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Abstract. The Open Smart Grid Protocol (OSGP) is a widely used in-
dustry standard for exchanging sensitive data between devices inside of
smart grids. For message confidentiality, OSGP implements a customised
form of the RC4 stream cipher. In this work, we show how already known
weaknesses of RC4 can be exploited to successfully attack the OSGP im-
plementation as well. The attack modification is able to effectively derive
the secret OSGP encryption and decryption key, given that an attacker
can accumulate the cipher streams of approximately 90,000 messages.
The possession of this key allows the attacker to decrypt all data in-
tercepted on the OSGP smart grid and thereby obtain privacy critical
information of its participants.
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1 Introduction

A smart grid is an electricity grid that does not just transport electricity from
suppliers to consumers, but does incorporate real-time information sharing be-
tween the participants in an intelligently automated (hence smart) way [6,8].
Such information about electricity supply, demand and consumption can be used
for dynamic billing or load balancing. Especially as regenerative energy sources
like solar panels or wind engines are becoming more popular, an automated
continuous communication between suppliers and consumers is vital for dealing
with load peaks and drops [12]. While the short-term availability of electricity
from regenerative sources is hard to predict, the challenge of load balancing is
aggravated when private households are not just consumers of electricity but
also producers, feeding excess energy from their solar panels or combined heat
and power plants back into the grid.

The metering or load regulating devices at the consumer’s site are called
smart meters [23]. Surveys found the number of smart meters installed in Europe
in 2012 to be 52 million, and forecast an amount of 170 million until 2019 [20].
Similarly, 28 million smart meters were reported for North America in 2010 with
a prognosis of 87 million until 2016 [19].

It is imperative that the data transmission between the grid operator and
the smart meters guarantees data confidentiality and integrity [22]. It must thus
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not be possible for an attacker to learn the content of an eavesdropped message
containing sensitive data like the energy consumption of another household [17]
or to change the content of intercepted messages unnoticed. The latter would
for instance allow him to report a false energy consumption, thereby stealing
electricity or hampering the load balancing efforts of the grid operator. Data
confidentiality is usually achieved through encryption using a cryptographic se-
cret key, whereas data integrity is usually achieved by calculating a check value
from a combination of the data to be verified and another secret key.

In this work, we show a new method to compromise the data confidentiality
of a widely used smart grid standard, the Open Smart Grid Protocol (OSGP)
[2]. For data confidentiality, OSGP implements a customised form of the RC4
stream cipher [9]. Our new method comprises the modification of a known attack
exploiting biases in the RC4 cipher stream output to effectively calculate the
secret encryption key. Once this secret key is obtained, it can be used to decrypt
all intercepted data sent in an OSGP smart grid.

The remainder of this paper is organised as follows: Section 2 introduces
the OSGP standard. While a description of the basic RC4 algorithm is given in
Appendix A, Sections 3.1, 3.2, and 3.3 sketch known RC4 biases and the attack,
of which the method presented here is a modification. The new method itself is
detailed in Section 4. Experimental results demonstrating the attack’s efficiency
are presented in Section 5, followed by Section 6 in which makeshift measures
to hamper the attack are suggested. Section 7 concludes the paper.

2 Open Smart Grid Protocol (OSGP)

The Open Smart Grid Protocol (OSGP) was inaugurated in 2010 by the En-
ergy Services Network Association (ESNA, now OSGP Alliance); a non-profit
consortium of leading companies in the energy industry [4]. OSGP’s aim as an
open protocol standard is to enable different vendors to develop and sell mu-
tually compatible smart grid devices like smart meters, power quality sensors,
load control modules or controllers of solar panels, combined heat-and-power
plants or electric car charging stations. According to the OSGP Alliance’s web-
site (www.osgp.org), there are currently over 4 million OSGP based devices de-
ployed world wide. In 2012, the OSGP specification was formally published by
the European Telecommunications Standards Institute (ETSI) [5] as group spec-
ification GS OSG 001 [2]. If not otherwise stated, all statements about OSGP
in this work are based on this publicly available document. In the following, we
give a brief overview of the OSGP structure and aspects particularly relevant
for this work.

Figure 1 shows the structure of an OSGP smart grid with its different com-
munication layers. The OSGP protocol specified in ETSI GS OSG 001 [2] only
defines the topmost application layer. Below, there is the networking layer which
is defined by the ISO/IEC 14908-1 standard [3] (a.k.a. LonWorks or LonTalk).
Each OSGP application layer message is embedded in an ISO/IEC 14908-1 mes-
sage before it is sent via the respective physical media channel. Currently, the
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Fig. 1. The OSGP layer structure.

power line communication standard ETSI TS 103 908 [1] is the designated phys-
ical layer for OSGP smart grids, but as OSGP and ISO/IEC 14908-1 are them-
selves media independent, OSGP could be operated on any current or future
physical media.

Data confidentiality and integrity mechanisms could be implemented on each
of the three communication layers. The OSGP application layer specification,
though, implements its own security mechanisms and does thereby not rely on
security of the networking or physical media layer. The attack described in this
paper targets this application layer. It compromises data confidentiality while
data integrity remains intact.

The communication within an OSGP smart grid follows a master/slave ar-
chitecture, where each OSGP device operates as a slave and does therefore never
initiate a message exchange by itself. This is only done by the central data con-
centrator (DC) which is commissioning and controlling all OSGP devices under
its domain. Thus, whenever the DC needs to read from or write to a device’s
data table, it sends a request to be answered by the device.

