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Abstract

The learning with errors over rings (Ring-LWE) problem—or more accurately, family of problems—
has emerged as a promising foundation for cryptography due to its practical efficiency, conjectured
quantum resistance, and provable worst-case hardness: breaking certain instantiations of Ring-LWE is at
least as hard as quantumly approximating the Shortest Vector Problem on any ideal lattice in the ring.

Despite this hardness guarantee, several recent works have shown that certain instantiations of Ring-
LWE can be broken by relatively simple attacks. While the affected instantiations are not supported
by worst-case hardness theorems (and were not ever proposed for cryptographic purposes), this state
of affairs raises natural questions about what other instantiations might be vulnerable, and in particular
whether certain classes of rings are inherently unsafe for Ring-LWE.

This work comprehensively reviews the known attacks on Ring-LWE and vulnerable instantiations.
We give a new, unified exposition which reveals an elementary geometric reason why the attacks work,
and provide rigorous analysis to explain certain phenomena that were previously only exhibited by
experiments. In all cases, the insecurity of an instantiation is due to the fact that the error distribution is
insufficiently “well spread” relative to the ring. In particular, the insecure instantiations use the so-called
non-dual form of Ring-LWE, together with spherical error distributions that are much narrower and of a
very different shape than the ones supported by hardness proofs.

On the positive side, we show that any Ring-LWE instantiation which satisfies (or only almost satisfies)
the hypotheses of the “worst-case hardness of search” theorem is provably immune to broad generalizations
of the above-described attacks: the running time divided by advantage is at least exponential in the degree
of the ring. This holds for the ring of integers in any number field, so the rings themselves are not the
source of insecurity in the vulnerable instantiations. Moreover, the hypotheses of the worst-case hardness
theorem are nearly minimal ones which provide these immunity guarantees.
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1 Introduction

Cryptography based on lattices is an exciting and fast-developing area of research, due in part to con-
jectured security against quantum attacks, asymptotic efficiency and parallelism, and a wide range of
applications spanning from basic tasks like key exchange, to powerful objects like fully homomorphic
encryption. A large fraction of lattice-based cryptographic constructions are built upon the average-case
learning with errors (LWE) problem [Reg05] or its more efficient variant learning with errors over rings
(Ring-LWE) [LPR10, LPR13]. These are actually families of problems, which are instantiated by choosing a
particular dimension or ring, an integer modulus, and an error distribution.

A main attraction of the (Ring-)LWE problems is their worst-case hardness theorems, also known as
worst-case/average-case reductions. These say that breaking certain instantiations of (Ring-)LWE (or the
cryptosystems based upon them) is provably at least as hard as quantumly solving any instance of certain lattice
problems, i.e., in the worst case. For Ring-LWE, the underlying lattice problem is the approximate Shortest
Vector Problem (approx-SVP) on ideal lattices, which are algebraically structured lattices corresponding
to ideals in the ring. To date, no known quantum (or classical) algorithm for approx-SVP has significantly
better worst-case performance on ideal lattices (in any concrete ring of interest) than on general lattices of the
same dimension. For the polynomial approximation factors often used in cryptography, the fastest known
algorithms require exponential time and space in the dimension (see, e.g., [AKS01, MV10, ADRS15]).

Despite the above-described hardness guarantees, several recent works [EHL14, ELOS15, CLS15, CIV16,
CLS16] have shown that certain ad-hoc instantiations of Ring-LWE are insecure, via relatively simple attacks.
How should we interpret such results? We emphasize that the vulnerable instantiations were not previously
proposed for any cryptographic application, and were specifically sought out for their insecurity.1 In
addition, the attacks do not appear to translate to any improved algorithms for ideal-lattice problems, because
the vulnerable instantiations do not satisfy the hypotheses of the worst-case hardness theorems. Yet this
explanation leaves several natural questions unanswered, such as:

• How “close” are these insecure instantiations to ones that do enjoy worst-case hardness?

• Do these vulnerable instantiations imply anything about what rings might be more or less secure for
Ring-LWE?

• How can we evaluate other instantiations that may not be backed by worst-case hardness theorems?

The goals of this work are twofold: first, to shed further light on recent attacks and vulnerable Ring-LWE
instantiations; and second, to articulate a general set of principles by which we can systematically evaluate
the (in)security of an instantiation. Toward this end, we provide the following main contributions.

Review of attacks. We comprehensively review the attacks and insecure Ring-LWE instantiations from the
above-cited works. We give a new, unified exposition of the attacks in terms of the geometry of dual ideals,
and provide formal analysis to explain certain phenomena that were previously only exhibited by experiments.
In all cases, the heart of the insecurity is the use of a non-standard, “non-dual” form of Ring-LWE with
relatively narrow spherical error, rather than the “dual” form that was defined and proved to have worst-case
hardness in [LPR10]. (See, e.g., Figures 3 and 7.) Using a simple “tweak” that allows for a direct comparison
of the dual and non-dual forms, we find that the error distributions in the insecure instantiations are much
narrower than those in the provably hard ones, which is why they are vulnerable to attacks.

1Indeed, it is easy to design trivially insecure (Ring-)LWE instantiations for any choice of dimension or ring: just define the error
distribution to always output zero. However, the vulnerable instantiations in question do involve some nontrivial error.
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In a bit more technical detail: for the instantiations from [ELOS15], we give a simpler proof of the
fact, first noticed and exploited in [CIV16], that the (discretized) errors lie in a very low-dimensional linear
subspace of the ring. This means that every Ring-LWE sample reveals many errorless LWE samples, which
leads to an elementary linear-algebraic attack (no ring algebra needed). We also show that the instantiations
from [CLS15, CLS16], with slightly narrower error distributions, fall to the same kind of attack. Finally,
we give formal analyses showing why the (unmodified) instantiations of [CLS15, CLS16] are broken by a
different but closely related distinguishing attack.

Invulnerable instantiations. On the positive side, we consider Ring-LWE instantiations that satisfy, or
only “almost” satisfy, the “worst-case hardness of search” theorem from [LPR10, Section 4]. We show that
any such instantiation is provably immune to broad classes of attacks which include all those described
above. By “immune” we mean that the attacks perform no better than known attacks (e.g., [BKW03, AG11])
against plain LWE when instantiated to have worst-case hardness; in particular, the running time divided by
advantage is at least exponential in the LWE dimension (in the typical case of modulus q = poly(n)).

We stress that the worst-case hardness theorem from [LPR10, Section 4] works for the ring of integers (or
more generally, any order) of any number field. Therefore, all the rings appearing in the insecure instantiations
from the above-cited works do indeed admit provably hard instantiations—they just need different error
distributions. In other words, the rings themselves are not the source of insecurity. For illustration, we
describe and graphically depict some example hard instantiations in detail, including for prime cyclotomic
rings and quadratic extensions thereof (see, e.g., Figures 6 and 7).

To be clear, in this work we do not propose concrete security estimates for particular (Ring-)LWE
instantiations, e.g., “the mth cyclotomic with Gaussian error of width r offers at least λ bits of security” (see,
e.g., [MR09, LP11, BCNS15, ADPS16] for representative works that do so). We are also not concerned
with the applicability (or lack thereof) of instantiations for cryptographic purposes, nor with lower-level
computational details or efficiency (see, e.g., [LPR13, CP15] for works along these lines). Our central focus
is on understanding and evaluating the fundamental (in)security of Ring-LWE instantiations, which is a
necessary prerequisite to these other important goals.

Discussion. The main conclusion from this work is that for the security of Ring-LWE, proper choice of
the error distribution is essential, especially because there is so much more freedom of choice than in plain
LWE. It should not be surprising that ad-hoc instantiations of Ring-LWE can be insecure—indeed, the same
goes for LWE. For example, there is a roughly nd-time attack (using roughly nd samples) for d-bounded
errors [AG11]. But this does not affect LWE’s conjectured 2Ω(n) hardness when instantiated according to
its worst-case hardness theorems, which require Gaussian errors of standard deviation Ω(

√
n). Indeed, it

may even increase our confidence that this is the “right” error distribution for LWE, since the wide variety of
known attack strategies all require 2Ω(n) time beyond this threshold.

On the positive side, the fact that worst-case-hard instantiations are immune to concrete attacks also should
not be surprising, since any efficient attack would translate to a comparably efficient quantum algorithm
for approx-SVP on any ideal lattice in the ring—which would be a major achievement in computational
number theory. But it is instructive to understand what precisely gives the hard instantiations their immunity.
In particular, some of the more peculiar aspects of Ring-LWE, like the width of the error distributions and
especially the role of the “dual” ideal R∨, were adopted in order to obtain the strongest and tightest hardness
theorems in general number fields. (See [LPR10, Section 3.3] for discussion.) Notably, these choices also
turn out to be nearly minimal ones that provably withstand broad classes of attacks. We believe that this
provides yet another example of the importance of worst-case hardness proofs in lattice cryptography.
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Organization. The remainder of the paper is organized as follows.

Section 2 recalls the relevant mathematical background, the (Ring-)LWE problems and the formal relation-
ship between them, and their known worst-case hardness theorems.

Section 3 gives a new exposition and unified framework for the Ring-LWE attacks developed in [EHL14,
ELOS15, CLS15, CIV16, CLS16], focusing on the essential geometric reasons why they work.

Section 4 reviews the insecure Ring-LWE instantiations through the lens of the unified attack framework,
and formally proves that the attacks work against them.

Section 5 gives a sufficient condition that makes a Ring-LWE instantiation provably immune to the attacks
in the framework, and shows that the condition is satisfied for any instantiation supported by the
worst-case hardness theorem of [LPR10, Section 4].

Acknowledgments. I thank Léo Ducas, Kristin Lauter, Vadim Lyubashevsky, Oded Regev, and Katherine
Stange for many valuable discussions and comments on topics related to this work. I also thank the
anonymous reviewers for helpful comments, and especially for pointing out a misinterpretation of the
parameters in [ELOS15, Section 9].

2 Preliminaries

In this section we recall the necessary mathematical background on lattices, Gaussians, algebraic number
theory, and (Ring-)LWE, including its “dual” and “non-dual” forms. We closely follow the presentation
from [LPR10]; see that work for further details.

2.1 Lattices and Gaussians

In ring-based lattice cryptography, it is convenient to work in the spaceH ⊆ Rs1×C2s2 for some nonnegative
integers s1, s2 with n = s1 + 2s2, defined as

H := {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j ∀j ∈ {1, . . . , s2}}.

It is easy to check that H , with the inner product 〈x,y〉 =
∑

i xiyi of the ambient space Cn, is an n-
dimensional real inner product space, i.e., it is isomorphic to Rn via an appropriate rotation. Therefore, the
reader may mentally replace H with Rn in all that follows.

