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Complete characterization of generalized bent and
2k-bent Boolean functions
Chunming Tang, Can Xiang, Yanfeng Qi, Keqin Feng

Abstract

In this paper we investigate properties of generalized bent Boolean functions and 2k-bent (i.e., negabent, octabent, hex-
adecabent, et al.) Boolean functions in a uniform framework. We generalize the work of Stǎnicǎ et al., present necessary and
sufficient conditions for generalized bent Boolean functions and 2k-bent Boolean functions in terms of classical bent functions,
and completely characterize these functions in a combinatorial form. The result of this paper further shows that all generalized
bent Boolean functions are regular.
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I. INTRODUCTION

Throughout this paper, let Z2k be the ring of integers modulo 2k, Zn2 be the n-dimensional vector space over Z2, and C the
field of complex numbers, where k, n are positive integers. If x = (x1, · · · , xn) and y = (y1, · · · , yn) are two vectors in Zn2 ,
we define the scalar (or inner) product by x · y = x1y1 + · · ·+ xnyn. For a complex z = a+ b

√
−1, the absolute value of z

is |z| =
√
a2 + b2 and z = a− b

√
−1 denotes the complex conjugate of z, where a and b are real numbers.

A function from Zn2 to Z2k is called a generalized Boolean function on n variables [11], whose set is denote by GBkn. If
k = 1, a function in GB1

n is a classical Boolean function on n variables. An important tool in the analysis of generalized
Boolean function is the (generalized) Walsh-Hadamard transform, which is the function Hg : Zn2 → C , defined by

Hg(u) = 2−
n
2

∑
x∈Zn2

(−1)u·xζ
g(x)

2k
, (1)

where g ∈ GBkn, u ∈ Zn2 , and ζ2k = e
2π
√
−1

2k is the complex 2k-primitive root of unity. The inverse Walsh-Hadamard transform
of such g is

ζ
g(x)

2k
= 2−

n
2

∑
u∈Zn2

Hg(u)(−1)u·x. (2)

The function g is said to be a generalized bent function if |Hg(u)| = 1 for any u ∈ Zn2 . A generalized bent function g is regular
if there exists some generalized Boolean function g∗ satisfying Hg(u) = ζ

g∗(u)

2k
for any u ∈ Zn2 . Such function g∗ is called the

dual of g. From Equation (2), the dual g∗ of a regular generalized bent function g is also regular. When k = 1, the generalized
bent function g is just classical Boolean bent functions which have been introduced by Rothaus [8]. These bent functions only
exist for n even. If n is odd, a function g ∈ GB1

n is said to be a semibent function if and only if |Hg(u)| ∈ {0,
√

2} for
any u ∈ Zn2 . Such Boolean functions have been extensively studied, as they have important applications in cryptograph(stream
ciphers [1]), sequences [6] and coding theory (Reed-Muller codes [3]). We refer to [2], [4], [5], [16] for more on cryptographic
Boolean function and bent functions. When k = 2, generalized Boolean functions in GB2

n were studied by Schmidt [10]. Solé
and Tokareva [11] discussed the connection between generalized bent functions in GB2

n and bent functions in GB1
n. Stǎnicǎ et

al. [13] characterized generalized bent Boolean functions in GB2
n and GB3

n.
For Boolean functions f ∈ GB1

n, the authors in [9], [7], [14], [15] introduced and investigated another transform which was
called nega-Hadamard transform. Later, Stǎnicǎ [12] generalized their results and proposed the 2k-Hadamard transform of f
defined by

H(2k)
f (u) = 2−

n
2

∑
x∈Zn2

(−1)f(x)+u·xζ
wt(x)

2k
, (3)
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where u ∈ Zn2 and wt(x) = #{i : 1 ≤ i ≤ n, xi 6= 0} is the Hamming weight of x. A function f is called a 2k-bent function
if the 2k-Hadamard transform are flat in absolute value, that is, |H(2k)

f (u)| = 1, for any u ∈ Zn2 . We call a function f a
strong 2k-bent function if and only if f is a 2l-bent function for any l ≤ k. Stǎnicǎ [12] completely characterized the octabent
(23-bent) and hexadecabent (24-bent) functions in terms of bent functions.

