
Fully Homomorphic Encryption for Point Numbers

Seiko Arita and Shota Nakasato

2016.04.22
Graduate School of Information Security,
Institute of Information Security, Japan

Abstract. In this paper, based on the FV scheme, we construct a first fully homomorphic en-
cryption scheme FHE4FX that can homomorphically compute addition and/or multiplication of
encrypted fixed point numbers without knowing the secret key. Then, we show that in the FHE4FX
scheme one can efficiently and homomorphically compare magnitude of two encrypted numbers.
That is, one can compute an encryption of the greater-than bit that represents whether or not x > x′

given two ciphertexts c and c′ (of x and x′, respectively) without knowing the secret key. Finally
we show that these properties of the FHE4FX scheme enables us to construct a fully homomorphic
encryption scheme FHE4FL that can homomorphically compute addition and/or multiplication of
encrypted floating point numbers.

Keywords: Fully homomorphic encryption, FV scheme, Fixed point number, Floating point
number, Greater-than bit.

1 Introduction

Using Fully Homomorphic Encryption (FHE) scheme, one can homomorphically compute an en-
crypted XORed bit Enc(b1 XOR b2) and/or encrypted AND bit Enc(b1 AND b2) of given encrypted
bits Enc(b1) and Enc(b2) without knowing the secret key [19, 8]. Since any function can be writ-
ten using XOR and AND gates, this means that one can homomorphically compute any function
of encrypted bits without knowing the secret key.

Practically, computation over bitwise encryptions is not efficient. It is a kind of “1-bit” pro-
cessor. In schemes such as [3, 5], one can encrypt congruent integers (i.e., x mod n) and can ho-
momorphically compute addition Enc(x1+x2 mod n) and/or multiplication Enc(x1×x2 mod n)
of encrypted congruent integers Enc(x1) and Enc(x2) without knowing the secret key. Nowadays
based on those schemes, various mining algorithms are experimentally and homomorphically
evaluated against outsourced genomic, medical, or financial encrypted data [17, 11, 14, 6, 15, 13,
12].

However, the real world is not comprised of congruent integers. Real numbers have greater-
than relation x < y, which requires computation of the most significant bit of x−y. Is it possible
to efficiently compute Enc(MSb(x−y)) given Enc(x) and Enc(y) without knowing the secret key?
Moreover, to compute real numbers, we must depend on some precision control mechanism, that
enables computation of real numbers as fixed or floating point number computation. Is it possible
to realize precision control against x only given its encryption Enc(x) without knowing the secret
key? To make the theoretical universality of FHE schemes be of more practical interest, we need
to resolve such problems. As we will see later, the two problems are tightly related to each other.

1.1 Our Contribution

First, we construct a fully homomorphic encryption scheme for fixed point numbers.

FHE scheme for fixed point numbers. Our starting point is the FV scheme given by Fan
and Vercauteren [7], which is an FHE scheme for congruent integers, instantiating the FHE
scheme by Brakerski [2] based on the Ring LWE problem [18].

Let R = Z[X]/(Φm(X)) be the m-th cyclotomic ring, where Φm(X) denotes the m-th cyclo-
tomic polynomial. Elements a of cyclotomic ring R are called cyclotomic integers and represented
by integer coefficient polynomials a(X) =

∑n−1
i=0 aiX

i of degree < n := ϕ(m). (ϕ(·) denotes the
Euler function.) Two cyclotomic integer a and b are added through ordinal polynomial addition:
(a+b)(X) =

∑n−1
i=0 (ai+bi)X

i. Product of cyclotomic integer a and b is computed as polynomial
multiplication followed by reduction via Φm(X): (a · b)(X) = a(X)b(X) mod Φm(X).

We can reduce cyclotomic integers a(X) =
∑n−1

i=0 aiX
i modulo any positive integer q, by

reducing each coefficient ai modulo q, resulting elements of residue ring Rq defined as Rq =
Zq[X]/(Φm(X)). Elements of the residue ring Rq are represented by mod-q integer coefficient
polynomials.

In the FV scheme, each ciphertext is a pair c = (c0, c1) (∈ Rq × Rq) of cyclotomic integers
modulo some ciphertext modulus q. A plaintext is a cyclotomic integer x (∈ Rt) modulo some
plaintext modulus t. The ciphertext modulus q must be sufficiently larger than the plaintext
modulus t to afford noises occurred among computations. For simplicity we assume t divides q
in this paper.

In the FV scheme, a ciphertext c = (c0, c1) for some plaintext x ∈ Rt will be created to satisfy
following relation with some small noise term v (∈ Rq) and some cyclotomic integer α ∈ R:

c0 + c1s =
q

t
x+ v + qα.

If one knows the secret key s ∈ R, by computing
⌊
t
q (c0 + c1s)

⌉
mod t, one can recover the

plaintext x from the ciphertext c = (c0, c1) provided that coefficients of noise v are not too large
relative to the modulus ratio q

t .

We modify the FV scheme so that we can treat fixed point numbers x̃ = 2−mx (x ∈ Z2m+l).
Here, m is bit-length after point and l is bit-length before point of x̃ and so x = 2mx̃ becomes
an integer in Z2m+l . We suppose that integer x represents the constant polynomial x (i.e., a
polynomial that has only constant term x as nonzero term) in the cyclotomic ring R. To enable
homomorphic computation of x̃ via homomorphic computation of x, we will use the following
relation:

c0 + c1s =
q

t
2−mx+ v + qα

with t = 2m+l. We note that this is nothing but the relation for FV scheme with enlarged
plaintext modulus t′ = t2m.

Let c′ = (c′0, c
′
1) be another ciphertext encrypting another fixed point number x̃′ = 2−mx′

(x′ ∈ Z2m+l). Product of fixed point numbers x̃ and x̃′ is defined to be x̃x̃′ = 2−m
[⌊
2−mxx′

⌋]
t
.

(Here,
[
a
]
t
denotes the residue of a modulo t.) We want homomorphic version of this computa-

tion.

Short calculation shows us that

t2m

q
(c0 + c1s)(c

′
0 + c′1s) =

q

t
(2−mxx′ + t(x′α+ xα′)) + v′′ + 2mqα′′ (1)

for some small noise v′′ and cyclotomic integer α′′. By principle of division, we have xx′ =⌊
2−mxx′

⌋
2m +

[
xx′

]
2m

. Substituting 2−mxx′ =
⌊
2−mxx′

⌋
+ 2−m

[
xx′

]
2m

into Equation (1), we

2

have

t2m

q
(c0 + c1s)(c

′
0 + c′1s)

=
q

t

{
2−m

[
xx′

]
2m

+
⌊
2−mxx′

⌋
+ t(x′α+ xα′)

}
+ v′′ + 2mqα′′

=
q

t

{
2−m

[
xx′

]
2m

+
[⌊
2−mxx′

⌋]
t
+

(⌊
2−mxx′

⌋
−

[⌊
2−mxx′

⌋]
t

)
+ t(x′α+ xα′)

}
+ v′′ + 2mqα′′.

Thus, we see that the product of two ciphertexts c and c′, as ciphertexts of the FV scheme with
plaintext modulus t′ = t2m (and ciphertext modulus q), is an encryption of

w = 2−m
[
xx′

]
2m

+
[⌊
2−mxx′

⌋]
t
+

(⌊
2−mxx′

⌋
−

[⌊
2−mxx′

⌋]
t

)
+ t(x′α+ xα′).

Here we see that w contains the wanted answer 2mx̃x̃′ =
[⌊
2−mxx′

⌋]
t
in the middle, but it also

contains two annoying terms LG = 2−m
[
xx′

]
2m

and UG =
⌊
2−mxx′

⌋
−
[⌊
2−mxx′

⌋]
t
+t(x′α+xα′).

