Beaver: A Decentralized Anonymous Marketplace
with Secure Reputation

Kyle Soska*
CMU
ksoska@cmu.edu

Albert Kwon™
MIT
kwonal @mit.edu

Abstract—Amid growing concerns of government surveillance
and corporate data sharing, web users increasingly demand tools
for preserving their privacy without placing trust in a third
party. Unfortunately, existing centralized reputation systems need
to be trusted for either privacy, correctness, or both. Existing
decentralized approaches, on the other hand, are either vulner-
able to Sybil attacks, present inconsistent views of the network,
or leak critical information about the actions of their users.
In this paper, we present Beaver, a decentralized anonymous
marketplace that is resistant against Sybil attacks on vendor
reputation, while preserving user anonymity. Beaver allows its
participants to enjoy open enrollment, and provides every user
with the same global view of the reputation of other users through
public ledger based consensus. Various cryptographic primitives
allow Beaver to offer high levels of usability and practicality,
along with strong anonymity guarantees. Operations such as
creating a listing, purchasing an item, and leaving feedback take
just milliseconds to compute and require generating just a few
kilobytes of state while often constructing convenient anonymity
sets of hundreds of transactions.

I. INTRODUCTION

Reputation systems play a crucial role in establishing
trust in online communities and drive many modern online
businesses, ranging from auction markets to transportation
companies. A typical reputation system features a collection of
actors executing a protocol that allows users to leave reviews
for their interactions with each other. Reviews, or feedback,
usually consist of numeric ratings (e.g., 1-5 stars) and/or a
short message. Feedback accumulates over time, and can be
queried by other users in the system.

Many of the best known electronic commerce businesses
(e.g., eBay, Amazon Marketplace, Uber, Airbnb, ...) operate
as centralized marketplaces. Centralized marketplaces provide
extremely weak privacy guarantees: Users need to trust the
marketplace operator to maintain the correctness of the rep-
utation state, and the confidentiality of sensitive information
such as payment history (i.e., that it will not leak it or sell it to
third-parties). Surveys of user sentiment indicate an increasing
reluctance to putting such blind faith in commercial entities
whose privacy policies have shown to be questionable [25].

An interesting new development in the realm of online
reputation is that of online anonymous marketplaces [15],
[41], frequently referred to as “darknet marketplaces.” These
marketplaces are built on the idea of anonymous commerce—
they attempt to provide strong anonymity guarantees to buy-
ers, sellers, and even marketplace operators. While online
anonymous marketplaces have so far been primarily used for
contraband and illicit items, a far more interesting point is that

*Joint first authors.

Srinivas Devadas
MIT
devadas @mit.edu

Nicolas Christin
CMU
nicolasc@cmu.edu

they strive to avail reputation systems with strong privacy and
anonymity guarantees, and have proven to be economically
viable. To achieve the desired anonymity properties, online
anonymous marketplaces build on a combination of network-
level anonymity—often running as Tor hidden services [20]
or i2p “eep sites” [3]—and payment-level anonymity, using
pseudonymous digital payment systems such as Bitcoin [36].

However, similar to “traditional” online marketplaces such
as eBay, an online anonymous marketplace remains a cen-
tralized service. It thus needs to be trusted for availability as
customers cannot query item listings or reviews if it is not
online; it needs to be trusted for correctness, i.e., not inject fake
reviews or suppress real ones; and it needs to be trusted not to
link transaction history with private identifiers (e.g., shipping
addresses communicated to vendors). Takedowns—e.g., of the
Silk Road [15] or Silk Road 2.0 marketplaces—and the associ-
ated arrests of some of their patrons have evidenced that such
centralized marketplaces often fail to provide the level of trust
their users expect. Besides takedowns, “exit scams” frequently
occur [41], where a marketplace unexpectedly closes, absconds
with escrowed money—collected from customers, but not yet
paid to vendors—and destroys all reputation information in
the process. These shortcomings motivate the search for a
solution that can provide strong anonymity without trusting
a third party: in other words, a decentralized anonymous
marketplace. The recently proposed OpenBazaar prototype [4]
is one such distributed effort, but it currently does not provide
strong anonymity properties. For instance, OpenBazaar relies
on the UDP protocol and does not readily support network-
level anonymization techniques such as Tor.

More fundamentally, decentralizing reputation systems has
proven to be a challenging task. Early works (e.g., [17], [29])
present peer-to-peer/sensor network algorithms in which a
node queries its peers to obtain the reputation for another node
in the network. These approaches come with the drawback
that each node’s view of the network is biased by that of
its peers. Another important challenge in decentralizing any
reputation system, especially a system that protects users’
anonymity, comes from the threat of Sybil attacks [21]. In a
Sybil attack, an adversary creates a large number of identities
in the network (customer accounts, nodes, etc.) and uses them
to either inflate her own reputation or damage that of others.
Intuitively, there seems to be a fundamental tension between
the ability to identify a Sybil attack and the requirement that
customers remain anonymous: How can one be sure feedback
is legitimate absent information about its source?