For the purposes of this work, a lattice L is a discrete additive subgroup of H that is full dimensional, i.e.,
spanR(L) = H . Any lattice is generated as the set of all integer linear combinations of some (non-unique)
linearly independent basis vectors B = (b1, . . . ,bn), as

L = L(B) :=
{
Bz =

∑
i

zibi : z ∈ Zn
}
.

The volume (or determinant) of a lattice L is vol(L) := vol(H/L) = |det(B)|, where B denotes any
basis of L. The minimum distance λ1(L) is the length (in the Euclidean norm) of a shortest nonzero lattice
vector: λ1(L) = min0 6=x∈L‖x‖. The dual lattice L∨ of L is defined as the set of all points in H having
integer inner products with every vector of the lattice: L∨ = {w ∈ H : 〈w,L〉 ⊆ Z}. It is easy to verify that
(L∨)∨ = L.
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Gaussians and smoothing. For r > 0, the Gaussian probability distribution Dr of parameter (or width) r
overH is defined to have probability density function proportional to ρr(x) := exp(−π‖x‖2/r2). A standard
fact is that 〈w, Dr〉 = Dr‖w‖ (over R) for any nonzero w ∈ H . In addition, a one-dimensional Gaussian Dr

over R satisfies the tail bound Prx←Dr [|x| ≥ t] ≤ 2 exp(−π(t/r)2) for any t ≥ 0.
The smoothing parameter [MR04] is an important lattice quantity that is related to several other lattice

parameters.

Definition 2.1. For a lattice L and positive real ε > 0, the smoothing parameter ηε(L) is the smallest r > 0
such that ρ1/r(L∨\{0}) ≤ ε.

Lemma 2.2 ([MR04, Lemma 3.2]). For any n-dimensional lattice L, we have η2−2n(L) ≤
√
n/λ1(L∨).2

The following lemma explains the name “smoothing parameter:” it says that a Gaussian whose width
exceeds the smoothing parameter is essentially uniform modulo the lattice.

Lemma 2.3 ([MR04, Lemma 4.1]). For any lattice L ⊂ H , ε > 0, and r ≥ ηε(L), the statistical distance
between Dr mod L and the uniform distribution over H/L is at most ε/2.

2.2 Algebraic Number Theory

In this subsection we review standard concepts from algebraic number theory, including: number fields, their
rings of integers, (fractional) ideals, the canonical embedding, ideal lattices, and dual ideals.

A number field K is a finite-degree field extension of the rationals Q. More concretely, a number field
can always be constructed as K = Q(ζ) ∼= Q[X]/(f(X)), where ζ denotes an element that satisfies the
relation f(ζ) = 0 for some monic irreducible polynomial f(x) ∈ Q[X], called the minimal polynomial of ζ.
The degree n of K (over Q) is the degree of f , and K can be seen as an n-dimensional vector space over Q
with power basis {1, ζ, . . . , ζn−1}; of course, this is just one possible basis among infinitely many.

Examples of number fields that we encounter later in this work include quadratic fields, which can
be expressed as K = Q(

√
d) for some square-free integer d 6= 0, 1, and cyclotomic fields, which can be

expressed as K = Q(ζm) for some positive integer m, where ζm denotes an element of multiplicative
order m; the degree of K over Q is n = ϕ(m), the totient of m.

2.2.1 Embeddings and Geometry

A number field K = Q(ζ) of degree n has exactly n ring embeddings (i.e., injective ring homomorphisms)
into the complex numbers, denoted σi : K → C. Concretely, each embedding is defined by mapping ζ to
one of the (real or complex) roots of the minimal polynomial f of ζ. An embedding whose image lies in R
(corresponding to a real root of f ) is called a real embedding, otherwise (for a complex root of f ) it is a
complex embedding. The complex embeddings come in conjugate pairs, just as the complex roots of f do.
Numbering the s1 real embeddings by σ1, . . . , σs1 , and the s2 = (n− s1)/2 pairs of complex embeddings so
that the σs1+s2+j = σs1+j for j = 1, . . . , s2, the canonical embedding σ : K → H (where H ⊆ Rs1 ×C2s2

is as defined in Section 2.1) is defined as the concatenation of all the embeddings:

σ(x) := (σ1(x), . . . , σn(x)).

2Note that have we have ε = 2−2n instead of 2−n as in [MR04], but the proof is exactly the same.
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Notice that σ is a ring homomorphism from K to H ⊆ Rs1 × C2s2 , where addition and multiplication in the
latter are both component-wise.

We endow K with a geometry by identifying elements with their canonical embeddings in H . For
example, we define the Euclidean norm of x ∈ K as ‖x‖ := ‖σ(x)‖. Similarly, we can think of the Gaussian
distribution Dr over H as a distribution over K as well, via σ−1. To be formal, because σ(K) does not
equal H but is merely dense within it, the distribution σ−1(Dr) is over KR := K ⊗Q R, which is isomorphic
to H ∼= Rn as a real inner product space. For our purposes, there is no harm in viewing Dr as being over K
with sufficiently large finite precision.

Notice that for the Gaussian Dr over H , the s1 real coordinates are independent Gaussians of parameter r,
and the real and imaginary parts of the 2s1 complex coordinates are independent Gaussians, up to conjugate
symmetry, of parameter r/

√
2. (The

√
2 factor is due to the duplication in the conjugate pairs.) Because

multiplication in KR corresponds to coordinate-wise multiplication in H , for any t ∈ KR the distribution
t ·Dr is simply Dr with its ith coordinate scaled by a |σi(t)| factor.

2.2.2 Trace and Norm

For any x ∈ K, multiplication by x corresponds to a linear transform on K (viewed as a vector space
over Q); fixing a Q-basis ofK represents the transform by a concrete matrix in Qn×n. The trace Tr: K → Q
and (algebraic) norm N: K → Q of x are respectively the trace and determinant of this transform, or
of any matrix representing it (recall that trace and determinant are invariant under change of basis). In
particular, they correspond to the sum and product, respectively, of the embeddings: Tr(x) =

∑
i σi(x) and

N(x) =
∏
i σi(x). Notice that for any x, y ∈ K, we have

Tr(x · y) =
∑
i

σi(x) · σi(y) = 〈σ(x), σ(y)〉,

so the “trace pairing” Tr(x · y) is a symmetric bilinear form on K, akin to the inner product on H .

2.2.3 Ring of Integers and (Fractional) Ideals

An algebraic integer is an element whose minimal polynomial over the rationals has integer coefficients. For
a number field K, let R = OK ⊂ K denote the set of all algebraic integers in K; this set forms a subring
of K, and is called its ring of integers. This ring is a free Z-module of rank n, i.e., it is the set of all integer
linear combinations of some basis elements (b1, . . . , bn) ⊂ R, which are Q-linearly independent.

For example, in the quadratic number field K = Q(
√
d) for square-free integer d 6= 0, 1, the ring of

integers OK is Z[
√
d] = {a+ b

√
d : a, b ∈ Z} if d 6= 1 mod 4, otherwise it is Z[(1 +

√
d)/2]. For the mth

cyclotomic number field K = Q(ζm), the ring of integers happens to be OK = Z[ζm].
An (integral) ideal I ⊆ R is a nontrivial additive subgroup that is closed under multiplication by R,

i.e., r · x ∈ I for any r ∈ R, x ∈ I. Like R = OK itself, any ideal is a free Z-module of rank n, i.e., it
has a Z-basis of size n. For two ideals I,J , their product ideal IJ is the set of all finite sums of terms
xy for x ∈ I, y ∈ J . The norm of an ideal is its index as an additive subgroup of R, i.e., N(I) = |R/I|.
This generalizes the algebraic norm defined above, in the sense that N(xR) = |N(x)| for any x ∈ R, and
N(IJ ) = N(I) N(J ).

More generally, a fractional ideal I ⊂ K is a set such that dI ⊆ R is an integral ideal for some d ∈ R.
Its norm is defined as N(I) = N(dI)/|N(d)|, and multiplication of fractional ideals is defined in the expected
way, so the norm is multiplicative on fractional ideals. Finally, the fractional ideals form a group under
multiplication, with R as the identity.
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2.2.4 Ideal Lattices

Any fractional ideal I ⊂ K maps, via the canonical embedding σ, to a lattice L = σ(I) ⊂ H , which is
called an ideal lattice. Naturally, if (b1, . . . , bn) is a Z-basis of I, then B = σ(B) := (σ(b1), . . . , σ(bn)) is
a basis of L. We identify ideals with their corresponding ideal lattices, which lets us refer to the volume
vol(I) := vol(σ(I)) of an ideal, the minimum distance λ1(I) := λ1(σ(I)), etc.

The (absolute) discriminant ∆K = vol(R)2 of a number field K is the squared volume of its ring
of integers R = OK , viewed as a lattice; equivalently, ∆K = |det(Tr(bi · bj))| = |det(B∗ · B)| where
B = σ(B) for an arbitrary Z-basis B = (b1, . . . , bn) of R. A useful dimension-normalized quantity is the
root discriminant

δK :=
√

∆K
1/n

= vol(R)1/n

(sometimes also denoted δR), which is a measure of the “sparsity” of the algebraic integers in K. It follows
directly from the definition that vol(I) = N(I) ·

√
∆K for any fractional ideal I in K. The following

standard fact is an immediate consequence of Minkowski’s first theorem (for the upper bound) and the
arithmetic mean-geometric mean inequality (for the lower bound).

Lemma 2.4. For any fractional ideal I in a number field K of degree n,
√
n ·N(I)1/n ≤ λ1(I) ≤

√
n ·N(I)1/n · δK .

For example, a quadratic number field K = Q(
√
d) for square-free integer d 6= 0, 1 has absolute

discriminant ∆K = 4|d| if d 6= 1 mod 4, and ∆K = |d| otherwise. (The difference arises from the different
form of the ring of integers in the two cases.) A cyclotomic number field K = Q(ζp) for prime p has absolute
discriminant ∆K = pp−2, so δK =

√
p(p−2)/(p−1) <

√
p.

2.2.5 Duality

Here we recall the notion of the dual ideal under the trace pairing, and its connection to the dual lattice;
see [Con09] for further details. For any fractional ideal I ⊂ K, its dual ideal I∨ is defined as

I∨ = {x ∈ K : Tr(xL) ⊆ Z}.

Notice that the dual ideal I∨ embeds as the conjugate of the dual lattice of I, i.e., σ(I∨) = σ(I)∨, because
Tr(x · y) = 〈σ(x), σ(y)〉. It is easy to verify that I∨ is a fractional ideal, and that (I∨)∨ = I. Also, if
B = (bj) is a Z-basis of I, then its dual basis B∨ = (b∨j ), which is characterized by Tr(bj · b∨j′) = δj,j′ ,
is a Z-basis of I∨. Finally, it turns out that I∨ = I−1 · R∨, where R∨ is the dual ideal of the ring of
integers R = OK .

