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Abstract. One of the most promising innovations offered by the cryptographic currencies (like Bitcoin) are the
so-called smart contracts, which can be viewed as financial agreements between mutually distrusting participants.
Their execution is enforced by the mechanics of the currency, and typically has monetary consequences for the
parties. The rules of these contracts are written in the form of so-called “scripts”, which are pieces of code in some
“scripting language”. Although smart contracts are believed to have a huge potential, for the moment they are not
widely used in practice. In particular, most of Bitcoin miners allow only to post standard transactions (i.e.: those
without the non-trivial scripts) on the blockchain. As a result, it is currently very hard to create non-trivial smart
contracts in Bitcoin.
Motivated by this, we address the following question: “is it possible to create non-trivial efficient smart contracts us-
ing the standard transactions only?” We answer this question affirmatively, by constructing efficient Zero-Knowledge
Contingent Payment protocol for a large class of NP-relations. This includes the relations for which efficient sigma
protocols exist. In particular, our protocol can be used to sell a factorization (p, q) of an RSA modulus n = pq,
which is an example that we implemented and tested its efficiency in practice.
As another example of the “smart contract without scripts” we show how our techniques can be used to implement
the contract called “trading across chains”.

1 Introduction
Cryptographic currencies (also dubbed the cryptocurrencies) are a very interesting concept that emerged in
the last few years. The most prominent of them, and by far the largest one (in terms of capitalization), is
Bitcoin, introduced in 2009 [36]. The main property of these currencies is that their security does not rely
on any single trusted third party. The list of transactions in the system is written on a public ledger that is
maintained jointly by the users. Without going much into the details: the main property of the ledger is that
it is write-only, which prevents the double-spending attacks (once a transaction appears on the ledger it is
irreversible). Very informally, the ledger can therefore be viewed as a distributed replacement of a trusted
third party (like a bank). Since it is public, everybody who observes it can examine the complete history of
transactions and decide how much money is held on each account.1 Another reason why these currencies
are so interesting is that they allow the users to perform much more than simple money transfers between
each other. Namely, several cryptocurrencies, including the Bitcoin, implement an idea of Nick Szabo [44]
of the so-called smart-contracts. Such contracts can be viewed as distributed protocols executed between
a number of parties. Typically, they have financial consequences, i.e., the users contribute money to them,
and these funds are later distributed among the participants according to contract rules. Moreover, these
contracts are “self-enforcing”, which means that their execution is guaranteed by the rules of the underlying
cryptocurrency. In particular, once a party enters into such a contract she cannot “change her mind” and
withdraw her invested funds unless the contract specifically allows her to do so. Hence, the contracts are
binding in a similar way as the legal documents are, the main difference being that in the former case the
execution of a contract is enforced automatically, while in the latter case the parties have to rely on the
judicial system.

To be more specific, consider a contract called the Zero Knowledge Contingent Payment [16], which is
an example on how Bitcoin contracts can provide a solution for the so-called fair exchange problem (see,

1 The accounts are identified by the public keys, and hence they cannot be automatically linked to individual users. This weak form
of anonymity is also called “pseudonymity”.



e.g., [38]). It is executed between two parties: the Seller and the Buyer. The Buyer is looking for a value
x ∈ {0, 1}∗, that he does not know, but he is able to specify the conditions of x that make it valuable for him.
Namely, he can describe a function f : {0, 1}∗ → {true, false} (in a form of a polynomial-time computer
program, say), such that every x satisfying f(x) = true, has a value B100 for him (here “B” denotes Bitcoin
currency unit). Obviously (assuming that P6=NP), finding x such that f(x) = true is much harder than
verifying that f(x) = true holds. Hence, in many cases it makes a lot of sense for the Buyer to pay for x.
As an example: think of a Buyer that wants to buy a factorization p, q of an RSA modulus N . He would then
define f : N× N→ {true, false} as f(p, q) := true iff ((p · q = N) ∧ p 6= 1 ∧ q 6= 1).

Imagine now that the Buyer is approached by a Seller, who is claiming that he knows x such that f(x) =
true and he is willing to sell it. If this happens over the Internet, and the parties do not trust each other
then they face the following problem: shall the Seller first send x to the Buyer who later pays to him (after
verifying that indeed f(x)), or the other way around: shall the Buyer first pay and then get x from the Seller?
Clearly in the first case a malicious Buyer can refuse to pay B100 to the Seller (after receiving x), and
in the latter a malicious Seller may not send x to the Buyer (after receiving the payment). Is there a way
to sell x in such a way that none of the parties can cheat the other one? Unfortunately, it turns out (see,
e.g., [37]), that this fundamental problem, called the fair exchange cannot be in general solved without a
trusted third party. This is exactly where the contracts come to play. Intuitively, thanks to this feature of the
cryptocurrencies, the users can use the ledger as a trusted entity that allows them to perform the exchange x
for B100 simultaneously. Technically (but still very informally), this is done by placing a contract C on the
ledger that has the following semantics:

“The Buyer has to put aside B100. This money can be claimed by the Seller only by posting x such
that f(x) = true on the ledger. If he does not do it within time t, then B100 goes back to to the
Buyer.”

Now, everybody who observes the ledger can easily verify if the contract obligations were respected by the
parties, and decide whether B100 should be now “transferred” from the Buyer to the Seller or not.

Another interesting example of a contract is so-called trading across chains [12] where users can ex-
change in a secure and fair way money between different cryptographic currencies. More advanced examples
include, the rapidly-adjusted micro-payments, the assurance contracts [12], the multiparty lotteries [4, 6],
or general secure multiparty computation protocols [2, 10, 31]. Some experts predict that the smart contracts
will revolutionize the digital economy. It is even envisioned that in the future these contracts may be used
to maintain large distributed autonomous corporations that would operate without any trusted party control
[25].

1.1 Contracts: from theory to practice

The above description ignores many technical details, and in particular it does not mention how the contracts
are written. The transactions that are used in the contracts contain the so-called scripts. In Bitcoin the scripts
are written in the so-called Bitcoin script language [13], which is not Turing-complete, and hence not every
condition can be expressed in it. The reason why Bitcoin was designed in this way is that otherwise it could
be the case that a contract would require a very long computation, and hence its status, i.e. whether it was
fulfilled or not, would not be immediately clear (recall that it is undecidable whether a program written in a
Turing-complete language terminates or not). A serious obstacle when implementing the Bitcoin contracts
in real life is that in practice it is currently very hard to post on the ledger a transaction corresponding to a
non-trivial contract. To explain why it is the case we need to say a bit more about Bitcoin mechanics. The
transaction ledger has a form of a chain of blocks (hence the name: the blockchain). Each block contains a
list of new transactions and a pointer to the previous block. It is computationally moderately hard to extend
the chain by a new block (this “moderate computational hardness” is obtained via a technique called the
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proofs of work [23]), and hence it is also hard to delete a transaction from the blockchain (especially if it is
contained in a block that is already followed by some other blocks in the chain) as it would require to produce
an alternative chain without this transaction. The process of finding a new block is called mining, and the
users that work on extending the chain are called the miners. They receive financial rewards (in bitcoins)
for mining each new block. In order to reduce the variance of their income the miners typically operate in
coalitions called the mining pools.

Technically, to write a transaction on the ledger one broadcasts it over Bitcoin network and hopes that
one of the miners will include it into a new block that he mines. This gives the miners power to decide
which transactions are included into the blockchain and which are not. Unfortunately, currently most of the
miners do not include more complicated transactions into the blockchain. The reasons for this are: (1) such
transactions tend to be longer than the “standard” ones, and space in the block is scarce2, and (2) writing the
transactions is tricky and error-prone, and most of the mining pool operators agreed to disallow them in order
to prevent the users from loosing money. Technically deciding whether to accept a transaction or not is done
by computing a boolean function isStandard() that evaluates to true only if the transaction is “standard”,
and otherwise it evaluates to false (the non-standard transactions are also called strange). The vast majority
of the miners will include a transaction T in a new block only if isStandard(T)= true (more on this
can be found, e.g., in [5], Chapter 5). Up to our knowledge, the only mining pool that currently accepts the
non-standard transactions is Eligius that mines less than 1% of blocks.

Another problem with running the smart contracts in Bitcoin is that the Bitcoin scripting language con-
tains a feature, called the transaction malleability, that makes it tricky to implement several natural contracts.
We write more about it in Sect. 2. Although some techniques of dealing with this problem are known [3],
they are often hard to use, since they make the contracts unnecessarily complicated (and make the trans-
actions longer), and sometimes force the parties to invest more money than would normally be needed (by
requiring them to put aside so-called deposits). One interesting new tool for dealing with this problem is the
OP CHECKLOCKTIMEVERIFY instruction [45] that was recently deployed in Bitcoin. See Sect. 4.3 for
more information about this instruction.

After Bitcoin was deployed several other cryptocurrencies were proposed. The most interesting one from
the point of view of the smart contracts, is Ethereum (www.ethereum.org), which permits to use the Turing-
complete scripts. The aforementioned problem of the high time consumption associated with the evaluation
of the complicated scripts is solved in Ethereum in the following way. Each step of the computation of a script
costs some small amount of money (the currency used for this is called ether), and the script evaluates as
long as there are enough funds for this. Ethereum has recently been deployed in real life. It is, however, still a
very young project and it is unclear how successful it will be in the real life. Moreover, as recently observed
by Luu et al. [33] Ethereum may be susceptible to attacks where the adversary wastes miners’ computational
resources, which, in turn means that the miners might have incentives not to verify the correctness of the
scripts. This, at least in theory, puts the whole Ethereum security model at risk.

Some of the other new cryptocurrencies go in the opposite direction by removing the possibility of having
scripts at all. Sometimes this is a price for having additional interesting features in a currency. One example
is the Zerocash [9], where the key new feature is the real anonymity (obtained by using the zero-knowledge
techniques). Another, slightly different example is the Lightning system (www.lightning.network), which
is a new proposal for micropayments constructed on top of the Bitcoin financial system, that also allows only
standard transactions between the parties.