In this paper, we introduce a formal model for a decen-
tralized anonymous marketplace (DAM), and design Beaver, a

Sybil-resistant DAM. Beaver is designed with e-commerce in
mind, and consists of three types of participants: customers,
vendors, and network miners. Unlike most existing approaches,
participation in Beaver is free, open, and does not use a trusted
third party. From the perspective of customers and vendors,
Beaver behaves nearly identically to existing e-commerce sys-
tems such as Amazon Marketplace or eBay. It allows vendors
to establish reputation by selling items (i.e., goods or services)
to customers while ensuring that vendor reputation has not
been adversely modified either positively or negatively. Beaver
simultaneously provides strong anonymity to its customers, in
that, unless the customer explicitly provides this information,
no adversary can learn which purchases a customer has made
or associate reviews with particular transactions.

Beaver builds on anonymous payment systems (e.g., Zero-
cash [6]), public ledger-based consensus protocols (e.g., Bit-
coin “blockchain” [11]), and various cryptographic primitives
to present a globally consistent view of the network to all of its
users without sacrificing anonymity. Thanks to this consensus
construction, Beaver is also able to avoid attacks where a few
customers are targeted, and convinced of incorrect statements
about another user’s reputation.

All interactions in Beaver are performed via the consensus
protocol. Concretely, item listings created by vendors as well
as payments made or reviews left by a customer to a vendor
are publicly available as part of the consensus. Customers can
then freely and accurately enumerate all listings and feedback
in the system, while deriving strong guarantees about the cred-
ibility of these reviews. Customers can also purchase products
and leave their own reviews without fearing censorship or
retribution. The major innovation in Beaver is that, although
transactions and reviews are made public, the relationship
between the transactions and reviews are kept private and the
customers in Beaver always remain anonymous.

One of the key properties of Beaver is the mitigation of
Sybil attacks. Traditional defenses against Sybil attacks rely on
knowing the users’ identities or their interaction history [35].
When the participants and their interactions are anonymous,
as is the case with DAMs, such defenses cannot be deployed.
Instead, we anonymously link reviews to transactions, by
using non-interactive zero-knowledge proofs [10] and linkable
ring signatures [31], which guarantee that there is a valid
transaction for every review, and institute a small cost for
each transaction. As a consequence, we can better understand
and compute a notion we call credibility, corresponding to
the lower bound on the cost to an adversary for generating
feedback, and thus the trustworthiness of the current state of
reputation. While Beaver is not Sybil-proof, we claim that it is
Sybil-resistant under modest assumptions about the economic
rationality of its participants.

We also evaluate Beaver by (1) measuring microbench-
marks on cryptographic primitives and common operations
such as creating an item listing and generating and verifying an
anonymous review, and (2) simulating Beaver operations using
real online anonymous marketplace data gathered by Soska
and Christin [41]. Our evaluation shows that most operations
in Beaver take less than a second with only a few hundred
bytes of space overhead to the ledger.

Shortly stated, we make the following contributions in
this paper: (1) we formalize the requirements for a decentral-

ized anonymous marketplace (DAM), (2) we design a Sybil-
resistant DAM, Beaver, which makes use of novel applications
of consensus, anonymous payments, zero-knowledge, and link-
able ring signatures, (3) we analyze the security properties of
Beaver. and (4) evaluate Beaver on a real marketplace data.

In §II, we discuss background into anonymous reputation
systems and Sybil attacks on reputation systems. In §III, we
formalize a model for decentralized anonymous marketplaces
(DAM). We then introduce, in §IV, the high-level design
of Beaver and some preliminaries for understanding the full
system design. We delve in the details of Beaver in §V, perform
a security analysis in §VI and a performance evaluation in
§VII. Finally, we discuss some of our design choices in §VIII,
related work in §IX, and conclude in §X.

II. BACKGROUND

Reputation systems are used to collect, maintain, and
distribute the performance scores of their users which can
then be queried by other participants in the system. These
scores can be used as a basis for establishing initial trust
among users. Reputation plays an important role in online
communities, especially in the context of e-commerce. In this
setting, a customer assumes risk both when ordering goods or
services whose quality she cannot verify ahead of time, and
when purchasing from a vendor that she has no reason to trust.