We call the former lower garbage and the latter upper garbage, since LG is the least significant
m bits of w and UG is the most significant m bits of w. In order to realize homomorphic
multiplication of encrypted fixed point numbers, we will implement some clearing methods of
such two types of garbage LG and UG. Suppose here we had cleared LG and UG from (c0, c1)
to get a new ciphertext (d0, d1), which will satisfy

t2m

q
(d0 + d1s)(d

′
0 + d′1s) =

q

t

[⌊
2−mxx′

⌋]
t
+ v′′ + 2mqα′′.

By dividing both sides by 2m, we get

t

q
(d0 + d1s)(d

′
0 + d′1s) =

q

t
2−m

[⌊
2−mxx′

⌋]
t
+ 2−mv′′ + qα′′

as desired.
As clearing methods of the lower and upper garbage, we introduce LowerClear and UpperClear

algorithms. The algorithm LowerClear is a variant of arithmetic procedure for computing msbq :
Zq → Z2 of [9, 20]. Let t = 2m+l and let w = x + 2mz be an element of Z22m+l with x ∈ Z2m ,
z ∈ Zt. That is, x is the least significant m bits of (2m+ l)-bit w (lower garbage). We want to
clear x ∈ Z2m from w to get 2mz. The key observation is the following simple fact[9, 20]: if integer
w is equal to b ∈ {0, 1} mod 2i then w2 is equal to the same b ∈ {0, 1} mod 2i+1 for any integer
i ≥ 1. So, if w has bit decomposition (b2m+l−1, . . . , b0)2 then by repeating squaring (2m+ l− 1)
times against w, we get an integer w0 with bit decomposition (0, · · · , 0, b0)2. LowerClear (w)
repeats in this way to extract all lower m bits b0, b1, · · · , bm−1 of w in the form of integers
w0 = (0, · · · , 0, b0)2, w1 = (0, · · · , 0, b1, 0)2, . . . , wm−1 = (0, · · · , 0, bm−1, 0, · · · , 0)2 and gets the
pure lower part 2mz = w−

∑m−1
i=0 wi. UpperClear clears the upper garbage by a similar method.

Summarizing, we use the FV scheme with plaintext modulus t′ = 2mt with t = 2m+l to enable
homomorphic evaluation on ciphertexts encrypting fixed point numbers x̃ = 2−mx (x ∈ Z2m+l).
To clear lower and upper garbage involved in homomorphic multiplication of fixed point numbers,
we use LowerClear and UpperClear arithmetic procedures homomorphically against multiplied
FV ciphertexts. We call our FHE scheme for fixed point numbers built in this way FHE4FX
scheme. Since the FV scheme is semantically secure and fully homomorphic, our FHE4FX (which
ciphertext is nothing but a ciphertext of FV scheme with enlarged plaintext modulus) is also
semantically secure and fully homomorphic.

3

Greater-than bit extraction. As an application of the FHE4FX scheme, we treat the problem
of comparison of magnitude of two encrypted numbers. Suppose we have two encrypted numbers
Enc(x1) and Enc(x2). Define a bit b to be 1 if x1 > x2 and to be 0 otherwise. We want to compute
an encryption Enc(b) of the bit b given only ciphertexts Enc(x1) and Enc(x2) without knowing
the secret key. In the literature [13, 12] such problem is tackled by Greater-Than protocol based
on (such as) the one given by Golle [10]. Let D ⊂ Z be a range that possible xi’s belong
to. Their protocol is based on the fact that if x1 > x2, there exists a positive integer i such
that x1 = x2 + i. To establish security, the protocol needs O(

∣∣D∣∣) encryptions and O(
∣∣D∣∣)

homomorphic additions among them and needs an interaction with secret key holder. By using
the FHE4FX scheme, we show that one can compute the greater-than bit encryption Enc(b) given
only Enc(x1) and Enc(x2) in polylogarithmic complexity of

∣∣D∣∣, neither knowing the secret key
nor interaction with secret key holder.

FHE scheme for floating point numbers. Using the method of greater-than bit extraction
by FHE4FX, we will construct a fully homomorphic encryption scheme for floating point numbers,
FHE4FL. The floating point number N is described as N = (−1)sf2e, where s ∈ {0, 1} is the
sign, f ∈ [1, 2) is the significant and e is the exponent of N . We will use three different (but
related) FHE4FX schemes to encrypt each part of s, f and e into a ciphertext ([|s|]s, [|f |]f , [|e|]e).

In computation of floating point numbers N = (−1)sf2e, different parts of s, f , e have
influence to each other. For example, to add two floating point numbers N = (−1)sf2e and
N ′ = (−1)s′f ′2e

′
, we need to compare e and e′ to decide e > e′ or not. If so, we will compute

f ′′ = f + (0.5)e−e′f ′ and if not we will compute f ′′ = f ′ + (0.5)e
′−ef . Since we can homo-

morphically compute a greater-than bit e > e′ as seen above, it is not too difficult to evaluate
such process homomorphically, given two encryptions ([|s|]s, [|f |]f , [|e|]e) and ([|s′|]s, [|f ′|]f , [|e′|]e)
without knowing the secret key.

Since the FHE4FX scheme is semantically secure and fully homomorphic, the FHE4FL scheme
for floating point numbers is also semantically secure and fully homomorphic.

Organization. In Section 2 we recall the notion of FHE and construction of the FV scheme as
well as its some basic properties. We construct the FHE4FX scheme for fixed point numbers in
Section 3. Then, Section 4 treats the problem of greater-than bit extraction. Finally we construct
the FHE4FL scheme for floating point numbers in Section 5.

2 Preliminaries

2.1 Homomorphic Encryption

A homomorphic encryption scheme is a quadruple HE = (Keygen,Enc,Dec,Eval) of probabilistic
polynomial time algorithms. Given a security parameter 1n, Keygen algorithm generates a triple
of a public key pk, a secret key sk and an evaluation key evk: (pk, sk, evk) ← Keygen(1n). Enc
algorithm encrypts a plaintext x ∈ {0, 1} into a ciphertext c under a public key pk: c ←
Enc(pk, x). Decrypt algorithm decrypts a given ciphertext c into a plaintext x using the secret
key sk: x← Dec(sk, c). Eval algorithm applies a function f : {0, 1}l → {0, 1} to given ciphertexts
c1, . . . , cl and outputs a ciphertext cf using the evaluation key evk : cf ← Eval(evk, f, c1, . . . , cl).

A homomorphic encryption scheme HE is called L-homomorphic for L = L(n) if for any
function f : {0, 1}l → {0, 1} given as a circuit of depth L, and for any l bits x1, . . . , xl, it holds
that

Decsk(Evalevk(f, c1, . . . , cl)) = f(x1, . . . , xl)

4

for ci ← Encpk(xi) (i = 1, . . . , l) except with a negligible probability.

A homomorphic encryption scheme HE is called fully homomorphic encryption (FHE) scheme
if it is L-homomorphic for any polynomial function L = poly(n).

2.2 The FV Scheme

Here we briefly recall the FHE scheme by Fan and Vercauteren [7, 16] (FV scheme). The FV
scheme is an FHE scheme for congruent integers, instantiating the FHE scheme by Brakerski [2]
based on the Ring LWE problem [18].

Let m be a positive integer and let Φm(X) ∈ Z[X] be the m-th cyclotomic polynomial. The
ring R = Z[X]/Φm(X) is called the m-th cyclotomic ring. Elements a of cyclotomic ring R are
called cyclotomic integers and represented by integer coefficient polynomials a(X) =

∑n−1
i=0 aiX

i

of degree < n := ϕ(m). (ϕ(·) denotes the Euler function.) Two cyclotomic integer a and b
are added through ordinal polynomial addition: (a + b)(X) =

∑n−1
i=0 (ai + bi)X

i. Product of
cyclotomic integer a and b is computed as polynomial multiplication followed by reduction via
Φm(X): (a · b)(X) = a(X)b(X) mod Φm(X).

