mα . Note that since j∗ is the
maximum distinct point, tαj∗ is a new input to Gj∗ . By ¬mcollT , the
number of inputs to random functions whose first r bits are equal to
tαj∗ [1, r] is at most (q + ρ). Note that tαj∗ [r + 1, b] = sαj∗−1[r + 1, b], and
sαj∗−1[r+ 1, b] is randomly drawn from at least 2c − q values. Hence, the

probability that hitα,itt holds under the condition ¬colltt∧prefix=mα∧¬mcoll
is at most q+ρ

2c−q , and thus we have p2,i ≤ q+ρ
2c−q .

17

– Finally, we consider the case of i > j∗. In this analysis, we don’t consider
the conditions ¬hit≤α,i−1

tt and ¬mcollT . Note that for an r-bit string Mα,
tαi has the form tαi = Mα∥0c⊕ sαi−1, where Mα is a message block or 0r.
By ¬colltt, sαi−1 is randomly drawn from at least 2b − q values after Mα

is defined. We thus have p2,i ≤ (ℓ−2)α
2b−q

.

Hence, we have Pr[Case 2] ≤ q+ρ
2c−q + (ℓ− 2)× (ℓ−2)α

2b−q
.

Hence, we have

Pr[hittt ∧ ¬(colltt ∨mcoll) ∧ ¬hitK] ≤
q∑

α=1

max

{
(ℓ− 1)2α

2b − q
,
q + ρ

2c − q
+

(ℓ− 2)2α

2b − q

}
≤ 2(q + ρ)q

2c
+

ℓ2q2

2b
, assuming q ≤ 2c−1.

Finally, we have

Pr[hittt ∧ ¬(colltt ∨mcoll)] ≤ ℓq

2k
+

2(q + ρ)q

2c
+

ℓ2q2

2b
.

IWe put the above bounds to the inequation (2). Then we have

Pr[T2 ∈ Tbad] ≤
ℓq +Q

2k
+

2q2 + qQ+ 2ρ(q +Q)

2c
+

2ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

.

Upper-Bound of ε. Let τ ∈ Tgood. Let alli be the set of all oracles in Game i
for i = 1, 2. Let compi(τ) be the set of oracles compatible with τ in Game i for

i = 1, 2. Then Pr[T1 = τ] = |comp1(τ)|
|all1| and Pr[T2 = τ] = |comp2(τ)|

|all2| .

Firstly, we evaluate |all1|. Since K ∈ {0, 1}k and P ∈ Perm({0, 1}b), we have
|all1| = 2k · 2b!.

Secondly, we evaluate |all2|. Since K ∈ {0, 1}k, P ∈ Perm({0, 1}b), and

G1,G2, . . . ,Gℓ ∈ Func({0, 1}b, {0, 1}b), we have |all2| = 2k · (2b!) ·
(
(2b)2

b
)ℓ

.

Thirdly, we evaluate |comp1(τ)|. For i ∈ {1, . . . , ℓ}, let γi be the number of

pairs in τi. Let γP be the numbers of pairs in τP . Let γ = γP +
∑ℓ

i=1 γi. Since
τ1, . . . , τℓ and τP are defined so that they do not overlap each other, we have
|comp1(τ)| = (2b − γ)!.

Finally we evaluate |comp2(τ)|. Here, γ1, . . . γℓ, and γP are analogously de-
fined. Then we have

|comp2(τ)| = (2b − γP)! ·
ℓ∏

i=1

(2b)2
b−γi = (2b − γP)! · (2b)ℓ2

b−γ+γP .

Hence we have

Pr[T1 = τ]

Pr[T2 = τ]
=
|comp1(τ)|
|all1|

× |all2|
|comp2(τ)|

=
(2b − γ)!

2k · (2b!)
× 2k · (2b!) · (2b)ℓ2b

(2b − γP)! · (2b)ℓ2b−γ+γP

=
(2b)γ · (2b − γ)!