A. Anonymous reputation systems

Customers leaving traceable public reviews leads to nega-
tive consequences; based on review history, adversaries (dis-
honest vendors, external observers, ...) can learn and use a
considerable amount of potentially private information about
the customers. For instance, Resnick and Zeckhauser [38]
showed that vendors on eBay discriminate customers based
on their review history. Moreover, if a vendor can associate
reviews with transactions (which are often tied to sensitive
information such as shipping addresses), then she may try to
harm the customer in the future. This type of behavior has been
observed on online anonymous marketplaces (see, e.g., [28])
and encourages customers to misreport their experiences in or-
der to avoid harassment. To establish a fair market and a useful
reviewing system, it is essential to ensure customers cannot be
coerced into leaving inaccurate reviews. To achieve coercion
resistance, we design a system where the reviews cannot be
linked to particular transactions, and thus prevent adversaries
from associating reviews with individual customers.

B. Decentralized reputation system

There have already been multiple proposals for anony-
mous reputation systems in the literature. While these systems
provide anonymous reputation within their threat model, they
rely on either a trusted third party [5], [7], [8], [19], [26],
or require a trusted node among a set of powerful servers
(“anytrust” model, [50]). Unfortunately, having a centralized
network of a small number of nodes, even in the anytrust
model, is undesirable as the adversary can perform targeted
attacks. Moreover, in these systems, user enrollment is often
expensive, as (semi-)centralized systems require the user or the
trustees to perform an expensive operation to incorporate new
members into the system.

On the contrary, modern cryptocurrencies like Bitcoin [36]
support a fully decentralized model. That is, users are allowed

to join and leave the network at any time, and the security
is guaranteed as long as some fraction of the network (rather
than a small set of trustees) is honest. This makes it signif-
icantly harder for adversaries, especially those with limited
resources, to undermine the security of the system. While
Bitcoin and related cryptocurrencies do not support reputation
or marketplace-specific features, we draw inspiration from the
way that they handle decentralization.

C. Sybil attacks

Generally speaking, a Sybil attack [21] is an attack on
distributed systems, where many nodes controlled by a few real
entities cause the system to misbehave. In reputation systems,
this attack concretely means that an adversary controls a
large number of nodes and uses them to (1) generate positive
reviews for herself to boost her reputation, and (2) leave
negative reviews for others (e.g., her competition) to lower
their reputation. Both scenarios are common in systems such as
Yelp where users are free to review businesses without proving
that they have ever been a customer. Mayzlin et al. [32] showed
that allowing users to leave reviews without verifying that
they have purchased the item generally leads to misbehavior.
Similar attacks can also be found in systems like eBay or Yelp,
where malicious vendors purposefully increase their ratings via
numerous fake transactions with positive reviews or decrease
other vendors’ ratings.

Sybil attacks in practice are mitigated by having (1) a
central authority (e.g., certificate authorities, Amazon, eBay,
...) verify the identities of the users making it harder to sign
up (e.g., require a phone number for account creation), (2)
making sure a review came from a valid transaction, and/or
(3) analyzing behavior [47] to identify malicious users. Unfor-
tunately, monitoring and limiting account creation contradicts
our goals of open enrollment without a trusted third-party, and
associating reviews with transactions or tracking behavior is
at odds with providing customer anonymity.

A general defense against Sybil attacks that does not
require a central authority is to increase the cost of adversarial
actions in the system, thereby discouraging an economically
rational adversary. This is commonly done via expensive
operations such as proof-of-work [27], CAPTCHAs [45], or
by adding a fee to reputation-generating actions. In this paper,
we show that our system can charge fees (in a way that is par-
ticularly natural for marketplaces, and in many cases cheaper
than existing marketplaces) to deter Sybil attacks, without
sacrificing our goals of anonymity and decentralization.

III. DECENTRALIZED ANONYMOUS MARKETPLACES

In this section, we present definitions and goals for a
decentralized anonymous marketplace (DAM).

A. Definitions and notations

1) DAM Components: A DAM consists of different compo-
nents that interact with each other through transactions, which
are described here.

Customers. Customers in a DAM make purchases from ven-
dors, and may leave reviews for their purchases.Let C be the
set of honest customers {c}, and C be the set of malicious
customers {¢}.

Vendors. Vendors sell items, which can be any sort of goods
or services of monetary value. Similar to customers, let }V be

the set of honest vendors {v}, and V be the set of malicious
vendors {7}.

Items. Items are any goods or services sold by a vendor in a
DAM. Let 7 be the set of all available items, and let 7+ € 7 be
an item. Each vendor v may control several items. Let Z, be
the set of item listings v controls. Let Z. be the set of

Reviews. Reviews r are left by customers for an item. Let R
be the set of all reviews in the system and R (¢ ;) the set of
all reviews left by customers C' C C for item listing . R(c,.
denotes the set of all reviews left by c for all items, and R . ;)
denotes the set of all reviews left by all customers for item <.