To avoid replay attacks, each OSGP message includes a 4-byte sequence
number. A device only accepts request messages from the DC, whose sequence
number matches the device’s internally expected number. After successfully pro-
cessing a valid request, the device’s expected number is incremented, such that
a message with an already used sequence number is not accepted any more. The
number is only incremented, when the request has been valid.

Data integrity is achieved by appending an 8-byte digest value to each mes-
sage. The digest is created by a hash function (also defined in ETSI GS OSG
001 [2]) whose input is the message itself and a secret key (open media access
key: OMAK) known to the DC and all OSGP devices. (There is really only one
key for the whole network! Although this fact is not explicitly stated in ETSI
GS OSG 001, it is implied by OSGP providing a message broadcast mode in
which a single message can be sent to several devices at once.) The digest is sent
unencrypted with the otherwise encrypted message. The receiver decrypts the
message and validates it by creating the digest again and comparing it with the
received digest.

Data confidentiality is achieved by encrypting the message with a customised
variant of the RC4 stream cipher. RC4 in general is explained in Section A while
the OSGP specific RC4 variant is explained in Section 4.1. The secret key used
for both RC4 encryption and decryption is called base encryption key (BEK).
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The BEK (16 bytes) is actually derived1 from the OMAK (12 bytes) and is
– like the OMAK – the same for all devices. It is assumed that both OMAK
and BEK are stored securely on the devices, such that they cannot be extracted
through a user interface or an invasive hardware-tampering attack. The cryptan-
alytic attack presented here derives the BEK by analysing a multitude of inter-
cepted messages; or more precisely: by analysing the used RC4 cipher streams.
The scenarios in which this succeeds are quite conceivable and discussed in Sec-
tion 4. When the BEK is known, it can be used to decrypt all data intercepted
on the OSGP smart grid; i.e. data confidentiality is broken. As the OMAK,
however, cannot be derived from the BEK, data integrity is still intact.

There has been another recent security analysis of OSGP in [11]. The au-
thors focus on the OSGP digest algorithm and find that even the OMAK can be
extracted by sending a number of messages with forged digests to the DC and
analysing the responses. As obtaining the OMAK allows an attacker to also de-
rive the BEK, their attack breaks both confidentiality and integrity. However, as
that attack and the attack presented here target completely independent compo-
nents of OSGP (here: RC4 encryption, [11]: digest algorithm), it is imperative to
bring both attacks to public attention. Another analysis of OSGP has also been
given in [14], demonstrating attacks on the digest algorithm. Vulnerabilities of
RC4 are hinted at but no attack is described.

3 Preliminary Works

3.1 Roos correlation

In 1995 Roos [18] published his findings about a correlation between the secret
key bytes k[0], . . . , k[15] and the first internal state bytes S[0], . . . , S[15] after
KSA. (In the following we are always assuming 16 key bytes.) His most important
result for this work is that the values of S[r], r < 15 after KSA are much more
likely to hold a certain value X(r) than any other value: P (S[r] = X(r)) ≈ 0.37,
whereas the ideal probability for any value would be 1/256 ≈ 0.0039. The X(r)
values are defined as:

X(r) =
r∑
i=0

(k[i] + i) mod 256

1 This deriving is done using the authentication encryption algorithm of the ISO/IEC
14908-1 standard [3] and can only be obtained with charge.
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When X(r) and all k[i], 0 ≤ i < r are known, k[r] can be calculated:

X(r)−
r−1∑
i=0

(k[i] + i)− r mod 256

=
r∑
i=0

(k[i] + i)−
r−1∑
i=0

(k[i] + i)− r mod 256

= k[r] + r − r mod 256
= k[r]

Thus, if X(0), X(1), . . . , X(15) are known, it is possible to derive all 16 secret
key bytes k[0], k[1], . . . , k[15].

3.2 Jenkins correlation

In 1996, Jenkins [10] reported a correlation in the RC4 cipher stream bytes. The
relevant result for this work is that a cipher stream byte z[r] has the probability
of 2/256 to hold the value r + 1 − Sr−1[r + 1], which is twice as high as the
probability for any other value:

P (z[r] = r + 1− Sr−1[r + 1] mod 256) = 2
256

whereas

P (z[r] = x) = 1
256 −

(
2

256 ·
1

255

)
≈ 1

256
∀x ∈ {0, . . . , 255}, x 6= r + 1− Sr−1[r + 1] mod 256

The value Sr−1[r + 1] is the internal state at index r + 1 after PRGA round
r− 1, preceding round r in which z[r] is created. If the z[r] value with increased
probability is obtained, Sr−1[r + 1] can be calculated from it: Sr−1[r + 1] =
r + 1− z[r] mod 256. Thus, each cipher stream byte z[r] can be used to reveal
the content of the internal state byte Sr−1[r + 1] with an increased probability.
Notice that it is hence not possible to derive S[0] in this way.

While Jenkins just published his observation based on empirical analyses,
Mantin [15] provided a proof for the correlation in 2001. Another proof – appar-
ently unaware of [15] – was given by Klein [13] in 2006.