(2b)γP · (2b − γP)!
≥ 1 ,

18

thereby ε = 0.

Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]. Finally, by Lemma 1, the upper-
bound of Pr[T2 ∈ Tbad] and ε yield the following bound.

Pr[DG1 ⇒ 1]− Pr[DG2 ⇒ 1]

≤ ℓq +Q

2k
+

2q2 + qQ+ 2ρ(q +Q)

2c
+

2ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

. (3)

4.2 Upper-Bound of Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1]

Firstly, we prove the following lemma.

Lemma 2. G2 and G3 are indistinguishable unless the following condition holds
in Game 2.3

coll⇔∃α, β ∈ {1, . . . , q}, i ∈ {max{nα, nβ}, . . . ,min{nα, nβ}+ ℓout − 1}

s.t. α ̸= β ∧ tαi = tβi .

Proof. If coll does not hold then all blocks in outputs of L2 are independently
drawn by random functions. Hence the above lemma holds. ⊓⊔

By the above lemma, Pr[DG2 ⇒ 1|¬coll] = Pr[DG3 ⇒ 1] holds. Then we have

Pr[DG2 ⇒ 1]− Pr[DG3 ⇒ 1] ≤ Pr[coll] .

Hereafter, we upper-bound Pr[coll]. In this evaluation, we use the condition
colltt given in Subsection 4.1.

colltt ⇔∃α, β ∈ {1, . . . , q} with α ̸= β, i ∈ {2, . . . ,min{nα, nβ}+ ℓout − 1}

s.t. tαi−1 ̸= tβi−1 ∧ tαi = tβi .

Then we have

Pr[coll] ≤ Pr[colltt] + Pr[coll|¬colltt] ,

where the upper-bound of Pr[colltt] is given in Subsection 4.1: Pr[colltt] ≤ q2

2c +
0.5ℓq2

2b
.

We thus upper-bound Pr[coll|¬colltt]. First fix α, β ∈ {1, . . . , q} with α ̸= β,
and upper-bound the probability that by the α-th and β-th online queries, coll
holds. We consider the following cases.

Case 1 ⇔ nα = nβ : Since mα ̸= mβ , there exists j∗ ∈ {1, . . . , nα} such that

tαj∗ ̸= tβj∗ . By ¬colltt, for all j ∈ {j∗+1, . . . , nα+ℓ−1}, tαj ̸= tβj holds. Hence,
in this case, coll does not hold.

3 Note that in this condition we consider a collision at the same position for two online
queries, where in the position the outputs of the queries are produced. Hence, the
first point of i is max{nα, nβ} and the last point is min{nα, nβ}+ ℓout − 1.

19

Case 2 ⇔ nα ̸= nβ : Without loss of generality, assume that nα > nβ . By
mα

nα ̸= 0r and mα ̸= mβ , there exists j∗ ∈ {1, . . . , nβ} such that tαj∗ ̸= tβj∗

holds. By ¬colltt, for all j ∈ {j∗ + 1, . . . , nα + ℓ − 1}, tαj ̸= tβj holds. Hence,
in this case, coll does not hold.

By the above evaluations, we have Pr[coll|¬colltt] = 0.

Finally, we have

Pr[DG2 ⇒ 1]− Pr[DG3 ⇒ 1] ≤ Pr[coll] ≤ q2

2c
+

0.5ℓq2

2b
. (4)

4.3 Upper-Bound of the Advantage

We put the upper-bounds (3) and (4) into the inequation (1). Then we have

Advprf
IKSponge(D) ≤ ℓq +Q

2k
+

3q2 + qQ+ 2ρ(q +Q)

2c
+

3ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

.