For cyclotomic integer a =
∑n−1

i=0 aiX
i ∈ R, let

∥∥a∥∥∞ = max{
∣∣ai∣∣ : 0 ≤ i < n} be the infinity

norm of a. Let δ be the expansion factor of R, i.e., δ = sup{
∥∥ab∥∥∞/(

∥∥a∥∥∞∥∥b∥∥∞) : a, b ∈ R}. It
is known that there are cases where δ can be taken to be small polynomials of n. For example,
we can take δ = n for a power of two m. The symbol ⌊a⌉ denotes the nearest cyclotomic integer
(or the (coefficient wise) nearest integer coefficient polynomial) of a.

A ciphertext of FV scheme is a pair of cyclotomic integers in Rq = Zq[X]/Φm(X) for ci-
phertext modulus q and a plaintext is a cyclotomic integer in Rt = Zt[X]/Φm(X) for plaintext
modulus t. Denote by

[
·
]
q
reduction modulo q into the interval (−q/2, q/2].

We fix an integer base w and let lw =
⌊
logw(q)

⌋
+ 1. Any cyclotomic integer a ∈ Rq can

be written as a =
∑lw−1

i=0 aiw
i where ai ∈ R has coefficients in the interval (−w/2, w/2].

Define WD(a) =
([
ai
]
w

)lw−1

i=0
∈ Rlw and PO(a) =

([
awi

]
q

)lw−1

i=0
∈ Rlw . As easily verified,⟨

WD(a),PO(b)
⟩
≡ ab (mod q), where

⟨
x,y

⟩
=

∑l
i=1 xiyi denotes the inner product of vectors

x = (xi) and y = (yi).

Let χkey and χerr be two discrete, bounded probability distributions on R. Constants Bkey

and Berr denote the corresponding bounds, respectively: χkey < Bkey, χerr < Berr. The symbol
x ← χ denotes a random sampling of x according to distribution χ. For a finite set X, the
symbol x

u← X denotes a uniformly random sampling of x from X.

Parameters. We parameterize FV schemes by two parameter q and t. The parameter q denotes
ciphertext modulus. The parameter t denotes plaintext modulus. In this paper we assume q is
a power of two and t is a divisor of q for simplicity. Let integer ∆ = q/t be a quotient of q by t.

Scheme Description. The FV scheme consists of the following algorithms.

– Keygen () :

s← χkey, e← χerr

a
u← Rq, b =

[
−(as+ e)

]
q

a
u← Rlw

q , e← χlw
err, b =

[
PO(s2)− (as+ e)

]
q

return sk = s, pk = (a, b), evk = (a, b).

5

– Enc ((a, b), x ∈ Rt) :

u← χkey, e1, e2 ← χerr

c0 =
[
∆x+ bu+ e1

]
q
, c1 =

[
au+ e2

]
q

return c = (c0, c1).

– Dec (s, c = (c0, c1)) :

return
[⌊

t
q

[
c0 + c1s

]
q

⌉]
t
.

– Add (c = (c0, c1), c
′ = (c′0, c

′
1)) :

return cadd =
([
c0 + c′0

]
q
,
[
c1 + c′1

]
q

)
.

– Mult (c = (c0, c1), c
′ = (c′0, c

′
1), γ = (a, b)) :

d0 =
[⌊

t
q c0c

′
0

⌉]
q
, d1 =

[⌊
t
q (c0c

′
1 + c1c

′
0)
⌉]

q
, d2 =

[⌊
t
q c1c

′
1

⌉]
q

return cmult =
([
d0 +

⟨
WD(d2), b

⟩]
q
,
[
d1 +

⟨
WD(d2),a

⟩]
q

)
.

It is not difficult to see that the FV scheme is semantically secure under the ring-LWE
assumption, that is, a pair (a, b = −as + e) ∈ (Rq)

2 sampled as in the Keygen algorithm is
indistinguishable from uniformly randomly selected pair (a, b) from (Rq)

2. By standard hybrid
argument a ciphertext (c0, c1) is also indistinguishable from uniformly random pair over (Rq)

2.

Definition 1. The inherent noise term v of c = (c0, c1) designed for x ∈ Rt is an element v ∈ R
of smallest norm

∥∥v∥∥∞ satisfying

c0 + c1s = ∆x+ v + qα (2)

for some α ∈ R.

For an “initial” ciphertext (c0, c1) directly produced by Enc((a, b), x), we have c0+c1s−∆x ≡
bu+ e1 + (au+ e2)s ≡ −eu+ e1 + e2 (mod q). So, initial ciphertexts have inherent noise terms
v = −eu+ e1 + e2 bounded as ∥∥v∥∥ ≤ V := Berr(1 + 2δBkey). (3)

Let

V FV
max =

1

2
∆ =

1

2

(q
t

)
. (4)

Following lemmas adapted from [7, 16, 4] show some basic properties of the FV scheme.

Lemma 1 (Correctness of FV scheme). Let v be the inherent noise term of c = (c0, c1)
designed for x ∈ Rt. If

∥∥v∥∥∞ < V FV
max, then the decryption works correctly, i.e.,

Dec(s, c) =
[
x
]
t
= x.

Lemma 2 (Additive Noise of FV scheme). Let v and v′ be inherent noise terms of c and c′,
designed for x and x′ ∈ Rt, respectively. Let vadd be the inherent noise term of cadd = Add(c, c′)
designed for

[
x+ x′

]
t
∈ Rt. Then, it is bounded as∥∥vadd∥∥∞ ≤ ∥∥v∥∥∞ +

∥∥v′∥∥∞.

6

Lemma 3 (Multiplicative Noise of FV scheme). Let v and v′ be inherent noise terms
of c and c′, designed for x and x′ ∈ Rt, respectively. Suppose

∥∥v∥∥∞,
∥∥v′∥∥∞ < V for some

V (< V FV
max). Let vmult be the inherent noise term of cmult ← Mult(c, c′) designed for

[
xx′

]
t
∈ Rt.

Then, it is bounded as∥∥vmult

∥∥
∞ ≤ δt(2 + 4δBkey)V + δ2Bkey(2Bkey + 4t2) + 2−1δlwwBerr.

As a corollary of Lemma 2 and Lemma 3, we have:

Corollary 1 (Homomorphic Noise of FV scheme). Let f be an arithmetic circuit over Rt

with L levels of multiplications. Let V be an upper bound of inherent noise terms of input cipher-
texts ci, designed for plaintexts xi, for all i. Let vf be the inherent noise term of homomorphically
evaluated ciphertext f(ci) designed for f(xi) ∈ Rt. Then, it is bounded as∥∥vf∥∥∞ ≤ CL

1 V + LCL−1
1 C2

where

C1 ≤ 2δt(1 + 2δBkey)

C2 ≤ 2δ2Bkey(Bkey + 2t2) + 2−1δlwwBerr.

Let c be a ciphertext of FV scheme. Let Ldec be the level of some circuit that evaluates
the decryption algorithm Dec(c, ·) with a ciphertext c built-in. By Lemma 1 and Corollary 1, if
inequality

∆ =
q

t
> 2(CLdec

1 V + LdecC
Ldec−1
1 C2) (5)

holds, we can homomorphically evaluate the algorithm Dec(c, ·) using encrypted secret keys
Enc(pk, s) and can recrypt the ciphertext c into a more noiseless new ciphertext (bootstrap-
ping). By Lemma 4 of [2], we can implement the algorithm Dec(c, ·) by some circuit of level
Ldec = O(log n) which is independent of c. Hence Inequality (5) can be satisfied by taking suf-
ficiently large q = O(nlogn) for any ciphertext c in cases where the expansion factor δ can be
taken polynomial of n. Thus, the FV scheme will be fully homomorphic under circular security
assumption (i.e., Enc(pk, sk = s) does not leak any information about s) by taking sufficiently
large q = O(nlogn) for cyclotomic ring R with polynomial δ.

3 The Proposed Scheme FHE4FX

In this section we construct an FHE scheme that can homomorphically compute fixed point
numbers, using the FV scheme as building blocks.