Ledger. The ledger is a record of all transactions that have
happened in the network, denoted £. Our model merely
assumes the existence of the ledger L, but is agnostic with
respect to how L is instantianted. In our implementation, we
will assume £ is a distributed record similar to Bitcoin’s
“blockchain;” and that £ also includes any public parameters
of the DAM.

2) Basic transactions: Customers and vendors in a DAM
interact with each other via transactions. At minimum, a DAM
needs to support (1) registration, (2) payment, and (3) review
transactions, which eventually become part of the ledger L.

Registration transaction. This transaction is used by vendors
to add an item to the list of available items:

e INPUTS:
o Vendor’s payment information
o Item description

e OUTPUTS:
o Registration transaction rt

Each rt contains enough information to allow customers to
buy the item, and the set of all registration transactions should
be isomorphic to Z.

Payment transaction. This transaction moves funds from a
customer to a vendor. A payment in a DAM is specified for
the purchase of a particular item:

e INPUTS:
o Registration transaction rt
o Payment in currency

e OUTPUTS:
o Payment transaction p

We assume that registration transaction rt contains all the
information necessary to make a payment. Let P be the set
of all payment transactions in the ledger, and P ;) be the
set of all transactions for item ¢ by customers C' C C. p € P
indicates a particular transaction, and p,. is a payment left by
customer c.

Review transaction. A customer generates this transaction
when she wants to leave a review for an item. Because reviews
are exclusively generated by review transactions, we use the
two terms interchangeably. Each review must be associated
with a valid payment transaction.
e INPUTS:
o Payment transaction p
o Review (numeric rating, textual feedback, etc.)
e OUTPUTS:
o Review transaction r

rp € R indicates a particular review associated with p.

3) Operations on the ledger: Any customers (both honest
and adversarial) can interact with the ledger (and thus the
marketplace) by using the following functions.

Add transaction T. T is used to record a transaction t to a
ledger and takes in as arguments a transaction t and the current
state of ledger £, and outputs a bit b indicating if the operation
succeeded and a new ledger state £'; £ includes t if b = 1,
and £’ = L if b= 0.

T(t, £) — (b, £)).

Enumerate ledger ET. ET is used to enumerate certain entries
on the ledger. Apart from the ledger, ET takes in the type of
transactions to enumerate and 7, a tag (which may be 1) that
guide the enumeration and outputs a set S, a set of transactions
of type TYPE.

ET(TYPE, T, L) — S,

ET must support at least enumeration of types REGISTRATION
and REVIEW: the first to get a list of available items for
purchase, and the second to get a reputation for the item
listing. For type REVIEW, 7 is an item listing ¢+ for which
the corresponding reviews are to be enumerated. For type
REGISTRATION, 7 is an associated keyword.

B. DAM Properties

A DAM must satisfy the following properties for function-
ality and security. We use A to denote the security parameter.
All properties are defined with respect to a probabilistic
polynomial time (PPT) adversary.

P1. Correctness: Any customer ¢ who performs a correct
payment transaction p. ;) for an item listing ¢ must be able to
leave a review for item ¢. This property ensures no customer
is tricked into paying a vendor without the ability to review
her experience. We cannot in general promise fair trade for
physical goods in a digital marketplace; we can only ensure
that there is a way to report such behavior. More precisely,

Pr[T(rp, £') — (L,L") | T(p,£) = (L,L')]=1.

P2. Soundness: A customer c¢ cannot leave a review for an
item ¢ without having performed a valid payment transaction
P(c,)> and is only able to leave exactly one review per
correctly formatted transaction. This ensures that customers
cannot falsely lower or boost reputation of vendors beyond
what their transactions entitle them to. More precisely,

Pr[T(rp, £) = (LL) | P& P] <negl(h) ,
and

T(p, L) — (1, L)

Pr T(ry, £/) — (1, £7)

T(r), £7) — (1, L")

P3. Item listing completeness: Any customer or vendor
should be able to learn Z efficiently. This implies that (1) it is
impossible to hide any item listings from c, and that (2) it is
impossible to convince c of the existence of invalid or fake item
listings. This property prevents, for instance, adversaries from
concealing item listings from competitors to unfairly attract
customers. In other words, an item listing is complete if

Z = ET(REGISTRATION, L, £).

< negl(A).

P4. Review completeness: Any customer or vendor should be
able to efficiently enumerate R(. ;) Vi. This implies that (1) it
is impossible to hide any reviews from any c and that (2) it
is impossible to convince c of the existence of invalid or fake
reviews. A review listing is complete if for all ¢ € Z,

R(.qi) = ET(REVIEW, 1, L).