In this paper, we consider generalized bent Boolean functions in GBkn and 2k-bent functions in GB1
n. Firstly, from the

theory of cyclotomic fields we prove that all generalized bent Boolean functions are regular, i.e., their dual exist. Secondly, we
completely characterize the generalized bent Boolean functions in GBkn (k ≥ 3) in terms of bent functions and also describe
these functions by a combinatorial form. Finally, we associate every function in GB1

n with a function in GBkn. Consequently,
we completely characterize the 2k (k ≥ 3) bent Boolean functions in GB1

n in terms of bent functions and also describe these
functions by a combinatorial form.

II. SOME RESULTS ON CYCLOTOMIC FIELDS AND THE REGULARITY OF GENERALIZED BENT BOOLEAN FUNCTIONS

In this section we will give some results on cyclotomic fields, which will be used in the following sections. We also prove that
any generalized bent Boolean function in GBkn (k ≥ 3) is always regular. Firstly, we state some basic facts on the cyclotomic
field K = Q(ζ2k), which can be found in any book on algebraic number theory, such as [17] for example.

Let OK be the ring of integers of K = Q(ζ2k). Any nonzero ideal A of OK can be uniquely(up to the order) expressed as

A = P a11 · · ·P ass ,

where P1, · · · , Ps are distinct(nonzero) prime ideals of OK and ai ≥ 1(1 ≤ i ≤ s). In other words, the set S(K) of all
nonzero ideals of OK is a free multiplicative commutative semigroup with a basis B(K), the set of all nonzero prime ideals of
OK . Such semigroup S(K) can be extended to the commutative group I(K), called the group of fractional ideals of K. Each
element of I(K), called a fractional ideal, has the form AB−1, where A,B are ideals of OK . For each α ∈ K∗ = K\{0},
αOK is a fractional ideal, called a principal fractional ideal. And we have (αOK)(βOK) = αβOK and (αOK)−1 = (α−1)OK .
Therefore, the set P (K) of all principal fractional ideals is a subgroup of I(K). Some results on K are given in the following
lemmas.

Lemma 2.1: Let k ≥ 2 and K = Q(ζ2k), then
(i) The field extension K/Q is Galois of degree 2k−1 and the Galois group Gal(K/Q) = {σj : j ∈ Z, j ≡ 1 mod 2},

where the automorphism σj of K is defined by ζ2k 7→ ζj
2k

. Moreover, σ−1(α) = α for any α ∈ K.
(ii) The ring of integers in K is OK = Z[ζ2k ] and {ζj

2k
: 0 ≤ j ≤ 2k−1− 1} is an integral basis of OK . The group of roots

of unity in OK is WK = {ζj
2k

: 0 ≤ j ≤ 2k − 1}.
(iii) Let ε ∈ O∗K(the units of OK). Then ε ∈WK if and only if |ε| = 1.
(iv) The principal ideal (1 − ζ2k)OK is a prime ideal of OK and the rational prime 2 is totally ramified in OK , i.e.,

2OK = ((1− ζ2k)OK)2k−1

.
Lemma 2.2: Let n be a positive integer, k ≥ 3, α ∈ OK , and | α

2
n
2
| = 1. Then α

2
n
2
∈WK .

Proof: From the condition (i) of Lemma 2.1 and | α
2
n
2
| = 1, we have

ασ−1(α) = αα = 2n.

From the condition (iv) of Lemma 2.1, we have

(αOK)σ−1(αOK) = ((1− ζ2k)OK)n·2
k−1

.