Let x̃ be a fixed point number that has l bits before point and m bits after point. We encode
x̃ by an integer x ∈ Z2m+l as usual: x̃ = 2−mx. Lt t = 2m+l. Addition and multiplication of two
fixed point numbers x̃ = 2−mx and ỹ = 2−my are defined as

x̃+ ỹ = 2−m
[
x+ y

]
t

x̃ · ỹ = 2−m
([⌊

2−m
[
x · y

]
2mt

⌋]
t

)
.

Here, we see that the sum x̃+ ỹ is encoded by integer x+ y ∈ Zt. So, homomorphic addition
of encrypted fixed point numbers is easy. It can be done merely by using homomorphic addition
of underlying FV scheme.

7

However, the product x̃ · ỹ is more complicated. As seen above, it is encoded by integer[⌊
2−m

[
x · y

]
2mt

⌋]
t
, that results from m-bit right shift of integer product

[
x · y

]
2mt

. Now our
problem is distinguished: How can we homomorphically compute m-bit right shift of given
encrypted (2m+ l)-bit integers?

Let FV(2mt) = (Keygen,Enc,Dec,Add,Mult) be the FV scheme of ciphertext modulus q and
plaintext modulus 2mt. Using FV(2mt), we construct a fully homomorphic encryption scheme
for fixed point numbers, FHE4FX, that can homomorphically compute m-bit right shift of given
encrypted encoding integers.

Parameters. The FHE4FX scheme is parameterized by three parameters q, m and l. The param-
eter q denotes ciphertext modulus. The parameter l denotes bit-length of fixed point number
before point and the parameter m denotes bit-length of fixed point number after point. Let
t = 2m+l. We assume q, m and l are all powers of two and t is a divisor of q. Let integer ∆ = q/t
be a quotient of q by t.

Scheme Description. A fixed point number x̃ = 2−mx to be encrypted is encoded by an integer
x ∈ Zt which we identify with a constant polynomial x ∈ Rt in the cyclotomic ring. The FHE4FX
scheme consists of the following algorithms.

– Keygen () :
return (sk = s, pk = (a, b), evk = (a, b))← FV(2mt).Keygen()

– Enc (pk = (a, b), x ∈ Rt) :
return c = (c0, c1)← FV(2mt).Enc((a, b), x).

– Dec (s, c) :
return

[
FV(2mt).Dec(s, c)

]
t
.

– Add (c, c′) :
return cadd ← FV(2mt).Add(c, c′).

– Mult (c, c′, evk = γ) :
c̃← FV(2mt).Mult(c, c′, γ)
d = (d0, d1)← LowerClear(c̃)

e =
([⌊

1
2md0

⌉]
q
,
[⌊

1
2md1

⌉]
q

)
return cmult ← UpperClear(e).

– LowerClear (c) :
d← FV(2mt).Encpk(0)
For i ∈ [1..m)]:
di ← FV(2mt).Add(c,−d)
For j ∈ [1..(2m+ l − i)]:
di ← FV(2mt

2i−1).Mult(di, di)
d← FV(2mt).Add(d, di)

return FV(2mt).Add(c,−d).

– UpperClear (c) :

8

d← FV(2mt).Encpk(0)

For i ∈ [1..(m+ l)]:

di ← FV(2mt).Add(c,−d)
For j ∈ [1..(2m+ l − i)]:

di ← FV(2mt
2i−1).Mult(di, di)

d← FV(2mt).Add(d, di)

return d.

Note that ciphertexts of the proposed FHE4FX scheme of parameter (q,m, l) are nothing but
the ciphertexts of FV scheme with parameter (q, 2mt) and encryption/decryption algorithms
are the same as corresponding algorithms of FV(2mt) scheme. (More precisely, the decryption
algorithm is slightly lighter than the original one of FV(2mt) scheme, since the FHE4FX(q,m, l)
scheme only recovers (l+m)-bit integers rather than (l+2m)-bit integers in the FV(2mt) scheme.)
Especially, the FHE4FX scheme is also semantically secure and fully homomorphic (if parameters
are suitably selected just as in the FV(2mt) scheme) because the FV scheme is so. The difference
is in the way of homomorphic evaluation.

Let c be a ciphertext of the proposed FHE4FX scheme of parameter (q,m, l). By the definition
of Enc algorithm, initially it is produced as an encryption of some constant polynomial x ∈ Rt

that encodes fixed point number x̃ = 2−mx using FV(2mt) scheme. Here note that bit length
of plaintext integer x is only l + m (l bits before point and m bits after point), but FV(2mt)
scheme treats much longer plaintext integer of l + 2m bits. In fact, Dec algorithm only returns
the least l + m bits of recovered integer by FV(2mt). That is, the FHE4FX scheme has m bits
more in plaintext space than finally required for decryption. As a distinctive feature, FHE4FX
scheme uses this room of m bits in plaintext space in order to homomorphically compute m-bit
right-shift of encrypted integer of l + 2m bits.

To homomorphically compute such m-bit right-shift, algorithms LowerClear and UpperClear
are important tools.

Suppose a ciphertext c is an FV(2mt)-encryption of some l + 2m-bit integer w = x+ 2mz ∈
R2mt (x is the least m bits of w and z is the significant (l +m)-bit of w). Before m-bit right-
shifting w homomorphically in the ciphertext c, we need to clear the least m-bit integer x of w,
because without it the term 2−mx should cause a significant noise in the resulting ciphertext.
As verified in Proof of Lemma 5 in the below, the least m-bit x (lower garbage) of w is cleared
by using the following LowerClearPlain algorithm.

– LowerClearPlain (w = x+ 2mz) :

g ← 0

For i ∈ [1..m]:

wi ← w − g

wi =
((

1
2

)i−1
wi

)22m+l−i

· 2i−1 {wi is divisible by 2i−1 (proof of Lemma 6)}
g = g + wi

return w − g {= 2mz}

As directly verified, the above LowerClear (c) procedure (for c that encrypts w = x+2mz) is
a homomorphic version of LowerClearPlain (w) procedure, that computes 2mz given w = x+2mz
(Lemma 1). Here we add remark about this. Suppose a constant polynomial x ∈ R2mt is divisible

9

by 2i (i ≥ 0). Then, its encryption c = (c0, c1) by FV(2mt) (=FHE4FX(q,m, l)) scheme will satisfy

c0 + c1s =
q

2mt
x+ v + qα

=
q

2m−it

x

2i
+ v + qα

with some small noise v ∈ R and some α ∈ R. This means that when plaintext integer x is
divisible by 2i, its ciphertext c = (c0, c1) is nothing but the ciphertext of x

2i
w.r.t. FV(2m−it). So

the homomorphic version of the step

wi =
((

1
2

)i−1
wi

)22m+l−i

· 2i−1

in LowerClearPlain corresponds to the step

For j ∈ [1..(2m+ l − i)]:

di ← FV(2mt
2i−1).Mult(di, di)

in LowerClear. The resulting ciphertext di will be treated as ciphertext in FV(2mt).

Now suppose we have cleared the lower garbage x from the ciphertext c that encrypts w =
x+ 2mz, resulting a ciphertext d that encrypts 2mz. Then we simply divide each coefficients of
d by 2m and we get a ciphertext e of u = z + ty with some integer y. (Recall that our plaintext
space is 2m + l bits. So the term ty should appear with some y.) Note that y is the significant
m bits of z + ty (upper garbage). As in the case of LowerClear, we use algorithm UpperClear
to clear the upper garbage y from u = z + ty, that is a homomorphic version of the following
UpperClearPlain, as directly verified.

– UpperClearPlain (u = z + ty) :

r ← 0

For i ∈ [1..(m+ l)]:

ui ← u− r

ui =
((

1
2

)i−1
ui

)22m+l−i

· 2i−1 {ui is divisible by 2i−1 (proof of Lemma 6)}
r = r + ui

return r {= z}

Now we turn to formal treatment. For clarity, we re-define the inherent noise term:

Definition 2. The inherent noise term v of c = (c0, c1) designed for x ∈ R2mt is the term v of
smallest norm

∥∥v∥∥∞ satisfying

c0 + c1s = ∆2−mx+ v + qα (6)

for some α ∈ R.