P5. Review-payment unlinkability: This property is the
most important anonymity property of a DAM. Payments
(i.e., purchases) may entail sensitive information, such as the
address of the customer. The adversary learning the identity
of the reviewer and the content of the reviews, in particular
negative reviews, may have bad consequences for the customer.
A DAM should protect the customers by ensuring unlinkability
of reviews and payments.

Let P be the anonymity set of some users’ reviews; i.e.,
the set of payments that could have been used to generate the
reviews, where K = |P| is the size of the anonymity set. We
say that reviews and payments are unlinkable the adversary’s
advantage in winning the following game with a challenger
is negligible in the implicit security parameter for every item.
The adversary and the challenger are both given as inputs L,
P, and any other public parameters.

1) The adversary selects the subset of honest payments
Pronest C P, where h = |Ppopes| and h > 2.
2) The adversary generates the set of content for reviews
M ={m; : i€ [h]}.
3) The adversary sends Pponess and M to the challenger.
4) Given the two sets, the challenger:
a) arbitrarily assigns each m; € M to a payment p; €
Phonest’ and
b) generates a set of review transactions Ryonese given the
assignment, and sends Rponest to the adversary.

5) The adversary selects any two reviews ry and r; from
Ryponests and sends them to the challenger.

6) The challenger samples a bit b. If b = 0, then he sends p,
associated with ry to the adversary. Otherwise, he sends
p; associated with ry.

7) The adversary makes a guess b’ for value of b.

We define the advantage to be |Pr[t/ = b] — |. We allow
the adversary to choose the message content, since even if the
adversary knew the contents of the reviews, the relationship
between payments and reviews should remain unknown.

The anonymity set P of particular reviews will depend on
the concrete instance of DAM. The definition above guarantees
honest customers’ anonymity within the anonymity set. Thus,
the strength of anonymity in a DAM depends directly on the
size of Pponest, Which in practice is likely related to the size of
P. We would therefore like P to be equal to P(. ;) so that an
honest user’s review cannot be distinguished from any other
honest users’ reviews for an item. However, this may not
necessarily be the case, and we discuss some challenges in
ensuring P =P ;) in §VI and VIIL
P6. Payment-payment (review-review) unlinkability: An
adversary A given two payment (reviews) transactions gen-
erated by honest customers should be not able to tell if they
were left by the same customer or different customers. This
protects customers’ identities, in case collection of payments
or reviews reveal information about the customer. We say
that payments or reviews are unlinkable if the adversary’s

advantage in winning the following game with a challenger is
negligible in the implicit security parameter for each item. The
adversary and the challenger are both given as inputs £ and
any other public parameters. The challenger also knows which
customer generated which payment (or review). transaction.

1) The adversary selects the subset of honest payments
Phonest € P where h = [Ppopese| and 2 > 2, and sends
the set to the challenger.

2) Given the set of transactions, the challenger informs the
adversary which customers generated which transactions
not in Phonest-

3) The challenger figures out for each p € Ppopest, if there is
p’ in the set that is also generated by the same customer.
We call such p’ a parmer payment. The challenger tells
the adversary (1) if no payment has a partner payment,
and (2) if all payments are partners of each other.

4) The challenger randomly samples a bit b, and then sam-
ples two payments p,,p; in the following way.

e If b = 0 and not all payments are partners of each other,
then he samples a two random payments generated by
different customers.

e If b = 0 and all payments are partners of each other,
then he samples any two payments.

e If b = 1 and some payments have partner payments,
then he samples a two random partner payments.

e If b = 1 and there are no payments with partner
payments, then he samples any two random payments.

The challenger sends the two payments to the adversary.
5) The adversary makes a guess b’ for value of b.

We define the advantage to be | Pr[b’ = b] — £|. We can also
define a similar notion for reviews, where all the payments in
the above game is replaced with a review. Note that if either
conditions in Step 3 above is satisfied, then the challenger
will randomly sample p, and p; from exactly the same set of
payments, and thus the adversary can only randomly guess for
b. If neither conditions are satisfied, then the challenger will
sample from different sets of payments, and our goal would be
to show that even here the adversary has negligible advantage.

Finally, we have a few optional properties that, while not

crucial to functionality or security, benefit the customer and
improve usability.
O1. Open enrollment: Anyone should be able to efficiently
join or leave the marketplace as a customer or a vendor at
any time. This is a requirement for a truly decentralized mar-
ketplace, as there will not be a trusted third party monitoring
membership. This does not imply, for instance, that the vendor
can create an item listing 4 at no cost.