3.3 Klein attack

In 2006, Klein [13] combined Roos’s and Jenkins’s correlations to present an
attack on variants of RC4 in which the used RC4 key (k[0], k[1], . . . , k[15]) is
the concatenation of the secret key sk and a publicly known message-specific
initialisation vector (IV ). A prominent example of such an RC4 variant had been
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the Wired Equivalent Privacy (WEP) standard for Wi-Fi networks, in which a 3-
byte IV is prepended to a 13-byte secret key. To explain Klein’s attack, however,
it is simpler to assume the case in which the IV is appended: k = sk|IV .

As Klein does neither refer to Roos nor to Jenkins or Mantin when describing
the correlations, it seems that he discovered them independently, noteworthily
providing a novel proof. His contribution most relevant to this work is the combi-
nation of the aforementioned correlations; thus being able to derive the X(r+1)
value from cipher stream byte z[r]. He calculates the probability of a cipher
stream byte to hold the desired value as:

P (z[r] = r + 1−X(r + 1) mod 256)

≈ 0.37 · 2
256 + 0.63 · 1

256 ≈ 0.0053

The first summand 0.37 · 2/256 stems from the cases in which Sr−1[r + 1] =
X(r+1) (due to Roos’s correlation; probability 0.37) and z[r] = r+1−Sr−1[r+1]
(due to Jenkins’s correlation; probability 2/256). The second summand 0.63 ·
1/256 stems from the remaining cases in which Sr−1[r+1] 6= X(r+1) (probability
1.0 − 0.37), but still z[r] = r + 1 − X(r + 1) (probability 1/256 as any other
value).

Notice, that this formula is actually only correct for cipher stream byte z[0].
To make it more realistic, it would have to be changed into:

P (z[r] = r + 1−X(r + 1) mod 256)

≈ 0.37 · 2
256 ·

(
255
256

)r
+ 0.63 · 1

256

The additional factor (255/256)r expresses that in each of the r PRGA rounds
preceding round r (round numbering starts with 0), there is a chance of 1/256
for S[r+ 1] = X(r+ 1) to be swapped with S[i], such that the desired X(r+ 1)
value would no longer be in S[r + 1]. However, even with this more realistic
formula, the probability of e.g. z[14] to reveal X(15) is almost 0.0052, which is
still notably larger than the probability of 1/256 ≈ 0.0039 for any other value.

As each message is calculated with a different IV appended to the secret
key, the used key k = sk|IV is also different for each message, such that a
different cipher stream z is produced. This allows an attacker to analyse the
value occurrences of the cipher stream bytes. Assuming a 16 byte secret key
sk, the attacker records the cipher stream bytes z[0], z[1], . . . , z[14] for several
messages and calculates Sr−1[r + 1] = r + 1 − z[r] mod 256, as explained in
Section 3.2.

After a sufficiently large number of messages, a certain value with most oc-
currences will emerge. This is the desired X(r+1) value. From the cipher stream
bytes z[0], z[1], . . . , z[14], the attacker thus gets X(1), X(2), . . . , X(15). The first
key byte k[0] has to be guessed, which is a negligible effort. Then, key bytes
k[1], . . . , k[15] can be calculated from the X values as described in Section 3.1.

A difficulty in undertaking this attack is that the attacker needs to record the
cipher stream z, which is not transmitted with the encrypted message e. Should
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the attacker, however, be able to correctly guess a byte m[r] of the plain text
message m, he would be able to derive the corresponding cipher stream byte by
calculating z[r] = e[r]⊕m[r]. It is quite common that certain bytes in messages
– particularly at the beginning where header data is transmitted – are always
the same or at least predictable.

4 Attack on RC4 in OSGP

The RC4 variant used in OSGP is similar but slightly different from the variants
targeted by Klein’s attack. Section 4.1 describes the RC4 implementation of
OSGP and Section 4.2 explains how to modify Klein’s attack in order to exploit
the respective RC4 weaknesses there.

But first we discuss the conditions under which this attack on OSGP is
practical. Being a known-cipher-stream attack, the attacker must know the first
15 cipher stream bytes of enough messages in order to derive the 16 BEK bytes.
This can be difficult because the cipher stream z is never transmitted. However,
there are plausible scenarios in which it can be obtained never the less.

The first possibility, already mentioned in Section 3.3, is that certain bytes
of the plain text message can be guessed. This is indeed conceivable in an OSGP
scenario: e.g. among the first 15 bytes of the request to read out the clock of an
OSGP device (cf. Section 5), only four bytes comprising the sequence number
are not predictable whereas the other 11 bytes are always the same. Thus, if an
attacker knows at what times the DC reads out the clock of a device, he could
obtain the values of 11 cipher stream bytes. The four unobtainable bytes prevent
him from directly deriving the value of four BEK bytes. These have to be brute
forced just as the first BEK byte. Trying all 240 possible values of five bytes
would take about a month on a single 3.40 GHz Intel i7-4770 Core. However, in
the average case, the correct key is already found after trying half of all values,
reducing the time to two weeks. Using a cluster consisting of 256 CPU cores, the
time can be reduced to only 1.5 hours.

Another possibility is that even though the OMAK and BEK cannot be ac-
cessed directly on an OSGP device, the cipher streams might not be protected in
an equally secure manner. If the attacker has access to one or several OSGP de-
vices and is able to access the memory in which the cipher streams are processed,
the attack can be executed.

If the cipher stream z of a processed message m is not directly accessible, it
would be sufficient to know the plain text of m. It is assumable that this can be
achieved through an interface of the device. The attacker would XOR m with the
encrypted message e, which is eavesdropped at the device’s output, and thereby
get z for each message.