This coincides to the original definition of the inherent noise term as ciphertexts of FV(2mt)
scheme.

Let

Vmax =
1

2
∆2−m =

1

2

(q

2mt

)
. (7)

By Lemma 1, we get immediately:

10

Lemma 4. Let v be the inherent noise term of c = (c0, c1) designed for x ∈ Rt. If
∥∥v∥∥∞ <

Vmax, then the decryption works correctly, i.e.,

Dec(s, c) =
[
x
]
t
= x.

Next we examine correctness of the LowerClear and UpperClear algorithms. For C1 and C2

given in Corollary 1, it holds that:

Lemma 5 (Lower Clear). Let ṽ be the inherent noise term of some ciphertext c̃ designed for
constant polynomial w = x + 2mz ∈ R2mt with x ∈ R2m and z ∈ Rt. Let c be a ciphertext
output by c← LowerClear(c̃). Let v be the inherent noise term of the ciphertext c as designed for
constant polynomial 2mz (= w − x = w −

[
w
]
2m

) ∈ 2mR2mt Then, it holds that∥∥v∥∥∞ ≤
∥∥ṽ∥∥∞ + VLC,

where VLC = C2m+l−1
1 V + LC2m+l−2

1 C2.

Proof. Since algorithm LowerClear is a homomorphic version of algorithm LowerClearPlain, first,
we show that LowerClearPlain computes 2mz given w = x + 2mz, that is, it clears up the lower
garbage x of w.

The key observation is the following simple fact [9, 20]: if integer w is equal to a bit b ∈
{0, 1} mod 2i then w2 is equal to the same bit b mod 2i+1 for any integer i ≥ 1. So, if w has
bit decomposition (b2m+l−1, . . . , b0)2 then by repeating squaring (2m + l − 1) times against it,
we get an integer w0 with bit decomposition (0, · · · , 0, b0)2. By repeating the procedure for
w − w0 = (b2m+l−1, · · · , b1, 0)2, we get an integer w1 with bit decomposition (0, · · · , 0, b1, 0)2:
Multiply w−w0 by 1

2 to get (0, b2m+l−1, · · · , b2, b1)2, repeat squaring (2m+ l− 2) times against
it to get (0, · · · , 0, b1)2, and multiply back it by 2 to get (0, · · · , 0, b1, 0)2. LowerClearPlain (w)
repeats in this way to extract all least m bits b0, b1, · · · , bm−1 of w in the form of integers
w0 = (0, · · · , 0, b0)2, w1 = (0, · · · , 0, b1, 0)2, . . . , wm−1 = (0, · · · , 0, bm−1, 0, · · · , 0)2 and gets the
least m-bit x of w as x =

∑m−1
i=0 wi. Then we get desired 2mz = w − x.

Next we estimate strength of noise occurred by homomorphic evaluation of LowerClearPlain
algorithm, i.e., LowerClear algorithm. Since LowerClear has 2m+ l − 1 levels of nested multipli-
cations, by Lemma 1 we get the claimed bound VLC. 2

Lemma 6 (Upper Clear). Let ṽ be the inherent noise term of some ciphertext c̃ designed
for constant polynomial u = z + ty ∈ R2mt with z ∈ Rt and y ∈ R2m. Let c be a ciphertext
resulting by c← UpperClear(c̃). Let v be the inherent noise term of the ciphertext c as designed
for constant polynomial z =

[
u
]
t
∈ Rt. Then, it holds that∥∥v∥∥∞ ≤

∥∥ṽ∥∥∞ + VUC,

where VUC = C2m+l−1
1 V + LC2m+l−2

1 C2.

Proof. Similar as the proof of Lemma 5. Note that UpperClear algorithm also has 2m + l − 1
levels of nested multiplications as LowerClear algorithm. So the resulting bound VUC is the same
as VLC. 2

Proposition 1 (Additive Noise of FHE4FX scheme). Let v and v′ be inherent noise terms
of c and c′, designed for x and x′ ∈ Rt, respectively. Let vadd be the inherent noise term of
cadd = Add(c, c′) designed for

[
x+ x′

]
t
∈ Rt. Then, it is bounded as∥∥vadd∥∥∞ ≤ ∥∥v∥∥∞ +

∥∥v′∥∥∞.

11

Proof. This is a restatement of Lemma 2.2

Proposition 2 (Multiplicative Noise of FHE4FX scheme). Let v and v′ be inherent noise
terms of c and c′, designed for x and x′ ∈ R2m+l, respectively. Suppose

∥∥v∥∥∞,
∥∥v′∥∥∞ < V . Let

vmult be the inherent noise term of cmult ← Mult(c, c′, evk = γ) designed for
[⌊
2−m

[
xx′

]
2mt

⌋]
t
∈

Rt. Then, it is bounded as∥∥vmult

∥∥
∞ ≤ δt(2 + 4δBkey)V + δ2Bkey(Bkey + 4 · 2mt2) + lwδwBerr + 2−mVLC + VUC.

Proof. We use the notation used in Mult(c, c′, evk = γ) algorithm. For c̃ = FV(2mt).Mult(c, c′, γ),
by Lemma 3, we have

c̃0 + c̃1s = ∆2−m
[
xx′

]
2mt

+ v + qα

with ∥∥v∥∥∞ ≤ δ2mt(2 + 4δBkey)V + δ2Bkey(2Bkey + 4 · 22mt2) + 2−1δlwwBerr

and with some α ∈ R.

Then, by Lemma 5, d = (d0, d1)← LowerClear(c̃) satisfies

d0 + d1s = ∆2−m
(⌊[xx′]

2mt

2m
⌋
2m

)
+ v + w + qα′

with ∥∥w∥∥∞ ≤ VLC

and with some α′ ∈ R.

Then, dividing by 2m, we get

1

2m
d0 +

1

2m
d1s = ∆2−m

(⌊[xx′]
2mt

2m
⌋)

+
v

2m
+

w

2m
+

q

2m
α′

= ∆2−m
(⌊[xx′]

2mt

2m
⌋
+ tα′

)
+

v

2m
+

w

2m

So, the rounded e =
([⌊

1
2md0

⌉]
q
,
[⌊

1
2md1

⌉]
q

)
satisfies:

e0 + e1s = ∆2−m
(⌊[xx′]

2mt

2m
⌋
+ tα′

)
+

v

2m
+

w

2m
+ w′

with ∥∥w′∥∥
∞ ≤ 1

2
(1 + δBkey).

Finally, applying Lemma 6, we see cmult = UpperClear(e) satisfies

cmult,0 + cmult,1s = ∆2−m ·
[⌊[xx′]

2mt

2m
⌋]

t
+

v

2m
+

w

2m
+ w′ + w′′ + qβ

with ∥∥w′′∥∥
∞ ≤ VUC

and with some β ∈ R.

12

The accumulated noise z = v
2m + w

2m + w′ + w′′ is bounded as:∥∥z∥∥∞ ≤ 2−m
(
δ2mt(2 + 4δBkey)V + δ2Bkey(2Bkey + 4 · 22mt2) + 2−1δlwwBerr

)
+ 2−mVLC + 2−1(1 + δBkey) + VUC

≤ δt(2 + 4δBkey)V + δ2Bkey(Bkey + 4 · 2mt2) + lwδwBerr + 2−mVLC + VUC.

2

By Proposition 1, 2 we have

Theorem 1. The FHE4FX scheme of parameter q, l,m can fully homomorphically compute ad-
ditions and multiplications of encrypted fixed point numbers x̃ = 2−mx for x ∈ Z2m+l with
suitable choice of parameters that makes the underlying FV scheme (of parameter q, 22m+l) fully
homomorphic.