According to the uniqueness of the decomposition of (αOK)σ−1(αOK) and the condition (iv) of Lemma 2.1, we have

αOK = σ−1(αOK) = ((1− ζ2k)OK)n·2
k−2

.

Note that k ≥ 3 and 2
1
2 = ζ8 + ζ−1

8 ∈ OK . From the condition (iv) of Lemma 2.1, we have

(2
n
2OK)2 = (2OK)n = ((1− ζ2k)OK)n·2

k−1

.

We immediately have
αOK = 2

n
2OK = ((1− ζ2k)OK)n·2

k−2

and
α

2
n
2
∈ O∗K .

From the condition (iii) of Lemma 2.1, this lemma follows.
Theorem 2.3: Let k ≥ 3. Then every generalized bent Boolean function in GBkn is always regular.

Proof: From the definition of generalized bent Boolean functions and Lemma 2.2, this lemma follows.
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Lemma 2.4: Let γa =
∑

v∈Zk−1
2

(−1)a·vζ
∑k−1
j=1 vj2

k−1−j

2k
, where a ∈ Zk−1

2 and v = (v1, v2, · · · , vk−1). Then

ζe2k =
1

2k−1

∑
a∈Zk−1

2

(−1)u·aγa,

where e =
∑k−1
j=1 uj2

k−1−j , u = (u1, u2, · · · , uk−1), and uj ∈ Z2. Further, {γa : a ∈ Zk−1
2 } is a basis of K = Q(ζ2k) over

Q.
Proof: For simplicity, denote

A =
1

2k−1

∑
a∈Zk−1

2

(−1)u·aγa.

Then we have

A =
1

2k−1

∑
a∈Zk−1

2

(−1)u·a
∑

v∈Zk−1
2

(−1)v·aζ
∑k−1
j=1 vj2

k−1−j

2k

=
1

2k−1

∑
v∈Zk−1

2

ζ
∑k−1
j=1 vj2

k−1−j

2k

∑
a∈Zk−1

2

(−1)a·(u+v).

Since
∑

a∈Zk−1
2

(−1)a·(u+v) =

{
0, v 6= u

2k−1, v = u
. This leads to

A =
1

2k−1
· 2k−1ζ

∑k−1
j=1 uj2

k−1−j

2k
= ζe2k .

This completes the proof.

Lemma 2.5: Let γa =
∑

v∈Zk−1
2

(−1)a·vζ
∑k−1
j=1 vj2

k−1−j

2k
, where a ∈ Zk−1

2 and v = (v1, v2, · · · , vk−1).Then

ζe2k + ζe+2k−2

2k
=

1

2k−2

∑
a∈Zk−1

2 ,a1=u1

(−1)u·aγa,

where e =
∑k−1
j=1 uj2

k−1−j , u = (u1, u2, · · · , uk−1), and uj ∈ Z2.
Proof: When u1 = 0, from Lemma 2.4 we have

ζe2k + ζe+2k−2

2k
=

1

2k−1

∑
a∈Zk−1

2

((−1)u·a + (−1)a1+u·a)γa

=
1

2k−1

∑
a∈Zk−1

2

(1 + (−1)a1)(−1)u·aγa

=
1

2k−2

∑
a∈Zk−1

2 ,a1=u1

(−1)u·aγa.

When u1 = 1, from ζe+2k−2

2k−1 = −ζe−2k−2

2k−1 and Lemma 2.4 we have

ζe2k + ζe+2k−2

2k
=ζe2k − ζ

e−2k−2

2k

=
1

2k−1

∑
a∈Zk−1

2

((−1)u·a − (−1)u·a−a1)γa

=
1

2k−1

∑
a∈Zk−1

2

(1− (−1)a1)(−1)u·aγa

=
1

2k−2

∑
a∈Zk−1

2 ,a1=u1

(−1)u·aγa.

This completes the proof.