02. Selective review linkability: A customer c leaving a
review r should have the option to link r to a set of reviews
PR. she has left for other items, for any PR, C R, in
an efficient publicly verifiable way. This allows the customer
to build reputation as well, by showing good reviews she
has left previously; for instance, this enables the customer
to potentially create several groups of reviews and convince
others of her expertise in a category of products without
revealing her purchases in other categories. While reviews that
are publicly linked no longer satisfy P6, any other reviews must
still satisfy P6.

0O3. Review exculpability: Related to the previous property,
a customer c leaving a review r should not be able to link r

to any r' ¢ PR.. This means that a customer ¢ should not
be able to fraudulently benefit from others’ good reviews by
linking her review with other reviews which are not hers, or
to purposefully link another customer to set of bad reviews.

IV. SYSTEM OVERVIEW

Beaver uses existing blockchains and anonymous payment
schemes, such as Zerocash [0], to instantiate a DAM. We
present the high-level design (§IV-A), and threat model of
Beaver (§1V-B). We then discuss the idea of consensus (§1V-C),
and cryptographic primitives used in Beaver (§1V-D).

A. High-level design

There are three types of participants in Beaver: customers,
vendors, and a distributed network of miners, all of whom
enjoy open enrollment (i.e., there is no trusted third party
verifying identities). The distributed network of miners and the
public ledger ensure the customers’ ability to leave reviews for
their interactions with vendors, and allow anyone to enumerate
the feedback. Beaver does not impose specialization of roles:
customers and vendors could also be miners and vice-versa.

At a high level, Beaver works as follows. The vendors
first register themselves to the network (i.e., the ledger) by
publishing their pseudonyms. The customers are then able
to enumerate the list of vendors, and purchase a product by
making an anonymous transaction to the vendor. To leave a
review, the customer privately ties the review to the transaction
she made earlier, and submits the review to the network.
Beaver, by using cryptographic primitives we will discuss later,
guarantees that the clients cannot use the same transaction
twice to sign a review. Finally, anyone can check the ledger
to enumerate the reviews.

One key insight of Beaver is that with a public ledger, there
is irrefutable public evidence that a valid transaction has taken
place, and only the customer knows the secret information
regarding the origin the transaction (i.e., private key used to
sign a transaction). Using this, we can prevent (1) situations
where a customer could be tricked into sending money but be
unable to leave a review, and (2) anyone other than the real
customer from leaving the review.

B. Threat model and assumptions

Beaver relies on reaching global consensus on the ledger,
which contains important information such as payment trans-
actions and reviews. We therefore require the underlying
consensus protocol to be secure. In the case of a blockchain-
based ledger, similar to that used by Bitcoin [36], we require
at least that the adversary does not control a majority of the
computational resources in the network, and that the majority
of the computational resource behave rationally. Recent work
on “selfish mining,” however, has shown that a simple majority
may not be sufficient, and one may need as much as 75%
of the network to be honest [23]. In any case, our security
assumption will be identical to the security assumption for the
underlying public ledger scheme. Beaver also assumes that
the customers and vendors are rational, and do not behave
maliciously if the cost of doing so is significant. Apart from
these two assumptions, we do not limit the adversary’s power.
The adversary could, for instance, control many vendors and
customers that collude with each other, and try to boost her
own ratings or lower competitors’ reputations.

We also assume existence of an anonymous payment
system, which allows anonymous transactions and anonymous
transfers of coins back and forth from a regular cryptocurrency
like Bitcoin. Zerocash [6], for instance, is a candidate for
such currency. Finally, we assume that any communication,
especially that of the customers, is done via a truly anonymous
communication to ensure anonymity. In practice, the customers
may use Tor [20] or other stronger anonymous communication
systems [30], [48]. These systems may not behave as an ideal
anonymous communication in reality, but addressing this issue
is outside the scope of this paper.

C. Consensus

Beaver makes use of a consensus protocol for establishing
network-wide agreement about the state of the marketplace
such as item listings, reviews, and any other actions of its
members. In particular, we make extensive use of a public
ledger like that of Bitcoin [36], which uses proofs of work
to arrive at a global consensus. While there are several other
consensus protocols in the literature, the public ledgers in
Bitcoin make relatively small assumptions about the network,
making it a prime candidate for a decentralized application
like Beaver.

At the core of Bitcoin-style public ledger is a hash chain
that is constructed by a distributed set of miners. For a period
of time, miners listen to messages being broadcast in the
network by users, such as a transaction to transfer money from
one account to another. Miners then aggregate these messages
into a block along with the hash of the previous block and
enter it into the public ledger by performing a proof-of-work.
In Bitcoin, this proof-of-work is finding a nonce, such that the
hash H(BLOCK||NONCE) < « where « is a parameter that
determines the difficulty of the proof-of-work.

