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Abstract. The probing security model is very popular to prove the side-channel security of cryp-
tographic implementations protected by masking. A common approach to secure nonlinear functions
in this model is to represent them as polynomials over a binary field and to secure their nonlinear
multiplications thanks to a method introduced by Ishai, Sahai and Wagner at Crypto 2003. Several
schemes based on this approach have been published, leading to the recent proposal of Coron, Roy
and Vivek which is currently the best known method when no particular assumption is made on the
algebraic structure of the function. In the present paper, we revisit this idea by trading nonlinear mul-
tiplications for low-degree functions. Specifically, we introduce an algebraic decomposition approach in
which a nonlinear function is represented as a sequence of functions with low algebraic degrees. We
therefore focus on the probing-secure evaluation of such low-degree functions and we introduce three
novel methods to tackle this particular issue. The paper concludes with a comparative analysis of the
proposals, which shows that our algebraic decomposition method outperforms the method of Coron,
Roy and Vivek in several realistic contexts.

1 Introduction

Since their introduction in [16, 17], side-channel attacks are known to be a serious threat against implemen-
tations of cryptographic algorithms. Among the existing strategies to secure an implementation, one of the
most widely used relies on secret sharing (aka masking). Using secret sharing at the implementation level
enables to achieve provable security in the so-called probing security model [13]. In this model, it is assumed
that an adversary can recover information on a limited number of intermediate variables of the computation.
This model has been argued to be practically relevant to address so-called higher-order side-channel attacks
and it has been the basis of several efficient schemes to protect block ciphers [1, 6, 11, 12, 25, 26]. More re-
cently, it has been shown in [10] that the probing security of an implementation actually implies its security
in the more realistic noisy leakage model introduced in [24]. This makes probing security a very appealing
feature for the design of secure implementations against side-channel attacks.

The first generic probing secure scheme, here called the ISW scheme, was designed by Ishai, Sahai and
Wagner in [13]. It was later used by Rivain and Prouff to design an efficient probing-secure implementation of
AES.1 Several works then followed to improve this approach and to extend it to other SPN block ciphers [6,
8, 9, 14, 27]. In a nutshell, these methods consist in representing the nonlinear functions of such ciphers (the
so-called s-boxes) as polynomials over a binary field. Evaluating such polynomials then involves some linear
operations (e.g. squaring, addition, multiplication by constants) which are secured with straightforward and
efficient methods, and some so-called nonlinear multiplications which are secured using ISW. The proposed

? This article is the full version of the extended abstract appearing in the proceedings of CRYPTO 2015.
1 The original proposal of [26] actually involved a weak mask refreshing algorithm and the weakness was exploited

in [8] to exhibit a flaw in the s-box processing. The authors of [8] also proposed a correction, which was recently
verified for d 6 4 using program verification techniques [2].



polynomial evaluation methods then aim at minimizing the number of nonlinear multiplications. The method
recently introduced by Coron, Roy and Vivek in [9] (called CRV in the following) is currently the most efficient
scheme for the probing-secure evaluation of nonlinear functions without particular algebraic structure.

In this paper we introduce a new algebraic decomposition approach for the probing-secure evaluation of
nonlinear functions. More precisely, we propose a method — inspired from [9] — to efficiently compute a
function from the evaluation of several other functions having a low algebraic degree. We subsequently study
the problem of designing efficient probing-secure evaluation methods for low-degree functions. Specifically,
we introduce three methods to tackle this issue with different and complementary assets. The first one relies
on a recursive higher-order derivation of the target function. Remarkably, it enables to get a t-probing secure
evaluation of a function of algebraic degree s (for arbitrary order t) from several s-probing secure evaluations
of the function. Namely, for degree-s functions, it reduces t-probing security to s-probing security. This
method has a complexity exponential in s and is hence only interesting for low-degree functions. For the
case s = 2, we show how to specialize it into an efficient algorithm which happens to be a generalization
of a previous method proposed in [8] to secure a peculiar type of multiplications (specifically x 7→ x · `(x)
where ` is linear). Our generalization of this algorithm can be applied to secure any quadratic function more
efficiently than a single multiplication with the ISW scheme. Our second approach also applies a recursive
derivation technique, but in a more direct way which allows us to design a stand-alone probing-secure
evaluation method. Interestingly, this method does not rely on the polynomial representation of the target
function h, and its processing only involves additions and evaluations of h. When the latter evaluation can
be tabulated (which is often the case in the context of s-boxes), the proposed algorithm can be a valuable
alternative to the state-of-the-art solutions based on field multiplications. However, this method also has a
complexity exponential in the algebraic degree of h, which makes it only interesting for low degree functions.
Eventually, the third method consists in tweaking the CRV method for the case of low-degree functions. The
tweak is shown to substantially reduce the number of nonlinear multiplications for functions of a given (low)
algebraic degree.

The theoretical analysis of our proposals is completed by an extensive comparative analysis considering
several ratios for the cost of a field multiplication over the cost of other elementary operations. The results
show that for functions of algebraic degree 2 our generalization of [8] is always the most efficient. On the other
hand, for functions of algebraic degree 3, the tweaked CRV method achieves the best performances except
for small probing orders for which our second method takes the advantage. For high-degree functions, our
algebraic decomposition method reaches its best performances when it is combined with our generalization
of [8]. For some cost ratios, our method is more efficient than CRV, which makes it the currently best
known method for the probing-secure evaluation of nonlinear functions in these scenarios. As an example,
for functions of dimension n = 8, our method outperforms CRV whenever a field multiplication takes more
than 5 elementary operations (which we believe to be a realistic scenario).

From a general point of view, this paper shows that the issue of designing efficient probing-secure schemes
for nonlinear functions may be reduced to the secure evaluation of functions of small algebraic degrees. This
approach, and the first encouraging results reported in this paper, opens a promising avenue for further
research on this topic. Our work also has strong connections with the field of threshold implementations
in which secret sharing techniques are used to design hardware masking schemes resistant to glitches [20,
21]. An efficient threshold implementation is indeed usually obtained by decomposing the target nonlinear
function into lower-degree functions (ideally quadratic functions). In this context, some decompositions have
been proposed for specific functions, such as the PRESENT s-box [22], the AES s-box [19], and the DES
s-boxes [3]. Some works have also followed an exhaustive approach to provide decompositions for small-size
s-boxes, specifically all bijective 3-bit and 4-bit s-boxes [3, 18]. Certain 5-bit and 6-bit s-boxes have also been
considered in [4].
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2 Preliminaries

2.1 Functions in Finite Fields and Derivation

Along this paper, we shall denote by [[i, j]] the integer interval [i, j] ∩ Z for any pair of integers (i, j) with
i 6 j, and we shall denote by F2n the finite field with 2n elements for any integer n > 1. Choosing a basis of
F2n over Fn2 enables to represent elements of F2n as elements of the vector space Fn2 and vice versa. In the
following, we assume that the same basis is always used to represent elements of F2n over F2. For any positive
integers m 6 n, a function from Fn2 to Fm2 is called an (n,m)-function (the dimensions could be omitted if
they are clear from the context). Nonlinear functions used in block-ciphers are usually called s-boxes. The
set of (n,m)-functions is denoted by Bn,m. When m divides n, any function h ∈ Bn,m can be represented

by a polynomial function x ∈ F2n 7→
∑2n−1
i=0 aix

i where the ai’s are constant coefficients in F2n that can be
obtained by applying Lagrange’s Interpolation. When m does not divide n, the m-bit outputs of h can be
embedded into Fn2 by padding them to n-bit outputs (e.g. by setting the most significant bits to 0). This
ensures that any function h ∈ Bn,m can be evaluated as a polynomial over F2n . If padding has been used,
then it can be removed after the polynomial evaluation by mapping the output from F2n to Fn2 , and then
from Fn2 to Fm2 (by removing the n −m most significant 0’s). The algebraic degree of a function h ∈ Bn,m
is the integer value maxai 6=0(HW(i)) where the ai’s are the coefficients of the polynomial representation of
h and where HW(i) denotes the Hamming weight of i (see e.g. [5] for more details about this notion). The
algebraic degree must not be confused with the classical notion of polynomial degree which is the integer
value maxai 6=0(i). A function of algebraic degree s will sometimes be called a degree-s function.

This paper intensively uses the notion of higher-order derivative of a (n,m)-function. It is is recalled
hereafter.

Definition 1 (Higher-Order Derivative). Let n and m be two positive integers such that m 6 n and let
h ∈ Bn,m. For any positive integer t and any t-tuple (a1, a2, . . . , at) ∈ (Fn2 )

t
, the (n,m)-function Da1,a2,...,ath

which maps any x ∈ F2n to
∑
I⊆[[1,t]] h

(
x +

∑
i∈I ai

)
is called the tth-order derivative of h with respect to

(a1, a2, . . . , at).

Any tth-order derivative of a degree-s function has an algebraic degree bounded above by s − t. In the

following we shall denote by ϕ
(t)
h the (n,m)-function defined by

ϕ
(t)
h : (a1, a2, . . . , at) 7→ Da1,a2,...,at h(0) . (1)

This function has some well-known properties recalled hereafter.

Proposition 1. Let h ∈ Bn,m be a degree-s function. Then, the function ϕ
(s)
h is s-linear symmetric and

equals zero for any family of ai linearly dependent over F2. Conversely, if ϕ
(s)
h is s-linear, then the algebraic

degree of h is at most s.

Proof. ϕ
(s)
h is clearly symmetric and we have

ϕ
(s)
h (a1, a2, . . . , as) = Da1,a2,...,as−1 h(0) +Da1,a2,...,as−1 h(as) .

Then the function as 7→ ϕ
(s)
h (a1, a2, . . . , as) has algebraic degree at most 1 for every a1, a2, . . . , as−1. Since it

vanishes at 0, it is then linear. By symmetry, we deduce that ϕ
(s)
h is s-linear. If two among the ai’s are equal,

then ϕ
(s)
h (a1, a2, . . . , as) equals the sum (in characteristic 2) of twice the same values and therefore vanishes.

If more generally the ai’s are not linearly independent over F2, then one of them is a linear combination of

the others and by s-linearity and thanks to the latter property, it also vanishes. Conversely, if ϕ
(s)
h is s-linear,

then for every a1, a2, . . . , as−1, Da1,a2,...,as−1
h has algebraic degree at most 1 and it is then a simple matter

to check by decreasing induction on t that Da1,a2,...,at h has algebraic degree at most s − t fot every t 6 s.
For t = 0 this implies that h has algebrac degree at most s. �
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2.2 Sharing and Probing Security

For two positive integers k and d, a (k, d)-sharing of a variable x defined over some finite field K is a random

vector (x1, x2, . . . , xk) over Kk such that x =
∑k
i=1 xi holds (completeness equality) and any tuple of d − 1

shares xi is a uniform random vector over Kd−1. The variable x is also called the plain value of the sharing
(xi)i. If k = d, the terminology simplifies to d-sharing.

An algorithm with domain Kd is said t-probing secure if on input a d-sharing (x1, x2, . . . , xd) of some
variable x, it admits no tuple of t or less intermediate variables that depends on x. An algorithm achieving
t-probing security is resistant to the class of tth-order side-channel attacks (see for instance [7, 24, 26]). In
this paper we will further use the following non-standard notion.

Definition 2 (perfect t-probing security). An algorithm is said to achieve perfect t-probing security if
every `-tuple of its intermediate variables can be perfectly simulated from an `-tuple of its input shares for
every ` 6 t.

It can be shown that for the tight security case t = d − 1, the notion above is equivalent to the usual
t-probing security. This is formalized in the following lemma.

Lemma 1. An algorithm taking a d-sharing as input achieves (d − 1)-probing security if and only if it
achieves perfect (d− 1)-probing security.

Proof. Perfect (d − 1)-probing security clearly implies (d − 1)-probing security. Now assume that some
algorithm taking a d-sharing (x1, x2, . . . , xd) as input does not achieve perfect (d − 1)-probing security.
This means that there exists a `-tuple (v1, v2, . . . , v`) of its intermediate variables that requires at least
` + 1 input shares (xi)i∈I to be perfectly simulated, where I ⊆ [[1, d]] and |I| > ` + 1. Then consider the
tuple of intermediate variables composed of (v1, v2, . . . , v`) and the inputs (xi)i/∈I . This tuple has at most
d − 1 elements but it requires the full input sharing (x1, x2, . . . , xd) to be perfectly simulated. Therefore
the algorithm cannot be (d− 1)-probing secure. By contrapositive, the (d− 1)-probing security implies the
perfect (d− 1)-probing security for algorithms taking a d-sharing as input. �

We shall simply say that an algorithm taking a d-sharing as input is (perfect) probing secure when it
achieves (perfect) (d− 1)-probing security. We will also say that an algorithm admits a t-order flaw when t
of its intermediate variables jointly depend on the plain input (hence contradicting t-probing security).

It is worth noticing that achieving (perfect) probing security for the evaluation of a linear function g
is pretty simple. Computing a d-sharing of g(x) from a d-sharing (x1, x2, . . . , xd) of x can indeed be done
by applying g to every share. The process is clearly (perfectly) t-probing secure with t = d − 1 and the
completeness holds by linearity of g since we have g(x) = g(x1) + g(x2) + · · ·+ g(xd). The same holds for an
affine function but the constant term g(0) must be added to the right side if and only if d is odd (without
impacting the probing security).