Lemma 2.6: Let a ∈ Zk−1
2 and γa =

∑
v∈Zk−1

2
(−1)a·vζ

∑k−1
j=1 vj2

k−1−j

2k
. Then

γa =

k−1∏
j=1

(1 + (−1)ajζ2j+1).
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Proof: For simplicity, denote

A =

k−1∏
j=1

(1 + (−1)ajζ2j+1).

Then we have

A =

k−1∏
j=1

(
∑
vj∈Z2

(−1)ajvjζ
vj2

k−1−j

2k
)

=
∑

v∈Zk−1
2

(−1)a·vζ
∑k−1
j=1 vj2

k−1−j

2k
.

This completes the proof.

III. COMPLETE CHARACTERIZATION OF GENERALIZED BENT BOOLEAN FUNCTIONS

In this section, we present the complete characterization of generalized bent Boolean functions in terms classical Boolean
bent functions.

Let g : Zn2 → Z2k be a generalized Boolean function. It turns out that the generalized Walsh-Hadamard spectrum of g can
be described (albeit, in a comlicated manner) in terms of the Walsh-Hadamard spectrum of its Boolean components gi.

Theorem 3.1: Let g(x) =
∑k−1
i=0 gi(x)2k−1−i, where g ∈ GBkn and gi ∈ GB1

n. Then

Hg(u) =
1

2k−1

∑
a∈Zk−1

2

Hg0+
∑k−1
i=1 aigi

(u)γa,

where γa =
∑

v∈Zk−1
2

(−1)a·vζ
∑k−1
j=1 vj2

k−1−j

2k
.

Proof: According to the definition of Hg(u), we have

2
n
2Hg(u) =

∑
x∈Zn2

ζ
g(x)

2k
(−1)u·x

=
∑
x∈Zn2

ζ
∑k−1
i=0 gi(x)2k−1−i

2k
(−1)u·x

=
∑
x∈Zn2

ζ
∑k−1
i=0 gi(x)2k−1−i

2k
(−1)u·x

=
∑
x∈Zn2

(−1)u·x
k−1∏
i=0

ζ
gi(x)
2i+1

=
∑
x∈Zn2

(−1)g0(x)+u·x
k−1∏
i=1

ζ
gi(x)
2i+1

=
1

2k−1

∑
x∈Zn2

(−1)g0(x)+u·x ·
k−1∏
i=1

((1 + (−1)gi(x)) + (1− (−1)gi(x))ζ2i+1)

=
1

2k−1

∑
x∈Zn2

(−1)g0(x)+u·x ·
k−1∏
i=1

((1 + ζ2i+1) + (1− ζ2i+1)(−1)gi(x)).

Note that

(1 + (−1)aiζ2i+1)(−1)aigi(x) =

{
1 + ζ2i+1 if ai = 0,
(1− ζ2i+1)(−1)gi(x) if ai = 1.

Therefore, we have

2
n
2Hg(u) =

1

2k−1

∑
x∈Zn2

(−1)g0(x)+u·x ·
∑

a∈Zk−1
2

(−1)
∑k−1
i=1 aigi(x)

k−1∏
i=1

(1 + (−1)aiζ2i+1)

=
1

2k−1

∑
a∈Zk−1

2

k−1∏
i=1

(1 + (−1)aiζ2i+1) ·
∑
x∈Zn2

(−1)g0(x)+u·x+
∑k−1
i=1 aigi(x).
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According to the definition of Hg0+
∑k−1
i=1 aigi

(u), we have

Hg(u) =
1

2k−1

∑
a∈Zk−1

2

Hg0+
∑k−1
i=1 aigi

(u) ·
k−1∏
i=1

(1 + (−1)aiζ2i+1).

From Lemma 2.6, this theorem follows.
Theorem 3.2: Let k ≥ 3 and g(x) =

∑k−1
i=0 gi(x)2k−1−i, where g ∈ GBkn and gi ∈ GB1

n. Then g is generalized bent if and
only if condition (i), for n even, respectively, (ii), for n odd hold, where:

(i) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

Hg0+
∑k−1
i=1 aigi

(u) = (−1)v·a+b0 , for all a ∈ Zk−1
2 .