4.1 RC4 in OSGP

As further described in Appendix A.1, two different messages must never be
encrypted with the same RC4 key. To avoid this, the secret key – known only to
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the communicating parties – must be altered for each message. This is usually
done by combining it with a random message-specific initialisation vector (IV )
that is sent as plain text with the encrypted message.

The RC4 variants targeted by Klein’s attack simply concatenate the message-
specific IV with the secret key. OSGP takes a different approach, in which the
first 8 bytes of the BEK are XOR’ed with an 8-byte IV ; in fact OSGP uses the
message digest as IV . Attacking such RC4 implementations has already been
discussed in [7]. The attack presented there could therefore also be applied to
RC4 in OSGP. Our modification of Klein’s approach, however, is much more
effective. The attack of [7] depends on weak IV s. If the attacker cannot control
the IV , the expected number of messages to derive one key byte is estimated
to be 1,000,000. As the OSGP key consists of 16 key bytes, the required num-
ber of messages is thus two orders of magnitude larger than what the attack
described here needs. There is a multitude of other attacks on RC4, but to best
of our knowledge the modification of Klein’s attack is best suited for the OSGP
implementation.

For the description of the attack in Section 4.2, we set the following defi-
nitions. Let m1,m2, . . . ,mτ be the set of τ plain text messages, whose cipher
streams are intercepted during the attack. Message mt consists of nt many bytes:

mt = (mt[0],mt[1], . . . ,mt[nt − 1])

Let furthermore dt be the 8-byte digest created for message mt.

dt = (dt[0], dt[1], . . . , dt[7])

With BEK = (bek[0], bek[1], . . . , bek[15]), the RC4 key for message mt is:

kt = (kt[0], kt[1], . . . , kt[15])

with

kt[r] = bek[r]⊕ dt[r], 0 ≤ r ≤ 7
kt[r] = bek[r], 8 ≤ r ≤ 15

Let zt = (zt[0], zt[1], . . .) be the sequence of cipher stream bytes generated by
RC4 from kt. The encrypted message et corresponding to mt then is

et = (et[0], et[1], . . . , et[nt − 1])

with

et[r] = mt[r]⊕ zt[r] 0 ≤ r ≤ nt − 1.

To be able to talk about X(r) for a specific message mt, the formula intro-
duced in Section 3.1 is extended to:

Xt(r) =
r∑
i=0

(kt[i] + i) mod 256
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4.2 OSGP RC4 attack

We now come to the main contribution of this work, which is how to modify the
attack presented by Klein [13] to work when the IV is XOR’ed with the secret
key. In OSGP the secret key is the BEK and the IV is the digest of a message.
The goal of the attack is to obtain BEK = (bek[0], bek[1], . . . , bek[15]) from
τ recorded cipher streams z1, z2, . . . , zτ used for the encryption of τ different
messages.

As no information about bek[0] can be obtained from the cipher stream bytes,
bek[0] has to be guessed. In the following, we assume that the value of bek[0] has
already been guessed correctly. In the real implementation, the attack process
is performed once for each of the 256 possible bek[0] values, which is absolutely
no obstacle for the attack.

Thanks to Roos, Jenkins and Klein, we know that for each cipher stream
byte zt[r], there is one value with the increased probability of 0.0053 whereas all
other values have the lower probability of 0.0039. This most occurring value is
r + 1−Xt(r + 1).

As kt is different for each message mt, however, we cannot simply count the
occurrences of zt[0] to zt[14] and thereby get Xt(1) to Xt(15), as it is the case for
the attack shown in Klein’s original work. We must start by treating each zt[0]
as if it actually holds Xt(1). From this putative Xt(1) = kt[0] + kt[1] + 1 value
we calculate a putative kt[1], using the guessed bek[0] for kt[0] = bek[0]⊕ dt[0].
From this putative kt[1] we can calculate a candidate bek[1] = kt[1]⊕ dt[1]. We
count the occurrences of these candidate bek[1] values over all messages. After
a sufficient amount of messages, the value with most occurrences is the correct
bek[1] value. We do the same treating each zt[1] as a putative Xt(2). Using the
guessed bek[0] and the currently most occurring bek[1] candidate, we calculate
the most occurring candidate for bek[1], and so forth for the remaining BEK
bytes.

We shall go through this procedure in detail by means of the pseudo code
given in Figure 2. Line 1 starts the loop, each of whose iterations tries another
bek[0] value. At the end of each iteration (Line 10) we check, if the correct BEK
has been found. This is practically done by using it to decrypt the intercepted
encrypted messages and check if the result is plausible. If all values for bek[0]
have been tried and the correct BEK was not derived, the number of messages
τ was not enough for the most probable value to emerge (Line 12) and more
messages have to be accumulated.

Line 2 starts another loop, which goes through the first 15 cipher stream bytes
z[0], . . . , z[14]. In each iteration of this loop, one single BEK byte is derived. This
is the major difference between this attack and the attack by Klein for which an
analysis of all cipher stream bytes is conducted and all key bytes are derived at
once. In the r’th iteration, we examine z[r] of all messages to derive bek[r + 1].

For each of the 256 possible values of bek[r+ 1] we define a variable to count
its occurrences. In Line 3, these counters are reset to 0. Line 4 starts the loop
going through the cipher streams of all τ messages.
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// The first BEK byte bek[0] must be brute-forced.
1: for (bek[0] = 0x00; bek[0] ≤ 0xFF; bek[0]++) {

// Each bek[r + 1] is derived separately by
// examining the values of cipher stream byte z[r].