1.2 Our contribution: contracts without scripts

These observations lead to the following natural question: can we efficiently construct non-trivial contracts
using only the standard transactions? In this paper we answer this affirmatively. We show (in Sect. 4.2)

2 Currently it is limited to 1MB, and there is a disagreement in the Bitcoin community whether to extend it or not (see [11])
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a general technique for efficiently solving the Zero-Knowledge Contingent Payment problem using only
standard transactions for any f such that the corresponding language {x : f(x) = true} has an efficient
zero-knowledge proof of knowledge of a special (but very broad) form, that, in particular, includes the sigma-
protocols (see, e.g., [22]). We define this class of protocols in Sect. 4.3, but for a moment let us only say that
it includes many natural languages. As an example we show an efficient protocol for selling a factorization
of an RSA modulus, which is a problem that we already discussed at the beginning of this section. We
implemented our protocol and confirmed its efficiency (see Sect. 4.4). In our construction we do not rely
on any costly cryptographic mechanisms such as the generic secure multiparty computation protocols, or
the generic zero-knowledge schemes. Instead, we use the standard and simple cut-and-choose technique. We
also outline how to solve in a similar way the “trading across chains” problem (this is done in Sect. 4.5).

Our protocols are proven secure in the random oracle model, and are based on standard cryptographic
assumptions, an assumption that time-lock encryption of [41] is secure, plus one additional assumption
about the strong unforgeability of the Elliptic Curve DSA (ECDSA) signatures used in Bitcoin. We describe
this assumption in more detail in Sect. 3. For a moment let us only briefly say that ECDSA signatures
are malleable in the sense that given a valid (message, signature) pair (m,σ) it is possible to efficiently
construct another pair (m, g(σ)) that is valid with respect to the same public key, and such that σ 6= g(σ)
(here g is some function defined over the set of valid signatures). Currently only one function g like this
is known. Informally, our assumption states that no more functions like this exist. In Sect. 3 we informally
explain why we believe that this is the case. We leave reducing this assumption to more standard assumptions
as an interesting open problem. Our protocols have an exponentially small probability of error (i.e.: the
probability that the adversary cheats), assuming that we are allowed to use so-called multisig transactions,
i.e., transactions that can be spent by providing signatures with respect to k public keys (out of n ≥ k
possible public keys). Currently such transactions are considered standard for n ≤ 15. We note that if one
does not want to use such transactions, then our solution also works, but the error probability is inversely
proportional to the running time of the parties.

Related work. As already mentioned, the Zero-Knowledge Contingent Payment protocol has been described
before in [16] and recently implemented [35] for selling a proof of a sudoku solution. When viewed ab-
stractly, our construction is a bit similar to the one of [16]. There are some important differences, though.
Firstly, the protocol of [16] uses some non-standard scripts. Secondly, it is vulnerable to the “malleability
attacks”. To see why it is the case look at the section entitled “But what if they’re just anti-social and don’t
redeem the txn?” in [16]: the refund transaction depends on an identifier of the txn transaction, and becomes
meaningless if txn is mauled. Finally, the protocol of [16] uses generic zero knowledge protocols, or can
be used only for very simple problems (like selling the sudoku solution), while we rely on much simpler
and more efficient methods (in particular: the cut-and-choose technique). The existing protocols for trading
across chains [12] suffer from similar problems.

2 Preliminaries

Definitions.

Signature schemes We will sometimes model the hash functions as random oracles, see [8]. A signature
scheme consists of a key generation algorithm SignGen, a signing algorithm Sign, and a verification algo-
rithm Vrfy. The algorithm SignGen takes as input a security parameter 1λ, and produces as output a key
pair (sk , pk) ∈ ({0, 1}∗)2. The signing algorithm takes as input sk , a message z ∈ {0, 1}∗ and produces
as output a signature σ = Signsk (z) ∈ {0, 1}∗. The verification algorithm Vrfy takes as input pk , z, and
σ and produces as output Vrfypk (z, σ) ∈ {⊥, ok}. We say that σ is a valid signature on z with respect
to pk if Vrfypk (z, σ) = ok. We require that always Vrfypk (z, σ) = ok, as long as σ = Signsk (z) and
(sk , pk) = SignGen(1λ) (i.e.: a correctly computed signature is always valid).
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To define security of a signature scheme consider the following game played by a polynomial time
adversary A. First, a key pair is sampled as (pk , sk) := SignGen(1λ) and the adversary is given pk . He
then chooses a sequence (z1, . . . , zk) of messages, and he learns σi := Signsk (zi) for each zi. He does it
adaptively, i.e. he chooses each zi after learning σ1, . . . , σi−1. Finally, A produces as output a pair (ẑ, σ̂).
We say that A forges a signature if ẑ 6∈ {1, . . . , zk} and σ̂ is a valid signature on ẑ with respect to pk .
We say that (SignGen, Sign,Vrfy) is existentially unforgeable under a chosen message attack if for any
polynomial-time A the probability that A forges a signature is negligible in λ. In this paper we need
a stronger security definition, namely the strong existential unforgeability under a chosen message attack.
This is formally defined in [1, 18]. Consider the same game as before. We say that A mauls a signature
if he is able to produce an output (ẑ, σ̂) such that σ̂ is a valid signature on ẑ with respect to the public
key pk (that corresponds to sk ), and σ̂ has not been sent to A before, i.e. σ̂ 6∈ {σ1, . . . , σk}. A signature
scheme is existentially strongly unforgeable under a chosen message attack (or: non-malleable) if for any
polynomial-time adversary the probability that he mauls a signature is negligible.

Homomorphic encryption schemes. We will use (public key and private key) encryption schemes, defined
in a standard way (see [30] or Appendix A). We say that a public-key encryption scheme is additively
homomorphic if for every valid public key pk and private key sk the set of valid messages for pk is an
additive group (Hpk ,+) (note that this requires specifying how the group operation “+” works, but in our
case this will always be clear from the context). Moreover, we require that there exists an operation ⊗ :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}, such that for every valid (pk , sk) and every pair z0, z1 ∈ Hpk we
have that Decsk (Encpk (z0)⊗ Encpk (z1)) = z0 + z1 (where Enc and Dec are the encryption and decryption
algorithms, respectively).

Time-lock commitment schemes. The definition of the standard commitment schemes is moved to Ap-
pendix A. Our protocols also rely on the time-lock commitment schemes [41, 17]. Informally, (Commit,Open)
is a time-locked commitment if it is a standard commitment scheme, except that the receiver can open the
commitment by himself (even if the sender is not cooperating). Such forced opening requires a significant
computational effort. Moreover it is required that this process cannot be parallelized. In other words: no
matter how many machines are available to the receiver, he always has to spend some significant amount of
time in order to force open the commitment. Of course the machines differ in speed, and hence, a powerful
receiver can speed up the forced opening process. However, as long as this process cannot be efficiently
parallelized, the difference between the time needed by a very powerful receiver and a standard receiver is
limited. Hence, every time-lock commitment comes with two parameters: τ0 and τ1 (with τ0 ≤ τ1), where
τ0 denotes the time (in seconds, say) that everybody, including very powerful adversaries, needs to force
open the commitment, and τ1 denotes time needed by the honest users to force open the commitment. We
will call such a commitment scheme (τ0, τ1)-secure. Of course, this is not a formal mathematical definition
(as it refers to “real time”), but for the purpose of this paper we can stay on this informal level. Later, in
Sect. 4.4 we assume that τ1 = 10 · τ0, but this choice is slightly arbitrary, and for real practical applications
one would need to perform a more careful analysis of what is the reasonable ratio between τ0 and τ1 that one
can assume.

Zero Knowledge Protocols As described in the introduction, in our constructions we do not rely on the
generic zero knowledge protocols (for efficiency reasons). We will use them to describe how our protocols
can be generalized (see Section 4.3). There is no space here to give a full introduction to zero-knowledge
(the reader may consult, e.g., [27], for this). Let us only say that these protocols [28] are executed between a
prover P and a verifier V . The goal of the prover is to convince the verifier that some instance x is a member
of some language L (both P and V know (x, L)). The zero-knowledge property means that the verifier does
not learn any information beyond the fact that x ∈ L (even if he is malicious, i.e., he does not follow the rules
of the protocol). Every protocol has also to be sound by which we mean that it is impossible to convince the
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verifier that x ∈ L if it is not the case (except with negligible probability). In our paper we actually need a
stronger notion, namely the zero-knowledge proofs of knowledge [7]. Such proofs are defined only if L is in
NP, and hence for every x ∈ L there exists an NP-witness w that serves as a proof that x ∈ L. We assume
that P knows x and require that the prover not only proves that x ∈ L, but also convinces the verifier that
he knows the corresponding witness w. Defining formally the property of a prover “knowing” some value
is a bit tricky, and we do not do it here (see, e.g., [27] for such a definition). Very informally, it is usually
defined as follows: for every (possibly malicious) prover P ∗ there exists a polynomial-time machine, called
the knowledge extractor, that can interact with P ∗ (possibly even rewinding it), and at the end it outputs x.
The definition that we use here is more restrictive. First, suppose without loss of generality, that the last two
messages in the protocol are: a challenge c sent by the verifier to the prover, and provers response r. We
require (cf. Section 4.3) that the extractor extracts the witness after being given transcripts of two accepting
executions that are identical except that that the challenge messages are different (and the response messages
may also be different). This class of protocols includes our protocol for selling the factorization of the RSA
modulus. It is also similar to the sigma-protocols (see, e.g, [22]), except that it may have more rounds than 3,
but on the other hand we require that the zero-knowledge property holds also against the malicious verifier.
Note that some sigma-protocols, including the Schnorr protocol, are conjectured to be secure also in this
case. Observe also that we can easily get rid of the “honest verifier” assumption by requiring the verifier to
make his message equal to a hash of some message (chosen by him) [24]. Hence, our method can be used
also to efficiently “sell” a witness of any relation for which an efficient sigma-protocol exists.

Instantiations. As explained in the introduction, Bitcoin uses an Elliptic Curve Digital Signature Algorithm
(ECDSA) [29, 20], which is a variant of the Digital Signature Algorithm (DSA). More concretely, it uses the
Secp256k1 curve [14], but to be able to state our theorems in an asymptotic way we will be more general and
define our protocol over arbitrary elliptic curve. The description of this algorithm appears in Appx. B.

We will use the additively-homomorphic public key encryption scheme introduced by Pascal Paillier
[39]. Below, we describe only the properties of this scheme that are needed in this work. For more details the
reader can consult, e.g, [39]. The public key pk of this encryption scheme contains a modulus n = p·q, where
p and q are large distinct random primes of the same length. The Paillier encryption scheme is homomorphic
over (Zn,+). It is semantically secure under the Decisional composite residuosity assumption [39]. In the
sequel we will assume that (AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme. The
elements on which we will perform the addition operations will be the exponents in the elliptic curve group
of the ECDSA scheme. Hence, we need Zn to be larger than G, and, for the reasons that will become clear
later, it will be convenient to have n� |G|. We therefore assume that on input 1λ the algorithm AddHomGen
produces as output (pk , sk) such that the corresponding group Zn satisfies n > 2 · |G|4.