Miners in such systems are assumed to be economically
rational actors, and so they need to be incentivized to spend
their computational resources on mining blocks for the net-
work. To do this, Bitcoin has (1) a reward for mining a block,
and (2) a transaction fee. Beaver will rely on similar incentives
to encourage miners to behave honestly and maintain a healthy
ledger.

D. Cryptographic primitives

Beaver employs two cryptographic primitives, non-
interactive zero-knowledge proofs and linkable ring signatures,
which we describe next.

1) NIZK: A non-interactive zero-knowledge proof, or a
NIZK, of a statement is a zero-knowledge proof of the
statement that could be verified easily by anyone without
interaction with the party who generated the proof. In Beaver,
we use a subcategory of NIZK called non-interactive zero-
knowledge proof-of-knowledge (NIZKPoK), used to prove
knowledge of a secret value. NIZKPoKs are commonly used
to show that, given a blinded version of a secret value (e.g., a
commitment), whoever generated the proof knows the secret
value underlying the commitment. An example of NIZKPoK is
a zero-knowledge proof of possession of discrete logs: given
g® for a generator g of a group G in which discrete log is
hard, NIZKPoK can be used to prove knowledge of = without
revealing any information on x. This can be done by applying
the Fiat-Shamir heuristic [24] to a standard zero-knowledge
proof of discrete log [13].

2) Linkable ring signatures: Ring signatures (RSig), first
proposed by Rivest er al. [39], are cryptographic signatures
that guarantee anonymity of the signers. Specifically, a RSig
algorithm takes as input the private key of the signer, a set
of public keys, and a message, and generates a signature that
can be verified against the set of public keys without revealing
which key was used to sign the message.

Ring signatures unfortunately do not offer any form of
accountability, and there is no way to stop the signer from
signing multiple times even when it is not desirable. Linkable
ring signatures (LRSig, [31]), on the other hand, are account-
able variants of ring signatures: All signatures generated by the
same signer can be linked to each other, though the identity of
the signer is still hidden. LRSigs can be used to prevent signers
from signing multiple times, while preserving anonymity.

V. SYSTEM DESIGN

In this section, we describe the available operations in
Beaver and the typical workflow which is shown in Figure 1.
We define registration transactions (§V-A), special vendor
transactions (§V-B), payment transactions, (§V-C), and review
transactions (§V-D). In each section, we present the details of
the transactions and how the miners could verify them. All
transactions are signed with an unforgeable signature scheme
by the party generating the transaction, unless otherwise noted.

A. Registration

Similar to Bitcoin [36] and other cryptocurrencies, Beaver
does not require explicit registration for miners. This is also
true for customers in Beaver, who by our design choices
and the asymmetry of DAMs, do not need any publicity. In
some usage cases of a DAM, for example in the context of
Uber, where a driver (vendor) makes physical contact with
a customer (passenger), the vendor may wish to query the
reputation of passenger before agreeing to the transaction and
is discussed in §VIII.

A vendor, on the other hand, needs a public identity
(pseudonym) that others could refer to for purchases and
reviews. We make the following design choice in Beaver.
Instead of explicitly defining a concept of “vendor reputation”
per se, the reputation of a vendor v is bound to the reputation
(reviews) acquired for all the items in Z,, the vendor is selling.
So, items end up being the primary reputation vector—as we
will see later, vendors can link various items they sell which
each other to create a vendor profile.

A vendor registers an item 7 that she wants to sell by
generating a new, unique, public-private key pair (ipk,is;) in
the underlying payment system that will be used to receive
payments for this item. The vendor then covers an item
registration fee fr, by moving money into i,; and forms a
registration transaction

rt = (REGISTRATION, TXID, ITEMINFO, i) .

REGISTRATION is the type of transaction, and TXID is a unique
identifier for the transaction which in practice could the hash
of all the other values in rt (including the unique public key
ipk). ITEMINFO 1is the description of the item being sold, the
price, and any other information needed to generate a payment,
and %,y is the public key uniquely associated with this item.

Once the miners receive this transaction, they run Al-
gorithm | to verify the transaction before adding it to the

Items | Reputation Iltems | Reputation Items | Reputation
ePO+skl | {reviewepg.sat ePO+skl | {reviewp.qr} ePO+skl | {reviewgpp.gq}
6hf2Aks [{reviewsnoas 6hf2Aks | {reviewgnouc} 6hf2Aks [{reviewshioast
PrEXWYj | {reviewp e} prEXwj | {reviewp e} PrEXwlj | {review,exu}t
2J6gDl4 { 2J6gDI4 { 2J6gDl4 {r}
—_)
m _’ m et Review r
2J6gDI4 +— for zJ6gDI4
. . | . . payment] payment . .]
for zJ6gDI4 for zJ6gDI4

(a) Vendor registers the public key of item
to the ledger.
action for an item.