Here, addition of fixed point numbers x̃ = 2−mx and ỹ = 2−my is such that

x̃+ ỹ = 2−m
[
x+ y

]
2m+l

and their multiplication is such that

x̃ · ỹ = 2−m
([⌊

2−m
[
x · y

]
22m+l

⌋]
2m+l

)
.

Efficiency. We estimate efficiency of homomorphic operations of FHE4FX scheme of parameter
q, l,m. Obviously, addition Add(c, c′) is performed only one addition of FV(q, 2mt) scheme.

The multiplication Mult(c, c′, γ) is much more heavy. We estimate its complexity in terms
of “multiplicative depth” and “multiplicative number”. Here, the multiplicative depth means
the required depth of nested multiplications of the underlying FV scheme to perform the target
operation. It determines noise growth occurred by doing the target operation and larger noise
requires larger ciphertext (since it requires larger ciphertext modulus). Thus, the multiplicative
depth dominates space complexity of the target operation. On a while, the multiplicative number
means the required total number of multiplications of the underlying FV scheme to perform the
target operation. It dominates time complexity of the target operation.

By inspection it is clear that complexity ofMult(c, c′, γ) operation is dominated by UpperClear(e).
The multiplicative depth of UpperClear is 2m+ l−1 and the multiplicative number of UpperClear
is (2m+ l − 1) + · · ·+ (m+ l) = 1

2(3m+ 2l − 1)(m+ l).
Thus, roughly estimated, the space and time complexity of multiplication Mult(c, c′, γ) is

linear and quadratic to the logarithmic of precision of fixed point numbers, respectively.

4 Greater-Than Bit Extraction

Here, as an application of our FHE4FX scheme, we consider the problem of comparison of magni-
tude of two encrypted numbers. Suppose we have two encrypted numbers Enc(x1) and Enc(x2).
Define a bit b to be 1 if x1 > x2 and to be 0 otherwise. We want to compute an encryption
Enc(b) of the bit b given only ciphertexts Enc(x1) and Enc(x2) without knowing the secret key.
In the literature [13, 12] such problem is tackled by Greater-Than protocol based on (such as)
the one given by Golle [10]. Let D ⊂ Z be a range that possible xi’s belong to. Their protocol
is based on the fact that if x1 > x2, there exists a positive integer i such that x1 = x2 + i. To

13

establish security, the protocol needs O(
∣∣D∣∣) encryptions and O(

∣∣D∣∣) homomorphic additions
among them and needs an interaction with secret key holder. By using the FHE4FX scheme, we
can compute the greater-than bit encryption Enc(b) given only Enc(x1) and Enc(x2) in poly-
logarithmic complexity of

∣∣D∣∣, neither knowing the secret key nor interaction with secret key
holder.

First, we show a homomorphic procedure MSb (c) for computing an encryption of the most
significant bit MSb(x) given only an encryption c = Enc(x) of x under FHE4FX scheme. Here
we note that our MSb(x) is integer 0 or 1 in the multi-bit plaintext space R2m+l (different from
msb procedure of [9, 20] that outputs a bit in R2).

Let c be an encryption of some point number x̃ = 2−mx by the FHE4FX(q, l,m) scheme.
Given c, we want to compute an encryption of the most significant bit of x ∈ Rt (t = 2m+l)
without knowing the secret key. The point is that one can multiply any fixed point numbers
by 0.5 in FHE4FX(q, l,m) scheme. First it homomorphically extracts the msb b of x in the
form y = (b, 0, . . . , 0)2 using similar method as UpperClear(c). Then, it repeats taking half
of y in Enc(y) homomorphically, i.e., computing 0.5 × Enc(y), until we get an encryption of
MSb(x) = (0.5)l−1y = (0, . . . , 0, b, 0, . . . , 0)2 (here, 0 repeat m times after b) that encodes a
number b.0 In the following FHE4FX.Add(c, c′) (or FHE4FX.Mult(c, c′)) is simply written as
c+ c′ (or c · c′, respectively).

– MSb (c, k = 0) :
{returns the encryption of b.0 where b is the (l +m− k)-th bit of x. It must be 0 ≤ k < l.}

d← FV(2mt).Encpk(0)
For i ∈ [1..(m+ l − k)]:
di ← FV(2mt).Add(c,−d)
For j ∈ [1..(2m+ l − i)]:
di ← FV(2mt

2i−1).Mult(di, di)
d← FV(2mt).Add(d, di)

d← dm+l−k

h← FHE4FX.Enc(2m−1) {h encrypts “0.5”}
Repeat l − 1− k times:
d← h · d {taking half of d}

return d.

Using the homomorphic procedure MSb(·), homomorphic computation GTb (c1, c2) of an
encryption of greater-than bit b of given c1 = Enc(x1) and c2 = Enc(x2) is straightforward.
Basically it simply compute MSb(c2 − c1). If x1 and x2 represent signed numbers, we need also
to take care of their signs. If x1 and x2 have the same sign, the greater-than bit b is equal
to MSb(x2 − x1). Otherwise, b = MSb(x2). In the following we describe GTb (c, c1) for signed
numbers x1, x2 that will be needed in Section 5.

– GTb (c1, c2) : {returns an encryption of b.0 where a bit b is 1 if x1 > x2 or 0 otherwise}
one← FHE4FX.Enc(2m) {ciphertext one encrypts “1.0”}
d1 ← MSb(c2 − c1), d2 ← MSb(c2)
s0 ← MSb(c1), s1 = d2
same sign← s0 · s1 + (one− s0) · (one− s1) {same sign encrypts 1.0 if x1 and x2 have
the same sign, or encrypts 0.0 otherwise}
d← same sign · d1 + (one− same sign) · d2
return d.

14

To compute MSb(c) we need (m + l)2 Mult operations of the underlying FV scheme. So
to compute GTb(c1, c2) we need roughly 3(m + l)2 Mult operations of the FV scheme, that is
polylogarithmic complexity polylog(

∣∣D∣∣) of the number of possible plaintexts
∣∣D∣∣ = 2m+l.

Here, we remark that using the GTb(c1, c2) procedure, one can homomorphically compare
magnitude of two encrypted fixed point numbers c1 ← Enc(x1) and c2 ← Enc(x2), and output a
ciphertext c that encrypts the greater one.

– GT (c1, c2) : {returns an encryption of x1 if x1 > x2 or an encryption of x2 otherwise}
one← FHE4FX.Enc(2m) {ciphertext one encrypts “1.0”}
b← GTb(c1, c2)
c← b · c1 + (one− b) · c2
return c.

Note that even if one sees the three ciphertexts c1, c2 and c, he/she cannot know which plaintext
xi c is actually encrypting, without knowing the secret key.

5 The Proposed Scheme FHE4FL

In this section, using the method of greater-than bit extraction by FHE4FX, we construct a fully
homomorphic encryption scheme for floating point numbers, FHE4FL.

A floating point number N is written as N = (−1)sf2e, where s ∈ {0, 1} is the sign, f ∈ [1, 2)
is the significand and e ∈ Z is the exponent of N .

ProductN ′′ = (−1)s′′f ′′2e
′′
of two floating point numbersN = (−1)sf2e andN ′ = (−1)s′f ′2e

′

is computed as follows. The new sign s′′ is XOR of signs s and s′: s′′ = (1 − s)s′ + (1 − s′)s.
Significands are multiplied and exponents are added, respectively: f ′′ = ff ′ and e′′ = e+ e′. If
f ′′ > 2 then normalize the result as f ′′ := f ′′/2 and e′′ = e′′ + 1.

Computation of sum N ′′ = (−1)s′′f ′′2e
′′
of two floating point numbers N = (−1)sf2e and

N ′ = (−1)s′f ′2e
′
is more complicated since we need to adjust the point position and to consider

several cases as follows.