2: for (r = 0; r ≤ 14; r++) {
// Reset counters for bek[r + 1] candidate occurrences.

3: for (k = 0; k ≤ 255; k++) counter[k] = 0;
// Go through the cipher streams of all τ messages.

4: for (t = 1; t ≤ τ ; t++) {
// Calculate a candidate for bek[r + 1] from zt[r] and
// bek[0], . . . , bek[r] (calculated in previous iterations).
// kt[i] = bek[i] ⊕ dt[i], if 0≤i≤7, else: kt[i] = bek[i]

5: bek[r + 1] = −zt[r]−
∑r
i=0(kt[i] + i)%256;

6: if (0 ≤ r ≤ 6) bek[r + 1] = bek[r + 1]⊕ dt[r + 1];
// Count the occurrence of bek[r + 1] candidate value.

6: counter[bek[r + 1]]++;
7: }

// Store most occurring bek[r + 1] candidate value
// as the derived bek[r + 1] for coming iterations.

8: bek[r + 1] = argmaxk counter[k];
9: }

// After all BEK bytes have been derived,
// test if this BEK can decrypt all messages.

10: if (BEK test is successful) return true;
11: }

// If the BEK was not derived, more messages are needed.
12: return false;

Fig. 2. The OSGP RC4 attack.

In Line 5, we calculate a candidate value for bek[r + 1]; candidate, because
only with a probability of 0.0053 will we get the correct bek[r + 1] value from
zt[r]. With a probability of 0.9947 we will get an incorrect value, but each of
the 255 incorrect values has only a probability of 0.0039, such that the correct
bek[r + 1] value will eventually emerge as the most frequently occurring value
after enough messages.
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The formula for calculating the candidate for bek[r+ 1] is derived as follows
(all arithmetic operations are mod 256):

zt[r] = r + 1−Xt(r + 1)

⇒zt[r] = r + 1−
r+1∑
i=0

(kt[i] + i)

⇒zt[r] = r + 1−
(

r∑
i=0

(kt[i] + i) + kt[r + 1] + r + 1
)

⇒zt[r] = −
r∑
i=0

(kt[i] + i)− kt[r + 1]

⇒kt[r + 1] = −zt[r]−
r∑
i=0

(kt[i] + i)

For 0 ≤ r ≤ 6 we get bek[k+ 1] = kt[r+ 1]⊕ dt[r+ 1]. For 7 ≤ r ≤ 14 we get
bek[k + 1] = kt[r + 1] (Lines 5 and 6).

It is important when calculating bek[r + 1] with the above formula, that
the sum

∑r
i=0(kt[i] + i) = Xt(r) is not tried to be extracted directly from the

previous cipher stream byte zt[r− 1]. This could occur to someone, as the most
probable value of zt[r − 1] is r −Xt(r). However, this would only work, if both
zt[r − 1] and zt[r] would hold their most probable values for one and the same
message, which is utmost unlikely (P = 0.00532). Instead we have to calculate∑r
i=0(kt[i] + i) from the BEK bytes bek[0], . . . , bek[r], we have derived in the

previous iterations.
In Line 6, we increment the counter variable for the derived bek[r + 1] value

by one, before proceeding to the next message. After all messages have been
processed (Line 8), we regard the bek[r + 1] value with most occurrences as
the correct value and store it permanently in bek[r + 1], before proceeding to
derive the next BEK byte bek[r+2] by examining z[r+1] of all messages’ cipher
streams. If the number of messages was enough, we have all BEK bytes by the
end of the algorithm.

As the BEK is the same for all devices in an OSGP smart grid, it can – once
obtained – be used to decrypt all future intercepted messages, regardless of who
is the sender or recipient. As the message digest does not rely on the BEK but on
the OMAK, the attacker would at least not be able to forge messages. But being
able to monitor all data traffic poses a severe threat to data confidentiality and
privacy. The attacker could for example monitor the electricity consumption of
a household, granting him detailed insights into the inhabitants’ ways of living
[16,17].

Treatment of special keys For about 15% of all possible BEKs, the attack
needs to be further modified. These are BEKs of the kind that a jω at KSA
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round ω (with ω ≥ 8) is the same as a previous jα at round α (with ω > α ≥ 7).
In this case the desired X(α) value is swapped away from S[α] regardless of the
used IV that only affects the first 8 key bytes. This BEK property is formalised
as: there exists a sequence of BEK bytes

bek[x+ 1], bek[x+ 2], . . . , bek[y − 1], bek[y]

such that
y∑

i=x+1
(i+ bek[i]) = 0 mod 256

Because in the i’th KSA round, j is incremented by S[i] + bek[i], with S[i] = i
in most cases.

This is best brought to intuition by means of an example. For brevity, all
numbers are written in hexadecimal format and all arithmetic operations are
mod 256. Consider the following BEK with bek[0] being the leftmost byte:

E5, A2, 8D, 25, DD, 99, A1, 03, F8, F7, 92, 5A, 97, 74, 8D, 4F

The first 8 bytes will be XOR’ed with the digest of each message, so they will
always be different. The last 8 bytes – here F8, F7, 92, . . . , 4F – however, will
be the same for every message. For simplicity let us neglect the digest and see
what happens during KSA.

S is initialised as:

S−1 = (00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, . . .)