Probing security is more tricky to achieve for nonlinear functions. In [13], Ishai, Sahai, and Wagner tackled
this issue by introducing the first generic t-probing secure scheme for the multiplication over F2 which can
be easily extended to the multiplication over any finite field. Let (xi)i and (yi)i be the d-sharings of two
variables x and y over some binary field K, the ISW scheme proceeds as follows:

1. for every 1 6 i < j 6 d, sample a random value ri,j over K ,
2. for every 1 6 i < j 6 d, compute rj,i = (ri,j + ai · bj) + aj · bi ,
3. for every 1 6 i 6 d, compute ci = ai · bi +

∑
j 6=i ri,j .

The completeness holds from
∑
i ci =

∑
i,j ai · bj = (

∑
i ai)(

∑
j bj) since every random value ri,j appears

exactly twice in the sum and hence vanishes.2 The above multiplication procedure was proved t-probing
secure with t 6 (d− 1)/2 in [13]. This was later improved in [26] to a tight t-probing security with t 6 d− 1.

2 This is true since K is a binary field, but the method can easily be extended to any field by defining rj,i =
(ai · bj − ri,j) + aj · bi in Step 2.
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2.3 Secure Evaluation of Nonlinear Functions

In the original scheme of Ishai et al., a computation is represented as a Boolean circuit composed of logical
operations NOT and AND. In [26], Rivain and Prouff generalized their approach to larger fields which
allowed them to design an efficient probing-secure computation of the AES cipher. The main issue in securing
SPN ciphers like AES lies in the s-box computations (the rest of the cipher being purely linear operations).
The Rivain-Prouff scheme computes the AES s-box using 4 multiplications over F28 (secured with ISW) plus
some linear operations (specifically squaring over F28 , and the initial affine transformation). This approach
was then extended in [6] to secure any s-box in Bn,m. The principle is to represent the s-box as a polynomial∑
i ai · xi in F2n [x] whose evaluation is then expressed as a sequence of linear functions (e.g. squaring over

F2n , additions, multiplications by coefficients) and nonlinear multiplications over F2n . The former operations
can be simply turned into probing-secure operations of complexity O(d) as described in the previous section,
whereas the latter operations are secured using ISW with complexity O(d2). The total complexity is hence
mainly impacted by the number of nonlinear multiplications involved in the underlying polynomial evaluation
method. This observation led to a series of publications aiming at developing polynomial evaluation methods
with least possible costs in terms of nonlinear multiplications. Some heuristics in this context were proposed
by Carlet et al. in [6], and then improved by Roy and Vivek in [27] and by Coron, Roy and Vivek in [9].
In the latter reference, a method is introduced that we shall call the CRV method in the following. It is
currently the most efficient way to get probing-secure evaluations of nonlinear functions.

Tabulated multiplications. Further works have shown that secure evaluation methods could be improved
by relying on specific kind of nonlinear multiplications. Assume for instance that the dimension n is such
that a lookup table with 22n entries is too big for some given architecture whereas a lookup table with 2n

entries fits (e.g. for n = 8 one needs 64 kilobytes for the former and 256 bytes for the latter). This means that
a multiplication over F2n/2 can be computed using a single lookup, whereas a multiplication over F2n must
rely on more costly arithmetic (e.g. schoolbook method, log-exp tables, Karatsuba, etc.). This observation
was used by Kim, Hong, and Lim in [14] to design an efficient alternative to the Rivain-Prouff scheme based
on the so-called tower-field representation of the AES s-box [28]. Using this representation, the AES s-box
can be computed based on 5 multiplications over F24 instead of 4 multiplications over F28 , which results in
a significant gain of performance when the former are tabulated while the latter are computed using log-exp
tables (although one more multiplication is involved). Another approach, proposed in [8] by Coron, Prouff,
Rivain, and Roche, is to consider the multiplications of the form x · `(x) where ` is a linear function. Such
multiplications can be secured using a variant of ISW relying on a table for the function x 7→ x · `(x). This
variant that we shall call the CPRR scheme, allowed the authors to design a faster probing-secure scheme
for the AES s-box. It was further used in [12] to reduce the complexity of the probing-secure evaluation of
power functions in F2n with n 6 8.

3 The Algebraic Decomposition Method

In this section, we introduce a new algebraic decomposition method that split the evaluation of a nonlinear
function with arbitrary algebraic degree into several evaluations of functions with given (low) algebraic degree
s. Our proposed method is inspired from the CRV method but relies on low-degree polynomial evaluations
instead of nonlinear multiplications.

We consider a function h ∈ Bn,m which is seen as a polynomial h(x) =
∑2n−1
j=0 ajx

j over F2n [x]. We start
by deriving a family of generators (gi)i as follows:{

g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

) , (2)

where the fi’s are random polynomials of given algebraic degree s. Then we randomly generate t polynomials
(qi)i over the subspace of polynomials

∑r
j=1 `j ◦gj where the `j ’s are linearized polynomials (i.e. polynomials
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of algebraic degree 1). This is done by sampling random linearized polynomials (`i,j)i,j and by computing

qi(x) =

r∑
j=1

`i,j
(
gj(x)

)
+ `i,0(x) . (3)

Eventually, we search for t polynomials pi of algebraic degree s and for r + 1 linearized polynomials `i such
that

h(x) =

t∑
i=1

pi
(
qi(x)

)
+

r∑
i=1

`i
(
gi(x)

)
+ `0(x) . (4)

From such polynomials, we get a method to compute h(x) by subsequently evaluating (2), (3) and (4). This
method involves r + t evaluations of degree-s polynomials (the fi and the pi), plus some linear operations.
The following table gives the exact operation counts (where “#eval deg-s” denotes the number of evaluations
of degree-s functions, “#eval LP” denotes the number of evaluations of linearized polynomials, and “#add”
denotes the number of additions).

#eval deg-s #eval LP #add
r + t (t+ 1)(r + 1) r · t+ t+ r

The complexity of the resulting d-probing secure evaluation can be obtained by multiplying by d the number
of additions and the number of evaluations of linearized polynomials (which might be tabulated) and by
adding r + t secure evaluations of degree-s functions.

Remark 1. The generation step of our method can be generalized as follows:{
g1(x) = f1(x)

gi(x) = fi

(∑i−1
j=1 `

′
i,j

(
gj(x)

)) (5)

where the fi’s are random polynomials of given algebraic degree s and the `′i,j ’s are random linearized poly-
nomials. This generalization has no impact when r 6 2. In particular, it has no impact on our experimental
results for s ∈ {2, 3} and n ∈ [[4, 8]] (indeed, the best counts are always obtained with r 6 2 since we stop
at g2(x) = f ′2 ◦ f1(x) where f ′2 = f2 ◦ `2,1 is of degree s1 – see hereafter – ). However, (5) might give better
results than (2) for higher values of n and/or s.

As in the CRV method, the search of polynomials (pi)i and (`i)i satisfying (4) for given polynomials (gi)i
and (qi)i amounts to solve a system of linear equations over F2n :

A · b = c . (6)

The target vector c has 2n coordinates which are the values taken by h(x) for all x over F2n , that is

c = (h(e1), h(e2), h(e3), . . . , h(e2n)) ,

where {e1, e2, . . . , e2n} = F2n . The coordinates of the vector b are the variables of the system that represents
the solutions for the coefficients of the polynomials (pi)i and (`i)i. The matrix A is then defined as the
concatenation of several submatrices:

A = (1 | Ap1 | Ap2 | · · · | Apt | A`0 | A`1 | · · · | A`r ) ,

where 1 is the 2n-dimensional column vector with all coordinates equal to 1 ∈ F2n , where the Api are 2n×Ns
submatrices, with Ns =

∑s
d=2

(
n
d

)
, and where the A`i are 2n×n submatrices. For every i ∈ [[1, t]], the 2n×Ns

matrix Api is defined as:

Api =


qi(e1)β1 qi(e1)β2 · · · qi(e1)βNs

qi(e2)β1 qi(e2)β2 · · · qi(e2)βNs

...
...

. . .
...

qi(e2n)β1 qi(e2n)β2 · · · qi(e2n)βNs

 ,

6



where {βi} = {β | 2 6 HW(β) 6 s} ⊆ [[0, 2n − 1]] i.e. the βi are the powers with non-zero coefficients in
a degree-s polynomial with null linear and constant parts. We can indeed search for pi’s with null linear
parts (i.e. with 0-coefficients for the powers x2

j

and 0-constants) since these linear parts would not add any
degrees of freedom compared to the linear combinations of the gi’s. On the other hand, A`i is defined as the
2n × n matrix:

A`0 =


eα1
1 eα2

1 · · · eαn
1

eα1
2 eα2

2 · · · eαn
2

...
...

. . .
...

eα1
2n e

α2
2n · · · eαn

2n

 and A`i =


gi(e1)α1 gi(e1)α2 · · · gi(e1)αn

gi(e2)α1 gi(e2)α2 · · · gi(e2)αn

...
...

. . .
...

gi(e2n)α1 gi(e2n)α2 · · · gi(e2n)αn


for i > 1, where {αi} = {2i | 0 6 i 6 n − 1} (i.e. the αi are the powers with non-zero coefficients in a
linearized polynomial).

System (6) has 2n equations and t ·Ns + (r + 1) n unknowns. Such a system admits a solution for every
choice of h(x) if and only if its rank is 2n, which implies the following inequality as necessary condition:

t ·Ns + (r + 1) n > 2n ⇔ t >
2n − (r + 1) n

Ns
. (7)

In other words our method requires at least
(
2n − (r + 1) n

)
/Ns secure evaluations of degree-s polynomials.

Another necessary condition is that the algebraic degree of the pi ◦ qi reaches n, that is r verifies sr+1 > n.
This constraint becomes sr+1 > n− 1 if we only focus on bijective functions (since their algebraic degree is
at most n− 1).

Remark 2. We stress that once a full-rank system has been found for some given parameters r and t, it
can be applied to get a decomposition for every n-bit nonlinear function (the considered function being the
target vector of the system). Note however that for some specific function it might be possible to find a
decomposition involving less than r + t degree-s polynomials. For instance, the 4-bit s-box of PRESENT
can be decomposed into 2 quadratic functions [22], whereas we need 3 quadratic functions to decompose any
4-bit s-box.

Experimental results. We provide hereafter some experimental results for our algebraic decomposition
method. We experimented our method for n ∈ [[4, 8]] and s ∈ {2, 3}. The following table summarizes the best
results that we obtained and compares them to the lower bound resulting from the above constraints.

n = 4 n = 5 n = 6 n = 7 n = 8
#eval-2 (achieved) 3 4 5 8 11
#eval-2 (lower bound) 2 4 5 7 10
#eval-3 (achieved) 2 3 3 4 4
#eval-3 (lower bound) 2 3 3 4 4

Note that our method can be generalized to involve the evaluation of functions with different (low)
algebraic degrees. In particular, in our experiments, we considered the hybrid case where the fi are of degree
s1 and the pi are of degree s2. In that case, the constraint on r becomes sr1 · s2 > n (resp. sr1 · s2 > n − 1
for bijective functions), and the constraint on t remains as in (7) with s2 instead of s. The following table
summarizes the best results for the hybrid case (s1, s2) = (2, 3). This case was always more favorable than
the case (s1, s2) = (3, 2).

n = 4 n = 5 n = 6 n = 7 n = 8
#eval-2 + #eval-3 (achieved) 1+1 2+1 1+2 2+2 2+3
#eval-2 + #eval-3 (lower bound) 1 + 1 2 + 1 1 + 2 2 + 2 2 + 3
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The following table gives the exact parameters (s1, s2), r, and t, that we achieved for every n ∈ [[4, 8]].
Note that the entries 4∗, 5∗, and 7∗ stand for bijective functions of size n ∈ {4, 5, 7}, which enjoy more
efficient decompositions. For the other considered values of n, the bijective property did not enable any
improvement.

n #eval-2 #eval-3 (s1, s2) r t
4 3 - (2, 2) 1 2

3 - (2, 2) 2 1
1 1 (2, 3) 1 1
- 2 (3, 3) 1 1

4∗ - 1 (1, 3) 0 1
5 4 - (2, 2) 2 2

2 1 (2, 3) 2 1
- 3 (3, 3) 1 2

5∗ 3 - (2, 2) 1 2
6 5 - (2, 2) 2 3

1 2 (2, 3) 1 2
- 3 (3, 3) 1 2

7 8 - (2, 2) 2 6
2 2 (2, 3) 2 2
- 4 (3, 3) 1 3
- 4 (3, 3) 2 2

7∗ 1 2 (2, 3) 1 2
8 11 − (2, 2) 2 9

11 − (2, 2) 3 8
2 3 (2, 3) 2 3
- 4 (3, 3) 1 3

Remark 3. For the case n = 4, it was shown in [3] that every cubic bijective function in B4,4 can be either
decomposed as h(·) = f1 ◦ f2(·) or as h(·) = f1 ◦ f2 ◦ f3(·), where the fi are quadratic functions, if and only
if it belongs to the alternating group of permutations in B4,4. It was then shown in [18] that the so-called
optimal s-boxes in B4,4 can be decomposed as h(·) = f1(·) + f2 ◦ f3(·). The authors also suggested to use a
decomposition of the form h(·) = f1(·) + f2 ◦ f3(·) + f4 ◦ f5(·) + . . . for other functions in B4,4. Our results
demonstrate that every function in B4,4 can be decomposed using 3 quadratic functions plus some linear
functions. Moreover, we know from [3] that there exist functions in B4,4 that cannot be decomposed using
only two quadratic functions. This show the optimality of our method for the case n = 4 and s = 2. This
also suggests that the lower bound (7) might not be tight.