For example, in a quadratic number field K = Q(
√
d) for square-free integer d 6= 0, 1 with R = OK ,

one can verify that the dual ideal R∨ is (2
√
d)−1R if d 6= 1 mod 4, and is (

√
d)−1R otherwise. As another

example, in a cyclotomic number field K = Q(ζp) for prime p with R = OK , it is not hard to verify that the
dual ideal R∨ = p−1(1− ζp)R.

2.3 Learning With Errors (Over Rings)

In this section we review the learning with errors problem [Reg05] and its ring-based analogue [LPR10],
describe the formal relationship between them, and recall their worst-case hardness theorems.
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2.3.1 LWE

Informally, learning with errors (LWE) [Reg05] concerns “noisy” random inner products with a secret vector.
More precisely, LWE is parameterized by a dimension n, a positive integer modulus q defining the quotient
ring Zq = Z/qZ, and an error distribution ψ over R. (Throughout this work we mainly use continuous rather
than discrete error distributions because they are easier to analyze, and because they more easily expose the
essential ideas. This has no significant effect on the final results.)

Definition 2.5 (LWE, [Reg05]). The search-LWEn,q,ψ problem is to recover a uniformly random secret
vector s ∈ Znq , given many independent samples of the form

(ai , bi = 〈s,ai〉+ ei mod q) ∈ Znq × R/qZ,

where each ai ← Znq is uniformly random and each ei ← ψ is drawn from the error distribution. The
decision-LWEn,q,ψ problem is to distinguish, with some noticeable advantage, between samples generated as
above, and uniformly random samples in Znq × (R/qZ).

Sometimes the number m of available samples is also considered as an additional parameter of the LWE
problems, but here we let it be arbitrarily large; this can only make the problems easier to solve, because
samples can be ignored. It is often convenient to group the m samples (ai, bi) into a matrix and vector

A = [a1 | a2 | · · · | am] ∈ Zn×mq and bt = stA + et ∈ (R/qZ)m,

where A is uniformly random and e ∈ Rm is distributed as ψm.

Insecure instantiations. Certain instantiations of LWE are trivially easy to solve. For instance, if the error
distribution ψ always outputs 0—i.e., no error at all—then the problem is easily solved by standard linear
algebra: as long as the rows of A are linearly independent over Zq (which holds with high probability once m
is a little more than n), we can easily recover s given A and bt = stA. More generally, the same holds if ψ
(almost) always outputs a value in the interval z + [−1

2 ,
1
2) for some fixed integer z, because we can “round

away” the non-integral part and subtract z to remove the error from every sample.
Now, suppose we generalize LWE to allow potentially non-independent errors, i.e., each group of k

samples has an error vector drawn from some distribution κ over Rk. Then this form of LWE is easy if, e.g.,
some (discretized) error coordinate is always zero under κ (just ignore the samples corresponding to the other
coordinates), or if the sum of the k error coordinates is always zero (just sum the samples in each group to
get an errorless sample).

Other instantiations of LWE can be solved by less obvious means. For example, if all the (discretized)
errors in our samples lie in a known set of size d, then we can solve search-LWE in roughly nd time and
space, using roughly nd samples [AG11]. For any d = O(1) this yields a polynomial-time attack, and for
d = n1−ε it yields a subexponential-time and -space attack, in both cases assuming we have enough samples.

Hard instantiations. Certain instantiations of LWE appear computationally hard, and have strong “worst-
case hardness” theorems in support of this belief. Specifically, for a Gaussian error distribution ψ = Dr

with r ≥ 2
√
n, solving search-LWEn,q,ψ is at least as hard as quantumly approximating certain well-studied

“short vector” problems on any n-dimensional lattice to within Õ(n · q/r) factors, i.e., there is a quantum
reduction from worst-case lattice problems to search-LWE [Reg05]. Moreover, for q ≥ 2n/2 there is a
classical reduction from a subset of these problems, for essentially the same approximation factors [Pei09].
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Finally, under mild conditions on the modulus q and the Gaussian parameter r, the search and decision
problems are equivalent, i.e., there are reductions from search to decision. See, e.g., [Reg05, Pei09, MM11,
MP12, BLP+13].

2.3.2 Ring-LWE

Analogously to LWE, learning with errors over rings (Ring-LWE) [LPR10, LPR13] concerns “noisy” random
ring products with a secret ring element. Formally, it is parameterized by a ring R, which is the ring of
integers (or more generally, an order) of a number field K, a positive integer modulus q, and an error
distribution ψ over KR. Recall that R∨ = {x ∈ K : Tr(xR) ⊆ Z} is the (fractional) dual ideal of R, and for
any fractional ideal I define the quotient Iq := I/qI.

Definition 2.6 (Ring-LWE, [LPR10]). The search-R-LWEq,ψ problem is to find a uniformly random secret
s ∈ R∨q given many independent samples of the form

(ai , bi = s · ai + ei mod qR∨) ∈ Rq ×KR/qR
∨,

where each ai ← Rq is uniformly random and each ei ← ψ is drawn from the error distribution. (Observe
that each s · ai ∈ R∨q .) The decision-R-LWEq,ψ problem is to distinguish, with some noticeable advantage,
between samples generated as above, and uniformly random samples in Rq ×KR/qR

∨.

The above definition is sometimes called the “dual” form of Ring-LWE owing to the appearance of R∨,
whose role might appear somewhat mysterious. However, its importance for obtaining the “right” definition
of Ring-LWE is discussed at length in [LPR10, Section 3.3]. In short, the combination of R∨ and (nearly)
spherical Gaussian error ψ yields both the tightest connection with worst-case problems on ideal lattices, and
the best error tolerance and computational efficiency in cryptographic applications. (See [LPR10, LPR13]
for full details.) Nevertheless, for various reasons it may be more convenient to work with a “non-dual” form
of Ring-LWE, where the secret is a uniformly random s ∈ Rq (not R∨q ), and samples are of the form

(ai , bi = s · ai + ei mod qR) ∈ Rq ×KR/qR,

where each ai ← Rq is uniform and each ei ← ψ.
It turns out that the dual and non-dual forms of Ring-LWE are in fact equivalent up to the choice of

error distribution ψ—so it does not really matter which syntactic form we use, as long as long as we also
use an appropriate error distribution. This is because we can always convert one form to another using an
appropriate “tweak” factor, as described at the end of this section. (Such a “tweaked” form of Ring-LWE,
which replaces R∨ by R, has been used in [AP13, Pei14, CP15].) However, it is important to note that the
transformation may in general convert spherical Gaussian error to (highly) non-spherical error.

Because R is usually much sparser than R∨ (viewed as lattices in the canonical embedding), for non-dual
Ring-LWE some prior works have used a volume-normalized parameter r0 = r/ vol(R)1/n = r/δR as a
rough measure of how “wide” Gaussian error Dr is relative to R. We caution, however, that this measure
does not account for any lack of “well-roundedness” in R (i.e., gaps among its successive minima), so even a
large value of r0 does not necessarily mean that the error is “well-spread” relative to R.

Hard instantiations. Much like LWE, certain instantiations of Ring-LWE are supported by worst-case
hardness theorems; see [LPR10] for formal statements, which we summarize here. For r ≥ 2 · ω(

√
log n),

[LPR10, Theorem 4.1] says that for any number field K and R = OK , solving search-R-LWE for all
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continuous Gaussian error distributions ψ = Dr, where each ri ≤ r, is at least as hard as quantumly
approximating certain “short vector” problems on any ideal lattice in K, to within Õ(

√
n · q/r) factors. (The

distribution Dr over H is essentially an elliptical Gaussian with parameter ri in the ith coordinate.) Moreover,
[LPR10, Section 5] shows that for any cyclotomic number field, and for appropriate moduli q, decision is
classically at least as hard as search for any spherical Gaussian error distribution. (The proof immediately
generalizes to any Galois number field [EHL14].) Alternatively, decision for spherical error of parameter
roughly r · n1/4 is classically at least as hard as search for the class of elliptical distributions Dr described
above. (The conditions on the modulus q have subsequently been weakened, and hardness of decision is now
known for essentially any large enough modulus, via “modulus switching;” see, e.g., [BLP+13].)

Connection to LWE. Ring-LWE can be seen as a special case of LWE, in the following sense. For
simplicity we describe a reduction for the “non-dual” form, but it easily generalizes to the dual form from
Definition 2.6, either via the dual/non-dual equivalence described below, or directly using a Z-basis of R∨.

Fix any Z-basis B of the ring R, which is also a Zq-basis of Rq and an R-basis of KR. Then for any
a ∈ Rq, multiplication by a corresponds to a matrix Aa ∈ Zn×nq with respect to B, i.e., for any s ∈ Rq
having coefficient vector s ∈ Znq w.r.t. B, the coefficient vector of s · a w.r.t. B is stAa. Moreover, if a ∈ Rq
is uniformly random then so is every column of Aa (though the columns are maximally dependent).

Given a Ring-LWE sample (a ∈ Rq, b = s · a+ e ∈ KR/qR), we can transform it to n LWE samples

(Aa ∈ Zn×nq , bt = stAa + et ∈ (R/qZ)n),

where s ∈ Znq , e ∈ Rn are respectively the coefficient vectors of s, e w.r.t. B. The distribution of e is
σ(B)−1 · σ(ψ), which is “narrow” if ψ itself is narrow and B is chosen appropriately. Note that the columns
of Aa are not independent, nor are the entries of e in general; if this is a concern then we can throw away all
but one sample to get one LWE sample per Ring-LWE sample.

Equivalence of dual and non-dual forms. Here we show that the two syntactic forms of Ring-LWE (dual
and non-dual) are equivalent up to the choice of error distribution. First, a consequence the Chinese Remainder
Theorem (see [LPR10, Lemma 2.15]) is that for any fractional ideals I,J , there exists an efficiently
computable t ∈ K such that multiplication by t induces an efficiently invertible bijection θt : Iq → Jq, and
also a function κt : KR/qI → KR/qJ that maps the uniform distribution to the uniform distribution.3 For
example, in many cases of interest I = R∨ is principal, so for J = R we can let t be the inverse of any
generator, so that tR∨ = R.4

Using t and the associated functions θt, κt, we can transform one form of Ring-LWE to another. For
concreteness we focus on converting the dual form to the non-dual form, i.e., I = R∨ and J = R, but the
technique works for any I,J . Given dual-form Ring-LWE samples (ai, bi = s · ai + ei) ∈ Rq ×KR/qR

∨

for secret s ∈ R∨q , where each ai ∈ Rq is uniform and each ei ← ψ, we simply multiply each bi by t (and
reduce modulo qR if necessary) to obtain

b′i := κt(bi) = t · bi = s′ · ai + e′i mod qR,

where s′ = t · s = θt(s) ∈ Rq and the error term e′i = t · ei ∈ KR has “tweaked” distribution t · ψ.
Clearly, the (ai, b

′
i) ∈ Rq ×KR/qR are properly generated Ring-LWE samples for error distribution

t · ψ with uniformly random secret s′ ∈ Rq (because s ∈ R∨q is uniform and θt is a bijection), and finding s′

3The “efficiency computable” part of the claim assumes that the factorization of q is known, which is typically the case.
4We stress that I and J need not be principal to obtain the desired functions, it just makes their existence easier to see.
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immediately yields s (because θt is efficiently invertible). Therefore, search for the non-dual form with
error t · ψ is at least as hard as for the dual form with error ψ. Moreover, because κt sends uniform input to
uniform output, the same goes for the decision problems.