We use very standard commitment schemes that are based on the hash functions, and are secure in
the random oracle model. Let H be a hash function. In order to commit to some value x ∈ {0, 1}∗ the
committer chooses some random r ∈ {0, 1}λ (where 1λ is the security parameter) and produces as output
Commit(x) = H(x||r). In order to open the commitment it is enough to reveal (x, r). The fact that the
scheme is binding follows from the collision-resistance ofH (a commitment that can be open in two different
ways would automatically form a collision for H). The hiding property follows from the fact that we model
H as the random oracle (and hence H(x||r) does not reveal any information about x).

We use the classic timed commitments of [41]. In order to commit to a message x ∈ {0, 1}` (for some
`) the committer chooses an RSA modulus n, i.e., he selects two random primes p and q of length λ (where
1λ is the security parameter) and sets n = pq. He then computes ϕ(n) = (p − 1)(q − 1). Let t be some
parameter. The committer takes random y ∈ Z∗n and computes z := y2

t
mod n. Since he knows ϕ(n) he

can compute it efficiently by first computing e = 2t mod ϕ(n) (doing this using the standard square-and-
multiply algorithm takes log2 t squaring modulo n), and then letting z := ye mod n. Finally, he computes
H(z) and outputs y and H(z) ⊕ x, where H : Z∗n → {0, 1}` is a hash function. On the other hand, it is
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conjectured [41] that an adversary, who does not know ϕ(n) needs to perform t squarings to compute z (and
hence to compute x). Also, no practical methods of parallelizing the problem of computing z is known. It is
also easy to see that this algorithm is a commitment in a standard sense, i.e., if the committer is cooperating
with the receiver then he can open the commitment efficiently (by sending (p, q) to the receiver). To set
the parameter t let c be the number of squarings that the honest receiver can do in one second. We then let
t = τ1 · c (where τ1 is the parameter of the timed commitment scheme).

A short description of the Bitcoin transaction syntax. We now briefly describe the syntax of the Bitcoin
transactions. Since we do not use the non-standard transactions we will provide a simplified description
that ignores this feature of Bitcoin. More on Bitcoin transactions can be found, e.g., in [15, 5]. The users in
Bitcoin are identified by their public keys in the ECDSA signature scheme (SignGen, Sign,Vrfy). Each such
a key pk is called an address3. In the simplest case transaction T simply sends some amount Bx (where x can
be smaller than one4) from an address pk0 (called an input of T ) to an address pk1 (called the output of T ).
The amount Bxwill also be called the value of T . Transaction T must contain a pointer to another transaction
T ′ that appeared earlier on the ledger and has value at least Bx, and whose destination is pk0. We say that
T redeems T ′. Transaction T is valid only if T ′ has not been redeemed by some other transaction before.
Hence, in the simplest case a transaction contains a following tuple [T ] := (TXid(T ′), value : Bx, from :
pk0, to : pk1), where TXid(T ′) denotes the identifier of T ′ (we will define it in a moment), and [T ] is called
a simplified transaction T . Of course, in order for [T ] to have any meaning it needs to be signed with the
private key sk0 corresponding to pk0. Hence, the complete transaction T has a form ([T ], Signsk0

([T ])), and
is valid if all the conditions described above hold, and the signature on [T ] is valid with respect to pk0. The
TXid(T ) is defined simply as a SHA256 hash of ([T ], Signsk0

([T ]))).
A transaction can also have multiple inputs and multiple outputs, but we do not describe this feature here,

as we do not need it. Let us also say that the total value x of the transactions redeemed by T can be larger
than the total value x′ of the transactions that spend T . The difference x− x′ is called a transaction fee. On
the other hand, obviously, it is not allowed to have x′ > x. In this paper, for simplicity, we will describe our
protocols with an assumption that x′ = x, i.e., that the fees are equal to zero.

Another standard type of the transactions are the so-called multisig transactions. In this case [T ] has a
form (TXid(T ′), value : Bx, from : pk0, to “k-out-of-n” : pk1, . . . , pkn) where n ≤ 15. It is signed
by pk0. It can be spent by a transaction T ′′ that is signed by k signatures with respect to k different public
keys from the set pk1, . . . , pkn. More precisely the transaction T ′′ has to have a form ([T ′′], σi1 , . . . , σik),
where 1 ≤ i1 < · · · < ik ≤ n and for every 1 ≤ j ≤ k it holds that Vrfypk ij ([T

′′], σij ) = ok. The multisig
transactions are typically used to increase the security of the bitcoin storage: instead of storing one key, a
user can generate n keys, and store each of them in a separate place. In this way even if k − 1 keys leak
to the adversary, the money is still safe. On the other hand: if n − k keys get lost the user can still spend
the transaction, which provides some level of security in case of, e.g., the hardware on which the keys are
stored is damaged or stolen. The “2-out-of-3” multisig transactions are also used with (partially) trusted
third party that helps in mediating disputes.

3 On the malleability of the Bitcoin transactions and the ECDSA signatures

As described in Section 2, the Bitcoin transactions are identified by their hashes, more precisely: TXid(T ) =
H(T ) (where H is the SHA256 hash function). This can sometimes be a problem, since it turns out that
often the adversary that knows T can compute T ′ that is semantically equivalent to T (i.e.: spends the same
transaction, has the same value, and the same inputs and outputs), but is syntactically different from T .
This is called mauling the transaction T . In a moment we will explain how mauling can be done, but let

3 Technically: it is actually the hash of pk , but this is not relevant to this high-level description.
4 The smallest currency unit in Bitcoin is B10−8.
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us first say what are the consequences of this attack. The problem comes from the fact that in such a case
TXid(T ) 6= TXid(T ′). Note that this does not imply that the adversary can steal money (as the output of T
is the same as the output of T ′). Still, it is undesirable in many situations. Firstly, it turns out [3] that several
Bitcoin software clients are not prepared to handle situations when the transaction that appears on the ledger
has a different identifier than the transaction that was originally posted. Secondly, and more importantly, it
creates problems when creating Bitcoin contracts (see, e.g., [2, 3]).

There are actually several methods that allow to maul a transaction in Bitcoin. The simplest ones exploit
the properties of the Bitcoin scripting language and we will not discuss them here. What is more relevant to
this paper is the attack that is based on mauling the ECDSA signatures (the malleability of signatures was
defined in Section 2). As it turns out these signatures are easily malleable: if (r, s) is a valid signature on
some message z, then also (r,−s mod p) (where p is the order over which the elliptic curve G is defined) is
a valid signature (with respect the the same public key). To see why this is the case observe that ϕ : G→ G
(where G denotes the elliptic curve) defined as ϕ(h) = (−h) is an automorphism on G (which is easy to
verify by checking the formulas for the group operation), and the reduction function f (cf. Section 2) is
invariant with respect to taking this automorphism, i.e. it is such that

∀h∈Gf(h) = f(ϕ(h)) (1)

(this is because f is defined as f(x, y) = x and in G we have that −(x, y) = (x,−y)). Recall that the
ECDSA verification algorithm takes as input a public key D, a signature (r, s), and a message z and checks
whether

r = f(H(z) · s−1 · g + r · s−1 ·D). (2)

Now observe that if we run the check from Eq. (2) on (r,−s) then the right hand side on (2) becomes

f(−H(z) · s−1 · g − r · s−1 ·D))

= f(ϕ(H(z) · s−1 · g + r · s−1 ·D))

= f(H(z) · s−1 · g + r · s−1 ·D)

= r,

so on input (r,−s) the verification algorithm also returns ok. We now conjecture that this is the only way
that the ECDSA signatures on the Secp256k1 curve can be mauled. One of the reasons why we believe that
this assumption holds is that the attack described above works only since ϕ is an automorphism such that (1)
holds. But, since Secp256k1 has j-invariant 0 (see [19]) we know (see [46], Section 2.7) that ϕ is its only
non-trivial automorphism. Hence, no other attack of this type is possible.

It also seems that the Bitcoin community generally believes that there is no other method of mauling
Bitcoin signatures. For example, the Bitcoin Improvement Proposal (BIP) 0062 [47] lists 9 possible sources
of malleability of Bitcoin transactions, among them the “Inherent ECDSA signature malleability”, where the
only method of mauling the signatures is the one described above (taking the negative of s). Also, the only
countermeasure against the signature malleability mentioned in [47] is to disallow negating s. Technically
this is done be requiring that s ≤ (p− 1)/2.

In order to make our signature scheme strongly-unforgeable we follow the guidelines from [47]. Namely,
we assume that the only “legal” signatures have a form (r, s) such that s ≤ (p − 1)/2. Note that, since we
want our protocols to work over the current version of Bitcoin, we cannot assume that the BIP 0062 was
already implemented. We therefore do not assume it, and hence our protocols need to be ready to handle
situations where s > (p − 1)/2 (in case, e.g., one of the participants is malicious). To this end, we simply
assume that, whenever our protocol gets as input an ECDSA signature (r, s) with s > (p− 1)/2, it converts
it to one with s ≤ (p−1)/2 by computing s := −s mod p. An ECDSA scheme with only ”legal” signatures
being the ones with s ≤ (p− 1)/2 will be called a positive ECDSA.

We can now informally state our strong unforgeability assumption as follows:
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The positive ECDSA defined over Secp256k1 is strongly unforgeable under chosen-message attack

(or equivalently: the only way to maul the signatures defined over Secp256k1 is to negate the s). Note that
this statement is informal, and in order to formalize it we would need to express it in an asymptotic way.
To do this, we would need to define a family of signature schemes parametrized by a security parameter. A
natural example of such a family could be the ECDSA signatures defined over any prime field. We do not
state this assumption formally, since anyway at the end we are interested only in the concrete case of the
Secp256k1 curve.

We also note that our scheme remains secure even if some other methods of mauling the signatures
become known, as long as they permit efficient “inversion” of the mauling function, i.e, after obtaining σ′

which is a “mauled” version of σ it is possible to construct a polynomial-size set Σ such that σ ∈ Σ.