In KSA round 0, we have i0 = 00 and j0 = j−1 +S−1[i0]+bek[0] = 00+00+E5.
Hence, S[00] is swapped with S[E5], leading to:

S0 = (E5, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, . . .)

In the next round we have i1 = 01 and j1 = j0+S0[i1]+bek[1] = E5+01+A2 = 88
leading to:

S1 = (E5,88, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, . . .)

Let us skip to the end of round 6, at which we have

S6 = (E5,88,17,3F,20,BE,65, 07, 08, 09, 0A, 0B, . . .)

In round 7 we have i7 = 07 and j7 = j6 + S6[i7] + bek[7] = 65 + 07 + 03 = 6F ,
such that S[07] and S[6F ] are swapped:

S7 = (E5,88,17,3F,20,BE,65,6F, 08, 09, 0A, 0B, . . .)

Now consider round 8. We have i8 = 08 and j8 = j7 + S7[i8] + bek[8] =
6F + 08 + F8 = 6F . Because of 08 + F8 = 00 (mod 256) we get the same value
for j8 as we got for j7, such that S[08] and S[6F ] are swapped:

S9 = (E5,88,17,3F,20,BE,65,6F,07, 09, 0A, 0B, . . .)
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Instead of S[r − 1] = jr = X(r − 1), as it was the case for all previous KSA
rounds, we now have S[08] = 07. As bek[8] is not subject to the XOR with the
IV , we will get j8 = j7 for every message and hence S[08] = 07 during the
PRGA for almost every message.

This makes it impossible that the actually desired value X(8) = 6F can be
extracted thanks to the Jenkins correlation. To overcome this, we have to modify
our attack by the following rule: Let v be the putative X(r + 1) value with
most occurrences derived from cipher stream byte z[r] (7 ≤ r ≤ 14). Whenever
v < r + 1, we use X(v) instead of X(r + 1).

In our example, we would see that the most occurring value derived from z[7]
is 07, which is smaller than 8. We thus use X(07) = 6F , that we have previously
obtained from z[6], as value for X(08) as well.

Continuing our example, we see that this method also works if there are more
such special key bytes. In round 9 we get i9 = 09 and j9 = j8 +S8[i9] + bek[9] =
6F + 09 + F7 = 6F . Because of 09 + F7 = 00 (mod 256) we get the same value
for j9 as we got for j8 and j7. Thus, S8[09] = 09 and S8[6F ] = 08 are swapped,
leading to:

S9 = (E5,88,17,3F,20,BE,65,6F,07,08, 0A, 0B, . . .)

Following the new rule, we see that the most occurring value derived from z[8]
is 08, which is smaller than 9. We thus use X(8) = 6F to derive bek[9].

So far, the sequence of BEK bytes fulfilling the formula above only consisted
of two bytes each. Let us look at a variation of our example, in which the sequence
consists of more bytes. Let us therefore assume bek[8] = FF and bek[9] = F0:

E5, A2, 8D, 25, DD, 99, A1, 03, FF, F0, 92, 5A, 97, 74, 8D, 4F

Up to KSA round 7, it is the same as before:

S7 = (E5,88,17,3F,20,BE,65,6F, 08, 09, 0A, 0B, . . .)

Now, in round 8 we get i8 = 08 and j8 = j7+S7[i8]+bek[8] = 6F+08+FF = 76,
such that S[08] and S[76] are swapped, leading to:

S8 = (E5,88,17,3F,20,BE,65,6F,76, 09, 0A, 0B, . . .)

This is not yet problematic, but when we continue to round 9 we get i9 = 09 and
j9 = j8 + S8[i9] + bek[9] = 76 + 09 +F0 = 6F . Because of 08 +FF + 09 +F0 =
00 (mod 256) we get the same value for j9 as we got for j7. Thus, S8[09] = 09
and S8[6F ] = 07 are swapped, leading to:

S9 = (E5,88,17,3F,20,BE,65,6F,76,07, 0A, 0B, . . .)

But this is recognised by the new rule as well, such that X(7) = 6F is used as
X(9) to derive bek[9].
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5 Experimental results

We evaluated the attack by simulating messages as they are exchanged in an
OSGP smart grid. First, a random 16-byte BEK is created. Then, the simulator
starts generating OSGP messages, encrypting them with this BEK and analyses
the resulting cipher stream until the BEK is successfully derived. Then, a new
random BEK is created and the procedure starts anew.

The simulated OSGP message type was a partial table read request and the
corresponding response, defined in ETSI GS OSG 001 [2]. As OSGP treats a
message response (sent back from the device) as part of the same RC4 cipher
stream as the request (sent from the DC), the request and the response are
considered as one message from the attacker’s perspective. The messages were
thus of the following form:

– Request message ID (1 byte): 0x3F
The value 0x3F indicates that this request is a partial table read and is hence
the same for all messages.

– Table ID (2 bytes): 0x00, 0x34
Reading from OSGP basic table 52 (device clock).

– Table offset (3 bytes): 0x00, 0x00, 0x00
Tables can be read from a certain offset on.
Here: 0 means no offset.

– Count (2 bytes): 0x00, 0x06
Here: read the next 6 bytes after offset.

– Sequence number (4 random bytes)
Each OSGP message has a unique sequence number consisting of 4 bytes. In
a real OSGP grid, devices accept only sequence numbers corresponding to
their respective internal states. We gave each simulated message a random
sequence number, which is hence the only aspect by which the message
requests differed.

– Response answer (1 byte): 0x00
0x00 stands for OK.

