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Abstract

The log-likelihood ratio (LLR) and the chi-squared distribution based test statistics have been proposed in
the literature for performing statistical analysis of key recovery attacks on block ciphers. A limitation of the
LLR test statistic is that its application requires the full knowledge of the corresponding distribution. Previous
work using the chi-squared approach required approximating the distribution of the relevant test statistic by
chi-squared and normal distributions. Problematic issues regarding such approximations have been reported in
the literature. Perhaps more importantly, both the LLR and the chi-squared based methods are applicable only
if the success probability PS is greater than 0.5. On the other hand, an attack with success probability less than
0.5 is also of considerable interest. This work proposes a new test statistic for key recovery attacks which has
the following features. Its application does not require the full knowledge of the underlying distribution; it is
possible to carry out an analysis using this test statistic without using any approximations; the method applies
for all values of the success probability. The statistical analysis of the new test statistic follows the hypoth-
esis testing framework and uses Hoeffding’s inequalities to bound the probabilities of Type-I and Type-II errors.

keywords: multiple linear cryptanalyis, LLR statistic, chi-squared statistic, Hoeffding inequality.

1 Introduction

Consider the setting of multiple linear cryptanalysis of block ciphers. Statistical analyses of such attacks proceed
by identifying a suitable test statistic. In purely statistical terms, the setting is as follows. Let X1, . . . , XN be
independent and identically distributed random variables taking values from the set {0, 1}`. The distribution of
the Xj ’s is either a distribution p̃ = (p0, . . . , p2`−1) or it is the uniform distribution on {0, 1}`. For η ∈ {0, 1}`,
let Qη be the random variable which counts the number of j’s such that Xj = η. The following test statistics
have been used in the literature on block cipher cryptanalysis. Assume ` > 1.

LLR =

2`−1∑
η=0

Qη ln(2`pη); Λ = 2`N

2`−1∑
η=0

(Qη/N − 2−`)2.

The LLR test statistic arises from the log-likelihood ratio while the distribution of Λ can be approximated by
a chi-squared distribution. By the chi-squared test statistic, we will mean Λ. Approximate expressions for data
complexities of key recovery attacks using the LLR and the chi-squared test statistics have been obtained in [14].
Both the LLR and the chi-squared test statistics have some limitations which are mentioned below.
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Knowledge of the distribution: To apply the LLR test statistic, it is required to have full knowledge of the
probability distribution p̃. In many situations, this information may be difficult to obtain. The distribution p̃ is
uncovered by a detailed analysis of the block cipher and for ` > 1, obtaining the full distribution p̃ may not be
possible. In such situations, it is not possible to apply the LLR test statistic.

To apply the chi-squared test statistic, the knowledge of p̃ is not required. The analysis needs to only unearth
the expected value of the test statistic which is one of the factors that determine the number of plaintext-
ciphertext pairs required to mount the attack. So, to apply an analysis based on the chi-squared test statistic,
the requirement from the analysis of the block cipher is substantially lower than that required from the LLR test
statistic.

Approximation issues: For both the LLR and the chi-squared test statistics, the analysis in [14] approximates
the corresponding distributions by normal. This involves an error in approximation which has not been studied
in details. For the chi-squared based test statistic, this issue has been briefly noted in the literature [15, 14]. For
detailed analysis of problems arising from normal approximations we refer to [27].

Works only for high success probability: The success probability of a key recovery attack is the probability
that the target sub-key is indeed recovered by the algorithm. While it is good to have high success probabilities,
from a cryptanalytic point of view, low success probabilities are also meaningful. For example, an attack with
success probability 0.1 has a 10% chance of success. Such an attack should be considered to be a valid attack. It
is helpful for a cryptanalyst to determine the amount of plaintext-ciphertext pairs required to achieve a certain
success probability. The LLR and the chi-squared based approaches have serious limitations with respect to this
requirement. Both the approaches are applicable only for success probabilities greater than 0.5. So, if one wishes
to obtain an estimate of data complexity for an attack with 10% chance of success, then there is nothing in the
literature which allows doing this.

Our Contributions

In this work, we propose to perform a statistical analysis which overcomes the previously mentioned limitations.
This requires a suitable test statistic.

Our first choice is the chi-squared test statistic. For this, we considered the possibility of performing an
analysis without making any approximations. We follow the hypothesis testing framework. An approach for
avoiding approximations in this framework has been outlined in [26]. The idea is to apply the Hoeffding bounds
to upper bound the probabilities of Type-I and Type-II errors. This requires expressing the test statistic as a
sum of independent random variables. Unfortunately, for the chi-squared test statistic, this does not seem to be
possible.

Since neither the LLR nor the chi-squared test statistics seem to apply, we propose a new test statistic. For
η ∈ {0, 1}`, let η denote the integer whose binary representation is η. Let d be a positive real number. We

propose the test statistic T =
∑

η∈{0,1}` η
dQη. The computation of this statistic does not require information

about p̃. Let µ0 (resp. µ1) be the expectation of T when the Xj ’s follow p̃ (resp. the uniform distribution).
If µ0 6= µ1, then T can be used to carry out a key recovery attack. The requirement from the analysis of the
internal structure of the block cipher is to obtain (an estimate of) µ0. Given the value of µ0, it is possible to
obtain an expression for the data complexity (i.e., the number of plaintext-ciphertext pairs) required to attain
the parameters of a successful attack.