4 Reducing the Probing Order down to the Algebraic Degree

In this section we start by showing that arbitrary t-probing security can always be reduced to s-probing
security where s is the algebraic degree of the function to protect. Specifically, we give a method to construct
a t-probing secure processing of a degree-s function from its s-probing secure processing. Then, we apply
our method for the case s = 2, where a simple 2-probing secure processing can be turned into an efficient
t-probing secure evaluation of any (algebraically) quadratic function.

4.1 General Case

Let n and m be two positive integers such that m 6 n and let h ∈ Bn,m be the vectorial function whose

processing must be secured at the order t = d − 1 for some d. By definition of ϕ
(s)
h , for every tuple
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(a1, · · · , as) ∈ (Fn2 )
s

we have:

h
( s∑
i=1

ai

)
= ϕ

(s)
h (a1, a2, . . . , as) +

∑
I([[1,s]]

h
(∑
i∈I

ai

)
. (8)

Iterating (8) we obtain the following theorem where, by convention, h(
∑
i∈∅ ai) equals h(0). The proof is

given in Appendix A.

Theorem 1. Let h ∈ Bn,m be a vectorial function of algebraic degree at most s. Then, for every d > s we
have:

h
( d∑
i=1

ai

)
=

∑
16i1<···<is6d

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h
(∑
i∈I

ai

)
,

where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j 6 s− 1.

From Theorem 1 we get the following corollary (see proof in Appendix B).

Corollary 1. Let h ∈ Bn,m be a vectorial function of algebraic degree at most s. Then, for every d > s we
have:

h
( d∑
i=1

ai

)
=

s∑
j=0

µd,s(j)
∑

I⊆[[1,d]]
|I|=j

h
(∑
i∈I

ai

)
, (9)

where µd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j 6 s.

Corollary 1 states that, for any d, the evaluation of a degree-s function h ∈ Bn,m on the sum of d shares
can be expressed as several evaluations of h on sums

∑
i∈I ai with |I| 6 s. We can then reduce a (d − 1)-

probing secure evaluation of h to several (j− 1)-probing secure evaluations of h where j = |I| 6 s. Doing so,
each evaluation takes j = |I| shares (ai)i∈I and computes a j-sharing of h(

∑
i∈I ai). Afterwards, one needs

a secure scheme to combine the obtained shares of all the h(
∑
i∈I ai), with I ⊆ [[1, d]] such that |I| 6 s and

µd,s(|I|) = 1, into a d-sharing of h(a).

The overall process is summarized in the following algorithm, where SecureEval is a primitive that performs
a (j − 1)-probing secure evaluation of h on a j-sharing input for any j 6 s, and where SharingCompress is a

primitive that on input (xi)i6[[1,k]] produces a d-sharing of
∑k
i=1 xi for any k 6 d. The description of such

SharingCompress algorithm which achieves perfect t-probing security is given in Appendix C.

Algorithm 1 : Secure evaluation of a degree-s function

Input : a d-sharing (x1, x2, · · · , xd) of x ∈ F2n

Output: a d-sharing (y1, y2, · · · , yd) of y = h(x)

1 for I ⊆ [[1, d]] with |I| 6 s and µd,s(|I|) = 1 do
2 (rI,k)k6|I| ← SecureEval(h, (xi)i∈I)

3 (y1, y2, . . . , yd)← SharingCompress
(
(rI,k)k6|I|,I⊆[[1,d]],µd,s(|I|)=1

)
4 return (y0, y1, . . . , yd)

Security. The following theorem states the (perfect) probing security of our method:

Theorem 2. If SecureEval and SharingCompress are perfect probing-secure, then Algorithm 1 is perfect
probing-secure.
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Proof. By assumption, the SecureEval primitive called on j input shares is (j − 1)-probing secure. From
Lemma 1, it is then perfect (j − 1)-probing secure. Moreover, since the input is a j-sharing, any set of
intermediate variables of arbitrary size ` can be perfectly simulated from the knowledge of ` or fewer inputs
(here ` may be greater than or equal to j).

Let us consider ` < d intermediate variables from Algorithm 1. Part of these intermediate variables
are located in the SharingCompress algorithm (including its output), say t of them. By the perfect probing-
security of SharingCompress, the t intermediate variables can be perfectly simulated from t of SharingCompress
algorithm inputs. These t inputs are actually outputs of the SecureEval primitives. Adding these t outputs
to the rest of the intermediate variables (there are ` − t left), the properties of SecureEval primitives allow
to select ` inputs of Algorithm 1 that together allow to perfectly simulate the whole set of intermediate
variables. Therefore, Algorithm 1 is perfect (d− 1)-probing secure. �

Complexity. For every s and every d > s, the term µd,s(j) always equals 1 when j = s. On the other hand,
whenever d ≡ s mod 2` with ` = blog2 sc + 1, the term µd,s(j) equals 0 for every j < s. For the sake of

efficiency, we suggest using such a value of d for our method.3 The complexity of Algorithm 1 is then of
(
d
s

)
calls to SecureEval with s shares and one call to SharingCompress from k shares to d shares where k = s

(
d
s

)
.

From the complexity of the sharing compression method, we obtain the following operation count (where
“#add” and “#rand” respectively denote the number of additions and the number of sampled random values
in the sharing compression).

#SecureEval #add #rand

Exact count
(
d
s

) (
s
(
d
s

)
− d
)
(d+ 1) 1

2

(
s
(
d
s

)
− d
)
(d− 1)

Approximation
(
1
s!

)
ds

(
1

(s−1)!
)
ds+1

(
1

2(s−1)!
)
ds+1

4.2 Quadratic Case

For degree-2 (aka quadratic) functions h, it may be observed that we have

ϕ
(2)
h (xi, xj) = h(xi + xj + r) + h(xi + r) + h(xj + r) + h(r) (10)

for every (xi, xj , r) ∈
(
F2n
)3

(this holds since ϕ
(3)
h (xi, xj , r) = 0 for quadratic functions). This observation

and Theorem 1 imply the following equality for any integer d > s and any ri,j values in F2n :

h
( ∑
i∈[[1,d]]

xi

)
=

∑
16i<j6d

(
h(xi + xj + ri,j) + h(xj + ri,j) + h(xi + ri,j) + h(ri,j)

)
+
∑

i∈[[1,d]]

h(xi) +
(
(d+ 1) mod 2

)
· h(0) . (11)

Equality (11) shows that the evaluation of a quadratic function in a sum of d shares can be split into a sum
of terms depending on at most two shares xi and xj . In this particular case it is then possible to use an
improved sharing compression inspired from ISW, which gives Algorithm 2. Note that in Step 4 the additions
must be computed from left to right in order to ensure the probing security.

This algorithm is actually already known from [8]. However the authors only suggest to use it for the
secure evaluation of a multiplication of the form x · `(x) where ` is a degree-1 function (linear or affine).
We show here that this algorithm can actually be used to securely compute any degree-2 function. The only
difference is that one must add h(0) to one output share whenever d is even (this term does not appear in
[8] since by definition of h : x 7→ x · `(x) one always get h(0) = 0). We also describe in Appendix D a variant
of this algorithm that trades some random number generation against a few more additions. The probing
security of Algorithm 2 holds from the security proof provided in [8].

3 This is a weak constraint for low algebraic degrees. For instance s 6 3 gives d ≡ s mod 4, s 6 7 gives d ≡ s mod 8,
etc. The complexity for any d > s is given in Appendix G.1.
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Algorithm 2 : Secure evaluation of a quadratic function

Input : the d-sharing (x1, x2, . . . , xd) of x in F2n

Output: a d-sharing (y1, y2, . . . , yd) of y = h(x)

1 for i = 1 to d do
2 for j = i+ 1 to d do

3 ri,j ←$ F2n ; r′i,j ←$ F2n

4 rj,i ← ri,j + h(xi + r′i,j) + h(xj + r′i,j) + h((xi + r′i,j) + xj) + h(r′i,j)

5 for i = 1 to d do
6 yi ← h(xi)
7 for j = 1 to d, j 6= i do
8 yi ← yi + ri,j

9 if d is even then y1 = y1 + h(0)
10 return (y1, y2, . . . , yd)

Complexity. The following table summarizes the complexity of Algorithm 2 in terms of additions, evalu-
ations of h, and sampled random values (we consider the worst case of d being even). For comparison, we
also give the complexity of the ISW scheme for a single multiplication.

# add # evalh # mult # rand

Algorithm 2 9
2 d(d− 1) + 1 d(2d− 1) - d(d− 1)

ISW multiplication 2d(d− 1) - d2 1
2d(d− 1)

As explained in Section 2.3, for some values of n, a lookup table of 2n entries might be affordable while a
lookup table of 22n entries is not (typically for n = 8 giving 256 bytes vs. 64 kilobytes). In such a situation,
the cost of one evaluation of h is expected to be significantly lower than the cost of a multiplication. We
hence expect Algorithm 2 to be more efficient than the ISW scheme. Moreover, as shown above, Algorithm
2 can be used to securely evaluate a degree-2 function with a polynomial representation possibly involving
many multiplications, whereas the ISW scheme securely evaluates a single multiplication.

5 A Tree-based Method to Secure Low-Degree Functions

In this section we introduce another new scheme to secure the evaluation of any function h ∈ Bn,m of
given algebraic degree s. The method only involves additions and evaluations of h (that may be tabulated
depending on the context). As the previous method, its complexity is exponential in s which makes it suitable
for low-degree functions only. We start by introducing the core ideas of our method with the simple case
of a 2-probing secure evaluation (i.e. taking a 3-shared input) of a degree-2 function. Then, we show how
to extend the approach to achieve arbitrary probing security. The study is completed in Appendix E by a
generalization of our result to functions of any algebraic degree.

5.1 Two-Probing Security for Quadratic Functions

Let h ∈ Bn,m be a degree-2 function. We present hereafter a method to securely construct a 3-sharing
(y1, y2, y3) of y = h(x) from a 3-sharing (x1, x2, x3) of x. Since h is quadratic, its third-order derivatives are
null (see Definition 1) which implies the following equality for every x ∈ F2n and every triplet (r1, r2, r3) ∈
F3
2n :

h(x) =
∑

16i63

h(x+ ri) +
∑

16i<j63

h(x+ ri + rj) + h(x+ r1 + r2 + r3) , (12)
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or equivalently

h(x) =

7∑
i=1

h(x+ e(i)) , (13)

where e(i) denotes the scalar product ωi · (r1, r2, r3) with ωi being the binary representation of the index i
(e.g. ω3 = (0, 1, 1)). We shall say in the following that the family (e(i))i∈[[1,7]] is 3-spanned from (r1, r2, r3)
(a formal definition is given hereafter). Replacing x by the sum of its shares then leads to:

h(x1 + x2 + x3) =

7∑
i=1

h(x1 + x2 + x3 + e(i)) . (14)

It may be checked that the tuple (hi)i∈[[1,7]] =
(
h(x + e(i))

)
i∈[[1,7]] is a (7, 3)-sharing of h(x) (this holds

since the rank of (e(i))i∈[[1,7]] is at most 3). However, a direct evaluation of the hi would yield an obvious
second-order flaw. Indeed, for every i ∈ {1, 2, 3}, the evaluation of at least one of the terms in (14) implies
the computation of x + ri which can be combined with ri to recover x. A natural solution to avoid such
a second-order flaw is to split the processing of each x + e(i) into several parts, which actually amounts to

randomly split each e(i) into 3 shares e
(i)
1 , e

(i)
2 , e

(i)
3 . This leads to the following expression:

h(x) =

7∑
i=1

h
(

(x1 + e
(i)
1 ) + (x2 + e

(i)
2 ) + (x3 + e

(i)
3 )
)
. (15)

It then just remains to securely turn the (7, 3)-sharing (hi)i∈[[1,7]] into a 3-sharing (yi)i∈[[1,3]]. This is done
by using the following sharing compression procedure specific to the case 7 to 3:

1. (m1,m2,m3)←$ Fq2n
2. y1 ← (h1 +m1) + (h4 +m2) + h7
3. y2 ← (h2 +m1) + (h5 +m3)
4. y3 ← (h3 +m2) + (h6 +m3)

The algorithmic description of the overall method for 3-sharing is then depicted in Algorithm 3 (where the
RandSpan procedure is given hereafter).

Algorithm 3 : Secure evaluation of h on a 3-sharing.