– Count (2 bytes): 0x00, 0x06
Always the same as in request.

– Data (6 random bytes)
The data has the amount of bytes requested by count. In this partial table
read, data would contain the device clock. We gave each simulated message
6 random bytes.

Notice, that in order to mount the attack on the 16 byte BEK, only the first
15 cipher stream bytes are needed. Hence, the last six message bytes are not
even relevant for the experiment.

We simulated the attacks on 145,000 random BEKs, each of which could be
derived with less than 415,000 messages. Figure 3 shows the results in form of
a histogram. Each column represents the percentage of simulated BEKs that
could be derived with the respective number of messages. The leftmost column
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Fig. 3. Probability to derive a random BEK (and the percentage of BEKs derived)
with a certain amount of messages.

representing 30,000 messages is almost not visible, as only 24 BEKs could be
derived with 30,000 messages. The mean value of required messages was 90,773.
Only 5 BEKs needed more than 300,000 messages. Figure 3 also shows the
probability for successfully deriving a random BEK with a certain amount of
messages. 20% of the 145,000 simulated BEKs could be derived with 65,000 or
less messages. Hence, the probability of deriving a random BEK with 65,000
messages is 0.2. For 90,000 messages, the probability is 0.6, for 125,000 messages
0.9, for 180,000 messages 0.99 and for 235,000 messages 0.999.

The results showed that about 15% of the created random BEKs had special
key bytes as described in Section 4.2. They were successfully derived at the same
rate as BEKs without special key bytes.

The runtime to derive a BEK was proportional to the number of processed
messages. On a single 3.40 GHz Intel i7-4770 core, we measured about 0.023
milliseconds CPU-time per message, which included the creation of the message,
its digest and the RC4 cipher stream. The processing of 90,000 messages could
thus be simulated in 2 seconds. As we did not simulate the brute-forcing of bek[0]
and considered it known, we have to multiply the required time by 128 for the
average case, which is still less than 5 minutes.

6 Hampering the attack

To hamper the presented attack without altering the specification of ETSI GS
OSG 001 [2], the following makeshift measures can be suggested until an update
of OSGP will have taken place.

The attack can be hampered by avoiding data traffic. If one cipher stream
can be captured per second, it would only take 25 hours to accumulate 90,000
messages. If, on the other hand, only one cipher stream byte per hour can be
captured, the accumulation of 90,000 messages would take over 10 years. Notice,
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that an attacker cannot actively evoke new message from an OSGP device. Only
authenticated messages from the DC lead to a device responding. Replayed mes-
sages are only answered with an unencrypted “invalid sequence number” mes-
sage. The operator of an OSGP smart grid should make an estimate of how
many cipher streams an attacker could obtain within a given time. The domain-
wide OMAK and with it the BEK should be changed in time intervals shorter
than that. It is the operator’s decision, how many collected cipher streams are
tolerable based on the probabilities shown in Figure 3.

To avoid the guessing of message plain text bytes, the operator could add
randomness to the times at which regular requests are transmitted and inter-
sperse them with dummy requests reading from random tables with random
offsets. Furthermore, OSGP devices should be designed such that it is not just
impossible to extract the OMAK or BEK but also the cipher stream bytes.

7 Conclusion

We presented an approach exploiting known RC4 weaknesses to derive the se-
cret BEK key used in the open smart grid protocol (OSGP), which breaks its
data confidentiality and thus privacy of the participants. By obtaining the BEK,
which is by design identical for all OSGP devices within a network, the complete
communication between the data concentrator and the devices can be decrypted.
The attack exploits different known biases of the RC4 variant used in OSGP.
A novel method to handle special key swaps during the RC4 key scheduling
algorithm was presented. Experiments showed that every possible BEK can be
derived requiring on average 90,000 cipher streams with negligible CPU run
times. It shows that the security in a widely applied protocol (approx. 4 million
deployed devices) has noteworthy security issues.
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A RC4

RC4 is one of the most widely used software stream ciphers. Because of its
structural simplicity and computational efficiency it has been applied in many
industrial standards such as Transport Layer Security (TLS) and its predecessor
Secure Sockets Layer (SSL) or Wi-Fi Protected Access (WPA) and its predeces-
sor Wired Equivalent Privacy (WEP) [9].

Originally, RC4 was invented by Ron Rivest for RSA Data Security in 1987
where it was handled as a trade secret until its source code was anonymously
posted to the electronic mailing list Cypherpunks in 1994. Since then, it has
been thoroughly examined within the cryptography research community and
several weaknesses could be identified, e.g. [7,9,21]. In spite of these weaknesses,
however, it has so far been possible to compensate them by changing the RC4
implementation in appropriate ways. OSGP uses its own version of RC4 hoping
to avoid known weaknesses, but as this work shows there are weaknesses of RC4
to be exploited in the OSGP implementation as well. In the following we describe
how RC4 works.

A.1 Stream cipher encryption and decryption

RC4

pseudo-random cipher stream z
(potentially infinite)

z[0] z[1] z[2] z[n-1]... ...

m[0] m[1] m[2] m[n-1]...

plaintext message m (n bytes)

k[0] k[1] k[2] k[15]...

secret key k (here 16 bytes)

e[0] e[1] e[2] e[n-1]...

encrypted message e (n bytes)
RC4
input

RC4
output

Encryption:
bit-wise XOR
of z and m.

...

z[0] z[1] z[2] z[n-1]... ...