The statistical analysis that we perform does not require us to make any approximations. It is possible
to express T as a sum of independent random variables. So, the Hoeffding bounds can be used to bound the
probabilities of the Type-I and Type-II errors.

The theoretical analysis holds for any positive d. The question that arises is what value of d should be used in
practice. An important point to keep in mind is that for the chosen value of d, it should be possible to estimate
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the value of µ0. Based on experiments, we suggest that the value of d should be taken to be 1.
We have evaluated the obtained bound using known linear approximations for the block cipher SERPENT.

For success probabilities at most 0.5, there is no prior result in the literature to which we can compare. For
success probabilities greater than 0.5, the values of the bounds turn out to be higher than the approximate values
obtained using the chi-squared test statistic.

Note that the minimum required data complexity to achieve a certain value of the success probability is not
known. Our method provides an upper bound on this minimum data complexity while the chi-squared method
provides an approximate value where the error in approximation is not known. So, the data complexity of the
chi-squared method cannot be taken to be the correct value and then the bound obtained by our method is
criticised for being an over-estimate. It is possible that the chi-squared method grossly under-estimates the
minimum required data complexity.

A work of independent interest would be to simulate an attack on some particular (toy) cipher to determine
the required data complexity and then compare it to the bound that we obtain and the approximate value
obtained from the chi-squared method. If done in a comprehensive manner this could be an interesting exercise,
but, one that we feel is not directly related to the contribution of the paper. We have obtained a theoretical
bound which holds for all ciphers. This in itself should be of some intrinsic interest. Note that the upper bound
on the data complexity obtained in this paper depends only on the value of µ0, provided such an estimate exists
and that the estimate is an accurate one.

While we do not make any claims that the bound is tight, we do note that carrying out an experiment for
one particular cipher will not establish the bound to be loose. There may be ciphers for which the bound is loose
while there could be other ciphers for which the bound is tight. Further, it is difficult to extrapolate results on
data complexity obtained from simulation of an attack on some toy cipher to results about much higher data
complexity on more complex and real-life ciphers. More work is required to establish the tightness (or not) of
the bounds obtained here. We refer to [28] for a discussion on this issue. Another equally important issue is to
be able to propose another test statistic which shares the advantages of the one that we use and for which it is
possible to obtain lower values of the data complexity.

Previous and Related Work

Linear cryptanalysis was proposed by Matsui in [21] as an attack on DES and involved a single linear approxima-
tion of the cipher. Later, in [22], Matsui used two linear approximations (which were assumed to be independent)
to improve the attack. Independently, Kaliski and Robshaw [20] extended Matsui’s attack involving single linear
approximations to multiple linear cryptanalysis using ` ≥ 1 independent linear approximations. The approxi-
mations that were considered had certain restrictions. It was assumed that the ` linear approximations have a
common data mask (i.e., plaintext and ciphertext mask) but different key masks.

In [3], Biryukov et al. gave a more general method for multiple linear cryptanalysis without any assumption
on the corresponding linear approximations. Their analysis, though, still assumed the linear approximations
to be independent. Analysis under the independence assumption was also done independently by Junod and
Vaudenay in [19] in the context of distinguishing attacks. Further work on distinguishing attacks without the
independence assumption was carried out in [1, 18, 2, 10]. Murphy [24] argued that the independence assumption
need not be valid.

Junod [17] gave a detailed analysis of Matsui’s ranking method [21, 22]. This work introduced the notion
of ordered statistics in linear cryptanalysis. This was further developed by Selçuk in [29], where he used a well
known asymptotic result from the theory of ordered statistic to arrive at the expression for success probability
for both single linear and differential cryptanalysis.

The test statistic used in [1, 18, 2] was the log-likelihood ratio (LLR). The chi-squared test statistic was
initially used by Handschuh and Gilbert [11] for the cryptanalysis of the SEAL encryption algorithm. Later
Johansson and Maximov [16] gave an explicit analysis of the success and the error probabilities in the context of
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their attack on the stream cipher Scream. The idea of Selçuk’s order statistics based approach has been combined
with the LLR and the chi-squared test statistics to obtain expressions for data complexities of multiple linear
cryptanalysis [14].

A related line of work considered the situation where the correlation for a linear approximation depends on
the key. This line of research originates from the work of Daemen and Rijmen [9] and was explicitly put in
the context of linear cryptanalysis in [6] for single linear cryptanalysis and in [5] for multi-dimensional linear
cryptanalysis.

In this paper, we have not considered the issue of key-dependent correlations. The problems with the use of
normal approximations for linear cryptanalysis without key-dependent behaviour (reported in [27]) also extend
to the case of key-dependent correlations. Further, there are several additional subtleties which need to be
properly handled. Carefully analysing the setting of key-dependent correlations without approximations requires
a separate comprehensive treatment. The goal of the present paper, on the other hand, is primarily to show how
several limitations of previous statistical methods for analysing multiple linear cryptanalysis can be overcome.
We believe that the usefulness of this contribution can be assessed independently of the issue of key-dependent
correlations.