(ii) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

Hg0+
∑k−1
i=1 aigi

(u) =
1 + (−1)a1+v1

2
(−1)ṽ·ã+b0

√
2,

for all a ∈ Zk−1
2 , where ṽ = (v2, · · · , vk−1) and ã = (a2, · · · , ak−1).

Proof: If g is generalized bent, then for any u, |Hg(u)| = 1. From Lemma 2.2, one has Hg(u) ∈ WK . Thus, Hg(u) =

ζe2k or − ζe2k , where e =
∑k−1
j=1 vj2

k−1−j and vj ∈ Z2.
When n is even, suppose Hg(u) = ζe2k and e =

∑k−1
j=1 vj2

k−1−j . According to Theorem 3.1 and Lemma 2.4, we have

Hg(u) =
1

2k−1

∑
a∈Zk−1

2

Hg0+
∑k−1
i=1 aigi

(u)γa

=
1

2k−1

∑
a∈Zk−1

2

(−1)v·aγa.

From the uniqueness of the expansion of Hg(u) by the basis {γa : a ∈ Zk−1
2 }, we have

Hg0+
∑k−1
i=1 aigi

(u) = (−1)v·a, for any a ∈ Zk−1
2 ,

where v only depends on g and u. Suppose Hg(u) = −ζe2k and e =
∑k−1
j=1 vj2

k−1−j , by the same technique used in the case
e =

∑k−1
j=1 vj2

k−1−j , it can be verified that

Hg0+
∑k−1
i=1 aigi

(u) = (−1)v·a+1, for any a ∈ Zk−1
2 .

When n is odd, suppose Hg(u) = ζe2k . Note that
√

2ζe2k = ζe2k(ζ8 + ζ−1
8 ) = ζe−2k−3

2k
+ ζ

(e−2k−3)+2k−2

2k
. If Hg(u) = ζe−2k−3

2k

and e− 2k−3 =
∑k−1
j=1 vj2

k−1−j , by Theorem 3.1 and Lemma 2.5, we have
√

2Hg(u) =
1

2k−1

∑
a∈Zk−1

2

(
√

2Hg0+
∑k−1
i=1 aigi

(u))γa

=
1

2k−1

∑
a∈Zk−1

2 ,a1=v1

2(−1)v·aγa.

From the uniqueness of the expansion of
√

2Hg(u) by the basis {γa : a ∈ Zk−1
2 } and

√
2Hg0+

∑k−1
i=1 aigi

(u) ∈ Q, we have

Hg0+
∑k−1
i=1 aigi

(u) =

{√
2(−1)v·a, a1 = v1,

0, a1 6= v1.

Hence, we obtain

Hg0+
∑k−1
i=1 aigi

(u) =

{√
2(−1)ṽ·ã+v1 , a1 = v1,

0, a1 6= v1,

where ṽ = (v2, · · · , vk−1) and ã = (a2, · · · , ak−1).
If Hg(u) = −ζe−2k−3

2k
and e − 2k−3 =

∑k−1
j=1 vj2

k−1−j , by the same technique used in the case Hg(u) = ζe−2k−3

2k
and

e− 2k−3 =
∑k−1
j=1 vj2

k−1−j , it can be verified that

Hg0+
∑k−1
i=1 aigi

(u) =

{√
2(−1)ṽ·ã+v1+1, a1 = v1,

0, a1 6= v1,
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where ṽ = (v2, · · · , vk−1) and ã = (a2, · · · , ak−1).
If the condition (i) or (ii) in this theorem holds, then from the definition of generalized bent functions a simple computation

shows that g is generalized bent.
Hence, the theorem follows.

Remark The cases k = 2 and k = 3 in Theorem 3.2 are investigated by Stǎnicǎ, et al. in [13].