Input: a 3-sharing (x1, x2, x3) of x ∈ F2n

Output: a 3-sharing (y1, y2, y3) of h(x)

1 for j = 1 to 3 do

2 (e
(1)
j , e

(2)
j , . . . , e

(7)
j )← RandSpan(3, n)

3 for i = 1 to 7 do

4 ci ← (x1 + e
(i)
1 ) + (x2 + e

(i)
2 ) + (x3 + e

(i)
3 )

5 hi ← h(ci)

6 (y1, y2, y3)← SharingCompress[7 : 3](h1, h2, . . . , h7)
7 return (y1, y2, y3)

5.2 Arbitrary Probing Security for Quadratic Functions

Before addressing the general case of an arbitrary d-sharing, let us introduce the notion of random s-spanned
family which will be useful in the following.

Definition 3 (Random s-spanned family over F2n). Let n and s be two positive integers such that s 6 n.
A random s-spanned family over F2n is a family of 2s − 1 random variables {e(i) = ωi · (r1, r2, . . . , rs) | 1 6
i 6 2s − 1} where (r1, r2, . . . , rs) is a uniform random vector over Fs2n .
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A random s-spanned family E is a linear subspace of F2n with dim(E) 6 s. The following algorithm shall
be used for sampling a random s-spanned family:

Algorithm 4 : RandSpan

Input: two integers s and n such that s 6 n
Output: a random s-spanned family (e(1), e(2), . . . , e(2

s−1)) over F2n

1 for i = 1 to s do
2 ri ←$ F2n

3 for i = 1 to 2s − 1 do
4 e(i) ← ωi · (r1, r2, . . . , rs)
5 return (e(1), e(2), . . . , e(2

s−1))

Remark 4. Note that d random s-spanned families form a d-sharing of a random s-spanned family, whereas
the converse is false: a d-sharing of a random s-spanned family does not necessarily give d random s-spanned
families. However, for our purpose, it will be sufficient to generate d random s-spanned families whenever
we need a d-sharing of a random s-spanned family.

The idea in previous section can be extended to any security order d by starting from the following
equation which generalizes (15):

h(x) =

7∑
i=1

h
( d∑
j=1

(xj + e
(i)
j )
)
, (16)

where (xj)j∈[[1,d]] (resp. (e
(i)
j )j∈[[1,d]]) is a d-sharing of x (resp. of the ith element of a random 3-spanned

family).

It may be checked that the family (hi)i := (h(
∑d
j=1 xj + e(i)))i is a (7, 3)-sharing of h(x). However, the

direct evaluation of (16) is not yet satisfactory since it implies the occurrence of several triplets of elements
whose sum equals x. Indeed, for any triplet of distinct indices (i1, i2, i3) ∈ [[1, 7]] such that i1 = i2 ⊕ i3, we
have: ( d∑

j=1

xj + e
(i1)
j

)
+
( d∑
j=1

xj + e
(i2)
j

)
+
( d∑
j=1

xj + e
(i3)
j

)
=

d∑
j=1

xj = x .

To deal with the above issue, each evaluation of h in (16) is split over a different (and independent) space.
This leads to the following evaluation formula:

h(x) =

7∑
i1=1

7∑
i2=1

h
( d∑
j=1

xj + e
(i1)
j + e

(i1,i2)
j

)
, (17)

where, for every j ∈ [[1, d]], the family (e
(i1)
j )i1∈[[1,7]] is randomly 3-spanned and, for every i1 ∈ [[1, 7]], the

family (e
(i1,i2)
j )i2∈[[1,7]] is randomly 3-spanned.

Now, the family composed of all the intermediate results appearing during the processing of the sum in

(17) is free from 3rd-order flaws. However, by the same reasoning as above, one can reconstruct
∑
j xj +e

(i1)
j

for some i1 by summing three elements
∑
j xj + e

(i1)
j + e

(i1,i2)
j corresponding to three different values of i2

which are linearly dependent. Repeating this for three different values of i1 which are linearly dependent
eventually leads to the recovery of x =

∑
j xj . This flaw, which involves 3× 3 intermediate variables of the

processing, is of order 9. To deal with this issue, we propose to apply the derivation approach (Equation
(16)) recursively t times, leading to:

h(x) =

7∑
i1=1

7∑
i2=1

· · ·
7∑

it=1

h
( d∑
j=1

xj + e
(i1)
j + e

(i1,i2)
j + · · ·+ e

(i1,i2,··· ,it)
j

)
, (18)
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where for every (j, q) ∈ [[1, d]]×[[1, t]] and every tuple (i1, · · · , iq−1) ∈ [[1, 7]]q−1 the family (e
(i1,··· ,iq−1,iq)
j )iq∈[[1,7]]

is randomly 3-spanned. A similar flaw as the one previously exhibited can still be applied but its order is
now 3t. Taking t = dlog3 de is hence sufficient to avoid any nontrivial flaw. For the sake of simplicity, we
assume hereafter that d is a power of 3 (so that t = log3 d) and we detail all the steps of our approach to
securely evaluate a quadratic function at any order d− 1.

Our method first consists in computing the elements xj + e
(i1)
j + e

(i1,i2)
j + · · · + e

(i1,i2,··· ,it)
j for every j

and every (i1, i2, · · · , it) ∈ [[1, 7]]t. For security reasons, this computation must be done carefully and can
be represented by the descent of a tree whose nodes have all 7 children which are indexed from 1 to 7 (left
to right). A node is itself labeled by a tuple listing the indices of the edges connecting it to the root. By
convention, the label of the root is fixed to (0). The notations are illustrated in Figure 1 for t = 3.

1

(1, 1)

(1, 1, 1) (1, 1, 2) . . . (1, 1, 7)

(1, 2) . . . (1, 7)

2

(2, 1) (2, 2) . . . (2, 7)

. . . 7

(7, 1) (7, 2) . . . (7, 7)

(7, 7, 1) (7, 7, 2) . . . (7, 7, 7)

· · ·

· · ·

Fig. 1. Tree of indices (i1, i2, . . . , it) for t = 3.

Each node takes a d-tuple as input (starting with the d-sharing (x1, x2, · · · , xd) of x for the root) and
it outputs 7 new d-tuples (one per child node) generated from d random 3-spanned families. This sequence
of operations is detailed hereafter for a node labeled by a tuple u ∈ [[1, 7]]∗ which receives (z1, z2, . . . , zd) as
input:

– for every j ∈ [[1, d]] generate a random 3-spanned family {e(u||i)j | i ∈ [[1, 7]]}
– for every i ∈ [[1, 7]] send (z1 + e

(u||i)
1 , z2 + e

(u||i)
2 , . . . , zd + e

(u||i)
d ) to the child with label u||i.

By construction, the leaf labeled (i1, i2, . . . , it) ∈ [[1, 7]]t receives a d-tuple (z
(i1,i2,...,it)
1 , · · · , z(i1,i2,...,it)d )

whose coordinates satisfy

z
(i1,i2,...,it)
j = xj + e

(i1)
j + e

(i1,i2)
j + · · ·+ e

(i1,i2,··· ,it)
j , (19)

for every j ∈ [[1, d]].

The second step of the tree processing simply consists for each leaf to sum the d elements of the received
tuple and to apply the function h to the result. A leaf with label (i1, i2, . . . , it) hence outputs a value
h(i1,i2,··· ,it) satisfying:

h(i1,i2,··· ,it) := h(

d∑
j=1

z
(i1,i2,··· ,it)
j ) = h

( d∑
j=1

xj + e
(i1)
j + e

(i1,i2)
j + · · ·+ e

(i1,i2,··· ,it)
j

)
.

Due to (18) the family {h(i1,i2,··· ,it) | (i1, i2, · · · , it) ∈ [[1, 7]]t} forms a (7t, 3t)-sharing of h(x). To turn
this (7t, 3t)-sharing into a 3t-sharing of h(x) (which leaves us with a d-sharing of h(x) since t = log3(d)) the
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tree is browsed from the leaves to the root, converting a 7-tuple associated to each node into a triplet thanks
to SharingCompress[7 : 3] algorithm. Specifically, on level t − 1, a node labeled (i1, i2, · · · , it−1) ∈ [[1, 7]]t−1

processes the following conversion:(
h
(i1,i2,··· ,it−1)
(1) , h

(i1,i2,··· ,it−1)
(2) , h

(i1,i2,··· ,it−1)
(3)

)
← SharingCompress[7 : 3]

(
h(i1,i2,··· ,it−1,1), · · · , h(i1,i2,··· ,it−1,7)

)
Then, on level t− 2, the node labeled (i1, i2, · · · , it−2) gets the following (7× 3)-tuple of shares(

h
(i1,i2,··· ,it−2,1)
(j) , h

(i1,i2,··· ,it−2,2)
(j) , . . . , h

(i1,i2,··· ,it−2,7)
(j)

)
j∈{1,2,3} .

For every j ∈ {1, 2, 3}, the underlying 7-tuple is converted into a triplet of shares by calling once again the
sharing compression algorithm. We hence get the following (3× 3)-tuple of shares(

h
(i1,i2,··· ,it−2)
(j1,j2)

)
(j1,j2)∈{1,2,3}2

.

Similarly, on level t− k, each node transforms a (7× 3k−1)-tuple of shares into a 3k-tuple(
h
(i1,i2,··· ,it−k)
(j1,j2,··· ,jk)

)
(j1,j2,··· ,jk)∈{1,2,3}k

.

Eventually, the root receives a 3t-sharing (h
(∅)
(j1,··· ,jt))(j1,j2,··· ,jt)∈{1,2,3}t of h(x).

The overall process can be performed by calling the following TreeExplore algorithm on the input d-sharing
(x1, x2, . . . , xd). This algorithm is recursive with a depth parameter k ranging from t = dlog3(d)e to 0. It
first generates seven new tuples, then it calls itself on the seven generated tuples with depth parameter k−1
and get seven (3k−1)-tuples in return, and finally it converts the obtained (7 × 3k−1)-tuple of shares in a
3k-tuple of shares. If the depth parameter is 0, meaning that the recursion has reached a leaf, the algorithm
just sums the elements of input tuple and applies h.

Algorithm 5 : TreeExplore

Input: a d-sharing (z1, z2, . . . , zd) of z ∈ F2n , a depth parameter k
Output: a 3k-sharing of h(z)

1 if k = 0 then
2 return h(z1 + z2 + · · ·+ zd)

3 for j = 1 to d do

4 (e
(1)
j , e

(2)
j , . . . , e

(7)
j )← RandSpan(3)

5 for i = 1 to 7 do

6 (h
(i)
(w))w∈{1,2,3}k−1 ← TreeExplore(z1 + e

(i)
1 , z2 + e

(i)
2 , . . . , zd + e

(i)
d , k − 1)

7 for w in {1, 2, 3}k−1 do

8 (h(w||1), h(w||2), h(w||3))← SharingCompress[7 : 3](h
(1)
(w), h

(2)
(w), . . . , h

(7)
(w))

9 return (h(w))w∈{1,2,3}k

Complexity. The tree contains
∑t−1
k=0 7k = 7t−1

6 nodes and 7t leafs (where 7t = dln 7/ ln 3 ≈ d1.77). Each

node makes d calls to RandSpan(3), we hence have a total of d
6 (7t − 1) calls, each involving 5 additions and

the generation of 3 random elements. A node at level t− k also makes 3k−1 calls to SharingCompress[7 : 3],

which makes a total of
∑t−1
i=0 7i3t−1−i = 7t−3t

4 calls, each involving 10 additions and the generation of 3
random elements. Additionally, each node performs 7d additions to generate the new sharings and each leaf
performs d additions and one evaluation of h.

The following table summarizes the complexity of our method in terms of additions, evaluation of h, and
random generation over F2n .
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# add # evalh # rand

Exact count 3d · 7t − 2d+ 5
2 (7t − 3t) 7t d

27t − d
2 + 3(7t−3t)

4

Approximation 3d2.77 d1.77 1
2d

2.77

Security. The probing security of our tree-based method is proven for the general case in Appendix F.

6 Adapting the CRV Method to Low Algebraic Degrees

This section proposes an adaptation of Coron-Roy-Vivek’s method (CRV) with improved complexity for
functions with given (low) algebraic degree. We start by recalling the original method [9].

6.1 The CRV Method

In the following, we shall view functions over Bn,m as polynomials over F2n [x]. Let h(x) =
∑2n−1
j=0 ajx

j be
the function that must be securely evaluated. To find a representation of h(x) that minimizes the number
of nonlinear multiplications, CRV starts by building the union set

L =
⋃̀
i=1

Cαi s.t. α1 = 0, α2 = 1, and αi+1 ∈
i⋃

j=1

Cαj +

i⋃
j=1

Cαj for every i 6 ` , (20)

where Cαi
is the cyclotomic class of αi defined as Cαi

= {2j · αi mod (2n − 1) ; j ∈ [[0, n− 1]]}. The elements
in {xα; α ∈ L} can then be processed with only `− 2 nonlinear multiplications (since for α1 = 0 and α2 = 1
the building requires no nonlinear multiplication). The set L must satisfy the constraint L+L = [[0, 2n − 1]]
and, if possible, the ` classes Cαi

in L are chosen such that |Cαi
| = n.