2 Multiple Linear Cryptanalysis

Let E : {0, 1}k × {0, 1}n 7→ {0, 1}n be a block cipher, and so for each K ∈ {0, 1}k, EK(·) ∆
= E(K, ·) is a bijection

from {0, 1}n to itself. Here, K is called the secret key, the n-bit input to EK is called the plaintext and the n-bit
output of EK is called the ciphertext.

Usual constructions of block ciphers involve a simple round function parameterised by a round key which
is iterated over several rounds. The round keys are produced by applying an expansion function, called the
key scheduling algorithm, to the secret key K. Denote the round keys by k(0), k(1), . . . and round functions by

R
(0)

k(0)
, R

(1)

k(1)
, . . .. Also, let K(i) denote the concatenation of the first i round keys, i.e., K(i) = k(0) || · · · || k(i−1)

and E
(i)

K(i) denote the composition of the first i round functions, i.e.,

E
(0)

K(0) = R
(0)

k(0)
; E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) ; i ≥ 1.

Suppose that an attack targets r + 1 rounds. For a plaintext P , we denote by B the output after r rounds, i.e,

B = E
(r)

K(r)(P ) and we denote by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ) = R
(r)

k(r)
(B).

Block cipher cryptanalysis starts off with a detailed analysis of the block cipher. This results in one or
possibly more relations between the plaintext P , the input to the last round B and possibly the expanded key
K(r). In case of linear cryptanalysis these relations are linear in nature and are of the following form:

〈Γ(i)
P , P 〉 ⊕ 〈Γ

(i)
B , B〉 = 〈Γ(i)

K ,K
(r)〉; i = 1, 2, . . . , `;

where Γ
(i)
P ,Γ

(i)
B ∈ {0, 1}n and Γ

(i)

K(r) ∈ {0, 1}nr denotes the plaintext mask, the mask to the input of the last
round and the key mask respectively. A linear relation of the above form is called a linear approximation of the
block cipher. Such linear approximations usually hold with some probability which is taken over the uniform
random choices of the plaintext P . Obtaining such relations and their joint distribution is not a trivial task and
requires a lot of ingenuity and experience. They form the basis on which the statistical analysis of block ciphers
are built. If ` > 1, the attack is called a multiple linear cryptanalysis and if ` = 1, we call the attack single linear

cryptanalysis, or simply, linear cryptanalysis. Define Li
∆
= 〈Γ(i)

P , P 〉 ⊕ 〈Γ
(i)
B , B〉; for i = 1, 2, . . . , `.

Inner key bits: Let zi = 〈Γ(i)
K ,K

(r)〉; i = 1, . . . , `. Note that for a fixed but unknown key K(r), zi represents
a single unknown bit. Denote by z = (z1, . . . , z`) the collection of the bits arising in this manner. Since, the `
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key masks Γ
(1)
K , . . . ,Γ

(`)
K are known, the tuple z is determined only by the unknown but fixed K(r). Hence, there

is no randomness either of K(r) or z. The bits of z are called the inner key bits.

Target sub-key bits: Any linear relation of the form above, between P and B, usually involves only a subset
of the bits of B. When ` > 1, several (or multiple) relations between P and B are known. In such cases, it is
required to consider the subset of the bits of B which covers all the relations. In order to obtain these bits from
the ciphertext C it is required to partially decrypt C by one round. This involves a subset of the bits of the last
round key k(r). We call this the target sub-key. The goal of linear cryptanalysis is then to find the correct value
of the target sub-key using the ` linear approximations and their joint distributions. We denote the number of
bits in the target sub-key by m. In other words, these m key bits are sufficient to partially decrypt C by one
round and obtain the bits of B involved in any of the ` linear approximations. Notice that there are 2m possible
choices of the target sub-key out of which only one is correct. The purpose of the attack is to identify the correct
key. For convenience of notation, we will denote the correct choice of the target sub-key as κ∗.

Setting of the attack: The block cipher is instantiated with an unknown, but, fixed key. It is assumed that
N independent and uniform random plaintexts are chosen and the corresponding ciphertexts under fixed key
are obtained. Denote the plaintext-ciphertext pairs as (Pj , Cj); j = 1, 2, . . . , N . For each choice κ of the target
sub-key, it is possible for the attacker to partially decrypt each Cj by one round to obtain Bκ,j ; j = 1, 2, . . . , N .
Note that Bκ,j is dependent on κ even though Cj may not. Clearly, if the choice of κ is correct, then the Cj ’s
depend on κ. On the other hand, for an incorrect choice of κ, Cj has no relation with κ.

Statistical analysis proceeds by defining a test statistic Tκ for each choice κ of the target sub-key. This
provides 2m random variables of the type Tκ. The distribution of Tκ depends on whether κ is the correct choice
or, it is an incorrect choice. Under the usual wrong key hypothesis [12], it is assumed that the distributions of
all the Tκ’s for incorrect choices of κ’s are the same.