Lastly, we point out that the tweaked error distribution t · ψ is essentially a scaling of ψ by σi(t) in the
ith coordinate of the canonical embedding. Therefore, if ψ is a spherical Gaussian, the tweaked error is an
elliptical Gaussian which may have different widths in each of the coordinates of the canonical embedding.

2.4 Tensor Products

Some of our analysis in Sections 4.3 and 4.4 makes use of tensor products. For vectors (ordered tuples) a,b
over a common domain, their tensor product a⊗ b is the vector of all ai · bj , arranged in blocks ai · b in the
same order as the entries ai of a. Similarly, for matrices A,B their tensor product A⊗B is the matrix made
up of all blocks ai,jB, arranged analogously. Many linear-algebraic operations are multiplicative under the
tensor product, e.g., the Euclidean norm ‖a⊗ b‖ = ‖a‖ · ‖b‖ and the dual (A⊗B)∨ = A∨ ⊗B∨.

For two vector spaces V,W over the rationals Q, their tensor product V ⊗W is the vector space over Q
consisting of all Q-linear combinations of pure tensors v ⊗ w for v ∈ V,w ∈W , which satisfy the relations

c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw)

(v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)

v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2).

If V,W respectively have Q-bases (vi), (wj), then (vi ⊗ wj) is a Q-basis of V ⊗W . If V,W are rings then
V ⊗W is a ring with multiplication defined via the mixed-product property

(v1 ⊗ w1) · (v2 ⊗ w2) = (v1v2)⊗ (w1w2).

If V,W are fields, then in general V ⊗W may not be a field, though it will be one in all cases we examine.
The tensor product of two Z-modules (i.e., additive groups) is defined analogously, with a ring structure

defined by the mixed-product property if the original modules are themselves rings.

3 Attack Framework

In this section we give a new exposition of the Ring-LWE attacks described in [EHL14, ELOS15, CLS15,
CIV16, CLS16], focusing on the essential geometric reasons why they work. All the attacks fall into one of
two classes: reduction to errorless LWE, for which search is trivially solvable; and reduction modulo an ideal
divisor q of the modulus qR, for which decision can be solved under certain conditions on q and the error
distribution. In this section we describe a simple, unified framework that encompasses both classes of attack.
Then in Section 4 we show how certain concrete instantiations are vulnerable to the attacks, and in Section 5
we show that worst-case-hard instantiations are provably immune to them.

Following the above-cited works, throughout this section we restrict our attention to the so-called “non-
dual” form of Ring-LWE, which involves spherical Gaussian error relative to R (in the canonical embedding).
We mainly work with continuous rather than discrete error, which more clearly exposes the essential ideas
without the extra complication of discretization. We contend that a successful attack against an instantiation
with continuous Gaussian error should be enough to reject the corresponding discrete version, since we
should not rely on (nor expect) discretization itself to provide any significant security. Indeed, we shall see
that the attacks described here frequently work in the discrete setting as well.
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The rest of the section is organized as follows. As a warm-up, in Section 3.1 we start by describing some
simple attacks on plain LWE, then in Section 3.2 we show how they naturally extend to Ring-LWE. In a
nutshell, the attacks exploit the existence of one or more sufficiently short elements in the dual ideal of some
small-norm ideal divisor of qR. Then in Section 3.3, for completeness we describe the effect of discretization
on the attacks, which is typically minor (or nothing at all).

3.1 Warm-Up: Attacking Plain LWE

To start, we describe some folklore attacks against plain LWE and the conditions required for them to work.
(Similar ideas have appeared in search-to-decision reductions for LWE in, e.g., [Pei09, ACPS09, MP12].)
Suppose that q′ ≥ 1 is a divisor of the LWE modulus q, and let ψ be a (continuous) error distribution over R.
Then given LWE samples

(ai , bi = 〈s,ai〉+ ei mod q) ∈ Znq × R/qZ

where ai ← Znq and ei ← ψ, we can reduce them modulo q′ to obtain samples

(a′i = ai mod q′ , b′i = bi mod q′) ∈ Znq′ × R/q′Z.

Notice that b′i = 〈s′,a′i〉+ ei mod q′ where s′ = s mod q′, so these are LWE samples with the same error
distribution ψ, but now the secret now lies in a space of size (q′)n ≤ qn. For example, in the extreme
case where q′ = 1, all the 〈s′,a′i〉 = 0 mod Z, so b′i = ei mod Z. Finally, observe that modular reduction
transforms uniformly random samples modulo q to uniformly random ones modulo q′.

The above observations easily translate to potential attacks. For concreteness, let q′ = 1.

• If ψ is detectably non-uniform modulo Z, we immediately have a distinguishing attack: simply test
whether the b′i ∈ R/Z are non-uniform.

• Alternatively, if ψ usually does not “wrap around” modulo Z—i.e., if Pre←ψ[e 6∈ [−1
2 ,

1
2)] is small

enough—then we immediately have an attack on search: simply recover the unreduced errors ei ∈
[−1

2 ,
1
2) as the distinguished representatives of the b′i = ei mod Z, then subtract these errors from the

original values of bi ∈ R/qZ to obtain errorless LWE samples, which can be solved by linear algebra.

More generally, the same ideas apply for q′ > 1, where now we care about the distribution of the b′i−〈s′,a′i〉 =
ei mod q′Z. However, we need to account for the exponentially many (q′)n possible values of s′, which we
do not know how to handle efficiently in general.

On the positive side, suppose ψ = Dr is a Gaussian distribution with parameter r ≥ ηε(Z) exceeding
the smoothing parameter of Z for some very small ε, e.g., r >

√
n ≥ η2−n(Z) as in the worst-case hardness

theorems for LWE. Such errors “wrap around” modulo Z, so we cannot reliably recover them from their
residues in the search attack. Moreover, the reduced samples b′i = ei mod Z are statistically close to uniform,
and are therefore useless in the distinguishing attack. (More precisely, the distinguishing advantage is at most
m · ε, where m is the number of samples consumed.)

3.2 Attacking Ring-LWE

The authors of [EHL14, ELOS15, CLS15, CIV16, CLS16] describe analogous attacks on Ring-LWE that
can yield rather small search spaces for the reduced secret, even for nontrivial target moduli. (The approaches
are closely related to the search-to-decision reduction for Ring-LWE from [LPR10].) As we shall see, the
attacks are all instances of the following framework.
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Let q ⊆ R be an ideal divisor of qR, having norm N(q) := |R/q|, and let ψ be a continuous error
distribution over KR. Given Ring-LWE samples

(ai , bi = s · ai + ei) ∈ Rq ×KR/qR

where ai ← Rq and ei ← ψ, we can reduce them modulo q to obtain samples

(a′i = ai mod q , b′i = bi mod q) ∈ R/q×KR/q.

As above, we have b′i = s′ · a′i + ei mod q where s′ = s mod q, so these are Ring-LWE samples with error
distribution ψ, but now the secret lies in a space of size N(q). Also observe that reduction modulo q maps
uniform samples to uniform samples.

When N(q) is not too large, the preceding observations potentially yield attacks:

• If ψ mod q is detectably non-uniform, then we immediately have an attack against the decision
problem: try all candidates ŝ ∈ R/q for s′, and for each one test whether the b′i − ŝ · a′i ∈ KR/q
are statistically non-uniform; accept if such an ŝ exists, otherwise reject. In Section 3.2.1 below we
describe a standard method of distinguishing reduced spherical Gaussians Dr mod q from uniform.

• Similarly, if ψ has one or more coefficients (relative to some fixed Z-basis of q) that usually do not
“wrap around” modulo Z, then we can attack search by reducing to errorless LWE. See Section 3.2.2
below for further details.

• On the positive side, if ψ = Dr is a continuous Gaussian of parameter r ≥ ηε(q) for some very small ε,
then neither of the attacks work, because every coefficient of the error “wraps around,” and moreoever,
the reduced error ψ mod q is statistically close to uniform. We return to these points in Section 5.

3.2.1 Distinguisher

To run the distinguishing attack, we need a way of efficiently distinguishing ψ mod q from uniform over
KR/q, for spherical Gaussian error ψ = Dr. A variety of statistical tests have been proposed in [EHL14,
ELOS15, CLS15, CLS16], but in this work it suffices to consider a standard method that uses a sufficiently
short nonzero element w in the dual ideal q∨ of q, or equivalently, a short nonzero vector w = σ(w) in
the dual lattice L∨ = σ(q)∨ of L = σ(q). More generally, one can use multiple linearly independent dual
vectors—e.g., to reduce the number of consumed samples, or to improve the effectiveness of the statistical
test—but we do not pursue such optimizations because we will not need them (see the discussion below).

Lemma 3.1. Let L be any lattice, w ∈ L∨ \ {0} be any nonzero element of its dual lattice, and r > 0. Then
for x← Dr mod L, the distribution of 〈w,x〉 mod Z is Dr‖w‖ mod Z, and

E
x

[cos(2π〈w,x〉)] = exp(−π(r‖w‖)2).

In particular, if r‖w‖ = O(1), then the expectation is Ω(1).

Proof. Because w ∈ L∨ we have 〈w,L〉 ⊆ Z, so the distribution of 〈w, Dr mod L〉 mod Z is 〈w, Dr〉 mod
Z = Ds mod Z, where s = r‖w‖. The expectation Ex←Ds [cos(2πx)] is merely the Fourier coefficient at 1
of Ds mod Z, which by a routine calculation is exp(−πs2).

It is easy to see that for uniformly random x modulo L, the inner product 〈w,x〉 mod Z is uniform,
so E[cos(2π〈w,x〉)] = 0. With Lemma 3.1, this immediately yields an efficient distinguisher between
Dr mod L and uniform when r‖w‖ = O(1): given many samples xi, compute the average of cos(2π〈w,xi〉)
and accept if it exceeds an appropriate threshold t = Ω(1). (See, e.g., [Reg05, Lemma 3.6] for more details.)
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Relation to prior distinguishing attacks. The distinguishing attacks from [EHL14, ELOS15, CLS15,
CLS16] are not described using dual ideals and the trace pairing, but as we now show, they all can be
expressed in these terms. Letting the modulus q be prime, the prior attacks use a prime ideal divisor q
of qR having norm N(q) = qd for some small positive integer d, and a ring homomorphism (actually, an
isomorphism) h : R/q→ Fqd . For a discrete error distribution ψ over R, the attacks use some statistical test
of non-uniformity for h(ψ mod q) ∈ Fqd to solve decision as described above.