Let P ⊆ F2n [x] be the subspace spanned by the monomials xα with α ∈ L. The second step of CRV con-
sists in randomly generating t− 1 polynomials qi(x) ∈ P and in searching for t polynomials pi(x) ∈ P such
that

h(x) =

t−1∑
i=1

pi(x)× qi(x) + pt(x) . (21)

This gives a linear system with 2n equations (one for each x ∈ F2n) and t × |L| unknowns (the coefficients
of the pi). Such a system admits a solution for every choice of h if its rank is 2n, which leads to the
necessary condition t× |L| > 2n. Finding such a solution provides a method to evaluate h involving `+ t− 3
multiplications: ` − 2 multiplications to generate the monomial (xj)j∈L, from which pi(x) and qi(x) are
computed as linear combinations for every i 6 t, and t − 1 multiplications to evaluate (21). In order to
optimize the number of linear operations, the polynomials pi can be represented as pi(x) =

∑
αj∈L `i,j(x

αj )

where the `i,j are linearized polynomials (i.e. polynomials of algebraic degree 1) that might be tabulated.

Complexity. Assuming that all the cyclotomic classes in L except C0 have maximum size n (i.e. |L| =
1 + n× (`− 1)) and that the lower bound t× |L| > 2n is reached, it is argued in [9] that the complexity of
CRV is minimized for t =

⌈√
2n/n

⌉
and ` =

⌈√
2n/n − 1/n + 1

⌉
. Moreover, it is empirically shown in [9]

that these lower bounds are often achieved for n 6 12. Using ISW to secure nonlinear multiplications we get
the following complexity (where #eval LP denotes the number of evaluations of a linearized polynomial):

#add #eval LP #rand #mult

2d2(t+ `− 3) + d(t`− 2t− 3`+ 5) d`t d(d−1)(t+`−3)
2 d2(t+ `− 3)

Remark 5. Some of the `− 2 nonlinear multiplications used to generate the set of powers {xα;α ∈ L} might

take the form xαi · (xαi)2
j

with αi ∈ L. In that case, the CPRR scheme (Algorithm 2) may be preferred to
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ISW. Indeed, as discussed in Section 4.2, this algorithm may be more efficient than ISW when x 7→ x · x2j

can be tabulated whereas (x, y) 7→ x · y cannot. The same observation applies for the tweaked CRV method
proposed in the next section for low-degree functions. In the complexity comparisons discussed in Section 7,
this optimization is used (we have actually observed that it was always possible to entirely build L based on

`− 2 multiplications of the form x 7→ x · x2j ).

6.2 The CRV Method for Degree-s Functions

We propose hereafter an adaptation of the CRV method for functions with (low) algebraic degree s. For the
generation of L, the constraint becomes L+ L = {α ∈ [[0, 2n − 1]] ; HW(α) 6 s}. When s is even, we impose
the additional condition that every cyclotomic class Cα ⊆ L verifies HW(α) 6 s

2 (the odd case is addressed
later).

Then, as in the original method, we randomly generate t − 1 polynomials qi(x) in the subspace P (i.e.
the subspace of polynomials spanned by the monomials xj with j ∈ L), and we try to solve a linear system
obtained from (21). The difference is that the obtained system is of rank at most

∑s
r=0

(
n
r

)
, i.e. the maximum

number of non-null coefficients in a degree-s function. Here again if this maximal rank is achieved, then the
system has a solution for every target vector i.e. for every degree-s function h(x). The necessary condition
to get a full-rank system then becomes t×|L| >

∑s
r=0

(
n
r

)
. Assuming that the cyclotomic classes in L except

C0 have maximum size n, this gives

t >

∑s
r=0

(
n
r

)
n(`− 1) + 1

.

If this bound is reached, the number t+ `− 3 of nonlinear multiplications is minimized by taking

t = (`− 1) ≈
( 1

n

s∑
r=0

(
n

r

))1/2
(22)

and we get t + ` − 3 ≈ 2
(
1
n

∑s
r=0

(
n
r

))1/2 − 2. When s is odd, the method is similar but L must contain
some cyclotomic classes Cα such that HW(α) 6 s+1

2 and the qi are constructed from powers xα such that
HW(α) 6 s−1

2 (this ensures that the algebraic degree of pi(x) · qi(x) is at most s).

The complexity for this method is the same as for CRV (see table in the previous section), but for low-
degree functions, the obtained parameters (t, `) are significantly smaller. The obtained number of nonlinear
multiplications are compared in the following table.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Original CRV 2 4 5 7 10 14 19
CRV for s = 2 2 2 2 3 3 3 3
CRV for s = 3 2 3 4 5 5 6 7

7 Comparison

In this section, we first study the practical complexity of the methods introduced in Sections 4, 5, and 6 to
secure functions of low algebraic degrees (specifically of degrees s = 2 and s = 3). Then, we compare our
algebraic decomposition method exposed in Section 3 with the CRV method (which is the best known alter-
native). The comparisons are done on specific examples where the dimension n fits with classical symmetric
ciphers’ s-boxes (i.e. n ∈ {4, 6, 8}) and the number d of shares ranges over [[2, 9]]. The study is completed in
Appendix G.2 by an asymptotic analysis (w.r.t parameters n, d, and s).
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7.1 Low-Degree Functions

For the case s = 2, we compare Algorithm 2 (generalization of the CPRR scheme – see Section 4), Algorithm
5 (aka TreeExplore – see Section 5), and the tweaked CRV method for low-degree functions (aka CRV-LD –
see Section 6). For the case s = 3, our first method (Algorithm 1) must be combined with a third-order secure
evaluation method (primitive SecureEval) of degree-3 functions. For such a purpose, we either use Algorithm
5 (TreeExplore) or the tweaked CRV method (CRV-LD). The exact operations counts for these methods,
which are recalled in Appendix G.1, are illustrated in Figures 2–4. Note that when d 6 s, Algorithm 1 is not
specified and therefore cannot be applied. In our comparisons, we assumed that an addition, a table lookup
and a random generation of n bits have the same cost 1.4 For the multiplication, we considered various
possible costs C. The case C = 1 corresponds to a device where the multiplication of two elements in F2n

can be precomputed and stored in a table, hence taking n22n bits of memory. When this is not possible
(in a constraint environment and/or for too large values of n), the multiplication must be implemented and
its cost essentially depends on the device architecture.5 We believe to encompass most realistic scenarios
by considering C ∈ {5, 10, 20}. Note that for the case s = 3, we used the improved CRV method based on
CPRR for the generation of powers as suggested in Remark 5. We did not use it for s = 2 since a CPRR
multiplication is similar to one call to Algorithm 2.

Case (s = 2). Figures 2–4 clearly illustrate the superiority of Algorithm 2 for the secure evaluation of degree-
2 functions at any order. The ranking between our second method (Algorithm 5 aka TreeExplore) and the
tweaked CRV method (CRV-LD) depends on the sharing order d and the multiplication cost ratio C. For high
values of C (i.e. when the multiplication cannot be tabulated), TreeExplore outperforms the tweaked CRV
method. It is particularly interesting for a sharing order d lower than 4. However, due to its tree structure
of depth log3(d), it becomes slower as soon as d reaches 4. Moreover for higher values of d, it would not be
competitive since its asymptotic complexity is more than quadratic in the sharing order.

Case (s = 3). Figures 2–4 show the superiority of the tweaked CRV method for sharing orders greater
than 3 and even for costly multiplications (i.e. C = 20). For small sharing orders d ∈ {2, 3}, Algorithm 5
(TreeExplore) is competitive (for the same reasons as for the degree-2 case). It appears that the use of our
first method (Algorithm 1) for lowering the sharing order down to the algebraic degree is never interesting
in this setting. We however think that this is not a dead-end point for this method and that the ideas used
to obtain Algorithm 2 from the general description of the method could be used to get an improved version
for the cubic case as well. We let this question open for further research on this subject.

7.2 High-Degree Functions

We now consider the algebraic decomposition method described in Section 3 and compare it to the CRV
method. The following table summarizes the number (` − 2) + (t − 1) of secure nonlinear multiplications
involved in CRV, as well as the numbers r and t of secure evaluations of degree-s1 functions and degree-s2
functions in the algebraic decomposition method.

4 In the context of side-channel countermeasures, generating n random bits usually amounts to read a n-bit value
in a TRNG register.

5 In [12], the authors explain that the processing of a field multiplication with the CPU instructions set requires
between 20 and 40 cycles and they give some examples of implementations.

18



2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

e
le
m
e
n
ta
ry

o
p
e
ra
ti
o
n
s

Complexity for n = 4 and s = 2

CRV−LD C=1
CRV−LD C=5
CRV−LD C=10
CRV−LD C=20
Alg.3 (TreeExplore)
Alg.2

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

e
le
m
e
n
ta
ry

o
p
e
ra
ti
o
n
s

Complexity for n = 4 and s = 3

CRV−LD with CPRR C=1
CRV−LD with CPRR C=5
CRV−LD with CPRR C=10
CRV−LD with CPRR C=20
TreeExplore
Alg.1 + TreeExplore
Alg.1 + CRV−LD C=1
Alg.1 + CRV−LD C=5
Alg.1 + CRV−LD C=10
Alg.1 + CRV−LD C=20

Fig. 2. Secure evaluation of quadratic and cubic functions for n = 4
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Fig. 3. Secure evaluation of quadratic and cubic functions for n = 6
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Fig. 4. Secure evaluation of quadratic and cubic functions for n = 8
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This Paper CRV
n #eval-2 #eval-3 (s1, s2) r t #mult `− 2 t− 1

4
3 - (2, 2) 1 2

2 1 13 - (2, 2) 2 1
1 1 (2, 3) 1 1
- 2 (3, 3) 1 1

4∗ - 1 (1, 3) 0 1

5
4 - (2, 2) 2 2

4 2 2
2 1 (2, 3) 2 1
- 3 (3, 3) 1 2

5∗ 3 - (2, 2) 1 2

6
5 - (2, 2) 2 3

5 3 21 2 (2, 3) 1 2
- 3 (3, 3) 1 2

7

8 - (2, 2) 2 6

6 4 3
2 2 (2, 3) 2 2
- 4 (3, 3) 1 3
- 4 (3, 3) 2 2

7∗ 1 2 (2, 3) 1 2

8
11 - (2, 2) 2 9

10 5 511 - (2, 2) 3 8
2 3 (2, 3) 2 3
- 4 (3, 3) 1 3

Figures 5–7 give the overall cost of the CRV method and of our algebraic decomposition method for
various values of n, d and C. We used the improved version of CRV suggested in Remark 5 (i.e. using CPRR
multiplications for the first phase and ISW multiplications for the second phase). The right-side graphics
illustrate the gain obtained by using this improved version of CRV, while the left-side graphics compare
our method to the improved CRV method. For our method, we considered quadratic decomposition (i.e.
s1 = s2 = 2) combined with Algorithm 2 for secure quadratic evaluations, as well as cubic decomposition
(s1 = s2 = 3) with TreeExplore for secure cubic evaluation. We further considered hybrid decomposition
combined with both Algorithm 2 and TreeExplore.

We observe that the quadratic decomposition is always more efficient than the cubic and hybrid decom-
positions. This is due to the gap of efficiency between the secure quadratic evaluation (Algorithm 2) and
the secure cubic evaluation (TreeExplore). Compared to CRV, the quadratic decomposition offers some
efficiency gain depending on the multiplication cost. For n = 4, we observe that it is more efficient than CRV
whenever a multiplication takes at least 10 elementary operations. For n = 8, the quadratic decomposition
is better than CRV whenever the multiplication cost exceeds 5 elementary operations. This shows that our
algebraic decomposition approach is the best known method for the probing secure evaluation of nonlinear
functions (such as s-boxes) in a context where the field multiplication is a costly operation.
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A Proof of Theorem 1

Proof. Let us prove the theorem by induction on d > s. For d = s, the relation results in (8). Assuming it is
verified for s, · · · , d we have:

h

(
d+1∑
i=1

ai

)
= h

(
d−1∑
i=1

ai + (ad + ad+1)

)
=

∑
16i1<···<is6d−1

ϕ
(s)
h (ai1 , . . . , ais) +

∑
16i1<···<is−16d−1

ϕ
(s)
h (ai1 , . . . , ais−1

, ad + ad+1)

+

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d−1]]
|I|=j

h

(∑
i∈I

ai

)
+

s−1∑
j=1

ηd,s(j)
∑

I⊆[[1,d−1]]
|I|=j−1

h

(∑
i∈I

ai + ad + ad+1

)

=
∑

16i1<···<is6d−1

ϕ
(s)
h (ai1 , . . . , ais) +

∑
16i1<···<is−16d−1

ϕ
(s)
h (ai1 , . . . , ais−1

, ad)

+
∑

16i1<···<is−16d−1

ϕ
(s)
h (ai1 , . . . , ais−1

, ad+1) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d−1]]
|I|=j

h

(∑
i∈I

ai

)

+

s−2∑
j=1

ηd,s(j)
∑

I⊆[[1,d+1]]
|I|=j+1,d∈I,d+1∈I

h

(∑
i∈I

ai

)
+ ηd,s(s− 1)

∑
I⊆[[1,d+1]]

|I|=s,d∈I,d+1∈I

h

(∑
i∈I

ai

)
.