Suppose that the plaintext P is uniformly distributed. Since, each round function is a bijection, the uniform
distribution of P also induces a uniform distribution on B. By definition, Li is a binary random variable taking
values from the set {0, 1}. Also from the discussion above it is clear that the source of randomness of Li comes
from the randomness of P . Define the random variable X as X = (L1, . . . , L`). Then X is a random variable
distributed over {0, 1}`.

Joint distribution parameterised by inner key bits: The distribution of the random variable X =
(L1, . . . , L`) is the following. For η ∈ {0, 1}` and z ∈ {0, 1}`,

pz(η) = Pr[L1 = η1 ⊕ z1, . . . , L` = η` ⊕ z`] =
1

2`
+ εη(z); (1)

where −1/2` ≤ εη(z) ≤ 1 − 1/2`. Denote by p̃z = (pz(0), pz(1), . . . , pz(2
` − 1)) the corresponding probability

distribution, where the integers {0, 1, . . . , 2` − 1} are identified with the set {0, 1}`. For each choice of z, we
obtain a different but related distribution. Let, z′ = z ⊕ β for some β ∈ {0, 1}`, then it is easy to verify that
εη(z

′) = εη⊕β(z), which implies that pz⊕β(η) = pz(η ⊕ β). Let, p̃ denote the probability distribution p̃0` , i.e.,

p̃
∆
= p̃0` . Write p̃ = (p0, . . . , p2`−1), so that for all η ∈ {0, 1}`, pη

∆
= p(η) = 1/2` + εη.

For κ ∈ {0, 1, . . . , 2m − 1}, j = 1, . . . , N and i = 1, . . . , `, define Lκ,j,i = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
B , Bκ,j〉; Xκ,j =

(Lκ,j,1, . . . , Lκ,j,`); and

Qκ,η = #{j ∈ {1, 2, . . . , N} : Xκ,j = η}. (2)

Note that Qκ,η is the number of times η appears among the random variables Xκ,1, . . . , Xκ,N . Suppose z is the
correct choice of the inner key bits. Then for the correct choice of the target sub-key (i.e., κ = κ∗) the random
variable Qκ,η follows Bin(N, pz(η)), whereas for the incorrect choice of the target sub-key (i.e., κ 6= κ∗) the random
variable Qκ,η follows Bin(N, 2−`). Denote the uniform distribution over the set {0, 1}` by p$ = (2−`, . . . , 2−`).
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Success probability and advantage of an attack: Two important parameters which are relevant to a
key recovery attack are the success probability and the (expected) advantage. The success probability is the
probability that the correct value of the target sub-key is recovered in the attack. The advantage of an attack is
a, if a fraction 2−a of all possible 2m values of the target sub-key are reported as candidate values. So, for an
attack with advantage a, the size of the list of candidate keys is 2m−a.

3 Drawbacks of Previously Proposed Statistics

As mentioned in the introduction, two test statistics have been proposed earlier [14] for performing statistical
analysis of key recovery attacks on block ciphers. In this section, we briefly review these statistics and point out
certain drawbacks.

Log-likelihood ratio test statistic: The LLR test statistic has been used for key recovery attacks as well
as distinguishing attacks in several works in the literature [1, 14, 4, 26]. One drawback of this statistics is that
to compute it, the full knowledge of p̃ is required. This is evident from the expression of the LLR test statistic.
In many situations, such complete knowledge of the joint distribution of the multiple linear approximations may
not be available. In such cases, it will not be possible to compute the value of LLRκ.

The analysis in [14] provides an expression for the data complexity in terms of the success probability and
the advantage. This expression is stated to be valid only for success probability greater than 0.5.

Chi-squared test statistic: Recall from (2) that for a choice κ of the target sub-key and for η ∈ {0, 1}`, Qκ,η
is the number of times η occurs among the random variables Xκ,1, . . . , Xκ,N . Define a test statistic Λκ in the
following manner:

Λκ = 2`N

2`−1∑
η=0

(Qκ,η/N − 2−`)2. (3)

For the correct choice κ∗ of the target sub-key bits, the right hand side of (3) involves Qκ∗,η whose distribution
depends on the inner key bits z. Due to the relation pz⊕β(η) = pz(η⊕ β), the distribution of Λκ∗ , however, does
not depend on z.

To apply the chi-squared test statistic, it is not required to know the full distribution of the underlying
probability distribution. Statistical analysis using this test statistic has been carried out in [14] in the following
manner. The distribution of Qκ,η follows a binomial for both correct and incorrect choices of κ. The binomial can
be approximated using a normal distribution and then the distribution of Λκ approximately follows a chi-squared
distribution for both correct and incorrect choices of κ. There is, however, the issue of error in approximation
which has not been properly analysed. This issue of error in approximation has been briefly mentioned in [15,
14, 27] and has been analysed in details in [27] where several shortcomings have been pointed out.