Any such attack can be reformulated in terms of duality and trace pairings, as follows. Recall that Fqd
is a d-dimensional vector space over Fq = Zq, and fix some arbitrary Zq-basis. Observe that the d induced
functions hj : R/q → Zq, where hj(r) is defined as the jth coefficient of h(r) ∈ Fqd (with respect to the
chosen Zq-basis), are additive group homomorphisms. A basic fact of duality is that any such homomorphism
can be expressed as hj(x) = q · Tr(w · x) for some efficiently computable wj ∈ q∨, where the q factor just
scales the discrete torus q−1Z/Z to yield the range Zq. (Indeed, the dual lattice is sometimes defined as the
group of such homomorphisms.) Moreover, because the domain R/q of hj is discrete, the wj need only be
specified modulo R∨, i.e., we can take wj ∈ q∨/R∨.

By the above, any ring homomorphism h : R/q → Fqd corresponds to taking the trace pairing with
some fixed d-tuple of dual elements wj ∈ q∨. However, not every tuple of dual elements (even Zq-linearly
independent ones) corresponds to such a ring homomorphism, so the present framework is strictly more
general. Moreover, as we will see in Section 4, all the previously considered attacks that used d > 1 can be
made to work using just one appropriately chosen w ∈ q∨, so we do not need the extra generality of multiple
dual elements.

3.2.2 Search Attack

We now describe the details of the attack on search, focusing on the case q = R for simplicity.5 This
generalizes the attack from [CIV16], and gives a simpler analysis with the same ultimate results (see below
for a comparison, and Section 4 for concrete examples). Let B = (bj)j be a fixed Z-basis of R for which one
or more coefficients of ψ do not wrap around, i.e.,

Pr
e←ψ

[ej 6∈ [−1
2 ,

1
2)] ≈ 0 (3.1)

for some j, where e =
∑

j ej · bj for ej ∈ R is the unique representation of e with respect to B. Lemma 3.2
below shows that for spherical Gaussian error, this condition holds for the index j of any sufficiently short
element of the dual basis of B.

To perform the attack, as described in Section 2.3.2 we transform each Ring-LWE sample (a ∈ Rq, b =
s · a+ e ∈ KR/qR) to n LWE samples

(Aa ∈ Zn×nq , bt = stAa + et ∈ (R/qZ)n),

where Aa denotes the matrix of multiplication by a (whose columns are uniformly random but maximally
dependent), and s, e are respectively the coefficient vectors of s, e (all with respect to basis B). Now, for each
index j for which Equation (3.1) holds, we can with high probability obtain ej ∈ [−1

2 ,
1
2) as the distinguished

representative of the jth entry of b mod Z. This yields an errorless LWE sample for the jth column of Aa.
Given enough errorless samples, we can solve for s by standard linear algebra.

5The attack easily generalizes to arbitrary ideal divisors q|qR of not-too-large norm; we omit the details, because the present
form will be enough for our purposes.
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Lemma 3.2. Let D = (dj) be the dual basis of B = (bj), i.e., D = B∨ := (B−1)∗ where B = σ(B),
D = σ(D). Then for any r, ε > 0, if

‖dj‖ ≤
(

2r
√

log(2/ε)/π
)−1

then Pre←Dr [ej ∈ [−1
2 ,

1
2)] ≥ 1− ε, where e =

∑
j ej · bj for ej ∈ R.

Proof. By definition, the distribution of e, the coefficient vector of e with respect toB, is B−1 ·Dr, whereDr

is the spherical Gaussian of parameter r over H . Therefore, ej is distributed as a Gaussian of parameter
s = r · ‖dj‖ ≤ (2

√
log(2/ε)/π)−1. The claim then follows directly by the standard Gaussian tail bound

Prx←Ds [|x| ≥ t] ≤ 2 exp(−π(t/s)2) for any t ≥ 0.

Comparison with [CIV16]. The authors of [CIV16] also attack search using a reduction to errorless LWE,
but use a different approach for showing that error coefficients are zero. In brief, they consider the matrix B =
σ(B) of the linear transformation that maps from a basis B (e.g., the power basis B = (1, X, . . . ,Xn−1))
to the canonical embedding. Using its singular value decomposition, they analyze the “skewness” of the
transformation via its singular values, and the “alignment” of the basis elements with the singular vectors, to
show that certain error coefficients are usually small. By contrast, the approach described above only needs
to analyze the lengths of the dual vectors, i.e., the rows of B−1.

3.3 Discretization

We contend that a successful attack against a Ring-LWE instantiation with continuous Gaussian error
should already be enough to reject the corresponding discrete instantiation, because we should not expect
discretization itself to provide any significant security. Indeed, the above-described attacks can frequently
be made to work in the discrete setting as well, as we now describe. Here the attacker is given samples
(a, b = s · a+ ē) ∈ Rq ×Rq, where ē ∈ R is the discretization of some e ∈ KR drawn from ψ. A standard
discretization method, which in particular is used in [ELOS15, CLS15, CLS16], writes e =

∑
j ej · bj with

respect to some fixed Z-basis B = (bj) of R, rounds each ej to the nearest integer ēj = beje ∈ Z, and
outputs ē =

∑
j ēj · bj ∈ R. Such discretization has the following effect on the above attacks:

• For the search attack via reduction to errorless LWE, if the discretization basis B is also the basis used
for the reduction (which is indeed the case for prior instantiations), then discretization has no effect at
all: the small real error coefficients ej ∈ [−1

2 ,
1
2) are simply rounded off to zero before being given to

the attacker, instead of by the attacker.

• For the distinguishing attack that uses a short w ∈ q∨, discretizing x ∈ KR/q to x̄ ∈ R/q has the
effect of making Tr(w · x̄) ≈ Tr(w · x) ∈ R/Z lie in Tr(wR)/Z ⊆ (N(q)−1Z)/Z, because

w ∈ q∨ = q−1R∨ ⊆ N(q)−1R∨.

So if w ∈ R∨ (which in particular holds if q = R) then the attack is trivially nullified, because
Tr(w · x̄) = 0 ∈ Z/Z always. However, for N(q) � 1 and w ∈ q∨ \ R∨, the distinguishing attack
often still works, because the elements bj of the discretization basis B typically have small trace
pairings Tr(w · bj), like 0 or ±N(q)−1. Therefore, discretization does little to “smooth out” the
non-uniform distribution of Tr(w · x) ∈ R/Z.
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4 Insecure Instantiations

In this section we show how the attack framework from Section 3 applies to the concrete insecure Ring-LWE
instantiations defined in [EHL14, ELOS15, CLS15, CLS16] (among others). In all cases, the core reason
for the insecurity is that the error distributions are insufficiently “well spread” relative to the rings, viewed
as lattices. (See, e.g., Figure 3.) To prove this formally, it suffices by Lemmas 3.1 and 3.2 to demonstrate
sufficiently short nonzero elements in the dual ideal q∨ of some ideal divisor q of qR (possibly q = R itself)
whose algebraic norm N(q) is not too large.

We stress that all these insecure instantiations—excepting [EHL14], for which the following conclusions
still apply—are for the “non-dual” version of Ring-LWE with spherical Gaussian errors relative to R (in the
canonical embedding). By contrast, the definition of Ring-LWE from [LPR10], and the instantiations having
worst-case hardness, involve spherical errors relative to the dual ideal R∨ (see Section 2.3.2). When the
insecure and hard instantiations are transformed to be directly comparable, the resulting error distributions
turn out to have very different widths and shapes. We return to this point in Section 5, where we show that
the hard instantiations are immune to the attacks from Section 3.

4.1 Rings Z[X]/(Xn + aX + b)

The instantiations defined in [ELOS15] involve rings of the form R = Z[X]/(Xn + aX + b) for some
nonnegative integers a, b, and spherical Gaussian error in the canonical embedding. The original attacks on
these instantiations solved the decision problem for certain moduli q via (essentially) the distinguishing attack
from Section 3.2.1, using 20 samples. Later work by [CIV16] successfully attacked search for any modulus q
by reduction to errorless LWE, obtaining a 100 % success probability using only 4–7 samples (depending
on the instantiation). The analysis of [CIV16] relied on the singular values of the embedded power basis
elements, and the alignment of the singular vectors with those embedded powers. Here we use our simpler
analysis in terms of the lengths of dual vectors, following the approach described in Section 3.2.2, to obtain
the same conclusions; see Figure 1.6

f(X) r0 r threshold num. short dj samples

X192 + 4092 8.87 5,440 6.32× 10−5 29 (15.1 %) 7
X256 + 8190 8.35 8,390 4.01× 10−5 47 (18.3 %) 6

X128 + 524288X + 524285 8.00 45,540 7.79× 10−6 32 (25.0 %) 4

Figure 1: Analysis of the instantiations from [ELOS15], for the power basis B = (1, X, . . . ,Xn−1) and its
dual D = (dj). “Threshold” denotes the value (2r

√
log(4n)/π)−1 from Lemma 3.2 (for ε = 1/(2n)) for

the lengths of the dual vectors dj , below which the jth error coefficient is zero with probability at least 1− ε.
“Num. short dj” denotes the number (and percentage, out of n) of the dual vectors whose norms are below
the threshold. “Samples” denotes the number of Ring-LWE samples that suffice to recover the secret via
linear algebra on the errorless coefficients.

6A preliminary version of this work incorrectly concluded that for each instantiation, more than 90% of the coordinates are
errorless; this was due to a misinterpretation of the parameter w from [ELOS15, Section 9]. We thank an anonymous reviewer for
pointing this out.
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4.2 Prime Cyclotomics

Let the modulus q be a prime integer and let R = Z[ζq] be the qth cyclotomic ring, where ζq denotes a
primitive qth root of unity. It is well known (and easy to verify) that qR = qq−1 and qR∨ = q, where the
ideal q = (1− ζq)R+ qR is prime and has norm N(q) = q.

In [CLS15, Section 6], the authors use (essentially) the approach from Section 3.2.1 to obtain distinguish-
ing attacks that work in practice for the cases q = 251, 503, 809, using q as the ideal divisor of qR. Their
experiments work for parameters

r ≤ 1.53 · δR = 1.53

√
q(q−2)/(q−1) < 1.53

√
q.

(Note that this corresponds to a volume-normalized parameter of r0 ≤ 1.53, which is considered quite small
for LWE errors.) We remark that these distinguishing attacks are not known to translate to search, because no
search-decision equivalence is known for this choice of parameters.

Our analysis. The following lemma formally proves why the experiments work, and additionally implies
that search can be solved via errorless LWE for slightly smaller parameters. See Figure 2 for a graphical
depiction in the third cyclotomic ring.