The last equation above holds as ϕ
(s)
h is s-linear. Eventually, applying (8) to develop the term of the last

sum we get:

h

(
d+1∑
i=1

ai

)
=

∑
16i1<···<is6d+1

{d,d+1}6⊆{i1,...,is}

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d−1]]
|I|=j

h

(∑
i∈I

ai

)

+

s−2∑
j=1

ηd,s(j)
∑

I⊆[[1,d+1]]
|I|=j+1,{d,d+1}⊆I

h

(∑
i∈I

ai

)

+ ηd,s(s− 1)
∑

16i1<···<is6d+1

{d,d+1}⊆{i1,...,is}

ϕ(s)
h (ai1 , . . . , ais) +

∑
J({1,...,s}

h

∑
j∈J

aij

 ,

where “{d, d+ 1} 6⊆ {i1, . . . , is}” means that at least one among d, d+ 1 is not in {i1, . . . , is}.
We recall that ηd,s(j) =

(
d−j−1
s−j−1

)
, therefore ηd,s(s− 1) = 1 and we deduce:

h

(
d+1∑
i=1

ai

)
=

∑
16i1<···<is6d+1

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d−1]]
|I|=j

h

(∑
i∈I

ai

)

+

s−1∑
j=2

ηd,s(s− 1)
∑

I⊆[[1,d+1]]
|I|=j,{d,d+1}⊆I

h

(∑
i∈I

ai

)
+

∑
I⊆{1,...,d+1}
|I|=s,{d,d+1}⊆I

∑
I′(I

h

(∑
i∈I′

ai

) .
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We have:

∑
I⊆[[1,d+1]]

|I|=s,{d,d+1}⊆I

∑
I′(I

h

∑
j∈I′

ai

 =

s−2∑
j=0

(
d− j − 1

s− j − 2

) ∑
I′⊆[[1,d−1]]

|I′|=j

h

(∑
i∈I′

ai

)

+

s−1∑
j=2

(
d− j + 1

s− j

) ∑
I′⊆[[1,d+1]]

|I′|=j,d∈I′,d+1∈I′

h

(∑
i∈I′

ai

)

+

s−1∑
j=1

(
d− j

s− j − 1

)∑
I′⊆[[1,d]]

|I′|=j,d∈I′

h

(∑
i∈I′

ai

)
+

s−1∑
j=1

(
d− j

s− j − 1

) ∑
I′⊆[[1,d+1]]

|I′|=j,d/∈I′,d+1∈I′

h

(∑
i∈I

ai

)
,

where the coefficients have to be taken modulo 2. This completes the proof of the induction, since ηd,s(j) +(
d−j−1
s−j−2

)
≡ ηd,s(j − 1) +

(
d−j+1
s−j

)
≡
(
d−j
s−j
)

+
(
d−j+1
s−j

)
≡
(
d−j
s−j−1

)
[mod 2]. Hence the property is satisfied for

d > s. �

B Proof of Corollary 1

Proof. According to Theorem 1, we have:

h

(
d∑
i=1

ai

)
=

∑
16i1<···<is6d

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h

(∑
i∈I

ai

)

=
∑

16i1<···<is6d

 ∑
J⊆{1,...,s}

h

∑
j∈J

aij

+

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h

(∑
i∈I

ai

)

=

s∑
j=0

∑
I⊆[[1,d]]
|I|=j

(
d− j
s− j

)
h

(∑
i∈I

ai

)
+

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h

(∑
i∈I

ai

)

with the convention

(
d− s

0

)
= 1 if d > s

=
∑

I⊆[[1,d]]
|I|=s

h

(∑
i∈I

ai

)
+

s−1∑
j=0

µd,s(j)
∑

I⊆[[1,d]]
|I|=j

h

(∑
i∈I

ai

)
,

since
(
d−j
s−j
)

+ ηd,s(j) ≡
(
d−j−1
s−j

)
[mod 2]. �

C Sharing Compression

For every k > d, we propose hereafter a (k, d) compression primitive that takes a k-tuple (x1, x2, . . . , xk)

at input and computes a d-sharing of the value
∑k
i=1 xi. We then show that this primitive achieves perfect

(d−1)-probing security and give its complexity in terms of quantity of randomness and number of operations.
In the specific case d = 3, we further propose an improved sharing compression method.

C.1 General Case

The generic (k, d) compression primitive is processed by calling
⌈
k−d
d

⌉
times a (2d, d) compression primitive

— achieving perfect (d − 1)-probing security — that we will use as building block. Our (2d, d) sharing
compression (i.e. SharingCompress[2d : d]) proceeds as follows:
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1. for every 1 6 i < j 6 d, randomly sample ri,j ∈ F2n and set rj,i = ri,j ,
2. for every 1 6 i, j 6 d, compute yi = (xi + (

∑
j 6=i ri,j)) + xi+d ,

where the operations order is given by the brackets. The correctness holds from the fact that
∑

16i6d yi
equals

∑
16i6d(xi + xd+i) +

∑
16i6d

∑
j 6=i ri,j that is

∑
16i62d xi.

Now that we have a (2d, d) sharing compression method, we simply iterate it to create a (k, d) shar-
ing compression method. Let K = d · dk/de. Our (k, d) sharing compression method starts by setting
(y1, y2, . . . , yd)← (x1, x2, . . . , xd) and then iterates

(y1, . . . , yd)← SharingCompress[2d : d](y1, . . . , yd, xjd+1, . . . , xjd+d)

for j = 2, 3, . . . , dk/de, where xi = 0 for every k < i 6 K.
The algorithmic description of the method is given hereafter:

Algorithm 6 : SharingCompress[2d : d]

Input : a 2d-sharing (x1, x2, . . . , x2d)

Output: a d-sharing (y1, y2, · · · , yd) s.t.
∑d
i=1 yi =

∑2d
i=1 xi

1 Randomly generate d(d−1)
2 elements in F2n , {ri,j}16i<j6d

2 for i = 1 to d do
3 for j = 1 to i− 1 do
4 vi ← vi + rj,i

5 for j = i+ 1 to d do
6 vi ← vi + ri,j

7 for i = 1 to d do
8 yi ← xi + vi
9 yi ← yi + xi+d

10 return (y1, . . . , yd)

Algorithm 7 : SharingCompress[k : d]

Input : a k-sharing (x1, x2, . . . , xk)

Output: a d-sharing (y1, y2, · · · , yd) s.t.
∑d
i=1 yi =

∑k
i=1 xi

1 K ← d · dk/de
2 for j = k to K do
3 xj ← 0

4 for j = 1 to d do
5 yj ← xj

6 for j = 1 to K−d
d do

7 (y1, · · · , yd)
8 ← SharingCompress[2d : d]

(
y1, · · · , yd, xj∗d+1, xj∗d+2, · · · , xj∗d+d

)
9 return (y1, . . . , yd)

Complexity. The method makes dk/de−1 calls to the (2d, d) sharing compression procedure. Each of these
calls samples 1

2d(d− 1) fresh random values from F2n and processes d(d+ 1) additions over F2n . This makes
a total of (K − d)(d+ 1) ≈ k · d additions and 1

2 (K − d)(d− 1) ≈ 1
2k · d random values.

#add #rand

ddkde(d+ 1) 1
2dd

k
de(d− 1)
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Security. We state the perfect probing security of our sharing compression techniques in what follows:

Proposition 2. The (k, d) sharing compression procedure (Algorithm 7) achieves perfect (d − 1)-probing
security.

We first prove the security of our (2d, d) sharing compression procedure.

Lemma 2. The (2d, d) sharing compression procedure (Algorithm 6) achieves perfect (d−1)-probing security.

Proof. Let us consider a set of ` < d intermediate variables {v1, v2, . . . , v`}. First observe that an intermediate
variable vh can only take a limited number of forms which we classify in three categories:

1. ri,j and xi
2.
∑

j 6=i
j6n

ri,j for some n 6 d and xi +
∑
j 6=i ri,j

3. xi +
∑
j 6=i ri,j + xi+d

We will show that such set of intermediate variables can be perfectly simulated with no more than ` inputs
among x1, x2, . . . , x2d.

To this purpose we will first show that if more than ` inputs enter in the computation of {v1, v2, . . . , v`}
then there exists an intermediate variable vh ∈ {v1, v2, . . . , v`} and a random value ri,j such that ri,j enters
in the computation of vh but not in the computation of vh′ for h′ ∈ [[1, `]]\{h}.

Let vh ∈ {v1, v2, . . . , v`} be such that two input shares xi and xi+d enter in its computation (i.e. vh is of
the third form). Then, it can be checked that one of the following conditions is satisfied:

– (C1) there exists a fresh random ri,j that enters in the computation of no other intermediate variable
than vh;

– (C2) there exists an element vh′ in {v1, v2, . . . , v`} \ {vh} such that all variables that enter in the
computation of vh′ also enter in the computation of vh (in particular any input that enters in the
computation of vh′ also enters in the computation of vh).

Indeed, if C1 is not satisfied, then there exists an intermediate variable vh′ in {v1, v2, . . . , v`} \ {vh} that
involves in its computation at least two randoms ri,j and ri,k which also appear in vh. Otherwise this would
contradict6 ` < d. By construction, this is only possible if vh′ is an intermediate sum in the process of
building vh.

From this statement we trivially get that if more than ` inputs enter in the computation of {v1, v2, . . . , v`}
then at least one intermediate variable vh verifies C1 and then there exists a fresh random ri,j that enters
in the computation of no other intermediate variable than vh.

Finally, the above identified vh is independent from all the inputs and all the intermediate variables
{v1, v2, . . . , v`} \ {vh} and therefore can be perfectly simulated by a fresh random value and discarded from
the list of intermediate variables yet to simulate. The above argument can be applied iteratively until either
there are fewer inputs that enter in the computation of the remaining list of intermediate variable than the
number of elements in it or the list is empty.

This concludes the proof, since a set of intermediate variable of size smaller than d can always be reduced
to a set of n intermediate variables where less than n inputs enters in their computation and therefore can
be perfectly simulated from these inputs and by setting to random values the ri,j involved. �

6 Since vh is of form (3), then d−1 randoms ri,j enter its computation. For all of them to also enter in the computation
of others vk, while satisfying the condition ` < d, there must exist vh′ , with h′ 6= h, that involves two common
randoms with vh.
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Proof (Proposition 2). Let us consider a set of ` < d intermediate variables {v1, v2, . . . , v`}. We will show
that this set of intermediate variables can be perfectly simulated with no more than ` inputs among
x1, x2, . . . , xk. By construction, any intermediate variable can be seen as an intermediate variable of the
SharingCompress[2d : d] algorithm. Therefore, from Lemma 2, the set of, say n, intermediate variables that
appear in a particular instance of SharingCompress[2d : d] can be mapped to a set of n or less inputs of the
SharingCompress[2d : d] instance such that these inputs can perfectly simulate the n intermediate variables.
Each of these n or less inputs is then considered as either input of the SharingCompress algorithm or as
output (i.e. intermediate variable) of another instance of SharingCompress[2d : d]. Starting from the last call
to algorithm SharingCompress[2d : d] up to the first call, the intermediate variables {v1, v2, . . . , v`} can be
iteratively mapped to ` or less inputs of the algorithm SharingCompress. This concludes the proof. �

C.2 Specific Case (k to 3)

The following algorithm provide an improve sharing compression for the specific case where one wants to
compute a 3-sharing from a (k, 3)-sharing.

Algorithm 8 : SharingCompress[k : 3]

Input: shares (h1, h2, . . . , hk) with (k > 3)
Output: shares (y1, y2, y3)

1 q ← bk2 c
2 (m1,m2, . . . ,mq)←$ Fq2n
3 y1 ←

∑k
i mod 3=1(hi +mdi/2e)

4 y2 ←
∑k
i mod 3=2(hi +mdi/2e)

5 y3 ←
∑k
i mod 3=0(hi +mdi/2e)

6 return (y1, y2, y3)

In the above algorithm we define mdi/2e := 0 for every d i2e > q. Since the sharing compression with
(k, d) = (7, 3) is intensively used in the paper, we further exhibit the algorithm for SharingCompress[7 : 3]
hereafter:

Algorithm 9 : SharingCompress[7 : 3]

Input: shares (h1, h2, . . . , h7)
Output: shares (y1, y2, y3)

1 m1 ←$ F2n

2 m2 ←$ F2n

3 m3 ←$ F2n

4 y1 ← (h1 +m1) + (h4 +m2) + h7
5 y2 ← (h2 +m1) + (h5 +m3)
6 y3 ← (h3 +m2) + (h6 +m3)
7 return (y1, y2, y3)

Complexity. The complexity of Algorithm 8 is summarized in the following table:

#add #rand

(2k − 3)− (k mod 2)
⌊
k
2

⌋

28



Security. The security of Algorithm 8 is stated hereafter:

Lemma 3. The (k, 3) sharing compression procedure (Algorithm 8) achieves perfect 2-probing security.

Proof. The whole set of intermediate variables of SharingCompress[k : 3] algorithm (8) is as follows:

– h1, h2, . . . , hk

– m1,m2, . . . ,mq

–
∑n
i mod 3=1(hi +mdi/2e) for some n 6 k

–
∑n
i mod 3=2(hi +mdi/2e) for some n 6 k

–
∑n
i mod 3=0(hi +mdi/2e) for some n 6 k

First case, the attacker observes a unique intermediate variable v:

– if v is of the form hi, then this very input hi is enough to perfectly simulate v.

– if v involves mi in its computation then, since no other information about mi is given to the attacker,
he cannot distinguish v from a random value. In this case no knowledge about the input is necessary; v
is perfectly simulated by a fresh random.