...

Decryption:
bit-wise XOR of z and e.

m[0] m[1] m[2] m[n-1]...

Fig. 4. Encryption and decryption with stream ciphers.

Figure 4 visualises the encryption and decryption flow of stream ciphers in
general. Encryption is done by a bit-wise XOR between the plain text message
m and the cipher stream z. z is generated depending on the secret key k. The
RC4-specific generation of z from k is discussed in Section A.2.

Due to the pseudo-random nature of z, it is not possible to reconstruct k
from z except by trying all possible values of k (brute force attack), which is
not practical for a sufficiently large k. In most RC4 implementations (and so in
OSGP) k has 128 bits (16 bytes) and trying all 2128 possible values for 16 bytes
would last over 2.5 · 1025 years on a single 3.40 GHz Intel i7-4770 processor.
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We address the i’th byte of k as k[i], just as z[i] and m[i] address the i’th
bytes of the cipher stream z and the plain text message m. Thus, the i’th byte
of the encrypted message e becomes e[i] = m[i] ⊕ z[i]. An XOR between two
bytes means that a bit-wise XOR is done between their 8 bits; e.g. 00110101⊕
10010110 = 10100011.

If a potential attacker intercepts only e,m cannot be derived without knowing
z. The legitimate recipient of e, however, knows k and can thus generate z to
decrypt e by performing the XOR operation z⊕ e = m. This is possible because
of x⊕x = 0 and 0⊕x = x for any x ∈ {0, 1}; hence z⊕e = z⊕z⊕m = 0⊕m = m.

If two messages m1 and m2 were encrypted with the same k and hence the
same z, an attacker could perform the XOR operation e1⊕e2 = m1⊕z⊕m2⊕z =
m1⊕m2⊕z⊕z = m1⊕m2. From knowing only m1⊕m2 it is generally not possible
to derive m1 or m2. However, it is possible to know which bits are equal and
which are inverse between m1 and m2, allowing for deductions of the message
content. If one messages contains redundancy or otherwise predictable bits, it is
thus also possible to obtain knowledge about the other message. It is therefore
imperative to never reuse the same key. In most RC4 implementations this is
achieved by combining the secret key with a fresh random bit string (initialisation
vector) for each message. This initialisation vector is sent unencrypted with the
encrypted message, such that the receiver can again combine it with the secret
key to decrypt the message. k and z are thus different for each message.

A.2 RC4 cipher stream generation

In this section we describe how RC4 generates the cipher stream z from k fol-
lowing the notation of [9]. The key length is variable. For sake of simplicity
we assume k to consist of 16 bytes, which is also the case for the OSGP RC4
implementation. In addition to the key k, RC4 has three internal data struc-
tures. The first is an array S of 256 state variables, each consisting of one byte:
S = (S[0], S[1], S[2], . . . , S[255]). The other two are the pointer variables i and
j, also consisting of one byte each. Initially, these variables are set to i = j = 0
and S[x] = x for 0 ≤ x ≤ 255, before RC4 starts its operation divided into two
phases: the key scheduling algorithm (KSA) and the pseudo-random generation
algorithm (PRGA).

Both KSA and PRGA have several rounds. The KSA has 256 rounds in
which the initial values of S are shuffled depending on k. Taking this shuffled S
as input, PRGA then produces one cipher stream byte z[r] per round r and can
potentially run ad infinitum. In this paper, it will always be clear by the context
whether we are talking about KSA or PRGA. We therefore denote the values of
S[x], i and j at round r of either KSA or PRGA as Sr[x], ir, jr.

Figure 5 shows the pseudo code of KSA. Lines 1 and 2 initialise the variables
as stated above. In Lines 4 and 5, i and j are updated. i is set to r, such that
after all rounds each S[i] has been subject to the swap with S[j] (Lines 6 and 7).
Figure 6 shows the pseudo code of PRGA. Similar to KSA, i and j are updated
in each round (Lines 3 and 4) and a swap of S[i] and S[j] takes place (Lines 5
and 6), before one byte of the cipher stream is generated per round.
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// Input: secret key k.
// Output: Shuffled S depending on k.

// Initialise variables:
1: S−1 = (0, 1, 2, . . . , 255);
2: i−1 = j−1 = 0;

// Shuffle S:
3: for (r = 0; r ≤ 255; r++) {
4: ir = r;

// j += S[i] + k[i%16] % 256;

5: jr = jr−1 + Sr−1[ir] + k[ir%16] % 256;
// Swap S[i] and S[j].

6: Sr[jr] = Sr−1[ir];
7: Sr[ir] = Sr−1[jr];
8: }

Fig. 5. The RC4 key scheduling algorithm (KSA).

// Input: S−1 generated by KSA.
// Output: cipher stream z, one byte per round

// Initialise variables:
1: i−1 = j−1 = 0;

// Generate cipher stream z:
2: for (r = 0; ; r++) {

// i++;
3: ir = r % 256;

// j += S[i] % 256;
4: jr = jr−1 + Sr−1[ir] % 256;

// Swap S[j] and S[i].

5: Sr[jr] = Sr−1[ir];
6: Sr[ir] = Sr−1[jr];

// Output of cipher stream byte.
// z[r − 1] = S[S[i] + S[j] % 256]

7: z[r] = Sr[Sr[ir] + Sr[jr] % 256];
8: }

Fig. 6. The RC4 pseudo-random generation algorithm (PRGA).
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