Corollary 3.3: Let k ≥ 3 and g(x) =
∑k−1
i=0 gi(x)2k−1−i be generalized bent, where g ∈ GBkn and gi ∈ GB1

n. Then,
conditions (i), for n even, respectively, (ii), for n odd hold, where

(i) g0 +
∑k−1
i=1 aigi is bent for all a ∈ Zk−1

2 ;
(ii) g0 +

∑k−1
i=1 aigi is semibent, for all a ∈ Zk−1

2 .
Proof: From Theorem 3.2, this corollary follows.

Corollary 3.4: Let k ≥ 3 and g(x) =
∑k−1
i=0 gi(x)2k−1−i be generalized bent, where g ∈ GBkn and gi ∈ GB1

n. Then, gπ is
always generalized bent, where gπ is defined as (i), for n even, respectively, (ii), for n odd, where

(i) gπ(x) = g0(x)2k−1 +
∑k−1
i=1 gπ(i)(x)2k−1−i for any permutation π of {1, 2, · · · , k − 1};

(ii) gπ(x) = g0(x)2k−1 + g1(x)2k−2 +
∑k−1
i=2 gπ(i)(x)2k−1−i for any permutation π of {2, 3, · · · , k − 1}.

Proof: From Theorem 3.2, this corollary follows.
Corollary 3.5: Let k ≥ 3, l ≤ k, and g(x) =

∑k−1
i=0 gi(x)2k−1−i be generalized bent, where g ∈ GBkn and gi ∈ GB1

n. Then,
gI is always generalized bent in GBln, where gI is defined as (i), for n even, respectively, (ii), for n odd, where

(i) gI(x) = g0(x)2l−1 +
∑l−1
j=1 gij (x)2l−1−j for any subset I = {i1, · · · , il−1} of {1, 2, · · · , k − 1}, where #I = l − 1;

(ii) gI(x) = g0(x)2l−1 + g1(x)2l−2 +
∑l−1
j=2 gij (x)2l−1−j for any subset I = {i2, · · · , il−1} of {2, 3, · · · , k − 1}, where

#I = l − 2.
Proof: From Theorem 3.2, this corollary follows.

Theorem 3.6: Let k ≥ 3 and g(x) =
∑k−1
i=0 gi(x)2k−1−i, where g ∈ GBkn and gi ∈ GB1

n. For any w ∈ Zk−1
2 , we define the

set
Γw = {x ∈ Zn2 : (g1(x), · · · , gk−1(x)) = w}.

Then g is generalized bent if and only if conditions (i), for n even, respectively, (ii), for n odd hold, where
(i) For any u ∈ Zn2 , there exist some v ∈ Zk−1

2 and some b0 ∈ Z2 such that∑
x∈Γw

(−1)g0(x)+u·x =

{
(−1)b02

n
2 , w = v,

0, otherwise.

(ii) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

∑
x∈Γw

(−1)g0(x)+u·x =


(−1)b0√

2
2
n
2 , w = (0, ṽ),

(−1)b0+v1
√

2
2
n
2 , w = (1, ṽ),

0, otherwise,

where v = (v1, ṽ).
Proof: Let A = 2

n
2Hg0+

∑k−1
i=1 aigi

(u). According to the definition of Hg0+
∑k−1
i=1 aigi

(u), one obtains

A =
∑
x∈Zn2

(−1)g0(x)+u·x+
∑k−1
i=1 gi(x)ai

=
∑
x∈Zn2

(−1)g0(x)+u·x(−1)
∑k−1
i=1 gi(x)ai

=
∑

w∈Zk−1
2

(
∑
x∈Γw

(−1)g0(x)+u·x)(−1)w·a.