4 The protocols

Our model We will consider two-party protocols, executed between a Buyer B and a Seller S. If a party
is malicious then she may not follow the protocol (in other words: we consider the active security settings).
The parties are connected by a secure (i.e. secret and authenticated) channel. Such a channel can be easily
obtained using the standard techniques, provided that the parties know each others public keys. Observe that
in order to do any financial transfers in Bitcoin they anyway need to know each other keys (let (skB, pkB)
be the ECDSA key pair of the Buyer, and let (skS , pkS) the the key pair of the Seller), and the participating
parties can use the same key pairs for establishing the secure channel between each other. How exactly these
public keys pkB and pkS are exchanged is beyond the scope of this paper.

The security definition We now outline a construction of our protocol in which the Seller sells to the Buyer
x such that f(x) = true (for some public f : {0, 1}∗ → {true, false}). We assume that the “price” of x is Bd,
and that, before an execution of the protocol starts, there is some unspent transaction T0 on the blockchain
whose value is Bd, and whose output is pkB (i.e.: it can be spent by the Buyer). The parties initially share the
following common input: a security parameter 1λ, a price Bd for the secret x, parameters a, b ∈ N such that
a > b, an elliptic curve group (G,O, g,+) for an ECDSA signature scheme, such that dlog2 |G|e = λ, and
parameters (τ0, τ1). We say that the SellWitnessf protocol is ε-secure if the following properties hold: (1)
except with probability ε+ µ(λ) (where µ is negligible), if an honest Buyer loses his funds then he learns x′

s.t. f(x′) = true, (2) except with negligible probability, if an honest Seller does not get Buyer’s funds then
the Buyer learns no information about x. We construct a protocol SellWitnessf (for a large class of functions
f ) in Sect. 4.3. First, however, we give an outline of our construction. The necessary ingredients are defined
and constructed in Sections 4.1 and 4.2.

Outline of the construction. Our protocol consists of several stages. The main idea can be described as
follows (we start with describing an “idealized” protocol and then we show how to modify it to make it
efficient and practical). Imagine that the parties first create, in a distributed way, an ECDSA key pair (sk , pk)
such that the private key sk is secret-shared between the parties, and the public key pk is known to both of
them. Then, the Buyer prepares a transaction T1 that sends the output of T0 to the public key pk . Obviously
for a moment the Buyer has to keep T1 private, as posting T1 on the ledger would put his money at risk (as
spending money from T1 requires cooperation of the Seller). He now creates a simplified transaction5 [T2]
that redeems T1 and sends the output to the public key pkS of the Seller. Then, the parties jointly sign [T2]
with the shared private key sk in such a way that the signature σ = Signsk ([T2]) is known only to the Seller.
Note that this is possible without revealing T1 to the Seller, as the only thing that is needed from T1 is its
transaction identifier, which happens to be equal to the hashH(T1) of T1 (in the random oracle modelH(T1)
clearly reveals no information about T1).

5 Recall (cf. Sect. 2) that a “simplified transaction” means a transaction without a signature.
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Let us now briefly analyze the situation after these steps are executed: the Buyer knows T1, and the
Seller knows T2 that spends T1 (but she does not know T1, so for a moment she cannot make any use of T2).
The key idea now is: the Seller will make a commitment to the signature σ in such a way that opening this
commitment will automatically reveal x (and she will convince the Buyer that the commitment was formed
in this way). Now the Buyer can post T1 on the ledger, and wait until the Seller redeems it. The only way in
which she can do it, is to publish σ (here we use the assumption that the signatures are strongly unforgeable),
so the Buyer can be sure that he learns x.

This construction is similar to the one described in [16]. Unfortunately, in practice there are several
problems with it. Firstly, there is no way for the Buyer to “force” the Seller to publish σ, and hence the
Buyer’s money can be locked forever in T1. We solve this problem using the time-locked commitments.
The Seller has to commit with such a commitment to her private share of sk , so that it can be unlocked
by the Buyer after some time. In this way he can get his money back by signing a transaction T ′2 that
redeems T1 and sends the money to his key pkB . As described in Sect. 1, an alternative solution is to use the
OP CHECKLOCKTIMEVERIFY instruction. We describe this solution in Sect. 4.3.

Secondly, the currently-known protocols for distributed signing with the ECDSA signatures are rather
complicated and involve costly generic zero-knowledge techniques [34] (see also [26]). Also, the generic
zero-knowledge would need to be used to prove that the timed commitment above is indeed a commitment
to Seller’s share in sk .

Our solution to this problem is to use the standard technique, called cut-and-choose (see, e.g, [32]).
Informally, the idea here is to perform a number a of independent executions of a protocol. Then the Buyer
tells the Seller to “uncover” a − b (for some parameter b < a) of them, by opening all her commitments
related to these executions. It is easy to see that, if all the opened commitments were correct, then most
probably a significant fraction of the remaining b (”non-uncovered”) executions will also be correct. Since
some executions may still be incorrect, we will thus create T1 as a multisig transaction (so it can be spent
with less than b signatures). This is done in Sections 4.1 and 4.2. Thirdly, we need to describe how to create
the commitment to σ in the last step that requires proving that “opening this commitment will automatically
reveal x”. We do it as follows: we require that the Seller commits to F (σ) (where F is some hash function),
and then we use again the cut-and-choose technique (on the elements ofF (σ)) to prove that if the wholeF (σ)
is opened then x is revealed. Technically, this is done by showing that revealing F (σ) opens commitments
to messages from a zero-knowledge proof of knowledge of x. For the details see Sect. 4.3. The outline of the
SellWitnessf protocol and the subprotocols is presented on Fig. 1.

1. The parties run a times the SharedKGen protocol to generate secret-shared signing keys.
2. The Buyer selects b of these keys and uses the GenMsgT procedure to produce transactions T1 and T2.
3. The parties run the USG protocol to sign T2 using all a shared keys (only the Seller learns the signatures) and the Seller

generates commitments. Then the Buyer checks the Seller on the unselected a− b executions.
– The single signing iteration is performed using the KSignGen procedure.

4. Using the Zero Knowledge protocol (and again the cut-and-choose technique) the Seller proves that by revealing any signature
the Buyers will extract the witness x from it.

5. The Buyer broadcasts T1. Then the Seller uses the signatures to broadcast T2 and the Buyer can extract the witness x (or
solve the timed commitment to get his funds back if the Seller does not broadcast T2).

Fig. 1: The outline of the SellWitnessf protocol and the subprotocols.

4.1 The two-party ECDSA key generation protocol

The first ingredient of our scheme is a protocol in which two parties, the Seller and the Buyer, generate a
(public key, private key) key pair for the ECDSA signatures, in such a way that the secret key is secret-shared
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between the Seller and the Buyer. To be more precise, fix an elliptic curve (G,O, g,+) constructed over a
field Zp and recall that the secret key in the ECDSA signatures is a private integer d ∈ Z|G|. We construct a
two-party protocol, that we call SharedKGen, in which both parties take as input a security parameter 1λ and
at the end they both know an ECDSA public key pk = d · g (where d is secret), and additionally the Seller
knows dS ∈ Z|G| and the Buyer knows dB ∈ Z|G| such that dS ·dB = d (mod |G|) is a secret-sharing. The
protocol is presented on Figure 2 and it uses a commitment scheme COM = (Commit,Open). The protocol
is very similar to the classic actively-secure key generation protocols for the discrete log signatures [40]. It
is secure against active adversaries. Since it is a standard argument we do not prove its security here.

Seller Buyer
sample: dS ← Z∗|G|,
compute: DS := dS · g, Commit(DS)

DB
sample: dB ← Z∗|G|,
compute: DB := dB · g

Open(DS)

compute: pk := dS ·DB ,
if pk = O then abort

compute pk := dB ·DS ,
if pk = O then abort

Fig. 2: The SharedKGen(1λ) protocol.

4.2 The Unique Signature Generation Protocol

After the parties generate a key pairs (sk1, pk1), . . . , (ska, pka) using the SharedKGen protocol, they per-
form an additional procedure, called unique signature generation (USG) protocol, whose goal is to sign a
message z ∈ {0, 1}∗ with respect to these keys. The message z is chosen by the Buyer and may depend on
the public keys that were generated in the SharedKGen phase, and on the Buyer’s private randomness. During
the execution of the USG protocol a − b private keys are “uncovered” (here b < a is some parameter), i.e.,
they are reconstructed by the parties. At the end of the execution they are discarded and the output of the pro-
tocol depends only on the key pairs whose private keys were not uncovered. Let (ŝk1, p̂k1), . . . , (ŝk b, p̂k b)
denote these key pairs. Each p̂k i is known to both parties, and each ŝk i remains secret and is shared between
the parties (as a pair (d̂iS , d̂

i
B) of shares). Moreover the Seller knows the ECDSA signatures σ̂1, . . . , σ̂b on

z with respect to p̂k1, . . . , p̂k b (respectively). The Buyer does not know these signatures, but we require
that the Seller is committed (again: using COM) to each F (σ̂i), where F is a hash function (modeled as
a random oracle). Let Γ1, . . . , Γb denote the commitments created this way. Finally, we want the Buyer to
be able to “force open” the values d̂1S , . . . , d̂

b
S after some time τ1, so that he can reconstruct the private

keys ŝk1, . . . , ŝk b and sign any message that he wants using these keys. This is achieved using a (τ0, τ1)-
secure time-locked commitment scheme TLCOM = (TLCommit,TLForceOpen). Let Φ1, . . . , Φb denote
the timed-commitments that were created this way.

To explain informally our security requirements, first let us say what are the goals of a malicious Seller.
One obvious goal is to produce a signature on some message z∗ 6= z (with respect to some p̂k i). A more
subtle (and more specific to our applications) goal for the Seller is to learn some signature σ∗i on z (with
respect to one of p̂k1, . . . , p̂k b) other than σ̂1, . . . , σ̂b. Finally, she could try to time-commit to some value
other than d̂iS (so that, after time τ1 passes, the Buyer cannot reconstruct ŝk i).
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Formally, we say that the malicious Seller S∗ breaks the key i (for i = 1, . . . , b) if the Buyer did not
abort the protocol and one of the following holds:

– after the execution of the protocol S∗ produces as output (σ̂∗i , ẑi) such that σ̂∗i is a valid signature on
ẑi 6= z with respect to p̂k i,

– after the execution of the protocol S∗ produces as output σ̂∗i such that σ̂∗i is a valid signature on z with
respect to p̂k i, and S∗ opens the commitment Γi to a value different than F (σ̂∗i ),

– the value di∗B that results from forced opening of Φi is such that d̂iS · di∗B 6= d̂i.

