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Abstract. Physically Unclonable Functions (PUFs) have been an emerg-
ing topic in hardware security and trust in recent years, and many differ-
ent kinds of PUFs have been presented in the literature. An important
criterion is always the diversity of PUF responses for different devices,
called inter-device uniqueness. A very popular uniqueness metric consists
of calculating the pairwise hamming distance between the response bit-
strings of all devices, assuming that all response bits are uncorrelated.
Such correlations, however, should be regarded when a statement about
inter-device uniqueness is made. We therefore propose a novel correlation
metric to fulfil this requirement. Furthermore, we show that the ham-
ming distance metric is actually redundant when at the same time the
also popular bit-aliasing metric is applied.
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1 Introduction

Physically unclonable functions (PUFs) are an emerging topic in hardware se-
curity. They provide an alternative to storing cryptographic keys in non-volatile
memory that might be susceptible to manipulation or key extraction. A PUF,
on the other hand, generates a unique signature for each device it is imple-
mented on, based on the device’s physical characteristics. Hence, any physical
tampering attack to extract the signature may already lead to changes in these
characteristics and thereby alter the signature.

Many different ways to implement PUFs on integrated circuits have been
proposed in recent years; e.g. arbiter PUFs [10], butterfly PUFs [9], ring oscillator
(RO)-PUFs [14,16,17], TERO-PUFs [2] or SRAM-PUFs [6,1]. For all these PUFs
it is important to quantify their ability to uniquely identify a device. I.e. the
generated signature should be unique for each device and knowing the signature
of one device should not allow for any conclusions about other devices’ signatures.

Some very popular metrics to quantify this inter-device uniqueness are pre-
sented in [12] and have since been used in several publications, e.g. [4,7,13,5,8].
Section 2 recapitulates these metrics providing a novel analysis of their extreme
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values. Section 3 then shows that the so-called hamming distance metric is ac-
tually redundant in the face of the bit-aliasing metric, that is mostly applied in
addition to the former. Section 4 shows that neither of these two metrics is able
to recognise correlations between signature bits, resulting in misleading judge-
ments of inter-device uniqueness. To overcome this, a new metric is suggested
that takes correlated bits into account. Section 5 concludes the paper.

2 Traditional Uniqueness Metrics

Let m be the number of different devices and let n be the total number of
PUF response bits generated per device. While a single response bit ri,j with
1 ≤ i ≤ m and 1 ≤ j ≤ n can have different outcomes on a single device (poor
intra-device reliability), we define the signature bit sigi,j to be the bit’s outcome
irrespective of poor reliability. The signature bit can thus be considered the
outcome after an error correction has been applied. When analysing inter-device
uniqueness, only the signature bits outcomes need to be regarded.

2.1 Inter-device hamming distance

When Sigi = (sigi,1, sigi,2, . . . , sigi,n) is the n-bit signature of a device i, [12] de-
fines the Hamming Distance (HD) metric as

HDmetric = 2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

HD(Sigu, Sigv)
n

where

HD(Sigu, Sigv) =
n∑
j=1

(sigu,j ⊕ sigv,j)

Thus, with HD(Sigu, Sigv) = 0 for Sigu being bitwise equal to Sigv, and
HD(Sigu, Sigv) = n for Sigu being the bitwise inverse of Sigv, the minimum
outcome of HDmetric = 0.0 is achieved when all devices generate the same
signature (worst inter-device uniqueness). The maximal outcome of HDmetric

converges to 0.5 with growing number of devices m. To understand this, we
first realise that HDmetric can be calculated by regarding each signature bit j
separately:
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HDmetric

= 2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

HD(Sigu, Sigv)
n

= 2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

1
n

n∑
j=1

(sigu,j ⊕ sigv,j)

= 1
n

n∑
j=1

2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j ⊕ sigv,j)

The maximum ofHDmetric is thus achieved, when
∑m−1
u=1

∑m
v=u+1(sigu,j⊕sigv,j)

is maximal for each bit j. This is the case, when exactly m
2 devices generate

sigi,j = 0 and the other m
2 devices generate sigi,j = 1 (without loss of generality

let m|2). The sum is incremented by 1 for each XOR of a “0” bit with a “1” bit.
As there are m