– When s = s′ and e > e′, let s′′ = s, f ′′ = f + 2e
′−ef ′, e′′ = e. If f ′′ > 2 normalize it as

f ′′ := f ′′/2 and e′′ = e′′ + 1.
– When s = s′ and e ≤ e′, let s′′ = s, f ′′ = 2e−e′f + f ′, e′′ = e′. If f ′′ > 2 normalize it as

f ′′ := f ′′/2 and e′′ = e′′ + 1.
– When s ̸= s′ and e > e′, let s′′ = s, f ′′ = f − 2e

′−ef ′, e′′ = e, While f ′′ < 1, do f ′′ := 2f ′′,
e′′ = e′′ − 1.

– When s ̸= s′ and e < e′, let s′′ = s′, f ′′ = f ′ − 2e−e′f , e′′ = e′, While f ′′ < 1, do f ′′ := 2f ′′,
e′′ = e′′ − 1.

– When s ̸= s′, e = e′ and f > f ′, let s′′ = s, f ′′ = f − f ′, e′′ = e, While f ′′ < 1, do f ′′ := 2f ′′,
e′′ = e′′ − 1.

– When s ̸= s′, e = e′ and f < f ′, let s′′ = s′, f ′′ = f ′−f , e′′ = e′, While f ′′ < 1, do f ′′ := 2f ′′,
e′′ = e′′ − 1.

– When s ̸= s′, e = e′ and f = f ′, let s′′ = 0, f ′′ = 1.0, e′′ = 0.

5.1 The scheme FHE4FL

Parameters. Recall a floating point number N is written as N = (−1)sf2e, where s ∈ {0, 1}
is the sign, f ∈ [1, 2) is the significand and e ∈ Z is the exponent of N . The FHE4FL scheme

15

is parameterized by three parameters q, m and l. The parameter q is the ciphertext modulus.
Parameters m and l are such that 1+m is the bit-length of significand f and l is the bit-length
of exponent e (excluding the sign-bit).

Building blocks. The scheme FHE4FL encrypts each part of sign s, significand f and exponent e
of a floating point number N into a triple of ciphertexts ([|s|]s, [|f |]f , [|e|]e), using three FHE4FX
schemes FXs, FXf and FXe that share a same ciphertext modulus q and a same key pair (pk, sk).

– FXs : FHE4FX(q, 1, 0) scheme for the sign s
– FXf : FHE4FX(q, 2,m) scheme for the significand f
– FXe : FHE4FX(q, l + 1, 1) scheme for the exponent e

Although bit-length of the significand f is 1 +m, we use FHE4FX(q, 2,m) scheme for f to take
care of carries that occurs among addition f + f ′. Similarly, we use FHE4FX(q, l + 1, 1) scheme
for the exponent e of bit-length l, taking care of its sign.

Scheme Description.

– Keygen () :
return (sk = s, pk = (a, b), evk = (a, b))← FXs.Keygen().
{ The key (sk, pk, evk) will be shared among the three schemes FXs, FXf and FXe. }

– Enc (pk, N = (s, f, e) ∈ R2 ×R22+m ×R2l+2) :
[|s|]s ← FXs.Enc(pk, s), [|f |]f ← FXf.Enc(pk, f), [|e|]e ← FXe.Enc(pk, e)
return c = ([|s|]s, [|f |]f , [|e|]e).

– Dec (sk, c = ([|s|]s, [|f |]f , [|e|]e)) :
s← FXs.Dec(sk, [|s|]s), f ← FXf.Dec(sk, [|f |]f), e← FXe.Dec(sk, [|e|]e)
return N = (s, f, e).

Conversion. First note that we can publicly and efficiently convert ciphertexts, keeping its un-
derlying plaintext unchanged, between FHE4FX schemes that share a same ciphertext modulus q
and a same key pair (pk, sk). In fact, suppose two schemes FHE4FX(q, l,m) and FHE4FX(q, l′,m′)
share a same ciphertext modulus q and a same key pair (pk, sk). Let c = (c0, c1) be a ciphertext
in FHE4FX(q, l,m) scheme that encrypts x ∈ Rt:

c0 + c1s ≡
q

22m+l
x+ v (mod q).

Multiplying c by 22(m−m′)+(l−l′) homomorphically, we get a new ciphertext d = (d0, d1) satisfying

d0 + d1s ≡
q

22m′+l′
x+ v′ (mod q)

that encrypts x ∈ Rt′ as a ciphertext in FHE4FX(q, l′,m′) scheme. Here note that we can multiply
c by 22(m−m′)+(l−l′) homomorphically, even if 2(m−m′) + (l− l′) is a negative integer, since we
are using the FHE4FX scheme that can treat an encryption of “0.5”.

Now we describe operations for homomorphic multiplication and addition of two floating
point numbers N = (−1)sf2e and N ′ = (−1)s′f ′2e

′
. These operations are direct results of ap-

plying homomorphic addition/multiplication algorithm of FHE4FX against the above procedure
for multiplying and adding two floating point numbers.

16

In the following description, conversion between, say [|b|]e and [|b|]f , is implicit. The evalua-
tion key evk is also implicit. The symbol “1.0” means an encoding integer 2m for FHE4FX(q, l,m)
scheme. Similarly, “2.0” means an encoding integer 2m+1 and “0.5” means an encoding integer
2m−1.

– Mult (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) :
[|s′′|]s ← [|1.0− s|]s · [|s′|]s + [|s|]s · [|1.0− s′|]s
[|f ′′|]f ← [|f |]f · [|f ′|]f , [|e′′|]e ← [|e|]e + [|e′|]e
[|b|]f ← MSb([|f ′′|]f) {the m+2-th bit of f ′′}
[|f ′′|]f ← [|b|]f · [|0.5|]f · [|f ′′|]f + [|1.0− b|]f · [|f ′′|]f
[|e′′|]e ← [|b|]e · [|e′′ + 1.0|]e + [|1.0− b|]e · [|e′′|]e
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) :
[|s′′|]s ← [|s|]s · [|s′|]s + [|1.0− s|]s · [|1.0− s′|]s
return IfThenElse([|s′′|],Add0(c, c′),Add1(c, c′))

– Add0 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s = s′}
[|b|]e ← GTb([|e|]e, [|e′|]e)
([|s′′|]s, [|f ′′|]f , [|e′′|]e)← IfTenElse([|b|],Add00(c, c′),Add01(c, c′))
[|d|]f ← MSb([|f ′′|]f) {the m+2-th bit of f ′′}
[|f ′′|]f ← [|d|]f · [|0.5|]f · [|f ′′|]f + [|1.0− d|]f · [|f ′′|]f
[|e′′|]e ← [|d|]e · [|e′′ + 1.0|]e + [|1.0− d|]e · [|e′′|]e
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add00 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s = s′, e > e′}
[|s′′|]s ← [|s|]s, [|e′′|]e ← [|e|]e
[|f ′′|]f ← [|f |]f + RightShift([|f ′|]f , [|e− e′|]e)
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add01 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s = s′, e ≤ e′}
[|s′′|]s ← [|s|]s, [|e′′|]e ← [|e′|]e
[|f ′′|]f ← [|f ′|]f + RightShift([|f |]f , [|e′ − e|]e)
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add1 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′}
[|be|]e ← GTb([|e|]e, [|e′|]e)
c′′ ← IfThenElse([|be|],Add11(c, c′),Add1a(c, c′))
return Normalize(c′′).