Suppose g is generalized bent. When n is even, from Theorem 3.2, we have

A =
∑

w∈Zk−1
2

(
∑
x∈Γw

(−1)g0(x)+u·x)(−1)w·a

=2
n
2 (−1)b0(−1)v·a,

where a ∈ Zk−1
2 . Since (−1)w·a(w ∈ Zk−1

2 ) as functions from Zk−1
2 to C (a 7→ (−1)w·a) are linear independent over C.

Hence, we obtain ∑
x∈Γw

(−1)g0(x)+u·x =

{
(−1)b02

n
2 , w = v,

0, otherwise.
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When n is odd, from Theorem 3.2 we have

A =
∑

w∈Zk−1
2

(
∑
x∈Γw

(−1)g0(x)+u·x)(−1)w·a

=2
n
2

1 + (−1)a1+v1

2
(−1)ṽ·ã+b0

√
2.

where a ∈ Zk−1
2 , v = (v1, ṽ), and a = (a1, ã). Let cw =

∑
x∈Γw

(−1)g0(x)+u·x. Then one gets

A =
∑

w∈Zk−1
2

cw(−1)w·a

=
∑

w1∈Z2,w̃∈Zk−2
2

cw(−1)w1·a1(−1)w̃·ã

=
∑

w̃∈Zk−2
2

(c(0,w̃) + c(1,w̃)(−1)a1)(−1)w̃·ã

=2
n
2

1 + (−1)a1+v1

√
2

(−1)b0(−1)ṽ·ã.

Since (−1)w̃·ã(w̃ ∈ Zk−2
2 ) as functions from Zk−2

2 to C (ã 7→ (−1)w̃·ã) are linear independent over C. Hence, we obtain

c(0,w̃) + c(1,w̃)(−1)a1 =

{
1+(−1)a1+v1

√
2

(−1)b02
n
2 , w̃ = ṽ,

0, otherwise,

where a1 ∈ Z2. This implies that

∑
x∈Γw

(−1)g0(x)+u·x =


(−1)b0√

2
2
n
2 , w = (0, ṽ),

(−1)b0+v1
√

2
2
n
2 , w = (1, ṽ),

0, otherwise.

If the condition (i) or (ii) holds, from the definition of generalized bent functions, g is generalized bent.
Hence, this theorem follows.

IV. COMPLETE CHARACTERIZATION OF 2k-BENT BOOLEAN FUNCTIONS

In this section, we consider the characterization of 2k-bent Boolean functions, connect 2k-bent Boolean functions with
generalized bent functions, and characterize 2k-bent Boolean functions in terms of bent Boolean functions.

For any f ∈ GB1
n, we give a unique generalized boolean function g ∈ GBkn such that

g(x) = f(x)2k−1 + wt(x). (4)

Suppose g(x) =
∑k−1
i=0 gi(x)2k−1−i, where gi ∈ GB1

n. From Lemma 5 of [12], we have

gi(x) =

{
f(x) + s2k−1(x), i = 0,

s2k−1−i(x), 1 ≤ i ≤ k − 1,
(5)

where s2k−1−i(x) are the elementary symmetric polynomials of degree 2k−1−i (we use the convention that s2k−1−i(x) = 0 ,
if x ∈ Zn2 , and 2k−1−i > n). The following theorem gives the relationship between f and g.

Theorem 4.1: Let f and g defined as Equation (4). Then

H(2k)
f (u) = Hg(u).

Further, f is 2k-bent if and only if g is generalized bent.
Proof: According to the definition of Hg(u), we have

Hg(u) =2−
n
2

∑
x∈Zn2

(−1)u·xζ
g(x)

2k

=2−
n
2

∑
x∈Zn2

(−1)u·xζ
f(x)2k−1+wt(x)

2k

=2−
n
2

∑
x∈Zn2

(−1)f(x)+u·xζ
wt(x)

2k

=H(2k)
f (u).
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Then f is 2k-bent if and only if g is generalized bent. Hence, this theorem follows.
Theorem 4.2: Let k ≥ 3 and f ∈ GB1

n. Then f is 2k-bent if and only if conditions (i), for n even, respectively, (ii), for n
odd hold, where

(i) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

Hf+s
2k−1+

∑k−1
i=1 ais2k−1−i

(u) = (−1)v·a+b0 ,

for any a ∈ Zk−1
2 .