2 many “0” bits and m
2 many “1” bits, the sum’s maximal outcome

is:
m−1∑
u=1

m∑
v=u+1

(sigu,j ⊕ sigv,j) = m

2 ·
m

2 = m2

4

Inserting this into the formula of HDmetric we get:

1
n

n∑
j=1

2
m(m− 1) ·

m2

4 = 1
2 ·

m

(m− 1)

Thus, the more devices are involved, the closer the maximal HDmetric outcome
is to 0.5 – indicating optimal inter-device uniqueness. For smaller device popula-
tions, however, greater HDmetric outcomes must be achieved to demonstrate the
same quality of uniqueness. Table 1 shows the maximal outcomes for different
numbers of devices.

Table 1. Maximal HDmetric outcome for different numbers of sampled devices.

Number of devices m Maximal HDmetric outcome
2 1.0000
4 0.6667
8 0.5714
14 0.5385
20 0.5263
40 0.5128
60 0.5085
100 0.5051
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2.2 Bit-Aliasing

Another metric introduced in [12] is bit-aliasing. Here, each signature bit j is
analysed individually to detect whether its outcome is biased toward either 0 or
1 over all m devices:

BAj = 1
m

m∑
i=1

sigi,j

An unbiased bit should have a BAj outcome close to 0.5, which is the case when
half of the devices generate the bit as 0 and the other half generate it as 1. An
outcome of 0.0 (or 1.0) means that the bit was 0 (or 1) on all devices, which is
an indicator for poor inter-device uniqueness.

3 Redundancy of Hamming Distance Metric in the Face
of Bit-Aliasing Metric

In this work, we show that HDmetric is in fact equivalent to the BAj . I.e. if
the BAj value of some or all bits indicates poor uniqueness, HDmetric indicates
poor uniqueness as well, and vice versa. There is no case in which one metric
indicates something that is not also indicated by the other.

This is why HDmetric can be considered redundant, especially as BAj is
more expressive identifying single signature bits with poor uniqueness and indi-
cating their bias toward 0 or 1, whereas HDmetric only produces a single number
between 0 and 0.5 for all bits. If such a single number is desired, it could also
be derived from the BAj values as follows. First, a normalised version of BAj
is calculated that does not differentiate any more between biases toward 0 or 1:

BAnormj = 0.5− |0.5−BAj |

Then, the average over all signature bits is calculated:

BAmetric = 1
n

n∑
j=1

BAnormj

Next, we show how HDmetric and BAmetric do actually differ in just a slight
manner. First notice, that both metrics are in fact averages over all signature
bits. This is obvious for the above definition of BAmetric and has been shown
for HDmetric in 2.1 by rearranging the sums to:

HDmetric = 1
n

n∑
j=1

2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j ⊕ sigv,j)

Thus, both metrics do not consider correlations between signature bits, such
that for an analysis of the metrics only one single signature bit j needs to be
regarded.
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Let 0 ≤ γ ≤ m be the number of devices for which the regarded signature bit’s
outcome is 1; for the remaining m− γ devices it is 0. For γ = 0 (∀i : sigi,j = 0)
and γ = m (∀i : sigi,j = 1), both metrics produce the outcome 0.0. For γ = m

2
(optimal distribution of 0s and 1s) both assume ∼ 0.5. The slight difference is
in how both metrics are mapping the γ values in between.

Figure 1 shows the results of both metrics (y-axis) for the range of γ values
(x-axis). With BAj = 1

m

∑m
i=1 sigi,j = γ

m , the plot for BAmetric is:

BAplot(γ) = 0.5− |0.5− γ

m
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Fig. 1. The results of HDmetric and BAmetric when applied to a single signature bit.
0 ≤ γ ≤ m is the number of devices for which this bit is 1.