The data complexity for the chi-squared test statistic was given by Hermelin et al. in [14]. It was shown that
for “large” values of a and PS > 0.5, the data complexity, which we denote by NΛ, is approximately

NΛ =
2
√

2` − 1Φ−1(1− 2−a) + 4
(
Φ−1(2PS − 1)

)2
C(p̃)

; (4)

where C(p̃) =
∑2`−1

η=0 (pη − 2−`)/2−`.
A reduced round linear cryptanalysis of SERPENT was earlier reported in [8] using a set of linear approxima-

tions [7]. Out of these, a subset of 64 linear approximations was later used in [13, 14] to perform multidimensional
linear cryptanalysis on SERPENT using the LLR and the chi-squared test statistics. It happens so that this
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subset can be generated by 10 linear approximations called the basis linear approximations and can be used to
recover 10 bits of the last round key. Thus, for this particular experiment, ` = 10 and m = 10.

It was pointed out in [27], that for a χ2 approximation of the distribution of the test statistic Λ to be valid,
the corresponding distributions under both the null and the alternate hypotheses need to satisfy the following two

conditions for all η ∈ {0, 1}`: | pη(1−pη)−qη(1−qη) |< pη(1−pη); and
pη(1−pη)−qη(1−qη)

pη(1−pη) ≈ 0. We checked whether

these conditions hold for the linear approximations of the reduced round block cipher SERPENT reported in [7].
The total number of linear approximation required to generate the full probability distribution for the correct
key is 210 − 1 = 1023. Out of these, only 64 are given in [7]. To find the full probability distribution for the
correct key, two methods were suggested in [13]. We have used the second method, where the correlations of the
remaining 1023 − 64 = 959 approximations are assumed to be zero. The Walsh transform method of [25] was
then used on these approximations to get the joint distribution.

For the joint distribution of the reduced round SERPENT it was found that for all η, | pη(1−pη)−qη(1−qη) |
is indeed less than pη(1−pη). The maximum value of the ratio | (pη(1−pη)−qη(1−qη)) | /(pη(1−pη)) is 0.0049.
So, the χ2 approximation is valid provided that the value 0.0049 is assumed to be sufficiently close to zero. The
effect of this assumption on the final expression for the data complexity is not known. This is one of the several
approximations that is required to obtain the chi-squared based data complexity expression. We refer to [27] for
more details.

A question then arises as to whether it is possible to use the chi-squared test statistic to obtain an expression
for the data complexity without using any approximation. Such an approach has been shown to be successful for
the LLR test statistic [26] through the application of the Hoeffding bounds. This requires expressing the test
statistic as a sum of independent random variables. However, Λκ is the sum of 2` random variables where these
individual random variables are determined by Qκ,η, η ∈ {0, 1}`. The Qκ,η’s are dependent as

∑
η∈{0,1}` Qκ,η = N .

So, the Hoeffding bound does not apply directly. Further, there does not seem any other way to write Λκ as the
sum of independent random variables.

4 A New Test Statistic

Let d be a positive integer and consider the following test statistic.

Tκ =
∑

η∈{0,1}`
ηdQκ,η. (5)

Let µ0 be the expectation of Tκ for the correct choice of κ and let µ1 be the expectation of Tκ for an incorrect
choice of κ. Then

µ1 = E[Tκ] =
∑

η∈{0,1}`
ηdE[Qκ,η] = N2−`

∑
η∈{0,1}`

ηd; (6)

µ0 = E[Tκ∗ ] =
∑

η∈{0,1}`
ηdE[Qκ∗,η] = µ1 +N

∑
η∈{0,1}`

ηdεη. (7)

So, µ0 − µ1 = N
∑

η∈0,1` η
dεη. One can now aim to design a statistical analysis which attempts to recover

κ∗ by exploiting the difference in the two expectations. While doing this, we would like to avoid making any
approximations. We next show how both of these aims can be achieved.

Recall that for a fixed κ, the random variables Xκ,1, . . . , Xκ,N are independent. The test statistic given by (5)
can be rewritten in the following manner.

Tκ =
∑

η∈{0,1}`
ηdQκ,η =

N∑
j=1

Xd
κ,j . (8)
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This enables writing Tκ as the sum of independent random variables. The computation of Tκ can be done in
O(N) time using any one of the two expressions. This computation does not require the knowledge of the εη’s.

Consider the following test of hypothesis:

Hypothesis Test-1:
H0: “κ is correct” versus H1: “κ is incorrect.”
Decision rule:

Case µ0 > µ1: Reject H0 if Tκ ≤ t,∀z ∈ {0, 1}`; where t ∈ (µ1, µ0);
Case µ0 < µ1: Reject H0 if Tκ ≥ t,∀z ∈ {0, 1}`; where t ∈ (µ0, µ1).

Proposition 1. Let 0 < α, β < 1. In Hypothesis Test-1, it is possible to choose t such that for

N ≥
(2` − 1)2d(

√
ln(1/α) +

√
ln(1/β))2

2
(∑2`−1

η=0 ηdεη

)2 (9)

the probabilities of the Type-I and Type-II errors are upper bounded by α and β respectively.

The proof follows by applying Hoeffding’s bound (see Appendix A) to upper bound the probabilities of the
type-I and type-II errors, and thereafter eliminating the threshold parameter t. The proof is given in Appendix B.