– Add11 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e > e′}
[|s′′|]s ← [|s|]s, [|e′′|]e ← [|e|]e
[|f ′′|]f ← [|f |]f − RightShift([|f ′|]f , [|e− e′|]e)
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add1a (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e ≤ e′}
[|b′e|]e ← GTb([|e′|]e, [|e|]e)

17

return IfThenElse([|b′e|],Add12(c, c′),Add10(c, c′))

– Add12 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e < e′}
[|s′′|]s ← [|s′|]s, [|e′′|]e ← [|e′|]e
[|f ′′|]f ← [|f ′|]f − RightShift([|f |]f , [|e′ − e|]e)
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add10 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e = e′}
[|bf |]f ← GTb([|f |]f , [|f ′|]f)
return IfThenElse([|bf |],Add101(c, c′),Add10a(c, c′))

– Add101 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e = e′, f > f ′}
[|s′′|]s ← [|s|]s, [|e′′|]e ← [|e|]e, [|f ′′|]f ← [|f |]f − [|f ′|]f
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add10a (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e = e′, f ≤ f ′}
[|b′f |]f ← GTb([|f ′|]f , [|f |]f)
return IfThenElse([|b′f |],Add102(c, c′),Add100(c, c′))

– Add102 (c = ([|s|]s, [|f |]f , [|e|]e)), c′ = ([|s′|]s, [|f ′|]f , [|e′|]e)) : {s ̸= s′, e = e′, f < f ′}
[|s′′|]s ← [|s′|]s, [|e′′|]e ← [|e′|]e, [|f ′′|]f ← [|f ′|]f − [|f |]f
return c′′ = ([|s′′|]s, [|f ′′|]f , [|e′′|]e).

– Add100 (c, c′) : return c′′ = ([|0|]s, [|1.0|]f , [|0.0|]e). {s ̸= s′, e = e′, f ′ = f}

– Normalize ([|s|]s, [|f |]f , [|e|]e) :
Repeat m times:

[|b|]f ← MSb([|f |]f , 1) {the m+1-th bit of f ′′}
[|f |]f ← [|b|]f · [|f |]f + [|1.0− b|]f · [|2.0|]f · [|f |]f
[|e|]e ← [|b|]e · [|e|]e + [|1.0− b|]e · [|e− 1.0|]e

return ([|s|]s, [|f |]f , [|e|]e).

– RightShift([|a|]f , [|e|]e) : {e > 0}
r ← [|1.0|]f
For i in [1..(l − 1)]: {l is the bit-length of e}
r ← r · r
[|b|]e ← MSb([|e|]e, i)
r ← [|b|]f · [|0.5|]f · r + [|1.0− b|]f · r

return r · [|a|]f .

– IfThenElse([|b|], ([|s|]s, [|e|]e, [|f |]f), ([|s′|]s, [|e′|]e, [|f ′|]f)) :
[|s′′|]s ← [|b|]s · [|s|]s + [|1.0− b|]s · [|s′|]s
[|e′′|]e ← [|b|]e · [|e|]e + [|1.0− b|]e · [|e′|]e
[|f ′′|]f ← [|b|]f · [|f |]f + [|1.0− b|]f · [|f ′|]f
return ([|s′′|]s, [|e′′|]e, [|f ′′|]f).

18

A ciphertext of the FHE4FL scheme of parameter (q,m, l) is just a triple of ciphertexts of
three FHE4FX schemes that share a same ciphertext modulus q and a same key pair (pk, sk).
Recall among those three FHE4FX schemes, ciphertexts in one scheme can be publicly converted
into another scheme ciphertext, keeping its underlying plaintext unchanged. So, we can view the
triple of ciphertexts just a set of independent three ciphertexts under a single FXE4FX scheme.
Especially, the FHE4FL scheme is also semantically secure and fully homomorphic (if parameters
are suitably selected just as in the FHE4FX(q,m, l) scheme) because the FHE4FX scheme is so.

By Theorem 1, we have:

Theorem 2. The FHE4FL scheme of parameter q, l,m can fully homomorphically compute addi-
tions and multiplications of encrypted floating point numbers N = (−1)sf2e with suitable choice
of parameters that makes the underlying FHE4FX scheme (of parameter q, l,m) fully homomor-
phic.

Efficiency. We estimate efficiency of homomorphic operations of FHE4FL scheme of parameter
q, l,m in terms of multiplicative depth which means depth of nested multiplications of the
underlying FHE4FX scheme required for target operation.

It is obvious that multiplicative depth of multiplication Mult(c, c′) is constant. (The com-
plexity of MSb is subsumed by the one of one multiplication in FHE4FX scheme.)

Multiplicative depth of addition Add(c, c′) is dominated by depth of Normalize and RightShift,
which are O(ml) and O(l2), respectively. Hence multiplicative depth of addition Add(c, c′) is
O(ml + l2).

Acknowledgements

This work was supported by CREST, JST.

References

1. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig, Improved Security for a Ring-Based Fully
Homomorphic Encryption Scheme. M. Stam (Ed.): IMACC 2013, LNCS 8308, pp. 4564, 2013.

2. Zvika Brakerski, Fully homomorphic encryption without modulus switching from classical GapSVP. In Ad-
vances in Cryptology - Crypto 2012, LNCS 7417, pages 868886. Springer, 2012.

3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (Leveled) fully homomorphic encryption without
bootstrapping. In Shafi Goldwasser, editor, ITCS, pages 309325. ACM, 2012.

4. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig, Improved security for a ring-based fully
homomorphic encryption scheme. Martijn Stam, editor. Cryptography and Coding - 14th IMA International
Conference, IMACC 2013, LNCS 8308, Springer, 2013.

5. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, and
Aaram Yun, Batch fully homomorphic encryption over the integers. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, LNCS 7881, pages 315335. Springer, 2013.

6. Jung Hee Cheon, Miran Kim, Kristin Lauter, Homomorphic Computation of Edit Distance. Financial Cryp-
tography and Data Security 2015, LNCS 8976, pp 194-212, 2015.

7. Junfeng Fan and Frederik Vercauteren, Somewhat practical fully homomorphic encryption. IACR Cryptology
ePrint Archive, 2012-144, 2012.

8. Craig Gentry, Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, STOC,
pages 169178. ACM, 2009.

9. C. Gentry, S. Halevi, and N. P. Smart, Better bootstrapping in fully homomorphic encryption. In Public Key
Cryptography, pages 1-16. 2012.

10. Philippe Golle, A private stable matching algorithm. In Financial Cryptography and Data Security, pages
6580. Springer, 2006.

19

11. Thore Graepel, Kristin Lauter, Michael Naehrig, ML Confidential: Machine Learning on Encrypted Data.
International Conference on Information Security and Cryptology ICISC 2012, LNCS 7839, Springer-Verlag
(2013), pp 1-21.

12. Yu Ishimaki, Kana Shimizu, Koji Nuida, Hayato Yamana, Faster privacy-preserving search for genome se-
quences using fully homomorphic encryption, SCIS’16, 2016, Kumamoto, Japan.

13. Wen-jie Lu, Shohei Kawasaki, Jun Sakuma, Cryptographically-secure Outsourcing of statistical Data Analysis
I: Descriptive Statistics. CSS’15, 2015, Nagasaki, Japan.

14. Kristin Lauter, Adriana Lpez-Alt, Michael Naehrig, Private Computation on Encrypted Genomic Data.
Progress in Cryptology LATINCRYPT 2014, LNCS 8895, Springer-Verlag (2014), pp 327.

15. Junqiang Liu, Jiuyong Li, Shijian Xu, and Benjamin C.M. Fung, Secure Outsourced Frequent Pattern Mining
by Fully Homomorphic Encryption. S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 7081, 2015.

16. Tancrède Lepoint, Michael Naehrig, A Comparison of the Homomorphic Encryption Schemes FV and YASHE.
Progress in Cryptology AFRICACRYPT 2014, LNCS 8469, Springer-Verlag (2014), pp 318335.

17. Kristin Lauter, Michael Naehrig, Vinod Vaikuntanathan, Can Homomorphic Encryption be Practical? CCSW’
11, 2011, Chicago, Illinois, USA.

18. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings.
EUROCRYPT 2010, LNCS 6110, pp. 1-23, 2010.

19. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In Foundations of
Secure Computation, pages 169-177. Academic Press, 1978.

20. Jacob Alperin-Sheriff and Chris Peikert, Practical Bootstrapping in Quasilinear Time. R. Canetti and J.A.
Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 120, 2013.

20