Second case, the attacker observe two intermediate variables v1, v2:

– if v1 (resp. v2) is of the form hi, then assign hi to v1 (resp. v2). If there is still one variable (say v1)
unassigned, then at least a fresh random mi enters its computation. Since mi enters the computation of
no other intermediate variable, then assign a fresh random value to v1.

– otherwise, if mi enters in the computation of v1 but not v2, then both variables are mutually independent
of the variables {h1, h2, h3, h4, h5, h6, h7}; two fresh random values can be assigned to them.

– otherwise, v1 and v2 are necessarily either of the form (hi + x, hj + x) or (hi + x, x), where at least
one random mk enters in the computation of x. In both cases the attacker cannot distinguish x from a
random value. Therefore one may assign (hi+m,hj +m) to (v1, v2) (resp. (hi+m,m) to (v1, v2)), where
m is a fresh random value.

�

D A Variant of Algorithm 2

We describe hereafter a variant of Algorithm 2 that trades some random number generations against few
more additions. Its security proof, which is similar to that given in [8], is not detailed here.
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Algorithm 10 : Scheme for Quadratic Functions (Second Version)

Input : the d-sharing (x1, x2, · · · , xd) of x in F2n

Output: a d-sharing (y1, y2, · · · , yd) of y = h(x)

1 Randomly generate d(d− 1)/2 elements ri,j ∈ F2n indexed such that 1 6 i < j 6 d
2 Randomly generate d elements αi ∈ F2n indexed such that 1 6 i 6 d
3 Randomly generate d− 1 elements βi ∈ F2n indexed such that 1 6 i 6 d− 1
4 for i = 1 to d do
5 for j = i+ 1 to d do
6 r′i,j ← αi + βj
7 t← rj,i + h(xi + r′i,j)

8 t← t+ h(xj + r′i,j)

9 t← t+ h((xi + r′i,j) + xj)

10 t← t+ h(r′i,j)

11 for i = 1 to d do
12 yi ← h(xi)
13 for j = 1 to d, j 6= i do
14 yi ← yi + ri,j

15 if d is even then y1 = y1 + h(0)
16 return (y1, y2, . . . , yd)

E General Tree-based Method

In this section, the secure evaluation method previously exhibited for quadratic polynomials is extended to
apply for any algebraic degree. It directly follows from the hereafter straightforward generalization of (16)
and (18) to a degree-s polynomial h ∈ Bn,m:

h
( d∑
j=1

xj

)
=

2s−1∑
i=1

h
( d∑
j=1

xj + e
(i)
j

)
, (23)

and

h
( d∑
j=1

xj

)
=

2s+1−1∑
i1=1

2s+1−1∑
i2=1

· · ·
2s+1−1∑
it=1

h
( d∑
j=1

xj + e
(i1)
j + e

(i1,i2)
j + · · ·+ e

(i1,i2,··· ,it)
j

)
, (24)

where for every (j, q) ∈ [[1, d]]×[[1, t]] and every tuple (i1, · · · , iq−1) ∈ [[1, 2s+1−1]]q−1 the family (e
(i1,··· ,iq−1,iq)
j )iq∈[[1,2s+1−1]]

is randomly (s+ 1)-spanned.

Starting from (24), the same reasoning as in Section 5.2 leads to the definition of the algorithm TreeExplores
whose specification and complexity are given hereafter.

TreeExplores When called for depth parameter k equal to t = dlog3(d)e and for a degree-s polynomial h, it
builds a d-sharing of h(x) from a d-sharing of x while ensuring (d− 1)-probing security.
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Algorithm 11 : TreeExplores(n, d)

Input: a function h of algebraic degree s, a d-sharing (z1, z2, . . . , zd) of z ∈ F2n , a depth parameter k
Output: a 3k-sharing of h(z)

1 if k = 0 then
2 return h(z1 + z2 + · · ·+ zd)

3 for j = 1 to d do

4 (e
(1)
j , e

(2)
j , . . . , e

(2s+1−1)
j )← RandSpan(s+ 1)

5 for i = 1 to 2s+1 − 1 do

6 (h
(i)
(w))w∈{1,2,3}k−1 ← TreeExplore(h, s, z1 + e

(i)
1 , z2 + e

(i)
2 , . . . , zd + e

(i)
d , k − 1)

7 for j = 1 to 3k−1 do

8 (h(w||1), h(w||2), h(w||3))← SharingCompress[2s+1 − 1 : 3](h
(1)
(w), h

(2)
(w), . . . , h

(2s+1−1)
(w) )

9 return (h(w))w∈{1,2,3}k

Complexity. Let us denote by µ(s) the value 2s+1 − 1. The tree contains
∑t−1
k=0 µ(s)k = 1

µ(s)−1 (µ(s)
t − 1)

nodes and µ(s)t leafs (where µ(s)t = dln(2
s+1−1)/ ln 3 ' d0.63(s+1)). Each node makes d calls to RandSpan(s+

1), we hence have a total of 1
µ(s)−1 (µ(s)

t − 1)d calls, each involving
∑s+1
i=1

(
s+1
i

)
(i − 1) = (s − 1)2s + 1

additions and the generation of s + 1 random elements. A node at level t − k also makes 3k−1 calls to

SharingCompress[2s+1 − 1 : 3], which makes a total of
∑t−1
i=0 µ(s)i3t−1−i = µ(s)t−3t

µ(s)−3 calls, each involving

2µ(s) − 4 additions and the generation of bµ(s)2 c random elements. Additionally, each node performs µ(s)d
additions to generate the new sharings and each leaf performs d additions and one evaluation of h.

Complexity

CTEs #add µ(s)t−1
µ(s)−1 d

(s+1)
2 (µ(s) + 1) + µ(s)t−3t

µ(s)−3 (2µ(s)− 4) + µ(s)td

#rand µ(s)t−1
µ(s)−1 d(s+ 1) + µ(s)t−3t

µ(s)−3

⌊
µ(s)
2

⌋
Exact Count #mult 0

#evalh µ(s)t

where t = dlog3 de and µ(s)t = dln(2
s+1−1)/ ln 3.

CTEs #add O(sd0.63(s+1)+1)

#rand O(sd
(
d0.63

2

)s+1

)

Approximation #mult 0

#evalh O(d0.63(s+1))

where t = log3 d and µ(s)t ' d0.63(s+1).

F Security of the Tree-based Method

The argumentation is inspired from simulation proof procedures as done for instance in [13]. In the following,
we assume that the security parameter d takes the form 3t to ease the explanation, but the reasoning
straightforwardly extends to the general case d ∈ N. For any family O of at most d− 1 intermediate results
probed/observed by the adversary during the processing of TreeExplore, our proof is composed of the following
three main steps:
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1. assign, to each of the d − 1 observed intermediate variables, a sub-set E ⊂ [[1, d]] and/or a sub-set
U ⊂ [[1, 7t]],

2. simulate the behaviour of all the intermediate variables (in a way which is indistinguishable from the
adversary view) with only the knowledge of the shares in {xi; i ∈ E} and {h(u);u ∈ U},

3. prove that the knowledge of the shares in {xi; i ∈ E} and {h(u);u ∈ U} (where the h(u) are viewed as
the shares of h(x)) gives no information about the secret x.

In the proof below, the recursive execution of TreeExplore is represented by a tree as in Figure 1. Each
node (including the leaves) processes one instance of TreeExplore in the recursive processing started by the
root. According to the notations introduced for Figure 1, a node at depth k is labelled with a (t− k)-tuple
u = (i1, i2, · · · , it−k) ∈ [[1, 7]]t−k that contains the indices of the edges connecting the node to the root. The
size of a tuple u is denoted by |u|. By convention, we shall assume that the label of the root is 0. The tuple

u is also used to label the variables manipulated by the uth node: intermediate results zj , e
(i)
j , h

(i)
(w) and

h(w) in Algorithm 5 are therefore respectively denoted by z
(u)
j , e

(u||i)
j , h

(u||i)
(w) and h

(u)
(w), where || denotes the

concatenation. If u (resp. w) is the empty tuple of size 0, then we will simply the notation h
(u)
(w) in h(w) (resp.

h(u)). We apply the same notation rule to denote the random values involved during the wth processing of
SharingCompress[7 : 3] performed by the node labelled with u: namely the intermediate values mi are denoted

by m
(u)
(w||i). Eventually, the set of all the tuples with coordinates in [[1, 7]] (resp. [[1, 3]]) and size lower than or

equal to t is denoted by [[1, 7]]? (resp. [[1, 3]]?).

For the assignment and simulation steps of our proof we split the processing into three steps.

– The first step is dedicated to the construction of the values z
(u)
j with j ∈ [[1, d]] and u ∈ [[1, 7]]k for k 6 t.

This corresponds to the construction of the tree such as described in Figure 1 from the root to the leaves

(or equivalently to the steps 3 to 6 – excluding the processing of the outputs h
(u||i)
(w) – in Algorithm 5).

– The second step relates to the computation of h(
∑d
j=1 z

(u)
j ) for every tuple u ∈ [[1, 7]]t. This corresponds

to the processing done by a leaf in the tree representation given in Figure 1 (or equivalently to the 2nd
Step of Algorithm 5).

– The third step is dedicated to the construction of the values h
(u)
(w) for (u,w) ∈ [[1, 7]]t−k × [[1, 3]]k and

k 6 t. This corresponds to the secure conversion of the 7t shares h(u) of h(x), possessed by the leaves
after the two first steps, into d = 3t shares h(w) of h(x). Equivalently, it corresponds to the recursive
processing of SharingCompress[7 : 3].

Assignment. The purpose of this step is to construct two sets E and U of labels. The first set will be filled
with indices j of shares xj of x, and the second set will be filled with labels u of the shares h(u) of h(x).
Both sets are initially empty.

– First Step: during this step the node with label u manipulates z
(u)
j , e

(u||i)
j or (z

(u)
j +e

(u||i)
j ) with j ∈ [[1, d]].

If one of them is probed, then add j to E .

– Second Step: during this step, the uth leaf processes h(u) = h(
∑d
j=1 z

(u)
j ). The intermediate results during

this processing are h(u) and all the sub-sums S
(u)
q =

∑q
j=1 z

(u)
j , with q 6 d. If the adversary observes one

or several intermediate results S
(u)
q for q ∈ [[1, d]] (including h(u) = h(S

(u))
d ), then one starts by adding

(u, 0) to U . Afterwards, we build a set S(u) containing 0 and all the values q such that S
(u)
q has been

observed. Finally, one applies the following rule for every non-zero element q ∈ S(u) in ascending order:

• let τ be the greatest element of S(u) which is smaller than q; if |{τ + 1, · · · , q}∩E}| = q− τ − 1, then
replace7 E by E ∪ {τ + 1, · · · , q}, otherwise add to E the greatest element in {τ + 1, · · · , q}\E .

7 Note that this step adds at most one element to E .
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– Third Step: during this step a node at depth t − k and labelled by u manipulates the values h
(u)
(w||j)

and h
(u||i)
(w) for (i, j, w) ∈ [[1, 7]]× [[1, 3]]× [[1, 3]]k−1. It also manipulates all the intermediate values during

the 3k−1 processings of SharingCompress[7 : 3] (each one converting the seven shares h
(u||1)
(w) , h

(u||2)
(w) , . . . ,

h
(u||7)
(w) into the three new shares h

(u)
(w||1), h

(u)
(w||2) and h

(u)
(w||3)). The set U is first filled with all the pairs

(u,w) such that h
(u)
(w) has been probed by the adversary. Then, from the root to the internal nodes with

greatest depth (or equivalently for the input parameter k of Algorithm 5 ranging from t to 1), we apply
the following treatment to U (where we recall that O denotes the set of intermediate results probed by
the adversary):

• for each call to SharingCompress[7 : 3] (labelled by w ∈ [[1, 3]]k) done by a node with label u ∈ [[1, 7]]t−k;
if the set O contains one (resp. two) element(s) corresponding to intermediate values manipulated

during SharingCompress[7 : 3], then apply Lemma 3 to identify the element(s) h
(u)
(w||i) (resp. (h

(u)
(w||i)

and h
(u)
(w||j)) enabling to perfectly simulate them and add the corresponding pair(s) of labels into U .

• for each call to SharingCompress[7 : 3] (labelled by w ∈ [[1, 3]]k) done by a node with label u ∈ [[1, 7]]t−k;

if O ∪ {h(u
′)

(w′); (u′, w′) ∈ U} contains at least 3 values corresponding to internal values during the

processing (including the outputs h
(u)
(w||j), with j ∈ [[1, 3]], and the inputs h

(u||i)
(w) , with i ∈ [[1, 7]]), then

add the seven new pairs (u||1, w), (u||2, w), . . . , (u||7, w) to U .

• remove from U all the pairs with a label u ∈ [[1, 7]]t−k as first coordinate.

At the end of the process above for the third step, it can be checked that the set U is only filled with
labels u of leaves.

The three rules applied during the third step above implicitly assume that SharingCompress[7 : 3] is
such that (1) the observation of i < 3 intermediate results brings information on at most i inputs of
SharingCompress[7 : 3] and (2) the observation of i > 3 intermediate results is sufficient to recover infor-
mation on all the inputs/outputs (i.e. the processing is perfect 2-probing secure). This property is proved
in Lemma 3 which sates the perfect 2-probing security of the algorithm SharingCompress[N : 3] for any N .