Let µ′1 = 2−`
∑

η∈{0,1}n η
d and µ′0 =

∑
η∈{0,1}n η

d(2−` + εη). Then µ′0 − µ′1 =
∑

η∈{0,1}n η
dεη and so (9) can

be written as

N ≥
(2` − 1)2d(

√
ln(1/α) +

√
ln(1/β))2

2 (µ′0 − µ′1)2 .

Thus, although (9) suggests that it is necessary to know all the εη’s to get a lower bound of N , it is actually not
the case. It suffices to have a good estimate of µ′0 which is just the expected value of the random variable Xd

κ∗,1.

(Note that Xd
κ∗,1, . . . , X

d
κ∗,N are identically distributed.)

Relating to success probability and expected advantage: By definition, the success probability is 1 −
Pr[Type-I error]. So, if α is an upper bound on the probability of the type-I error, then PS = 1 − α is a lower
bound on the success probability.

An incorrect value of κ is reported as a candidate key if a Type-II error occurs. Since there are a total of
2m − 1 incorrect values of the target sub-key, the expected number of wrong values reported as candidate keys
is β(2m − 1). Equating to 2m−a gives β = 2−a × 2m/(2m − 1).

In the expression for the data complexity N , we may replace α by 1−PS and β by 2−a × 2m/(2m − 1). This
provides an expression for the data complexity required to attain success probability at least PS and advantage
at least a.

Nature of the bound: Proposition 1 shows a lower bound on the data complexity required for ensuring a
certain minimum success probability and a certain minimum advantage. This lower bound is with respect to
Hypothesis Test-1 which in particular means that the test statistic Tκ is used. We note, on the other hand, that
there is a possibility of using some other test statistic for which the required data complexity is lower. This
means that taken over all possible test statistics, the data complexity expression in Proposition 1 is actually an
upper bound on the minimum data complexity that is required to achieve given values of success probability and
advantage.
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Attack procedure: The actual application of the attack will be as follows. Given PS and a, determine α
(= 1−PS) and β (= 2−a×2m/(2m−1)); then determine N as given by the right hand side of (9). From α and N
determine t (given by (13) or (14) of Appendix B). Once t is determined, Hypothesis Test-1 can be performed.
Suppose that µ0 > µ1, the other case being similar. Initialise a list L to be empty. For each choice κ of the
target sub-key, compute Tκ; if Tκ > t, append κ to L. At the end, L contains the set of candidate keys.

The above procedure does not require knowledge of p̃ to apply the test. Only the knowledge of µ0 is required
to obtain an estimate of the data complexity N .

Choice of d: The theory described above works for all positive d. We suggest the use of d = 1. The rationale
behind such a choice is given in Appendix C

5 Experimental Results for SERPENT

We compare the bound on the data complexity given by (9) to that of the approximate data complexity of the
Λ-test statistic given by [14, Equation (18)] and reproduced in (4) for the reduced round block cipher SERPENT.
The distribution used for all the computations in this section is the one discussed in Section 3. The comparison
presented in this section has been broadly classified into two groups, one where PS has been fixed to 0.95 and
the other where experiments have been conducted for different values of PS .

Fixed PS: For this experiment, the value of PS was fixed to 0.95. The bound given by (9) with d = 1 and the
approximate value given by (4) were then computed for a = 1, 2, . . . , 10. Table 1 summarises the output of the
experiment. The last column of the Table gives the ratio of the two data complexities. From the Table, it is
clear that approximate estimate obtained from the Λ test statistic is lower than the upper bound obtained from
the new method.

We note that the minimum data complexity required to achieve success probability 0.95 and advantage a
is not known. While NX is an upper bound, NΛ is an approximation where the error in approximation is not
known. At present, it is not possible to say anything more than this.

a NX (9) NΛ (4) NX/NΛ

1 2.79×1010 1.25×106 22246.87

2 3.59×1010 9.48×106 3783.91

3 4.27×1010 1.53×107 2793.44

4 4.89×1010 2.0×107 2449.77

5 5.47×1010 2.4×107 2283.17

6 6.03×1010 2.75×107 2190.17

7 6.56×1010 3.07×107 2134.69

8 7.08×1010 3.37×107 2100.80

9 7.58×1010 3.64×107 2080.41

10 8.07×1010 3.90×107 2068.96

PS NX (9) NΛ (4)

0.10 2.03×1010 n.a.

0.20 2.31×1010 n.a.

0.30 2.56×1010 n.a.

0.40 2.81×1010 n.a.

0.50 3.08×1010 n.a.

0.60 3.37×1010 2.33×107

0.70 3.71×1010 2.28×107

0.80 4.16×1010 2.28×107

0.90 4.84×1010 2.33×107

Table 1: Values of NX and NΛ for the joint distri-
bution of SERPENT with a ranging from 1 to 10
and PS = 0.95.