Now, consider a malicious Buyer. Informally, his goal is to learn any valid signature on z with respect to any
key p̂k1, . . . , p̂k b. If he does not succeed in this, then another goal that he could try to achieve is to learn at
least one of the F (σ̂i)’s. Recall also that the secrets of the Seller are time-locked. Hence after time τ0 the
Buyer can easily “break” the protocol, and our definition has to take care of it.

Formally, we say that a malicious Buyer B∗ wins if the Seller did not abort the protocol and before time
τ0 one of the following holds:

– the B∗ produces as output a signature on z∗ (either z∗ = z or z∗ 6= z) that is valid with respect to one of
the p̂k i’s,

– the B∗ learns some information about one of the F (σ̂i)’s.

We say that a USG protocol is (ε, b̂)-secure if (a) for every polynomial-time malicious Seller the probability
that she breaks at least b̂ keys is at most ε + µ(λ), where µ is negligible, and (b) for every polynomial-time
malicious Buyer the probability that he wins is negligible.

The implementation of the USG protocol. Our USG protocol is depicted on Fig. 3. We assume that
before it is executed the parties run the SharedKGen procedure (cf. Fig. 2) a times (on input 1λ). We denote
these executions as SharedKGeni(1λ) for i = 1, . . . , a. As a result of each execution SharedKGeni, both
parties learn the public keys pk i and they secret-share the corresponding secret keys sk i (let (diS , d

i
B) be the

respective shares).
The USG protocol uses as a subroutine the protocol KSignGen from Fig. 4. This protocol allows the

parties to sign a message z using the secret key that is secret shared d = dS · dB . First they jointly create
signing randomness K. Then the Seller creates a new key in the Paillier encryption scheme and sends the
encryption of his share dS of the signing key d to the Buyer. The Buyer calculates the encryption of the
unfinished signature (using the homomorphic properties of the Paillier cryptosystem) and sends it to the
Seller. Then the Seller decrypts it and completes the signature σ. At the end the Seller commits to F (σ) and
creates a timed commitment to dS . We now have the following lemma, its proof appears in Appendix C.

Lemma 1. Suppose Paillier encryption is semantically secure, COM and TLCOM are secure commitment
schemes, and the ECDSA scheme used in the construction of the USG is Strongly Unforgeable signature
scheme. Then the USG protocol constructed on Fig. 3 is (ε, b̂)-secure for ε = (b/a)b̂.

4.3 The construction of the SellWitnessf protocol

In this section we show how to use the USG protocol to construct the SellWitnessf protocol (defined in
Sect. 4). Our assumption is that f has a zero-knowledge proof of knowledge protocol, that we denote F ,
in which the Seller can prove that she knows an x such that f(x) = true. Additionally F consist of two
phases: SetupF and ChallengeF . Let the values AF and BF denote the views of the Seller and the Buyer
(respectively) after executing the SetupF phase.

In the ChallengeF phase the Buyer generates a challenge message cF = GenChallengeF (BF ) and sends
it to the Seller. Then the Seller calculates the response rF = GenResponseF (x,AF , cF ) and sends it to the
Buyer. At the end the Buyer accepts according to the output of the function VerifyResponseF (BF , cF , rF ) ∈
{true, false}.
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1. The Buyer chooses a random subset J ⊂ {1, . . . , a}, such that |J | = a− b. Let {j1, . . . , jb} denote the set {1, . . . , a}\
J .

2. The Buyer chooses a message z to be signed and sends it to the Seller.
3. For i = 1 to a the parties execute the KSignGen(1λ) procedure depicted on Fig. 4. As a result of each such execution,

the Seller is committed to Si = F (σi) and timed-committed to diS .
4. The Buyer sends J to the Seller.
5. For every j ∈ J the Seller opens the commitments to Sj and djS , and sends σj , kjS and sk jAH to the Buyer.
6. The Buyer aborts if any of the commitments did not open correctly. Otherwise he verifies if the following holds (for every

j ∈ J ):
– Vrfypkj (z, σ

j) = ok,
– F (σj) = Sj ,
– djS · d

j
B · g = pk j , and

– Dec
sk

j
AH

(cjS) = djS .
7. If the verification fails then the Buyer aborts. If he did not abort then the parties use as output the values that were not

open in Step 5. More precisely, the parties set (ŝk i, p̂k i, σ̂i) := (sk ji , pk ji , σji).

Fig. 3: The USG protocol. Note that it uses the KSignGen(1λ) procedure, depicted on Fig. 4, as a subroutine. Recall also that we
assume that before the USG protocol is executed, the parties run the SharedKGen procedure (cf. Fig. 2) a times (on input 1λ). As
a result of each such execution, both parties learn the public keys pk1, . . . , pka and they secret-share the corresponding secret keys
sk1, . . . , ska (let (d1S , d

1
B), . . . , (d

a
S , d

a
B) be the respective shares).

The fact that F is a proof of knowledge is formalized as follows: we require that there is also a function
ExtractF s.t. ExtractF (BF , c1F , r

1
F , c

2
F , r

2
F ) = x′ and f(x′) = true if only VerifyResponseF (BF , c

i
F , r

i
F ) =

true for i = 1, 2 and c1F 6= c2F . That means that the witness x′ can be computed from the correct answers to
two different challenges. We also assume that from the point of view of the Seller the challenge cF is chosen
uniformly from the set XAF . Without loss of generality we also assume that XAF = {0, 1}.

The parties use the USG protocol, so we have to describe how the Buyer produces the message z to
be signed. Given the public keys ˆpk1, . . . ,

ˆpk b the Buyer first creates a transaction T1 that takes Bd from
his funds and sends them to a multisig escrow “b-out-of-(2b − 1)” using public keys ˆpk1, . . . ,

ˆpk b and
b− 1 times his own public key pkB . The Buyer does not broadcast T1 yet. Then he creates a transaction T2
that spends the transaction T1 and sends all the funds (Bd minus fee) to the public key pkS owned by the
Seller. The simplified transaction z := [T2] is the message that the parties later sign. We call this procedure
GenMsgT .

We assume that each Si from the USG protocol is divided into 2λ parts Si,1, . . . , Si,2λ each of size λ.
Additionally we assume that each part Si,j is committed separately. To explain the idea behind our protocol
assume for simplicity that b = 1. Recall that at the end of the USG protocol the Buyer knows the transaction
T1 that sends his funds to the key secret-shared between the Seller and the Buyer. Both parties know the
transaction T2 that is redeeming the transaction T1 and sends the money to the Seller. The Seller knows
the signature σ on T2, but she cannot use T2 yet, because the Buyer did not broadcast T1. When the Buyer
learns σ then he will be able to learn the secret random values S1, . . . , S2λ to which the Seller is committed.
Additionally after some (long) time the Buyer will learn the secret key needed to redeem T1 when only he
force-opens the time-locked puzzle hiding dS .

Now the Seller and the Buyer will use cut-and-choose technique again. They run 2λ times the first part
SetupF of the zero knowledge proof of knowledge F of the x satisfying f . Each time the Seller calculates
the responses ri0 and ri1 to the challenges c = 0 and c = 1. The Seller encrypts ri0 and ri1 using the same
key Si to get γi0 and γi1 and she commits to each ciphertext. Then the Buyer selects λ indices j1, . . . , jλ and
challenges the Seller on them using c1, . . . , cλ ∈ {0, 1}. The Seller opens commitments to Sj1 , . . . , Sjλ and
to γj1c1 , . . . , γ

jλ
cλ (the Seller opens only one of γjk0 , γ

jk
1 ) and the Buyer uses secrets Sjk to decrypt γjkck and

verify the response. If the Buyer verifies everything without an error, then the Seller opens the commitments
to γk0 and γk1 (but not Sk) for k 6= j1, . . . , jλ.
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Seller Buyer
sample: kS ← Z∗|G|
compute: KS := kS · g Commit(KS)

KB

sample: kB ← Z∗|G|,
compute: KB := kB · g

Open(KS)

K := kS ·KB

if K = O then abort
K := kB ·KS

if K = O then abort

The parties now know pk ,K ∈ G. The corresponding discrete logs of these values
are multiplicatively shared between the parties as pairs (dS , dB) and (kS , kB).

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

(pkAH, skAH) := AddHomGen(1λ).
cS := AddHomEncpkAH

(dS) pkAH, cS

c0 := (kB)
−1 ·H(z) mod |G|

c1 := AddHomEncpkAH
(c0)

t := (k−1
B ) · r · dB mod |G|

c2 := c1 ⊗ (cS)
t

samples u← {1, . . . , |G|2}
cB := c2 ⊗ AddHomEncpkAH

(u · |G|)

s0 := AddHomDecskAH(cB)

s := (kS)
−1 · s0 mod |G|

if s = 0 then abort
σ := (r, s)
if Vrfypk (z, σ) = ⊥ then abort
S = F (σ)

cB

Γi := Commit(S)
Φ := TLCommit(dS)

Γi, Φ

Fig. 4: The KSignGen(1λ) procedure. Recall that G is an elliptic curve group for ECDSA, and
(AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme which is additively homomorphic over Zn,
where n > 2 · |G|4.

Now the Buyer broadcasts the transaction T1. The Seller can spend it by revealing σ — in that case the
Buyer can compute Sk, decrypt γk0 and γk1 to learn responses rk0 and rk1 and from them extract the value x.
And if the Seller does nothing then after some time the Buyer will solve his time-locked puzzle, learn the
secret key and take his funds back. The SellWitnessf protocol is depicted on Fig. 5. We have the following
lemma, its proof appears in Appendix D.

Lemma 2. Suppose Paillier encryption and symmetric encryption are semantically secure, COM and TLCOM
are secure commitment schemes, and the ECDSA scheme used in the construction of the USG is Strongly Un-
forgeable signature scheme. Assume additionally that there is a zero knowledge proof F of knowledge of x
s.t. f(x) = true of the required form. Then the SellWitnessf constructed on Fig. 5 is ε-secure for ε =

(
b
a

)b
.
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1. The parties execute the USG protocol using the provided parameters. The Buyer will generate transaction T2 to be signed
as defined earlier in the procedure GenMsgT .