Lemma 4.1. Let q, R, and q be as above. Then q−1 · (1, ζq, . . . , ζq−2
q ) is a Z-basis of q∨, all of whose

elements have length
√
q − 1/q.

Two immediate corollaries are that by Lemma 3.2, we can solve search by reducing to errorless LWE for,
say, r ≤

√
q · π/(4 log(4q)) = Θ(

√
q/ log q); and by Lemma 3.1 and the associated distinguisher, we can

efficiently solve decision for any r = O(
√
q).

Proof. Because qR∨ = q, the dual ideal of q is q∨ = q−1R∨ = q−1R, for which q−1 · (1, ζq, . . . , ζq−2
q ) is a

Z-basis. Because every complex embedding of ζjq is a root of unity, we have ‖q−1 · ζj‖ =
√
q − 1/q.

4.3 Quadratic Extensions of Cyclotomics

In [CLS16], the authors consider non-dual Ring-LWE instantiations for certain quadratic extensions of
cyclotomics, namely, R = Z[ζp,

√
d] where ζp denotes a primitive pth root of unity for an odd prime p,

and d > 1 is a square-free integer that is coprime to p, and is 3 modulo 4. They prove that for appropriate
moduli, and for spherical Gaussian error of parameter r ≈

√
d, which corresponds to a volume-normalized

parameter of r0 = r/δR ≈ d1/4/
√
p, one can efficiently solve search by combining a distinguishing attack

with known search-decision equivalences for Galois rings. In addition, their distinguishing attacks work in
practice up to larger parameters r ≈

√
p · d (corresponding to r0 ≈ d1/4), though no formal analysis was

provided to explain why.

Our analysis. Here we prove that for the same class of rings, and for r ≈
√
p · d/ log p (i.e., r0 ≈

d1/4/
√

log p), we can solve search directly by reducing to errorless LWE, using the approach from Sec-
tion 3.2.2. (As above, this works for any choice of modulus q.) Moreover, for any r = O(

√
p · d) we can

efficiently solve decision, and hence search, using the distinguishing attack from Section 3.2.1.
The basic reason why the attacks work on these instantiations is quite simple: Z[

√
d] has root discriminant

≈ d1/4, but its dual lattice has a very short vector of length ≈ 1/
√
d. This means that error of parameter
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1

ζ3

Figure 2: The canonical embedding of the third cyclotomic ringR = Z[ζq] for q = 3, along with a continuous
Gaussian of parameter r = q/

√
q − 1. (We have depicted the two-dimensional real inner product space

H ⊂ C2 as R2.) The dashed colored lines show the hyperplanes that partition the lattice points according to
their inner products with (the canonical embedding of) q−1 ∈ q∨; this also partitions according to the three
cosets of q = qR∨. The zero coset of q (in blue) has noticeably more probability mass under the Gaussian
than the ±1 cosets (in maize and green).

R

1

X

R∨

d0

d1

Figure 3: On the left: the canonical embedding L = σ(R) of R = Z[
√
d] for d = 31, along with

a continuous spherical Gaussian distribution of parameter r =
√
d/2, which corresponds to a volume

normalized parameter of r0 := r/det(L)1/2 = d1/4/(2
√

2). Observe that discretizing an error term to R
using the power basis P = (1, X) usually results in a coefficient of zero for X . On the right: the dual
lattice L∨ (corresponding to R∨), along with the dual basis D = (d0, d1) of the power basis. Observe that d1

is very short, which corresponds to the wide gap between integers multiples of X .
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r ≈
√
d (i.e., r0 ≈ d1/4) is still so narrow relative to Z[

√
d] that discretizing yields a zero coefficient; see

Figure 3. The same goes for the compositum ring Z[ζp,
√
d] ∼= Z[ζp]⊗ Z[

√
d], because Z[ζp] has many dual

elements whose lengths are essentially the inverse of the root discriminant.

Lemma 4.2. For p and d as described above, let B = (1, ζp, . . . , ζ
p−2
p ) ⊗ (1,

√
d), which is a Z-basis of

R = Z[ζp,
√
d] ∼= Z[ζp]⊗ Z[

√
d]. Then the dual basis D = B∨ has p− 1 elements of length 1/

√
pd.

An immediate corollary is that by Lemma 3.2, we can solve search via errorless LWE for, say, r =√
p · d · π/(4 log(8p)). Because R has root discriminant

δR = δZ[ζp] · δZ[
√
d] =

√
p(p−2)/(p−1) · (4d)1/2 ≤ √p · (4d)1/4,

this corresponds to a volume-normalized parameter r0 ≥ (d · π2/64)1/4/
√

log(8p) = Θ(d1/4/
√

log p).
Another corollary is that by Lemma 3.1, we can solve decision for any r = O(

√
p · d), which corresponds to

r0 = O(d1/4).

Proof of Lemma 4.2. Let σp and σd respectively denote the canonical embeddings for Z[ζp] and Z[
√
d], and

let Bp = (1, ζp, . . . , ζ
p−2
p ), Bd = (1,

√
d) and Dp = B∨p , Dd = B∨d . Then D = Dp ⊗Dd, and

D := σ(D) = σp(Dp)⊗ σd(Dd) = σp(Bp)
∨ ⊗ σd(Bd)∨.

We analyze the two components separately. First, σd(Bd) =
(

1
√
d

1 −
√
d

)
, so σd(Dd) = 1

2

(
1 1/

√
d

1 −1/
√
d

)
; note

that the second column has norm 1/
√

2d.
Next, we show that all the columns of Dp = σp(Dp) have norm

√
2/p. This is equivalent to showing

that all the diagonal entries of D∗p ·Dp are 2/p. Indeed, letting Bp = σp(Bp) and noting that it is just the
lower-left (p − 1)-dimensional submatrix of the (non-normalized) p-dimensional Fourier matrix, whose
columns are orthogonal with norm

√
p and whose top row is the all-ones vector, we have

D∗p ·Dp = (B∗p ·Bp)
−1 = (pIp−1 − 1)−1 = p−1X,

where 1 is the all-1s matrix and X has 2s along the diagonal and 1s in every other entry.
The claim then follows from the fact that the columns of D include the columns of B∨p ⊗ 1

2

(
1/
√
d

−1/
√
d

)
,

which all have norm 1/
√
pd.

4.4 Subfields of Cyclotomics

In [CLS15, Section 5], the authors consider non-dual Ring-LWE instantiations involving subfields K of
cyclotomic fields L = Q(ζm), namely, those that are fixed pointwise by the automorphisms in some subgroup
of the Galois group of L/Q. Letting R = OK be the ring of integers in K, the instantiations involve spherical
Gaussian error with volume-normalized parameter r/δR = r0 = σ0

√
2π < 3.14 (which is considered

somewhat small for LWE errors). The authors’ distinguishing attacks work in practice, and they provide
some heuristics as potential explanations, but no formal analysis.7

7We remark that the ring dimensions in these instantiations are all at most 144, which is small enough that search is reasonably
easy to solve using standard basis-reduction techniques. Here we restrict our attention to the class of attacks from Section 3.
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p d r r0 r′ = 1.48
√
pd r′0

31 4,967 148.5 2.38 580.7 9.30

43 4,871 168.1 2.27 677.3 9.14

61 4,643 189.8 2.15 787.6 8.94

83 4,903 222.0 2.12 944.1 8.99

103 4,951 244.4 2.08 1,056.9 8.98

109 4,919 249.6 2.06 1,083.7 8.95

151 100,447 1,296.2 4.26 5,763.9 18.94

181 100,267 1,400.0 4.20 6,304.9 18.89

Figure 4: Instantiations of non-dual Ring-LWE for rings R = Z[ζp,
√
d] where: (1) for spherical error of

parameter r = r0 · δR, search can be solved by reducing to errorless LWE, and (2) for spherical error of
parameter r′ = r′0 · δR, decision (and hence search) can be solved efficiently using the distinguishing attack.
The constant factor 1.48 is chosen (somewhat arbitrarily) to ensure a Fourier coefficient of at least 10−3 in
the distinguishing attack.

Our analysis. For the sub-cyclotomic rings R considered in [CLS15, Section 5], it turns out that the dual
ideal R∨ contains many rather short nonzero elements, relative to the root discriminant δR. (See Figure 5.)
By Lemma 3.1, this implies an efficient distinguishing attack on non-dual Ring-LWE for narrow enough
spherical Gaussians, which in particular includes the parameters studied in [CLS15]. We note that the attack
works for any choice of the modulus q, at least for continuous error. Fortunately, the analysis easily transfers
to the discrete setting, as described below.

The dual ideals R∨ contain short nonzero elements for nearly the same reason as for the quadratic
extensions of cyclotomics studied in the previous subsection. More specifically, we show that representative
sub-cyclotomic number fieldsK from [CLS15] turn out to be quadratic extensionsK = J(

√
d) ∼= J⊗Q(

√
d)

of some subfield J ⊂ K, for some squarefree integer d of relatively large magnitude. The ring of integers
is therefore R = OK ∼= S ⊗ D, where S = OJ and D = Z[δ] for δ =

√
d if d 6= 1 mod 4, otherwise

δ = (1 +
√
d)/2. In any case, the magnitude of d is large enough that D∨ contains a very short nonzero

element relative to the root discriminant δD. (See Figure 3.) This similarly carries over to R∨ = S∨ ⊗D∨,
because we have many nonzero elements of S∨ whose Euclidean norms are roughly the inverse of the root
discriminant δS .

For completeness, we mention that all our analysis carries over to the setting of discrete error over R, as
long as we have an ideal divisor q ⊂ S of qS having sufficiently small norm. Then (qR)∨ = q∨ ⊗D∨, so
for its dual element the distinguisher can use the pure tensor of some w ∈ q∨ \ S∨ with a shortest nonzero
element in D∨. The element w does not even need to be short: we can simply try representatives of all the
N(q) − 1 nonzero cosets of q∨/S∨. Because one of these is congruent modulo S∨ to a shortest nonzero
element v ∈ q∨, and the error is discrete over R, the distinguisher behaves exactly as if it had used v.