5 Outer Keyed Sponge and the PRF-Security

5.1 Outer Keyed Sponge Construction

The outer keyed sponge uses the sponge function as the underlying function. By
OKSponge, we denote the construction. For an integer k > 0, let K ∈ {0, 1}k be a
secret key. By OKSpongePK , we denote OKSponge with P having K. For a message
m ∈ {0, 1}∗, the response is defined as OKSpongePK(m) := SpongeP (K∗∥m),
where K∗ is defined by appending some bit string to the suffix of K such that
the bit length is a multiple of r, e.g., the appended string is a zero string, that
is, K∗ = K∥0 · · · 0. We let κ := |K∗|/r.

The concrete procedure to define OKSpongePK(m) = z is denoted as follows.

1. Partition K∗ into r-bit blocks K1, . . . ,Kκ;
Partition m∥pad(|K∗∥m|) into r-bit blocks m1, . . . ,mn

2. w0 ← 0b

3. For i = 1, . . . , κ do ui ← Ki∥0c ⊕ wi−1; wi ← P (ui)

4. s0 ← wκ

5. For i = 1, . . . , n do ti ← mi∥0c ⊕ si−1; si ← P (ti)

6. z ← sn[1, r]

7. For i = 1, . . . , ℓout − 1 do tn+i ← sn+i−1; sn+i ← P (tn+i); z ← z∥sn+i[1, r]

8. Return z

For i = 1, . . . , n+ ℓout − 1, we call the block with input ti “the i-th bock.”

20

5.2 PRF-Security of the OKSponge Construction

OKSponge has the similar structure to IKSponge, and thus we can prove the PRF-
security of OKSponge by the similar proof. The difference between IKSponge

and OKSponge is the definitions of the internal states s0, where in IKSponge,
s0 = 0b−k∥K, and in OKSponge, s0 = wκ. If D does not know wκ, that is, D does
not make an offline query P(uκ) and P−1(wκ) then wκ becomes a secret random
value of b bits. Therefore, the upper-bound on the PRF-security of OKSponge is
obtained from that on the PRF-security of IKSponge, where the probability for
K, ℓq+Q

2k
, is replaced with the probability for the “bad” event where D knows

wκ. The probability of the bad event was considered in [13, 1], and we use their
bound. The concrete upper-bound is given as follows, where the probability for
the bad event is λ(Q) + 2κQ

2b
.

Theorem 2. Let D be a distinguisher which makes q online queries of r-bit
block length at most ℓin and Q offline queries. Then for any ρ, we have

Advprf
OKSponge(D)

≤ λ(Q) +
2κQ

2b
+

2qQ+ 3.5ℓ2q2

2b
+

3q2 + 2qQ+ 2ρ(q +Q)

2c
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

,

where ℓ = ℓin + ℓout − 1, e = 2.71828 · · · is Napier’s constant, and

λ(Q) =

Q
2k

if k ≤ r

min

{
Q2

2c+1 + Q
2k
, 1
2b

+ Q

2

(
1
2
− log2(3b)

2r
− 1

r

)
k

}
otherwise

Corollary 3 (Case c ≤ b/2). We assume c ≤ b/2. Then, we put ρ = r, and
without loss of generality, assume r ≥ 2 (otherwise r = c = 1 and b=2). Since
r ≥ b/2, we have

Advprf
OKSponge(D) ≤ 3q2 + 2qQ+ 2r(q +Q)

2c
+

(3.5 + 32e2r−2)ℓ2q2 + 2qQ+ 2κQ

2b
+ λ(Q) .

Corollary 4 (Case c > b/2). We assume c > b/2 and put

ρ = max

{
r,
(

2e×ℓq
2r−c(q+Q)

)1/2
}
. Then we have

Advprf
OKSponge(D) ≤

(
18eℓq(q +Q)

2b

)1/2

+
3q2 + 2qQ+ 2r(q +Q)

2c
+

3.5ℓ2q2 + 2qQ+ 2κQ

2b

+ λ(Q) .

Acknowledgments

We thank the FSE 2016 reviewers for their comments.

21

References

1. Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of
keyed sponge constructions using a modular proof approach. In FSE 2015, LNCS
9054, Springer, pages 364–384.

2. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.
Quark: A lightweight hash. In CHES 2010, LNCS 6225, Springer, pages 1–15.

3. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX: parallel
and scalable AEAD. In ESORICS 2014 II, LNCS 8713, Springer, pages 19–36.

4. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In CRYPTO ’96, LNCS 1109, Springer, pages 1–15.

5. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, pages 409–426, 2006.

6. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In SAC
2011, LNCS 7118, Springer, pages 320–337.

7. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In EUROCRYPT 2008, LNCS 4965,
Springer, pages 181–197.

8. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
security of the keyed sponge construction. SKEW 2011, 2011.

9. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
DIAC 2012, 2012.

10. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. spongent: A lightweight hash function. In CHES 2011,
LNCS 6917, Springer, pages 312–325.

11. Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul Nandi.
A keyed sponge construction with pseudorandomness in the standard model. Third
SHA-3 Candidate Conference, 2012.

12. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In EUROCRYPT 2014, LNCS 8441, Springer, pages 327–350.

13. Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of
truncation: Tight bounds for keyed sponges and truncated CBC. In CRYPTO
2015, Part I, LNCS 9215, Springer, pages 368–387.

14. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In CRYPTO 2011, LNCS 6841, Springer, pages 222–
239.

15. Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In ASIACRYPT 2014, LNCS 8873,
Springer, pages 85–104. Springer.

16. Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state keyed
sponge and duplex: Applications to authenticated encryption. In ASIACRYPT
2015, LNCS 6225, pages 465–489. Springer.

17. NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. In FIPS PUB 202, 2015.

22

18. Jacques Patarin. The ”coefficients H” technique. In SAC 2008, LNCS 5381,
Springer, pages 328–345.

19. Yu Sasaki and Kan Yasuda. How to incorporate associated data in sponge-based
authenticated encryption. In CT-RSA 2015, LNCS 9048, Springer, pages 353–370.

A From Theorem 1 to Corollary 1

We show how to obtain Corollary 1 from Theorem 1. We assume c ≤ b/2. Then,
we put ρ = r, and without loss of generality, assume r ≥ 2 (otherwise r = c = 1
and b=2). Since r ≥ b/2, we have, from Theorem 1,

ℓq +Q

2k
+

3q2 + qQ+ 2ρ(q +Q)

2c
+

3ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

ρ2r

)ρ

≤ℓq +Q

2k
+

3q2 + qQ+ 2r(q +Q)

2c
+

3ℓ2q2

2b
+ 2r+1 ×

(
2eℓq

r2b/2

)r

≤ℓq +Q

2k
+

3q2 + qQ+ 2r(q +Q)

2c
+

3ℓ2q2

2b
+ 2×

(
4eℓq

r2b/2

)r

=
ℓq +Q

2k
+

3q2 + qQ+ 2r(q +Q)

2c
+

3ℓ2q2

2b
+

32e2ℓ2q2

r22b

=
ℓq +Q

2k
+

3q2 + qQ+ 2r(q +Q)

2c
+

(3 + 32e2r−2)ℓ2q2

2b
.

B From Theorem 1 to Corollary 2

We show how to obtain Corollary 2 from Theorem 1. We assume c > b/2. Then,

we put ρ = max

{
r,
(

2e×ℓq
2r−c(q+Q)

)1/2
}
, and without loss of generality, assume

r ≥ 1. Then we have, from Theorem 1,

ℓq +Q

2k
+

3q2 + qQ

2c
+max

{
2r(q +Q)

2c
,

(
8eℓq(q +Q)

2b

)1/2
}

+
3ℓ2q2

2b

+

(
8eℓq(q +Q)

2b

)r/2

≤ℓq +Q

2k
+

3q2 + qQ+ 2r(q +Q)

2c
+

3ℓ2q2

2b
+

(
32eℓq(q +Q)

2b

)1/2

.

23