2. For i = 1 to b:
a) For j = 1 to 2λ: the parties execute the Setupi,jF phase and the Seller and the Buyer learnsAi,jF andBi,jF respectively.
b) For j = 1 to 2λ: the Seller calculates the two challenges (in random order) that can be chosen by the Buyer ci,j1 and

ci,j2 . Then she calculates the responses ri,jk = GenResponseF (x,A
i,j
F , c

i,j
k ) for k = 1, 2.

c) For j = 1 to 2λ: The Seller uses the secret Si,j as a key in the symmetric cypher and encrypts γi,jk =
EncSi,j (ci,jk , ri,jk ) for k = 1, 2. Then she commits to γi,jk for k = 1, 2.

d) The Buyer chooses random subset J i ⊂ {1, . . . , 2λ} of size λ. Then he sends to the Seller (j, ci,jB :=
GenChallengeF (B

i,j
F )) for j ∈ J i.

e) For j ∈ J i: the Seller opens her commitment to Si,j and checks that ci,jB = ci,jk for k = 1 or k = 2. She opens the
commitments to γi,jk for only this k.

f) For j 6∈ J i: the Seller opens her commitments to γi,jk for k = 1, 2.
g) The Buyer verifies all the commitments.
h) For j ∈ J i: the Buyer decrypts (ci,j , ri,j) = DecSi,j (γi,jk ). Then he checks that ci,j = ci,jB and

VerifyResponseF (B
i,j
F , c

i,j
B , ri,j) = true.

3. The Buyer broadcasts T1 and the parties wait until it becomes final.
4. The Seller broadcasts T2 using the signatures σ̂1, . . . , σ̂b to get her payment.
5. The Buyer uses signatures σ̂i to calculate secrets Si,j . Then he decrypts all the values γi,j to get all the challenges and

responses ci,jk , ri,jk . At the end using any pair of responses he calculates x′ = ExtractF (B
i,j
F , c

i,j
1 , ri,j1 , ci,j2 , ri,j2 ).

6. If the Seller do not redeem the Buyer’s transaction then the Buyer force-opens time-locked puzzles Φi and uses any of
the opened values diS to get his funds back.

Fig. 5: The SellWitnessf protocol.

Construction using the OP CHECKLOCKTIMEVERIFY operator. Recently a new instruction has
been added to the Bitcoin scritping language — OP CHECKLOCKTIMEVERIFY. Earlier dealing with time
constraints in Bitcoin scripts was cumbersome and problematic. Now, using the OP CHECKLOCKTIMEVERIFY
operator one can easily create a transaction that can be redeemed by the receiver only after some specified
time. It can also be used in more complicated scripts as a fuse for a transaction funder — if the other parties
leave the protocol then the funder of a transaction can get his money back after some predefined time.

If we assume that the transactions using the OP CHECKLOCKTIMEVERIFY operator are standard in a
given cryptocurrency then we can simplify our protocol. What we exactly need is that the following type of
transactions is standard: T can be redeemed by a “k-out-of-n” multisig p̂k1, . . . , p̂kn or after τ seconds by
pk . In that case we can use this script in a transaction T1 s.t. k = n = b and pk = pkB . Now the Buyer will
be able to take his funds after τ seconds, so we can remove the timed commitments entirely from the USG
and the SellWitnessf protocols.

4.4 Protocol for selling a factorization of an RSA modulus

In this section we use the SellWitness protocol to construct the protocol for selling a factorization of an RSA
modulus. To do it, we introduce the ZKFactorization protocol depicted on Fig. 6 — a zero knowledge proof
of knowledge of the factorization of the RSA modulus. We now have the following lemma, whose proof
appears in Appendix E.

Lemma 3. Assume that the commitment scheme is hash based and we model the hash function as a pro-
grammable oracle. Then the protocol ZKFactorization depicted on Fig. 6 is a zero knowledge proof of
knowledge of the factorization of the RSA modulus.

Implementation of the protocol for selling a factorization of an RSA modulus. We have created a pro-
totype implementation of the protocol for selling a factorization of an RSA modulus. The main part of
the protocol is written in C++, it is using the Crypto++ library for cryptographic functions. The Bitcoin
related functionality is written in Java using the bitocinj library. The communication between C++ and
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Prover Verifier

y sample: x← Z∗n,
if x > n/2 then set x = n− x,
compute: y = x2 mod n

if y is not a square in Zn then set r0, r1 ← Z∗n,
otherwise calculate both square roots of y that
are smaller than n/2 and store them in r0, r1
in a random order Commit(r0),Commit(r1)

x

if x2 6= y mod n or x > n/2 then abort,
let b ∈ {0, 1} be such that rb = x b,Open(rb) accept if and only if rb = x and the opening

of the commitment verified correctly

Fig. 6: The ZKFactorization(n) protocol

Java is operated by Apache Thrift. The implementation is only a proof of concept but we were able to
verify the feasibility and efficiency of the protocol. The current version of the protocol can be found on
http://github.com/SellWitness/ZKFactorization.

When using the ZKFactorization protocol in the SellWitness protocol we were able to simplify the main
protocol a little. In the ZKFactorization protocol the Seller sends the commitments to the square roots of
y but now it is not necessary because we do similar step in the SellWitness protocol. This is why the only
messages exchanged between the parties before the Buyer sends the challenge are: first the Buyer sends yi,j ,
then the Seller calculates the square roots ri,j0 , ri,j1 of y, encrypts them γi,jk = EncSi,j (r

i,j
k ) and commits to

both ri,jk .
In the implementation we use the following parameters: a = 512, b = 8 and λ = 1024. We use b = 8

because it means “b-out-of-(2b−1)” multisig transactions, and this kind of multisig transaction are standard
in Bitcoin (for greater b they would be non-standard). We set λ = 1024, so the ZKFactorization protocol is
executed b · 2λ = 8 · 2048 times. Fortunately this phase does not require any costly public key cryptography
operations and therefore it is still very efficient. We set a = 512 and b = 8, and hence the probability of
cheating is at most (b/a)b = 2−48.

The running time of our protocol (i.e. the time until the Buyer broadcasts T1) for this configuration (and
primes of size about 512 bits each) is about 1 minute — the running time of the USG protocol is about 33
seconds and Step 2 in the SellWitnessf protocol takes about 28 seconds. The numbers are an average over
10 runs of the algorithm using a single thread on a standard personal computer. As this is not a protocol that
users may want to run frequently, we believe that this running time is satisfactory. We note that the running
time could be improved by using multiple threads. Additional measurements are presented on Figures 7 and
8 in Appx. G.

We run our protocol on a single machine, and local testing blockchain (testnet-box) and hence posting
on blockchain, and communication between the parties was almost immediate (our current implementation
takes 12 rounds, and the total communication size is about 60 MB). However, since we use the time-lock
commitment schemes we need a conservative estimate on how much time would the execution of our protocol
take on real blockchain, and when the parties are running in different physical locations. As in our protocol
the parties have to wait for two transactions to be included into the blockchain, we have to assume that
the whole protocol may take up to two hours6. Taking into account time needed to post messages on the
blockchain the running our protocol takes on average 2 hours, we have to have at least τ0 = 5 hours, so τ1

6 It takes on average 10 minutes for a transaction to be included into the blockchain but the users are advised to wait for 6 blocks
(≈ 1 hour) on top of the transaction to have more assurance that it will not be withdrawn.
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should be set to 50 hours. Our tests has shown that an honest user (on an standard personal computer) can
compute about 219 squares (modulo n of size λ = 1024 bits) per second. That is why in our protocol we set
the hardness of the timed commitment to t = 237. The measurements of the time of the squaring algorithm
are presented on Fig. 9 in Appx. G.

4.5 Protocol for trading across chains

As mentioned at the beginning of this paper, one of the interesting examples of the smart contracts is Trading
across chains. Imagine a situation when Alice has her funds in one cryptocurrency A, e.g. she has b bitcoins,
and Bob has his funds in another cryptocurrency B, e.g. he has z zerocoins. The problem is to exchange they
funds.

There is a well known Bitcoin protocol (a contract) that solves this problem using advanced Bitcoin
scripting language. However, almost all of the existing cryptocurrencies, including Zerocash, do not have
advanced scripting language as Bitcoin so Alice and Bob cannot use that protocol in real life. Now we will
sketch a protocol that can be used for trading across chains and is using only standard transactions. It is very
similar to the protocol from the previous sections and it is also using only Cut and Choose technique.

Sketch of the protocol We describe this protocol assuming that in both cryptocurrencies A and B the
“1-out-of-b” and “b-out-of-(2b − 1)” multisig transactions are standard. If in any of them only single
signature transactions are possible (the “1-out-of-1” transactions) then we will use b = 1 in the protocol.

At the beginning Bob samples his secret shares diB and calculates Di
B = diB · g for 1 ≤ i ≤ a (using the

group (G,O, g,+) from the cryptocurrency A) and he commits to each Di
B . Also Alice similarly samples

her secret shares diA, calculates Di
A = diA · g for 1 ≤ i ≤ a and sends each Di

A to Bob. These values will be
used later in creating the public keys for Alice in the cryptocurrency A.

Then the parties execute the USG protocol (Alice plays the role of the Seller and Bob plays the role of
the Buyer) using the cryptocurrency B and procedure GenMsgT the same as in the SellWitness protocol.
The only difference is that at the end of the KSignGen procedure Alice additionally sends xi = diA ⊕ F (σi)
to Bob and Bob in the step 6 of the USG protocol verifies that she did it honestly.

So now Bob knows transaction T 1
B that sends his funds to a “b-out-of-(2b− 1)” multisig using b public

keys generated and (b− 1) of his own public keys and both parties know T 2
B that redeems T 1

B and sends the
funds to Alice. Alice knows signatures σi and she will be able to use them to broadcast T 2

B and after that
Bob will learn values diA.

Now Bob opens his commitments to values Di
B and calculates timed commitments to each diB (with

much longer force-opening time than timed commitments from Alice) and sends all the time-locked puzzles
to Alice. Alice verifies the commitments and chooses a random set JA ⊂ {1, . . . , a} of size a− b and sends
it to Bob. Bob opens all the timed commitments for j ∈ JA and Alice verifies them.

The parties set public keys for Alice as pk jA = d
kj
A · D

lj
B = d

lj
B · D

kj
A where k1, . . . , kb are indices not

present in JA and l1, . . . , lb are indices not present in the set JB chosen by Bob in the USG protocol. Now
Alice creates and broadcasts T 1

A that spends her funds and sends them to a multisig “1-out-of-b” using
public keys pk1A, . . . , pk

b
A. After T 1

A is included into the blockchain Bob broadcasts (assuming T 1
A is correct)

transaction T 1
B .