4.4.1 Detailed Analysis of Instantiations

In what follows we analyze two representative instantiations from [CLS15, Section 5] in detail. The other
instantiations can be handled similarly, but their number fields are much more complicated to write down
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ID m generators of H ⊂ Z∗m deg(K/Q) K

1 3 · 5 · 11 · 17 1684, 1618 40 Q(ζ3, ζ11,
√

5 · 17)

2 3 · 5 · 7 · 11 · 13 12286, 2003, 11936 60 Q(ζ7, ζ11 + ζ−1
11 ,
√
−3 · 5 · 13)

ID δK ≈ λ1(R∨) ≤ λ1(R∨) · r0 · δK ≈

1 11.76
√

8/2805 ≈ 0.0534 1.58

2 21.94
√

12/15015 ≈ 0.0283 1.55

Figure 5: Example sub-cyclotomic number fields from [CLS15, Section 5]. For the mth cyclotomic field
L = Q(ζm), the subfield K is the fixed field of the Galois subgroup H ⊂ Z∗m defined by the given generators.
The second table displays the root discriminant δK ofK, an upper bound on the minimum distance of the dual
ideal R∨ (where R = OK), and the resulting parameter of the real Gaussian that needs to be distinguished
from uniform modulo Z using the attack from Lemma 3.1. In all cases, the parameter is small enough to
permit efficient distinguishing.

explicitly. (Instead, one can use computer search to find an appropriate dual element, which is sufficient to
mount the distinguishing attack.) Figure 5 shows the results of our analysis.

We first recall some standard background about cyclotomic number fields; see, e.g., [Lan94] for proofs.
First, for any positive integers m = m1 · m2 for coprime m1,m2, the mth cyclotomic field Q(ζm) is
isomorphic to the compositum field Q(ζm1 , ζm2) ∼= Q(ζm1) ⊗ Q(ζm2). The Galois group of Q(ζm)/Q is
isomorphic to Z∗m ∼= Z∗m1

× Z∗m2
, where the ith automorphism is defined by τi(ζm) = ζim for i ∈ Z∗m;

equivalently, τi(ζm1) = ζi1m1
and τi(ζm2) = ζi2m2

for i = (i1, i2) ∈ Z∗m1
× Z∗m2

. Finally, for any odd
prime p, the (unique) quadratic subfield of the pth cyclotomic Q(ζp) is Q(

√
±p), where the sign is such that

±p = 1 mod 4.

Instantiation #1. This instantiation (ID 1 in Figure 5) uses a subfield K of the cyclotomic field L =
Q(ζ2805) ∼= Q(ζ3, ζ5, ζ11, ζ17), namely, the fixed field of the Galois subgroup H generated by the automor-
phisms τ, ν respectively indexed by

(1,−1, 1, 1), (1, 3, 1, 3) ∈ Z∗3 × Z∗5 × Z∗11 × Z∗17.

The Galois group of L/Q has order 1280 = 2 · 4 · 10 · 16, and the subgroup H has order 32, so the degree
of K/Q is 40.

Lemma 4.3. The fieldK defined above is isomorphic to Q(ζ3, ζ11,
√

5 · 17) ∼= Q(ζ3)⊗Q(ζ11)⊗Q(
√

5 · 17),
and the dual ideal R∨ of its ring of integers R = OK has 20 known Q-linearly independent elements of
Euclidean norm

√
8/(3 · 5 · 11 · 17) ≈ 0.0534.

It follows that the root discriminant ofK is δK = 31/4 ·119/20 ·851/4 ≈ 11.76. For r =
√

2π ·δK ≈ 29.47
as in [CLS15], using the above elements of R∨ in the distinguishing attack of Lemma 3.1 results in real
Gaussian error of parameter roughly 0.0534 · r ≈ 1.58, which is easily distinguished from uniform modulo Z.

Proof of Lemma 4.3. The latter isomorphism follows from the fact that the discriminants of the component
fields are pairwise coprime. Because the degree of K (over Q) matches that of the field from the claim (they
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are both 2 · 10 · 2 = 40), to prove the first claim it suffices to show that the the two automorphisms τ, ν fix ζ3,
ζ11, and

√
5 · 17 ∈ L.

Indeed, it is immediate that τ and ν fix both ζ3 and ζ11, because their Z∗3 and Z∗11 components are unity.
Moreover, τ fixes

√
5 · 17: it trivially fixes

√
17, and it also fixes

√
5 because Q(

√
5) is the quadratic subfield

of Q(ζ5), which is the fixed field of the order-two subgroup {±1} ⊂ Z∗5. Finally, we claim that ν maps
√

5
to −
√

5 and maps
√

17 to −
√

17. Because 3 is a generator of Z∗5, the corresponding fixed subfield of Q(ζ5)
is just Q, therefore ν does not fix

√
5. Since any automorphism of L/Q induces an automorphism on any

subfield of L (because L/Q is Galois, and hence normal), it follows that ν must map
√

5 to its only remaining
conjugate, which is −

√
5. Identical reasoning shows that ν maps

√
17 to −

√
17, so ν fixes

√
5 · 17, which

proves the first claim.
For the second claim, R = OK is isomorphic to Z[ζ3, ζ11]⊗ Z[δ], where δ = (1 +

√
85)/2. It follows

that the dual ideal R∨ is S∨ ⊗ Z[δ]∨, where S = Z[ζ3, ζ11]. We know that 1/
√

85 ∈ Z[δ]∨, which has
Euclidean norm

√
2/85 under the canonical embedding of Q(

√
85). As in the proof of Lemma 4.2, the

dual ideal S∨ has a known Z-basis whose 20 elements all have Euclidean norm
√

4/33 under the canonical
embedding of Q(ζ3, ζ11). The claim follows by taking the product of 1/

√
85 with these basis elements.

Instantiation #2. This instantiation (ID 2 in Figure 5) uses a subfield K of the cyclotomic field L =
Q(ζ15015) ∼= Q(ζ3, ζ5, ζ7, ζ11, ζ13), namely, the fixed field of the Galois subgroup H generated by the three
automorphisms τ, ν, ξ respectively indexed by

(1, 1, 1,−1, 1), (2, 3, 1, 1, 1), (2, 1, 1, 1, 2) ∈ Z∗3 × Z∗5 × Z∗7 × Z∗11 × Z∗13.

The Galois group of L/Q has order 6720 = 2 · 4 · 7 · 10 · 12, and the subgroup H has order 112, so the degree
of K/Q is 60.

Lemma 4.4. The field K defined above is isomorphic to

Q(ζ7, ζ11 + ζ−1
11 ,
√
−3 · 5 · 13) ∼= Q(ζ7)⊗Q(ζ11 + ζ−1

11 )⊗Q(
√
−3 · 5 · 13),

and the dual ideal R∨ of its ring of integers R = OK has 30 known Q-linearly independent elements of
Euclidean norm

√
12/(3 · 5 · 7 · 11 · 13) ≈ 0.02827.

It follows that the root discriminant of K is δK = 75/12 · 114/10 · 1951/4 ≈ 21.94. For r =
√

2π · δK ≈
55.00 as in [CLS15], using the above elements of R∨ in the distinguishing attack of Lemma 3.1 results in
real Gaussian error of parameter roughly 0.02827 · r ≈ 1.55, which is easily distinguished from uniform
modulo Z.

Proof of Lemma 4.4. The latter isomorphism follows from the fact that the discriminants of the components
fields are coprime. Because the degree of K (over Q) matches that of the field from the claim (they are both
6 · 5 · 2 = 60), to prove the first claim it suffices to show that the three given automorphisms τ, ν, ξ fix ζ7,
ζ11 + ζ−1

11 , and
√
−3 · 5 · 13 ∈ L.

It is immediate that all three automorphisms fix ζ7, because their Z∗7 components are all unity, and
similarly for ζ11 + ζ−1

11 , because their Z∗11 components are all ±1. It remains to show that they all fix√
−3 · 5 · 13. For τ this is immediate, because it fixes

√
−3 ∈ Q(ζ3),

√
5 ∈ Q(ζ5), and

√
13 ∈ Z(ζ13).

For ν and ξ, by similar reasoning as in the previous proof we have ν(
√
−3) = −

√
−3, ν(

√
5) = −

√
5, and

ν(
√

13) =
√

13; and ξ(
√
−3) = −

√
−3, ξ(

√
5) =

√
5, and ξ(

√
13) = −

√
13. This proves the first claim.

For the second claim, R = OK is isomorphic to Z[ζ7]⊗Z[ζ11 + ζ−1
11 ]⊗Z[δ], where δ = (1+

√
−195)/2.

We know that 1/
√
−195 ∈ Z[δ]∨, which has Euclidean norm

√
2/195 under the canonical embedding
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of Q(
√
−195). As in the proof of Lemma 4.2, the dual ideal Z[ζ7]∨ has a known Z-basis whose 6 elements

all have Euclidean norm
√

2/7. Similarly, Z[ζ11 + ζ−1
11 ]∨ has a known Z-basis (namely, the dual of the basis

made up of the conjugates of ζ11 + ζ−1
11 ) whose 5 elements all have Euclidean norm

√
3/11. The claim

follows by taking the product of 1/
√

195 with the tensor product of the two just-described bases.

5 Invulnerable Instantiations

In this section we give sufficient conditions that make a Ring-LWE instantiation provably immune to all
the attacks described in Section 3. By “immune” we mean that the attacks perform no better than known
attacks (e.g., [BKW03, AG11]) against plain LWE when instantiated to have worst-case hardness, i.e., with
Gaussian error of parameter r ≥ 2

√
n. In particular, each attack’s running time divided by its advantage is at

least 2Ω(n), in the typical case of polynomially bounded modulus q = poly(n).
We focus on instantiations that satisfy, or only “almost” satisfy, the hypotheses of the “worst-case hardness

of search” theorem from [LPR10, Section 4]. We show that any such instantiation, in any number field,
satisfies the sufficient conditions, and is therefore immune to the attacks.

5.1 Class of Instantiations

Throughout the section, we consider instantiations of the “dual” Ring-LWE problem (Definition 2.6
and [LPR10, Section 3]) for the ring of integers R in a number field K of degree n (over Q), with a
continuous, spherical Gaussian error distribution ψ = Dr over KR for some r > 0. Recall from Section 2.3.2
that in this form of Ring-LWE,

s ∈ R∨q := R∨/qR∨ and a ∈ Rq := R/qR,

so s · a ∈ R∨q , and we have “noisy” products b = s · a+ e ∈ KR/qR
∨ where e← ψ.

For showing invulnerability to attacks, using continuous rather than discrete error yields stronger results
that immediately transfer to the discrete setting. This is because the attacker can always discretize continuous
samples, and thereby the underlying error, on its own if it so desires.8 We also note that all the results in this
section apply (tautologically) to any equivalent form of Ring-LWE, e.g., the “tweaked” form that replaces R∨

with R. For illustration, we depict some of these forms later in the section.

Invulnerability condition. We will show that a sufficient condition for invulnerability to the attacks from
Section 3 is

r ≥ 2. (5.1)

While at first glance this bound may appear very small, remember that it should be compared against the high
“density” of R∨, and in this respect the error is actually quite well spread relative to R∨. This will become
apparent in the analysis and figures below.

We remark that Condition (5.1) is actually a bit weaker than what is required by [LPR10, Theorem 4.1]
(worst-case hardness of search). Specifically, the theorem requires r ≥ 2 · ω(

√
log n), and moreover, it

requires the search algorithm to work for any elliptical Gaussian error distribution whose parameter in each
coordinate (of the canonical embedding) is bounded by r. These conditions may be artifacts of the proof
technique, but in any case, they certainly require the attacker to succeed for spherical Gaussian error of some
parameter r ≥ 2, which is the case we study here.