Simulation. Before starting the simulation step, we introduce the following useful notation: two words u
and u′ respectively of size k and k′ satisfy the relation u 6 u′ if k 6 k′ and ui = u′i for every i 6 k. We shall
moreover assume that any word contains the null word 0 (of size 0). The simulation then starts by assigning

a random value to every e
(u)
j entering in the computation of any value in O (actually, this is exactly what is

done in Algorithm 1). Afterwards, every intermediate variable v ∈ O (i.e. every intermediate value observed
by the adversary) is simulated as follows.

– If v is of the form z
(u)
j or (z

(u)
j + e

(u||i)
j ) with j ∈ [[1, d]], then j belongs to E by construction (first step

of the assignment phase). Due to (19), both z
(u)
j and (z

(u)
j + e

(u||i)
j ) can therefore be perfectly simulated

with the share xj and the random values e
(u||i)
j and e

(w)
j such that w 6 u (which have been initialized

at random during the preliminary step of the simulation).

– If v is of the form
∑q
j=1 z

(u)
j , with (q, u) ∈ [[1, d]]× [[1, 7]]k, then its simulation depends on E . If the latter

set contains all the indices j lower than or equal to q, then all the values z
(u)
j entering into the sum can

be perfectly simulated thanks to the xj with j ∈ E and the random values e
(w)
j with w 6 u. Otherwise,

this means that there exists j ∈ [[1, q]] such that j /∈ E , i.e. such that no value of the form z
(w)
j or

(z
(w)
j + e

(w||i)
j ) (with w ∈ [[1, 7]]∗ and i ∈ [[1, 7]]), has been previously observed. This moreover implies

that the missing value z
(u)
j cannot be deduced from the other observations v of the form

∑q
j=1 z

(u)
j

with q ∈ [[1, d]] (due to the rule applied during the second step of the assignment). As a consequence, if

[[1, q]] ∩ E 6= [[1, q]], then v =
∑q
j=1 z

(u)
j can be assigned a random value.
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– If v enters into one of the 3k−1 processings of SharingCompress[7 : 3] performed by a node with label
u ∈ [[1, 7]]t−k (including the outputs but excluding the inputs), then one applies the following rule: if
U contains all the labels u′ ∈ [[1, 7]]t such that u 6 u′, then v can be perfectly simulated thanks to all

the values (h(u
′))u′∈[[1,7]]t,u6u′ , and the values (m

(u′′)
i )i63,u′′∈[[1,7]]?,u6u′′ which are assigned at random.

Otherwise, this means that at least one u′ ∈ [[1, 7]]t is missing in U , which itself implies (by construction
of U) that at least five among the 7 inputs of the call to SharingCompress[7 : 3] manipulating v are
missing. As a consequence, at least one value entering into the construction of v cannot be deduced from
the adversary observations and the latter variable can hence be assigned a random value.

– If v is an input of one of the 3k−1 processings of SharingCompress[7 : 3] performed by a node with label
u ∈ [[1, 7]]t−k, then it also corresponds to the output of one of the processings of SharingCompress[7 : 3]
performed by the nodes at depth t− k + 1. It has therefore been simulated by the previous step.

Security. Before introducing the main proposition of the security proof, we recall that we have:

h(u) = h

x+
∑

u′∈[[1,7]]∗,u′6u

e(u′)

 , (25)

where e(u′) =
∑3t

j=1 e
(u′)
j (see (18)).

Proposition 3. For any set O of strictly less than d observable variables, the sets E and U designed from
O by the assignment phase brings no information on the sensitive variable x.

Proof. By construction, the cardinality of {xi : i ∈ E} is at most d− 1. It is therefore independent of x and
of the set {h(u); (u, 0) ∈ U} since, from (25), the h(u) only involve x (and not the xi) in their computation.
It then remains to prove that {h(u); (u, 0) ∈ U} is independent of x (and h(x)).

Let Uk denote the content of U during the third step of the assignment when starting to deal with the
nodes at depth k.

– If there exists i1 ∈ [[1, 7]] such that (u||i1, w) /∈ Uk+1, then there exist at least four other indices i2,
i3, i4 and i5 in [[1, 7]] such that the (u||ij , w), j ∈ {1, 2, 3, 4, 5}, are not in Uk+1. This property is
called P. It is a consequence of the fact that, by construction of U (during the assignment), for every
(u,w) ∈ [[1, 7]]k × [[1, 3]]t−k we have #{i ∈ [[1, 7]] | (u||i, w) ∈ Uk+1} ∈ {0, 1, 2, 7}.

– By construction of U , if P is satisfied by a node at depth k + 1, then it is satisfied by another node at
depth k.

– If #O < 3t (which is true by hypothesis since d = 3t), then there exists u ∈ [[1, 7]]t such that (u, 0) /∈ Ut
(i.e. (u, 0) /∈ U). One can indeed easily prove the contrapositive: if all the possible pairs (u, 0) are in U ,
then by construction and the two first points above this implies that every 7-tuple at input of a 3t−1

processings of SharingCompress[7 : 3] done at depth 0 is included in U1, which implies that #U0 has
cardinality greater than d = 3t and hence #O > d (since U0 ⊆ O).

– From the three points above, we deduce that P is satisfied for every depth k ∈ [[1, t]]. In other terms and

without loss of generality, there exists w′ ∈ [[1, 3]]t−1 such that h
(1)
(w′), h

(2)
(w′), h

(3)
(w′), h

(4)
(w′) and h

(5)
(w′) cannot be

deduced from the elements in U , which itself implies that at least one element of {h(w′||1), h(w′||1), h(w′||3)}
cannot be deduced from U . Since (h(w))w∈[[1,3]]t is a d-sharing of h(x) (for d = 3t), we deduce that U is
independent of h(x) (and hence of x since h can be bijective).

�

G Complexities

G.1 Operation Count

We summarize here in two tables the exact operation count for all discussed methods in this paper. Table 1
gathers the methods for the secure evaluation of low algebraic degree polynomials, whereas Table 2 gives the
complexities for secure evaluation of a polynomial of high algebraic degree.
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Table 1. Complexity: Methods for Low Algebraic Degree Polynomial

Operation Count

CD2S2 #add 9
2
d(d− 1) + 1

Section 4, s = 2 #rand d(d− 1)

(∼ CPRR) #mult 0

#lut d(2d− 1)

CD2Ss #add
∑s
j=1 µd,s(j) ·

(
d
j

)
·#adds(j) + (dd k

d
e − d)(d+ 1)

Section 4, s > 2 #rand
∑s
j=1 µd,s(j) ·

(
d
j

)
·#rands(j) + 1

2
· (dd k

d
e − d)(d− 1)

#mult
∑s
j=1 µd,s(j) ·

(
d
j

)
·#mults(j)

#lut
∑s
j=1 µd,s(j) ·

(
d
j

)
·#luts(j)

where k =
∑s
j=1 j · µd,s(j) ·

(
d
j

)
and µd,s(j) =

(
d−j−1
s−j

)
mod 2

where #xxxs(j) are either from CTEs or CCRVs at order j

CTE2 #add 3d · 7t − 2d+ 5
2
(7t − 3t)

Section 5, s = 2 #rand 7t

#mult 0

#lut d
2
7t − d

2
+ 3(7t−3t)

4

where t = dlog3 de
CTEs #add µ(s)t−1

µ(s)−1
d (s+1)

2
(µ(s) + 1) + µ(s)t−3t

µ(s)−3
(2µ(s)− 4) + µ(s)td

Section 5, s > 2 #rand µ(s)t−1
µ(s)−1

d(s+ 1) + µ(s)t−3t

µ(s)−3

⌊
µ(s)
2

⌋
#mult 0

#lut µ(s)t

where t = dlog3 de and µ(s)t = dln(2
s+1−1)/ ln 3 ' d0.63(s+1).

CCRVs #add 2d(d− 1)(`+ t− 3) + d(t− 1)(`− 2)

Section 6 #rand d(d−1)
2

(`+ t− 3)

#mult d2(`+ t− 3)

#lut d× t× `
where t =

√∑s
i=0

(
n
i

)
/n and ` >

√∑s
i=0

(
n
i

)
/n− 1

n
+ 1
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Table 2. Complexity: Methods for High Algebraic Degree Polynomial

Operation Count

CCRV #add 2d(d− 1)(`+ t− 3) + d(t− 1)(`− 2)

#rand d(d−1)
2

(`+ t− 3)

#mult d2(`+ t− 3)

#lut d× t× `
where t =

√
2n/n and ` >

√
2n/n− 1

n
+ 1

CPolyDecomp #add (t+ r) ·#adds + d · (r · t+ t+ r)

Decomposition in #rand (t+ r) ·#rands
Polynomials #mult (t+ r) ·#mults
of degree s #lut (t+ r) ·#luts + d · (t+ 1) · (r + 1)

(Section 3) where t and r are chosen to minimize the overall complexity

where C#xxxs are from low algebraic degree methods

CPolyDecomp(s1,s2) #add r ·#adds1 + t ·#adds2 + d · (r · t+ t+ r)

Decomposition in #rand r ·#rands1 + t ·#rands2
Polynomials #mult r ·#mults1 + t ·#mults2

of degree s1 and s2 #lut r ·#luts1 + t ·#luts2 + d · (t+ 1) · (r + 1)

where t and r are chosen to minimize the overall complexity

where #xxxs are from low algebraic degree methods

G.2 Asymptotic Complexities

When comparing the asymptotic complexities of the methods, we can no longer assume that the function h
is represented by a look-up table. Indeed the bit-size of such a table is O(n2n) which is quickly much greater
than the capacity of the device. If a compact representation of h is known, it can however be evaluated on-
the-fly. This is in particular the case, if h is known to have a small algebraic degree. Indeed, in this case h can
be represented by the list of all its non-zero coefficients in its polynomial representation. This gives a memory
complexity of O(n

∑s
i=0

(
n
i

)
). Moreover, for sparse polynomials the evaluation can be done faster than with

Horner’s scheme which has complexity O(2n) both in terms of additions and multiplications (see e.g. [15]).
The evaluation for sparse polynomials simply consists in evaluating each individual term separately (e.g. by
using a square and multiply algorithm). It requires O(

∑s
i=0

(
n
i

)
) additions and O(n

∑s
i=0

(
n
i

)
) multiplications.

Based on this discussion, and after denoting by κ(n, s) the sum
∑s
i=0

(
n
i

)
, we exhibit hereafter the asymptotic

complexities of the presented methods for a function h ∈ Bn,n of algebraic degree s:

– CRVs(n, d): starting from the complexity analysis done in Section 6 and assuming t = ` '
√

1
nκ(n, s)

(which corresponds to the choices of t and ` that minimize the number of multiplications) we get
O(d2

√
κ(n, s)/n) non-linear multiplications and random values, O(d2

√
κ(n, s)/n+dκ(n, s)/n) additions

and O( dnκ(n, s)) evaluations of linearized polynomials. When processed on-the-fly, the latter evaluations
themselves involve O(n) additions and O(n2) multiplications. We eventually get:

#add #rand #mult

CCRVs O(d2
√

κ(n,s)
n + dκ(n, s)) O(d2

√
κ(n,s)
n ) O(d2

√
κ(n,s)
n + dnκ(n, s))

where we can approximate κ(n, s) by O(2n) if s > n/2−
√
n and by O(

(
1−2s/n)−1

(
n
s

)
) if s < n/2−

√
n.

If s is small compared to n, we can approximate
(
n
s

)
by ns/ss and O(

(
1− 2s/n)−1

(
n
s

)
) by O(ns/ss).

#add #rand #mult

CCRVs
O
(
d2 n

(s−1)/2

ss/2
+ dn

s

ss

)
O
(
d2 n

(s−1)/2

ss/2

)
O
(
d2 n

(s−1)/2

ss/2
+ dn

s+1

ss

)
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– Algorithm TreeExplores(n, d): from the complexity analysis conducted in Appendix E, we deduce the
following complexity CTEs :

#add #rand #mult

CTEs O(d0.63(s+1)(sd+ κ(n, s))) O(sd0.63(s+1)+1) O(d0.63(s+1)nκ(n, s))

After approximation, we get:

#add #rand #mult

CTEs O(d0.63(s+1) ns

ss + sd0.63s+1.63) O(sd0.63s+1.63) O(d0.63(s+1) ns+1

ss )

– Algorithm 1 with SecureEvalj = CRVs(n, j) for j 6 s and s 6 d/2:

#add #rand #mult

CCRVs

Alg. 1 O
(
ds+1(dn

(s−1)/2

s3s/2
+ ns

s2s )
)
O
(
ds+2 n(s−1)/2

s3s/2

)
O
(
ds+2 n

s−1
2

s
3s
2

(1 + n
s+3
2

ds
s
2

)
)

– Algorithm 1 with SecureEvalj = TreeExplores(n, j) for j 6 s and s 6 d/2:

#add #rand #mult

CTEsAlg. 1 O(d1.63s+0.63 ns

s2s + d1.63s+1.63 1
ss−1 ) O(d

1.63s+1.63

ss−1 ) O(d1.63s+0.63 ns+1

s2s )
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