To construct the plot for HDmetric, its definition must first be rewritten to:

2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j ⊕ sigv,j)

= 2
m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j + sigv,j − 2(sigu,j · sigv,j))

= 2
m(m− 1)

(
m−1∑
u=1

m∑
v=u+1

sigu,j +
m−1∑
u=1

m∑
v=u+1

sigv,j

−
m−1∑
u=1

m∑
v=u+1

2(sigu,j · sigv,j)
)
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= 2
m(m− 1)

(
m−1∑
u=1

(m− u) · sigu,j +
m∑
v=2

(v − 1) · sigv,j

−
m−1∑
u=1

m∑
v=u+1

2(sigu,j · sigv,j)
)

= 2
m(m− 1)

(
m∑
w=1

(m− w) · sigw,j +
m∑
w=1

(w − 1) · sigw,j

−
m−1∑
u=1

m∑
v=u+1

2(sigu,j · sigv,j)
)

= 2
m(m− 1)

(
m∑
w=1

((
(m− w) + (w − 1)

)
· sigw,j

)
−
m−1∑
u=1

m∑
v=u+1

2(sigu,j · sigv,j)
)

= 2
m(m− 1)

m∑
w=1

(m− 1) · sigw,j

− 4
m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j · sigv,j)

= 2
m

m∑
w=1

sigw,j −
4

m(m− 1)

m−1∑
u=1

m∑
v=u+1

(sigu,j · sigv,j)

With
m∑
w=1

sigw,j = γ

and
m−1∑
u=1

m∑
v=u+1

(sigu,j · sigv,j) = γ(γ − 1)
2

we get:

HDplot(γ) = 2 ·
(
γ

m
− γ(γ − 1)
m(m− 1)

)
As Figure 1 shows, the only difference between HDmetric and BAmetric is

that HDmetric penalises deviations from γ = m
2 less than BAmetric. In fact,

the value of HDmetric can even be directly calculated from the BAj values by
transforming the BAplot values of each signature bit j into the corresponding
HDplot value, and then taking the average of all bits:
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For each bit j the value of BAj is transformed into BAnormj as defined above:

BAnormj = 0.5− |0.5−BAj |

Then the inverse function of BAplot calculates the corresponding γj for that
BAnormj (as the plots are symmetric, it does not matter that we only get values
γj ≤ m

2 ):
γj = m ·BAnormj

This γj is then inserted into HDplot for each bit j and the average of the results
is calculated:

HDmetric = 1
n

n∑
j=1

(
2 ·
(
γj
m
− γj(γj − 1)
m(m− 1)

))

4 New Correlation Sensitive Metric (CSM)

As mentioned in the previous section, the traditional uniqueness metrics only
analyse one signature bit at a time and – if applicable – calculate the average
over all bits. Thus, correlations between signature bits are not registered. The
undesirable effect of that can be illustrated by the following example. Let m

2
devices have the signature 11 . . . 1100 . . . 00 and the other m

2 devices have the
signature 00 . . . 0011 . . . 11. BothHDmetric andBAj would produce their optimal
values of ∼ 0.5, while the signatures are not actually unique.

Hence, good outcomes of HDmetric or BAj are only necessary conditions for
inter-device uniqueness but not sufficient – unless the a priori assumption is made
that the signature bits are uncorrelated. In our view, however, a metric quan-
tifying inter-device uniqueness should not rely on such an assumption, because
unforeseen correlations might always be there. This is why we are presenting a
new alternative metric.

4.1 Definition of New Metric

To identify correlated signature bits, we suggest to compare the outcomes of the
n signature bits of each device i with one another, resulting in n·(n−1)

2 pairings:

cori1,2 cori1,3 . . . cori1,n

cori2,3 . . . cori2,n

. . . . . .

corin−1,n

with

corij,k =
{

1, if sigi,j = sigi,k
−1, otherwise
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The corij,k values for each pairing are then summed up over all m devices:

corj,k = 1
m

m∑
i=1

corij,k

such that corj,k = 1.0 means a positive correlation (sigi,j = sigi,k on all devices)
and corj,k = −1.0 means a negative correlation (sigi,j 6= sigi,k on all devices).
corj,k ≈ 0.0, on the other hand, indicates the absence of systemic correlations
between the respective bits j and k.