After T 1
B is included into the blockchain Alice can use T 2

B and all the signatures σi to claim Bob’s funds.
Then Bob can calculate any of the diA using σi and xi to get Alice’s funds. And if Alice do not claim Bob’s
funds then Bob after solving one of his time-locked puzzles can get his funds back7. And after some time
Alice can solve one of her time-locked puzzles to get her funds back8.

Sketch of the security of the protocol appears in the Appendix E.
7 Actually as some of the time-locked puzzles may be forged, Bob should open all of his puzzles in parallel.
8 Remember that her time-locked puzzles require much more time to be solved than Bob’s, so Bob will be able to open all his

puzzles before Alice opens at least one of hers.
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A Definitions omitted in the main body

A function µ : N → R is negligible (in x) if for every positive integer c there exists an integer Nc such
that for all x > Nc we have that |µ(x)| < 1

xc . We say that a sequence {Eλ}∞λ=1 of events happens with
overwhelming probability if 1− P (Eλ) is negligible (as a function of λ).

A public-key encryption scheme is a tuple (EncGen,Enc,Dec) of algorithms such that the key generation
algorithm (EncGen) takes as input a security parameter 1λ, and produces as output a key pair (pk , sk) ∈
({0, 1}∗)2. A pair (pk , sk) that is an output of EncGen (for some 1λ and the internal randomness of EncGen)
will be called a valid key pair. The encryption algorithm Enc takes as input pk , a message z ∈ {0, 1}∗ and
produces as output a ciphertext c = Encpk (z) ∈ {0, 1}∗. The decryption algorithm Dec takes as input sk , c,
and produces as output z′ = Decsk (c). We require that it is always the case that Decsk (Encpk (z)) = z (for
every valid (pk , sk)). We may also restrict the domain of Enc, and allow that in some cases the algorithm
Encpk (z) produces as output ⊥. If this is the case then we do not require that Decsk (Encpk (z)) = z, and we
say that z is an invalid input for pk . Otherwise (i.e. when Encpk (z) 6= ⊥) we sat that z is a valid input for
pk .

To define security of an encryption scheme (EncGen,Enc,Dec) consider a polynomial time adversaryA
that receives as input (pk , sk) (where (pk , sk) := EncGen(1λ)), and produces a pair of messages (m0,m1).
He then receives Encpk (mb) for a random b← {0, 1}, and produces b′ ∈ {0, 1}. We say thatA won if b′ = b.
We say that (EncGen,Enc,Dec) is semantically secure if for every polynomial timeA the probability that he
wins is at most 1/2 + µ(λ), where µ is some negligible function (in other words: Encpk (z0) and Encpk (z1)
are computationally indistinguishable).

The definition of a symmetric-key encryption scheme is similar, except that there is only one key k, and
it is usually sampled uniformly at random from some space K (that depends on 1λ). The adversary does
not learn k, but can get some partial information about it by adaptively choosing messages m1, . . . ,mn and
learning Enck(m1), . . . ,Enck(mn).

A commitment scheme is a pair of algorithms (Commit,Open). The commitment algorithm Commit
takes as input a message z ∈ {0, 1}∗, and produces as output c = Commit(z). Let dc be the randomness
used during the generation of the commitment c. The opening algorithm Open takes as input (c, z, d) and
outputs Open(c, z, d) ∈ {0, 1}∗ ∪ {⊥}. We require that always Open(Commit(z), z, dc) = z.

A commitment scheme will usually be executed between two parties: a committer and a receiver. In
the commitment phase the committer computes c := Commit(z) and sends it to the receiver. Later, in the
opening phase the committer sends (z′, d′) to the receiver, and the receiver outputs z′′ = Open(c, z′, d′). A
commitment scheme is secure if it is binding and hiding. The “hiding” property means that the receiver has
no information about z before the opening phase started. More precisely: for every z0, z1 ∈ {0, 1}∗ we have
that Commit(z0) and Commit(z1) are computationally indistinguishable. The “binding” property means that,
no matter how a malicious (but polynomial-time bounded) committer behaves, after the commitment phase
there exists at most one value z′ ∈ {0, 1}∗ such that the receiver outputs z′ (or outputs ⊥).
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B The ECDSA algorithm

For a security parameter 1λ the ECDSA key generation algorithm SignGen chooses an elliptic curve group
(G,O, g,+) over a prime field Zp, whereO is the neutral element, g is the generator of G, and the order |G|
of G is a prime number such that dlog2 |G|e = λ (the details on how this choice is done are not relevant to
this paper). Then, SignGen samples a random d← Z|G|, and computes D := d · g. The generated secret key
is (d, (G,O, g,+)), and the public key is (D, (G,O, g,+)).

Let H be a hash function, and let f : G→ Z|G| be a reduction function that we will define in a moment.
In order to sign a message z ∈ {0, 1}∗ with key (d, (G,O, g,+)) the signing algorithm first chooses a
random k ← Z|G|, and then computes r = f(k · g) and s = k−1(H(z) + d · r) mod |G|. If r = 0 or
s = 0 then the algorithm aborts (and needs to be restarted with fresh randomness). Otherwise, the signing
algorithm outputs (r, s). The verification algorithm on public key (D, (G,O, g,+)) and input z and (r, s)
first checks if r and s are non zero elements of Z|G| and then verifies if r = f(H(z) · s−1 · g + r · s−1 ·D)

(where the operations in the last formula are in G)9. If this holds, then the verification algorithms outputs ok,
and otherwise it outputs ⊥. It is straightforward to verify that a verification of a correctly signed message
will always yield ok.

What remains is to construct the reduction function f : G→ Z|G|. In ECDSA this is defined by exploit-
ing the structure of the elliptic curve group constructed over prime fields. Recall that every element of G has
a form (x, y) ∈ Z2

p . The function f on input (x, y) ignores y and produces as output f(x, y) = x mod |G|.
The ECDSA algorithm with f defined in this way is widely believed to be secure for several choices of the
elliptic curves. It has also been proven existentially unforgeable under a chosen message attack, provided
some assumptions hold (see, e.g, [21, 43]). The malleability of the ECDSA scheme is a more subtle issue.
We address it in Section 3.

C Proof of Lemma 1

Assume first that the Buyer is honest and that the protocol has not been aborted. Let us call an execution i of
the KSignGeni(1λ) invalid, if at least one of the following happened:

(a) DecskiAH
(ciS) 6= diS ,

(b) the solution of the Φi is not equal to diS i.e. TLForceOpen(Φi) · diB · g 6= pk i,
(c) the Seller can open Γi into a value different than F (σ̂i) for a valid signature σ̂i on z.

Call KSignGeni(1λ) uncovered if i ∈ J . If an execution i is invalid and i ∈ J then the Buyer will abort the
protocol with probability 1 − µ0(λ) where µ0 is a negligible function. That is because we assume that the
underlying cryptographic primitives are secure, so if the Seller can open a commitment (or timed commit-
ment) to a certain value, then she cannot open it to a different value. So as she opens Φi or Γi (if she does not
open it then the Buyer will abort) in case respectively (b) or (c) then the Buyer will find out that she cheated
and he will abort. And in case (a) there is only one secret key corresponding to pk iAH so the Seller has to
reveal it and now the Buyer will also find out that the Seller cheated.

The Seller and the Buyer execute the KSignGeni(1λ) procedure a times and the Seller reveals (a − b)
random executions (chosen by the honest Buyer). We assume that the Buyer did not abort the protocol, so
none of the uncovered executions was invalid (except with negligible probability). So the probability that at
least b̂ executions were invalid, but the Buyer did not abort the protocol, is at most (ignoring the negligible

9 Recall that G is an additive group, and hence a · g (for a ∈ Zp and g ∈ G) denotes
a times︷ ︸︸ ︷

g + · · ·+ g. Also a · b−1 · g (for a, b ∈ Zp
and g ∈ G) denotes c · g, where c = a · b−1 mod p.
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probabilities): (
a− b̂
a− b

)/( a

a− b

)
=

b̂−1∏
j=0

b− i
a− i

≤
(
b

a

)b̂
.

We now show that if an execution i is not invalid then the probability that the Seller breaks key i is negligible.
We will prove that by showing that the Seller does not learn anything about the secret key sk i except of the
corresponding public key pk i and a single signature σi on a message z. It will be sufficient because we
assume that the ECDSA scheme used in the construction of the USG is a non-malleable signature scheme
— in a not invalid execution Γi is a commitment of F (σi), where σi is a signature on z and this is the only
signature that the Seller knows.

In the first phase of the KSignGeni(1λ) the Seller chooses value diS independently to diB so (diS , d
i
B) is a

multiplicative secret sharing of the secret key sk i (she cannot set diS = 0, in that case the Buyer would abort).
By the same argument (kiS , k

i
B) is a multiplicative secret sharing of the secret random value ki = kiS · kiB .

In this phase the Seller learns Di
B and Ki

B but these values can be computed by her given the public key pk i

and the signature σi = (ri, si) by calculating Di
B = (diS)

−1 · pk i and Ki
B = (diS)

−1 · Ki and Ki can be
easily computed from the signature and the public key. So she has no information on neither sk i nor Ki but
the public key pk i and the signature σi — values Di

B and Ki
B do not give her any additional information.

The only additional information that the Seller learns during the KSignGeni(1λ) procedure is the value
si0. Observe first that si0 mod |G| can be computed by the Seller from the signature: si0 mod |G| = kiS ·
si mod |G|. However in theory si2 can give the Seller more information than si0 mod |G|. Now we will show
why this is not the case.

We assumed that the execution i is not invalid, so DecskiAH
(ciS) = diS is smaller (as an integer) than |G|.

It follows that DecskiAH
(ci2) is smaller than 2|G|2. The Buyer added to this value random ui times |G|2, so

P(si0 < 2|G|2 ∨ si0 > |G|
3) <

< P(u < 2|G|) + P(u > |G|2 − 2|G|) =

= O
(
|G|−1

)
= negligible(λ),

and for any 2|G|2 ≤ x ≤ |G|3 we have

P(si0 = x) = P(u = x− DecskiAH
(ci2)) = |G|

−2.

That proves that with overwhelming probability si0 is just si0 mod |G| plus |G| times something uniformly
random, so it gives the Seller no more information.

Summarizing, and ignoring the negligible probabilities, with probability at most (b/a)b̂ the Seller can
create undetected b̂ invalid executions, in each of them she breaks the respective key i. The rest of the
executions are not invalid and in them the Seller does not break the corresponding keys.