(ii) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

Hf+s
2k−1+

∑k−1
i=1 ais2k−1−i

(u) =
1 + (−1)a1+v1

√
2

(−1)ṽ·ã+b0 ,

for any a ∈ Zk−1
2 , where ṽ = (v2, · · · , vk−1), and ã = (a2, · · · , ak−1).

Proof: From Theorem 4.1, Theorem 3.2, and Equation (5), this theorem follows.

Remark The case k = 2 in Theorem 4.2 was considered by Stǎnicǎ et al. [14]. Stǎnicǎ [12] investegated cases k = 3, 4 in
Theorem 4.2.

Corollary 4.3: Let k ≥ 3 and f ∈ GB1
n be 2k-bent. Then, conditions (i), for n even, respectively, (ii), for n odd hold, where

(i) f + s2k−1 +
∑k−2
i=0 ais2i is bent for all a ∈ Zk−1

2 ;
(ii) f + s2k−1 +

∑k−2
i=0 ais2i is semibent for all a ∈ Zk−1

2 , .
Proof: From Theorem 4.2, this corollary follows.

Corollary 4.4: Let k ≥ 3 and f ∈ GB1
n be a strong 2k-bent function. Then, conditions (i), for n even, respectively, (ii), for

n odd hold, where
(i) f +

∑k−1
i=0 ais2i is bent for all a ∈ Zk2 ;

(ii) f +
∑k−1
i=0 ais2i is semibent for all a ∈ Zk2 .

Proof: The conclusion follows from Corollary 4.3.
Theorem 4.5: Let k ≥ 3 and f ∈ GB1

n. For any w ∈ Zk−1
2 , denote the following set

Γw = {x ∈ Zn2 : (s2k−2(x), · · · , s20(x)) = w}.

Then, f is 2k-bent if and only if conditions (i), for n even, respectively, (ii), for n odd hold, where
(i) For any u ∈ Zn2 , there exist some v ∈ Zk−1

2 and some b0 ∈ Z2 such that∑
x∈Γw

(−1)f(x)+s
2k−1 (x)+u·x =

{
(−1)b02

n
2 , w = v,

0, otherwise.

(ii) For any u ∈ Zn2 , there exist some v ∈ Zk−1
2 and some b0 ∈ Z2 such that

∑
x∈Γw

(−1)f(x)+s
2k−1 (x)+u·x =


(−1)b0√

2
2
n
2 , w = (0, ṽ),

(−1)b0+v1
√

2
2
n
2 , w = (1, ṽ),

0, otherwise,

where v = (v1, ṽ).
Proof: From Theorem 4.2, this theorem follows.

Corollary 4.6: Let n ≥ 3 and f ∈ GB1
n be 2k-bent. Then k ≤ log2 n+ 1.

Proof: Suppose k > log2 n+ 1. Then n =
∑k−2
i=0 wi2

i and wi ∈ {0, 1}. By the definition of Γw, we have

Γw = {(1, 1, · · · , 1︸ ︷︷ ︸
n

)}.

From Theorem 4.5 and n ≥ 3, we have

1 = #Γw ≡ 0 mod 2.

This leads to a contradiction and completes the proof.

V. CONCLUDING REMARKS

This paper generalized the work of Stǎnicǎ et al. on generalized Boolean bent functions and 2k-bent Boolean functions[12],
[13], [14] . We showed that every generalized bent Boolean function was regular. A complete characterization for generalized
Boolean bent functions and 2k-bent Boolean functions was presented in terms of bent functions. And we also completely
characterized these functions in a combinatoric form. It would be interesting to characterize generalized p-ary bent functions.
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