Table 2: Values of NX and NΛ for the joint dis-
tribution of SERPENT with PS = 0.1, 0.2, . . . , 0.9
and a = 5. In the table, n.a. denotes “not applica-
ble.”
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Varying PS: We computed the value of NX for different values of PS = 0.1, 0.2, . . . , 0.9 for the same joint
distribution of SERPENT. For this experiment we fixed a = 5. Table 2 reports the results of the experiment.
From the table, it can be seen that the data complexity NX increases as PS increases, which is what one would
expect. But, the data complexity NΛ first increases then decreases even for PS > 0.5. This anomalous behaviour
is due to the approximations used in deriving the expression for NΛ.

6 Conclusion

The paper considered the problem of statistical analysis of attacks on block ciphers in the situation where the
LLR test statistic cannot be applied. The other aspect considered was to follow the approach in [26] towards a
rigorous analysis without using any approximations. We first considered the chi-squared based test statistic and
argued that this test statistic is not amenable to analysis using our approach.

To resolve the problem, we introduced a new test statistic using which an attack can be applied without
the full knowledge of the underlying probability distribution. Also, the resulting statistical framework can be
analysed rigorously without making any approximations. The obtained expression for data complexity was
compared to the approximate expression for data complexity for the chi-squared test statistic using known linear
approximations for the block cipher SERPENT. As expected, the data complexity of the new test statistic turns
out to be higher. This shows that if one wishes to follow a rigorous approach, then one would have to be satisfied
with a conservative estimate of the data complexity.

An important aspect of our analysis is that it allows obtaining estimates of the data complexity for all possible
values of the success probability. This is in contrast to previous work which required the success probability to
be greater than half.
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[10] Benôıt Gérard and Jean-Pierre Tillich. On linear cryptanalysis with many linear approximations. In IMA
International Conference on Cryptography and Coding, pages 112–132. Springer, 2009.

[11] Helena Handschuh and Henri Gilbert. χ2 Cryptanalysis of the SEAL Encryption Algorithm. In Fast Software
Encryption, pages 1–12. Springer, 1997.

[12] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. A Generalization of Linear Cryptanalysis and
the Applicability of Matsui’s Piling-Up Lemma. In Advances in Cryptology - EUROCRYPT ’95, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Saint-Malo, France, May 21-
25, 1995, Proceeding, pages 24–38, 1995. http://link.springer.de/link/service/series/0558/bibs/

0921/09210024.htm.

[13] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional Linear Cryptanalysis of Reduced Round
Serpent. In Information Security and Privacy, pages 203–215. Springer, 2008.

[14] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional Extension of Matsui’s Algorithm 2. In
Fast Software Encryption, pages 209–227. Springer, 2009.

[15] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Statistical Tests for Key Recovery Using Multidimensional
Extension of Matsui’s Algorithm 1. In Helena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway,
editors, Symmetric Cryptography, number 09031 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. Available at http://drops.dagstuhl.
de/opus/volltexte/2009/1954, ISSN: 1862-4405.

[16] Thomas Johansson and Alexander Maximov. A Linear Distinguishing Attack on Scream. In Proceedings
2003 IEEE International Symposium on Information Theory, pages 164–164. IEEE, 2003.

[17] Pascal Junod. On the Complexity of Matsui’s Attack. In Selected Areas in Cryptography, pages 199–211.
Springer, 2001.

[18] Pascal Junod. On the Optimality of Linear, Differential, and Sequential Distinguishers. In Advances in
Cryptology–EUROCRYPT 2003, pages 17–32. Springer, 2003.

[19] Pascal Junod and Serge Vaudenay. Optimal Key Ranking Procedures in a Statistical Cryptanalysis. In Fast
Software Encryption, pages 235–246. Springer, 2003.

[20] Burton S Kaliski Jr and Matthew JB Robshaw. Linear Cryptanalysis Using Multiple Approximations. In
Advances in Cryptology–Crypto’94, pages 26–39. Springer, 1994.

[21] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology–
EUROCRYPT’93, pages 386–397. Springer, 1993.

[22] Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard. In Y. G. Desmedt,
editor, Advances in Cryptology–Crypto’94, pages 1–11. Springer, 1994.

[23] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.



A HOEFFDING INEQUALITY 12

[24] Sean Murphy. The Independence of Linear Approximations in Symmetric Cryptanalysis. IEEE Transactions
on Information Theory, 52(12):5510–5518, 2006.

[25] Kaisa Nyberg and Miia Hermelin. Multidimensional walsh transform and a characterization of bent func-
tions. In Proceedings of the 2007 IEEE Information Theory Workshop on Information Theory for Wireless
Networks, pages 83–86, 2007.

[26] Subhabrata Samajder and Palash Sarkar. Rigorous Upper Bounds on Data Complexities of Block Cipher
Cryptanalysis. IACR Cryptology ePrint Archive, 2015:916, 2015. http://eprint.iacr.org/2015/916.

[27] Subhabrata Samajder and Palash Sarkar. Another Look at Normal Approximations in Cryptanalysis. Jour-
nal of Mathematical Cryptology, 2016. DOI: 10.1515/jmc-2016-0006.

[28] Subhabrata Samajder and Palash Sarkar. Can large deviation theory be used for estimating data complexity?
Cryptology ePrint Archive, Report 2016/465, 2016. http://eprint.iacr.org/.
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A Hoeffding Inequality

We briefly recall Hoeffding’s inequality for sum of independent random variables. The result can be found in
standard texts such as [23].