We can now assume that the Seller is honest and that the protocol has not been aborted. As it was in
case of dishonest the Seller after the first phase the only information about the sk i known by the Buyer is
the public key pk i. That is so because Di can be computed from the public key and for the Buyer Ki is just
a random point in G. Later the Buyer learns pk iAH that is randomly generated and ciS that by the security of
the Paillier encryption scheme he cannot distinguish from the encryption of a random value, so it gives him
nothing. At the end he learns the commitment to the Si = F (σi), for a hash function F modeled as a random
oracle so by the hiding property of the commitment scheme he known nothing about the Si and similarly by
the properties of the timed commitment the Buyer will open the commitment to diS and thus learn the secret
key sk i only after time τ (both with probability 1 minus negligible).

This concludes the proof that this USG is (ε, b̂)-secure for ε =
(
b
a

)b̂
. ut
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D Proof of Lemma 2

Assume first that the Buyer is honest and the Seller is not. The only way how the Buyer can lose his funds
is by the transaction T1, as only he knows the secret keys required to spend his money. T1 can be either
redeemed by the Seller or it can just lock the Buyer’s funds forever. We know from lemma 1 that with
probability at most

(
b
a

)b
+ µ0(λ) for a negligible µ0 the Seller can cheat in all b chosen executions of the

KSignGen procedure and not be caught.
So with probability at least 1 −

(
b
a

)b − µ0(λ) at least one of the b chosen executions of the KSignGen
procedure was completed honestly by the Seller. Let the index of this execution be i. That means that Φi is
an honest timed commitment of diS so after force-opening this puzzle the Buyer will learn the secret key ŝk

i
.

But he can easily compute b − 1 correct signatures on a transaction redeeming T1, because he owns b − 1
out of 2b− 1 public key from the multisig escrow of the transaction T1. So with additional signature created
using ŝk

i
he will have b signatures so he will be able to redeem transaction T1 and get back his fund (in

case when e.g. the Seller does not redeem T1 by herself). So his funds cannot be locked forever (except with
probability

(
b
a

)b
+ µ0(λ)), he will take them back after spending τ1 seconds on force-opening Φi.

Note also that the same is true when transaction T1 is mauled before it is included into the blockchain.
In that case the Seller will not be able to use signatures σ̂i but the Buyer will be able to get his funds back.
This is the only problem that the malleability of transactions can create and it does not affect the security of
the protocol.

Assume now that the Seller indeed redeems transaction T1. The only way how she can do it is by using
T2 and all the signatures σ̂1, . . . , σ̂b. So in that case the Buyer learns σi. As the execution number i of the
KSignGen protocol was honest, then the Buyer will be able to compute the secrets Si,j for j = 1, . . . , 2λ.
Now we will compute what is the probability, that the Buyer will not be able to extract the witness x′ although
he did not abort in the second Cut and Choose verification in the step 2 in the SellWitnessf protocol.

Lets call j ∈ {1, . . . , 2λ} valid if VerifyResponse(Bi,j , ci,jk , r
i,j
k ) = true for both k = 1 and k = 2

and ci,j0 6= ci,j1 , where (ci,jk , r
i,j
k ) := DecSi,j (γ

i,j
k ). Otherwise we will call j invalid. Assume first that more

then λ indices j are valid. That means that at least one index j 6∈ J i is valid. In that case the Buyer will
learn Si,j because execution number i was honest so he will learn ci,jk and ri,jk for k = 1, 2 and he will
be able to compute x′ = ExtractF (B

i,j , ci,j1 , r
i,j
1 , ci,j2 , r

i,j
2 ) and from the definition of the extractor function

f(x′) = true.
In the second case we have at least λ invalid indices. If j is invalid and j ∈ J i then with probability at

least 1
2 the Buyer will abort for the pair (i, j). That is true, because the Buyer’s challenge ci,jB is independent

of γi,jk , so even if in one of the γi,jk there is a correct (challenge, response) pair then it will be different than
ci,jB with probability 1

2 . Let X be the event that the Buyer aborts and Y (r) an event when at least r invalid
indices are present in J i. Then

P(X) ≥ P
(
X ∧ Y

(
1

4
λ

))
=

= P
(
X|Y

(
1

4
λ

))
· P
(
Y

(
1

4
λ

))
≥

≥

(
1−

(
1

2

) 1
4
λ
)
· (1− µ1(λ)) = 1− µ2(λ)

where µ1 is negligible (it can be easily proven using the Stirling’s approximation) so also µ2 is negligible.
That ends the proof that the Buyer can be cheated with probability at most

(
b
a

)b
+ negligible.

Assume now that the Seller is honest and the Buyer is not. Observe first, that the Seller reveals signatures
σ̂i only when she is redeeming the transaction T1. She does it only after T1 is included into the blockchain

22



so T1 cannot be withdrawn. Additionally at that moment only the Seller can redeem T1. That is true, because
from the lemma 1 we know that the Buyer cannot sign any message with respect to any of the public keys
p̂k

i
until τ0 seconds elapsed. He needs to create such a signature to redeem T1. The Seller broadcasts T2

much earlier than after τ0 seconds so it will be included into the blockchain so she will gain dB.
What remains to be proven is that the Buyer learns no information about x until the Seller reveals signa-

tures σ̂i by broadcasting T2. But we know that the F is a zero knowledge proof and for each Setupi,j phase
the Buyer sends at most one challenge ci,jB and learns at most one response ri,j . This response corresponds
the the challenge ci,jB , so it gives him no information about x. The only other values that the Buyer learns are
either commitments or values encrypted with unknown for him keys. But we assumed that the encryption
schemes and commitment schemes are secure, so except with the negligible probability the Buyer learns no
information about x if the Seller does not get the Buyer’s funds. ut

E Proof of Lemma 3

We have to prove that this protocol satisfy completeness, validity and zero knowledge properties.
The completeness is easy to see. If the Prover knows the factorization of n = pq then he can use the

Tonelli-Shanks algorithm [42] to find both square roots of any quadratic residue mod p and q and by the
Chinese remainder theorem he can find all four square roots mod n. Two of them are smaller than n

2 so he
will be able to find and open the commitment for rb = x.

Now we will prove validity. Let P̂ be a (possibly malicious) Prover that convinces the honest Prover
with probability α. That means, that with probability at least α he commits to r where r is uniformly chosen
square root of y.

We will now define the extractor E that has access to P̂ and controls the random oracle. E will play
a role of the honest Verifier in the interaction with P̂ . So at the beginning E samples random x and sends
y = x2 mod n to P̂ . Then P̂ makes a number of queries to the random oracle and sends two commitments
to E. If P̂ made a query to the random oracle on value x′ s.t. x′ is a square root of y different than x and
n − x then the extractors calculates and returns a factor of n by computing p = gcd(n, x − x′). Otherwise
the extractor aborts.

The probability that P̂ is able to open a commitment without first querying the random oracle is negligi-
ble, so with probability at least α minus negligible P̂ will query the oracle on the other square root of y so
with probability at least α minus negligible the Extractor will be able to return the factorization of n.

To prove the zero knowledge property we will construct a simulator S that has access to a (possibly
malicious) verifier V̂ and controls the random oracle. S will simulate the interaction between V̂ and the
honest verifier. When S is given value y from V̂ then it returns as the commitments two randomly sampled
strings s0, s1 of a proper length. After receiving x the Simulator aborts if x2 6= y mod n or x > n

2 . Otherwise
he randomly samples b ← {0, 1}, opens sb as a commitment to x and programs the random oracle s.t. the
commitment of x is exactly sb. Because of that the verifier V̂ will accept the opening of the commitment so
he will not be able to distinguish if he is interacting with S or the honest Prover. ut

F Sketch of the security of the protocol for trading across chains

Because of lack of space we do not present here a formal security definition or a formal security proof. We
just argument how the parties can cheat and why the probability of stealing the other party’s funds is small.

Observe first, that the public keys created for Alice and for Bob will be uniformly random and the secret
key will be indeed secret-shared between the parties. This claim is clear for key pairs created for Bob as they
are created in the USG protocol. And each key pair created for Alice is equal to dkjA · d

lj
B · g where dljB was

first chosen by Bob and dkjA was later chosen independently (because of the commitments) by Alice.
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Assume first that Bob is honest and Alice is not. Alice can cheat only in the USG protocol, including the
creation of the values xi. But as in the SellWitness protocol Alice would have to cheat in exactly b iterations
of the KSignGen procedure and Bob would have to choose exactly these invalid positions to get cheated. That
is true, because he needs only one secret key generated for him to redeem transaction T 1

B and get his money
back and only one secret key generated for Alice to get her funds from transaction T 1

A. So the probability

that Alice will cheat Bob is at most
(
b
a

)b
.

If Alice is honest and Bob is not, then the only place when Bob can cheat and will not be caught imme-
diately is when calculating timed commitments to diB . But if at least one of these timed commitments were
computed honestly then Alice will be able to open it and get her funds back (in case when e.g. she broadcasts
T 1
A but Bob do not broadcasts T 1

B) because she needs only one signature to redeem T 1
A. And the probability

that Bob will cheat in all b cases and in none of the others (otherwise Alice would notice) is at most
(
b
a

)b
.

Observe also that the malleability of the transactions is not a problem. The only case when it can matter
is the case of the transaction T 1

B — if it is mauled then Alice will not be able to use signatures σi and they
will have to restart the protocol.

Summarising, none of the parties can be cheated except with the probability (b/a)b + negligible.
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Fig. 7: The running time of the Step 1 and the probability that the Seller successfully cheats the Buyer in the Step 1 of the SellWitness
protocol for the following fixed parameters: (i) λ = 1024 and b = 1 (i.e. using only standard single-signature transactions), and (ii)
λ = 512 and b = 8 (i.e. using multi-signature transactions with the greatest parameters that are standard in Bitcoin) and different
values of a. The running time of Step 1 is proportional to a and does not depend on other parameters. Using greater b gives much
better security.
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Fig. 8: The running time of the Step 2 of the SellWitness protocol for the following fixed parameter: (i) a = 512 and b = 1 (i.e.
using only standard single-signature transactions), and (ii) a = 1024, and b = 8 (i.e. using multi-signature transactions with the
greatest parameters that are standard in Bitcoin) and different values of λ. The running time of Step 2 is proportional to b · λ and
does not depend on a. The probability of successfully cheating (by either the Buyer or the Seller) in step 2 is negligible in λ.
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Fig. 9: The running time of an algorithm solving a timed commitment for different difficulties t.
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