8More precisely, this argument applies to any discretization b·e : KR → R∨ for which bz + ee = z + bee for any z ∈ R∨ and
e ∈ KR, which is the case for any standard method. See [LPR13, Section 2.6] for further details.
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5.2 Invulnerability to Attacks

Here we consider the two classes of attack described in Section 3.2: reducing to plain LWE, and reducing
modulo an ideal divisor of qR. We prove that Condition (5.1) renders our class of instantiations invulnerable
to both kinds of attack.

5.2.1 Reduction to LWE

As described in Section 2.3.2, this attack simply converts each Ring-LWE sample to n plain-LWE samples,
and attempts to solve the resulting LWE instance. We emphasize that the attacker may use arbitrary Z-bases
of R and R∨ to perform the transformation. More specifically, given each Ring-LWE sample

(a, b = s · a+ e) ∈ Rq ×KR/qR
∨

where e← Dr, we transform it to n LWE samples

(Aa,b = stAa + et),

where b ∈ (R/qZ)n and e ∈ Rn are respectively the coefficient vectors of b ∈ KR/qR
∨ and e ∈ KR (with

respect to the chosen basis of R∨), and Aa ∈ Zn×nq is the matrix of multiplication by a ∈ Rq with any
element of R∨q (with respect to the chosen bases of R,R∨).

The following shows that the entries of the resulting error vector e are Gaussians of parameter at least 2
√
n,

which is the exactly the lower bound from the worst-case hardness theorems for plain LWE [Reg05, Pei09].

Theorem 5.1. For any Z-basisB∨ = (b∨j ) ofR∨ used in the above reduction, each entry of e is a continuous
Gaussian of parameter at least r

√
n ≥ 2

√
n.

Proof. Let B = (bj)j = (B∨)∨ be the ordered Z-basis of R that is dual to B∨, i.e., σ(B)∗ = σ(B∨)−1.
Because e ∈ Rn is the coefficient vector of e ∈ KR with respect to basis B∨, by definition we have

e = σ(B∨)−1 · σ(e) = σ(B)∗ · σ(e).

Now because B ⊆ R is a Z-basis of R, all its elements are nonzero, so ‖σ(bj)‖ ≥
√
n by Lemma 2.4.

Because the jth row of σ(B)∗ is σ(bj)
∗, the jth entry of e is a continuous Gaussian of parameter r‖σ(bj)‖ ≥

r
√
n ≥ 2

√
n, as claimed.

We point out that while the Gaussian entries of e have large width, they are not necessarily independent. It
follows from the above proof that e is distributed as a Gaussian with covariance matrix r2 ·σ(B)∗ ·σ(B)/(2π).
For example, whenB = (1, ζp, . . . , ζ

p−2
p ) is the power basis of the pth cyclotomic for prime p, the covariance

matrix of e is r2 · (pIp−1− 1)/(2π). Whether there are better attacks for this or other regimes that arise from
reducing Ring-LWE to LWE is an interesting open question.

5.2.2 Reducing Modulo an Ideal

This attack uses an ideal divisor q of qR to attempt to solve decision-Ring-LWE, analogously to the attack
described in Section 3.2. More specifically, we are given independent samples (ai ∈ Rq, bi ∈ KR/qR

∨),
which are distributed either uniformly or according to the Ring-LWE distribution with some secret s ∈ R∨q .
We first reduce the samples to

(a′i = ai mod q , b′i = bi mod qR∨) ∈ R/q×KR/qR
∨,
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and for each of the N(q) candidate reduced secrets s′ ∈ R∨/qR∨, we test whether the b′i− a′i · s′ ∈ KR/qR
∨

are non-uniform. The exact implementation of this test is not important for our purposes, because we will
show that no test can meaningfully succeed.

For the attack to work, the reduced error distribution Dr mod qR∨ needs to have noticeable statistical
distance from uniform; otherwise, the b′i − a′i · s′ are close to uniform regardless of the form of the original
samples. However, the following theorem shows that for any ideal q whose norm is not too large, and for
error satisfying Condition (5.1), the statistical distance from uniform is exponentially small.

Theorem 5.2. Let q ⊆ R be any ideal of norm N(q) ≤ 2n, and let the error parameter r ≥ 2 satisfy
Condition (5.1). Then the reduced error distribution Dr mod qR∨ is within statistical distance 2−2n of
uniform over KR/qR

∨.

Proof. The dual ideal of qR∨ is (qR∨)∨ = q−1, which has norm N(q−1) = N(q)−1 ≥ 2−n. By Lemma 2.4,
its minimum distance is

λ1(q−1) ≥
√
n ·N(q−1)1/n ≥

√
n/2.

Then by Lemma 2.2, the smoothing parameter of qR∨ for ε = 2−2n is ηε(qR∨) ≤
√
n/λ1(q−1) ≤ 2 ≤ r.

The theorem then follows by Lemma 2.3.

5.3 Examples

For illustration, in this section we study some example invulnerable instantiations in detail, and contrast them
with related insecure instantiations that were studied in Section 4.

5.3.1 Prime Cyclotomics

Let p be a prime integer and let K = Q(ζp) and R = Z[ζp] respectively denote the pth cyclotomic field and
ring, which have degree n = p− 1 (over Q and Z, respectively). It is well known, and easy to check, that
R∨ = p−1(1 − ζp)R, and that (R∨)∨ = R has minimum distance λ1(R) =

√
n (witnessed by any power

of ζp), which happens to be as small as possible relative to its norm. Therefore, η2−2n(R∨) ≤
√
n/λ1(R) = 1,

so spherical Gaussian error Dr of parameter r ≥ 2 is extremely “smooth” modulo R∨ (when p is large
enough), and similarly for any ideal qR∨ where N(q) ≤ 2n, by Theorem 5.2. See Figure 6 for a depiction in
the third cyclotomic.

Comparison with insecure instantiations. It is instructive to compare these invulnerable instantiations
to the insecure non-dual prime-cyclotomic instantiations from [CLS15], as studied in Section 4.2. To make
a direct comparison, we convert the dual form to an equivalent “tweaked” form, replacing R∨ by R using
a “tweak” factor of t = p(1 − ζp)−1, which satisfies tR∨ = R. More specifically, we simply multiply
each b = s · a+ e ∈ KR/qR

∨ (where s ∈ R∨q and a ∈ Rq) by t to get

b′ = t · b = s′ · a+ e′ ∈ KR/qR,

where s′ = t · s ∈ Rq and e′ = t · e ∈ KR.
Notice that for p > 3, the tweaked error distribution t ·Dr of e′ is (highly) non-spherical: the ith complex

coordinate of Dr (for i ∈ Z∗p) is scaled by a factor of σi(t) = p/(1− ωip) for ωp = exp(2π
√
−1/p), which

has magnitude ranging from about p/2 (for i ≈ p/2) to Ω(p2) (for i ≈ 0). In comparison with the insecure
error distributions from [CLS15], which involve spherical error of parameter r = O(

√
p), the tweaked error
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R R∨

Figure 6: The canonical embedding of: (in blue) the third cyclotomic ring R = Z[ζq] for q = 3, (in maize)
the dual ideal R∨ = q−1(1− ζq)R, and (in red) a spherical Gaussian of parameter r = 2. (We have depicted
the two-dimensional real inner product space H ⊂ C2 as R2.) Notice that the Gaussian is “well spread”
relative to R∨, as implied by Theorem 5.2.

distribution has coordinates whose widths are larger by Ω(
√
p) to Ω(p3/2) factors, as well as a very different

non-spherical shape. (We remark that the non-spherical error is not a problem for applications, because the
tweaked form is computationally equivalent to the dual form, which admits a fast error-sampling algorithm;
see [LPR13, CP15] for full details.)

5.3.2 Quadratic Extensions (of Cyclotomics)

Let d > 1 be a square-free integer that is 3 modulo 4, define the totally real number field K = Q(
√
d), and let

R = Z[
√
d] denote its ring of integers; these have degree n = 2 over Q and Z, respectively. (If d = 1 mod 4,

then the ring of integers is Z[(1 +
√
d)/2]; what follows is easily adapted for this case.) It is easy to check

that R∨ = (2
√
d)−1R, and that (R∨)∨ = R has minimum distance λ1(R) =

√
n, witnessed by 1 ∈ R.

Therefore, η2−2n(R∨) ≤
√
n/λ1(R) = 1, so spherical Gaussian error Dr of parameter r ≥ 2 is “smooth”

modulo R∨. See Figure 7 for a depiction for d = 11.
Of course, in the above example the degree n = 2 is a constant, so the smoothness error ε = 2−2n is

actually not very small (and Ring-LWE is easily solved by brute force anyway). To increase the degree, as
in Section 4.3 we can consider the quadratic extension R = Z[ζp,

√
d] of the pth cyclotomic, where p is

prime and coprime with d; here the degree is n = 2(p− 1) over Z. Then R∨ = (2p
√
d)−1 · (1− ζp)R and

λ1(R) =
√
n, which is witnessed by any power of ζp. Therefore, η2−2n(R∨) ≤ 1, so spherical Gaussian

error Dr of parameter r ≥ 2 is extremely “smooth” modulo R∨ (when p is large enough).

Comparison with insecure instantiations. We now compare the above instantiations to the insecure non-
dual instantiations from [CLS16] for the same class of rings, as studied in Section 4.3. To make a direct
comparison, we convert the dual form to an equivalent “tweaked” form, replacing R∨ by R using a “tweak”
factor of t = 2p

√
d ·(1−ζp)−1, which satisfies tR∨ = R. Similarly to the cyclotomic case from Section 5.3.1

above, the coordinates of Dr are scaled by various factors having magnitudes that range from at least p
√
d to
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R∨

qR∨

Figure 7: The canonical embedding of: (in maize) the dual ideal R∨ = (2ζ)−1R of the ring R = Z[ζ] for
ζ =
√

11, (in blue) the ideal qR∨ where q = (1 + ζ)R + 5R is a prime ideal of norm N(q) = 5, and (in
red) a spherical Gaussian of parameter r = 2. Notice that the Gaussian is “well spread” relative to R∨ and
even qR∨, as implied by Theorem 5.2. The “tweak” factor 2ζ that maps R∨ to R has canonical embedding
(2
√

11,−2
√

11), so it simply scales everything by a 2
√

11 factor, and reflects over the horizontal axis.

Ω(p2
√
d). In comparison with the insecure error distributions from [CLS16], which involve spherical error

of parameter r = O(
√
p · d), the tweaked error distribution again has coordinates whose widths are larger by

Ω(
√
p) to Ω(p3/2) factors, and has a very different non-spherical shape.
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