Theorem 2 (Hoeffding Inequality). Let, X1, X2, . . . , Xλ be a finite sequence of independent random variables,
such that for all i = 1, . . . , λ, there exists real numbers ai, bi ∈ R, with ai < bi and ai ≤ Xi ≤ bi. Let X =

∑λ
i=1Xi.

Then for any positive t > 0,

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

Dλ

)
(10)

Pr[X − E[X] ≤ −t] ≤ exp

(
−2t2

Dλ

)
(11)

Pr[| X − E[X] |≥ t] ≤ 2 exp

(
−2t2

Dλ

)
; (12)

where Dλ =
∑λ

i=1(bi − ai)2.

B Proof of Propositon 1

We provide the proof for the case µ0 > µ1 with the other case being similar. Recall that Xd
κ,1, . . . , X

d
κ,N are N

independently and identically distributed random variables such that for all j = 1, . . . , N

υmin = 0 ≤ Xd
κ,j ≤ (2` − 1)d = υmax.

Let, υ = υmax−υmin = (2`−1)d Thus Hoeffding bounds (see Section A) can be used on the sum of independently
and identically distributed random variables Tκ =

∑N
j=1X

d
κ,j ; where DN = Nυ2.
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The probabilities of Type-I and Type-II errors are then given by

Pr[Type-I Error] = Pr[Tκ ≤ t | H0 holds] = Pr[Tκ − µ0 ≤ −(µ0 − t)|H0 holds]

≤ exp

(
−2(µ0 − t)2

Nυ2

)
; [By 11].

Pr[Type-II Error] = Pr[Tκ > t | H1 holds] = Pr[Tκ − µ1 > t− µ1] | H1 holds]

≤ exp

(
−2(t− µ1)2

Nυ2

)
; [By 10].

Let,

α = exp

(
−2(µ0 − t)2

Nυ2

)
; β = exp

(
−2(t−Nµ1)2

Nυ2

)
.

Then, using the fact that µ1 < t < µ0, we get
√

2t =
√

2µ0 − υ
√

2N ln(1/α) (13)√
2t =

√
2µ1 + υ

√
N ln(1/β). (14)

Eliminating t from the above two equations and using the expressions for µ0, µ1 and υ, we get the expression
given by the right hand side of (9). For any N greater than this value, the probabilities of Type-I and Type-II
errors will be at most α and β respectively.

C Choice of d

There are two factors that need to be kept in mind while while choosing a appropriate value of d.

1. The value of d has an effect on the data complexity. So, one should try to choose a value of d which
minimises the data complexity.

2. For the chosen value of d, it should be possible to obtain an estimate of µ0 through the analysis of the
block cipher.

Regarding the first point, there does not seem to be a way to formally prove that one particular value of d will
minimise the data complexity. Instead, we provide intuitive explanations and experimental evidence.

The statistic Tκ =
∑N

j=1X
d
κ,j . As d goes to zero, Xd

κ,j goes to 1 and so the effect of Xκ,j diminishes. Further,

as d → 0, (2` − 1)d → 1 and ηd → 1 for all η ∈ {0, 1}`. So, the numerator of the data complexity expression
given by (9) goes to a constant and the denominator goes to

∑
η∈{0,1}` εη. By definition, the later sum is 0. So,

as d→ 0, the data complexity expression given by (9) goes to infinity. Experiments confirm this behaviour.
Based on the above, we do not consider values of d < 1. For values of d = 1, . . . , 100, we have run experiments

with the known linear approximations of SERPENT and have observed that the minimum data complexity is
attained for d = 1 and d = 2. The values are shown in Table 3. To decide between these two values, we consider
the second point mentioned above. Intuitively, it is easier to obtain the value of µ0 for d = 1 than for d = 2. So,
we suggest using d = 1 for defining the test statistic Tκ.

Negative values of d: Most of the theory that has been developed also works for negative values of d. The
only problem is that for η = 0, the value of ηd is undefined. This defect can be rectified by defining Tκ to

be
∑N

j=1(1 + Xκ,j)
d. Working out the details of this test statistic leads to υ = |2`d − 1| and |µ0 − µ1| =∑

η∈{0,1}`(1 + η)dεη. The value of υ does not depend on the sign of d. Suppose d > 0, then the value of |µ0−µ1|
with d is greater than the value of |µ0− µ1| with −d. As a result, the data complexity with d is lesser compared
to the data complexity for −d. Due to this reason, we have not considered negative values of d.
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a
Minimum Data Complexity

Value of d Data Complexity

1 1, 2 2.79×1010

2 1, 2 3.59×1010

3 1, 2 4.27×1010

4 1, 2 4.89×1010

5 1, 2 5.47×1010

6 1, 2 6.03×1010

7 1, 2 6.56×1010

8 1, 2 7.08×1010

9 1, 2 7.58×1010

10 1, 2 8.07×1010

Table 3: Table showing the minimum data complexity over different values of d for the linear approximations of
SERPENT with a ranging from 1 to 10.