There are 2m+1 many possible outcomes for each of the n·(n−1)
2 many corj,k

values:
−1.0 = −m

m
,
−m+ 1
m

, . . . ,
−1
m
, 0, 1

m
, . . . ,

m− 1
m

,
m

m
= 1.0

To evaluate these outcomes, we suggest a plot as shown in Figure 2. The x-value
of a dot represents how often the y-value occurred as corj,k. To estimate the PUF
uniqueness quality, a plot gained from empirical experiments is compared with
the theoretically ideal plot that would be expected from completely uncorrelated
bits. The ideal plot is generated as follows.

For completely uncorrelated signature bits, the outcome of corij,k is like a coin
toss, so we have P (corij,k = 1) = P (corij,k = −1) = 0.5. Hence, the probabilities
for the outcome of each corj,k value are:

corj,k P

−1.0 = −m
m

( 0
m

)
· 0.5m

−m+1
m

( 1
m

)
· 0.5m

−m+2
m

( 2
m

)
· 0.5m

. . . . . .

−1
m

(m
2 −1
m

)
· 0.5m

0
(m

2
m

)
· 0.5m

1
m

(m
2 +1
m

)
· 0.5m

. . . . . .

m−2
m

(
m−2
m

)
· 0.5m

m−1
m

(
m−1
m

)
· 0.5m

1.0 = m
m

(
m
m

)
· 0.5m

The fact that
m∑
k=0

(
m

k

)
· 0.5m = 2m · 0.5m = 1.0

confirms this consideration.
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4.2 Evaluation Capabilities of New Metric

When the occurrences of all empirically observed corj,k outcomes are to be
compared to the ideal distribution, the ideal probabilities can be multiplied by
n·(n−1)

2 (amount of corj,k values) to get the expected amounts of the empirical
outcomes. Alternatively, the observed outcomes can be divided by n·(n−1)

2 , which
is preferable as it allows the comparison of PUFs with different m and n.

Figure 2 shows the plot from an actual study done by the authors with
m = 72 FPGA and a ring-oscillator (RO)-PUF producing n = 3160 signature
bits. The red × plot stems from a flawed implementation in which some ROs
suffered from systemic biases. As a result, several signature bits are the same
on all devices. This poor bit-aliasing is indicated by the high occurrences of
corj,k = −1 and corj,k = 1, because a pair of bits with bit-aliasing – that are
either 0 or 1 on all devices – is always correlated. The blue + plot stems from
an improved implementation overcoming the RO biases. The improvement is
immediately visible in the plot.
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Fig. 2. The evaluation of the new metric is done with a plot. Each dot represents how
often (x-value) a corj,k (y-value) was observed. For completely uncorrelated bits, the
occurrences are expected to be in a bell curve around zero.

The theoretical ideal of completely uncorrelated signature bits (plot of yellow
stars) is not achieved, because of another interesting phenomenon made visible
by the new metric: There are more occurrences around corj,k = ± 1

3 than in
the ideal case. The reason for this is that the signature bits of RO-PUFs are
generated by comparing two ROs per bit. Some bits use the same RO as others,
such that the frequency ranking of that RO has an influence on both bits, giving
them a slightly increased overall correlation.

Finally, we revisit the example from the beginning of this section, where the
signatures of m2 devices have been the bitwise inverse of the other m

2 devices’ sig-
natures. While BAj and equivalently HDmetric do not register this undesirable
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anomaly, the new metric produces a plot showing that there are only occurrences
of corj,k = −1 and corj,k = 1, because each “0” bit is 100% positively correlated
with every other “0” bit, and 100% negatively correlated with every “1” bit.

5 Conclusion

We showed, that the CSM is not only able to identify the same anomalies as the
traditional metrics, but that it furthermore detects correlations between signa-
ture bits the traditional metrics cannot detect. However, BAj is still a valuable
addition to CSM, because BAj allows to single out signature bits with poor bit-
aliasing directly. The plot visualisation of CSM does not allow to immediately
recognise which bits are correlated, it only shows if there are any. However, the
generation algorithm can easily be setup to write down the indices j and k of
all bits with suspicious corj,k outcomes.

For future work, the authors intent to take into account further means of
quantifying the uniqueness of PUF signatures, e.g. Shannon Entropy [11] or the
effectiveness of data compression algorithms [15,3].
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