(b) Customer retrieves item listings and
their reviews, and makes a payment trans-

(c) Customer leaves a review for the item
purchased (optional).

Fig. 1: Beaver workflow

ledger. The miner that successfully adds rt to £ claims the
fee fre from 4,;. Once added, any customer can find the list
of all items sold in Beaver by enumerating all REGISTRATION
transactions. The customer can then purchase the product by
sending money to the public key in the registration transaction.
Moreover, the customers can check all available reviews for
this key (item) as detailed in §V-D.

Algorithm 1 Registration verification

INPUTS:

1) rt = (REGISTRATION, TXID, ITEMINFO, ipy;)

2) L
OUTPUT: Miners add rt to £ only if all of the steps are
satisfied.

1) Check iy has enough funds to cover the registration fee

reg-

2) Check TXID & £ A iy & L.

3) Check ITEMINFO specifies the price of the item x, and
that the price is within minimum and maximum denomi-
nations of underlying currency.

B. Special vendor transactions

Vendors in Beaver may also perform two special transac-
tions: (1) bootstrapping reputation and (2) updating a listing.

Bootstrapping reputation.

When an item is first listed, it has no reviews. The vendor,
however, may have other products with positive reviews and
may want to bootstrap the reputation for this new listing by
linking it to its other items. While these reviews not directly
express the quality of the particular item, they could help
customers establish trust.

To perform this linkage, the vendor can submit a special
transaction that includes a NIZKPoK of the private keys of
other items she sells. The customers can then check the reviews
of the other items, and be convinced that these items come
from the same vendor. Note that this transaction may be
submitted at any time, and the vendor may choose when to
link the items together.

. F——
br = (BOOTSTRAP, TXID, iy, (Jpk, Tjox))

iy 18 the public key associated with the item listing that the

vendor is interested in bootstrapping and (j,, 7.,) is a vector
of public keys associated with other item listings j € Z,, and

NIZKPoK for the secret keys to each. Miners use Algorithm 2
to verify this transaction. The miner that successfully adds br
to £ claims a bootstapping fee fuooc from .

The NIZKPoKs, if generated carelessly, could be suscepti-
ble to replay attacks. That is, a malicious vendor could reuse
the NIZKPoKs of honest vendors to falsely bootstrap their
reputation. To prevent this, we suggest using a public nonce
when generating the NIZKPoKs. Concretely, when one applies
Fiat-Shamir heuristic to generate a NIZKPoK, the input to the
random oracle (i.e., the cryptographic hash function) should be
a public nonce along with the standard input for the heuristic.
The nonce need not be random, but needs to be publicly
computable, non-repeating, and not under the control of the
adversary to prevent replay attacks. For example, one could
use the TXID as the nonce. For the rest of this paper, we
assume that this is done for all NIZKPoKs generated.

Algorithm 2 Item listing bootstrap verification
INPUTS:
1) br = (BOOTSTRAP,TXIDka, (jpk,szk))
2) L
OUTPUT: Miners add br to £ only if all steps are satisfied.
1) Check i, has enough funds to cover the fee fyoor-
2) Check TXID & L.
3) From L, verify that i, and all the jp’s are valid item
public keys.
For each component (jpi, 7j,,) of (jpk, 7j,,), verify m;
is a valid NIZKPoK for the secret key jsg.-

4)

Updating listings. A vendor may want to update an item
listing after creating it. For example, the item may be sold
out, discontinued, need a description change, or the vendor
may wish to hold a promotion or sale. The vendor can issue
an update by submitting a special transaction:

ut = (UPDATE, TXID, ipy, 7;,, , ITEMINFO)

sk?

Here i, is the public key of the item listing that a vendor
wishes to update, 7;_, is a NIZKPoK for the corresponding
secret key, and ITEMINFO is the new information for the item
listing. Miners use Algorithm 3 to verify this transaction, and
the miner that successfully adds ut to £ claims an update fee

fupa from .

Algorithm 3 Item listing update verification

Algorithm 4 Payment verification

INPUTS:
1) ut = (UPDATE, TXID, ipk, ;
2) L

OUTPUT: Miners add ut to £ only if all steps are satisfied.
1) Check iy, has enough funds to cover the fee fypa.
2) Check TXID & L.
3) From L, verify that i, is a valid public key for an item.
4) Verity that 7;_, is a valid NIZKPoK of the secret key for

Tpk-

ITEMINFO)

sk

sk

C. Payments

When a user ¢ decides to purchase an item, she begins by
generating a fresh public key/private key pair (cpk, Csx). As in
Bitcoin, in which public “wallet” addresses are public keys,
cpk 1s basically equivalent to a pseudonym; while we use the
notation c,;, here for convenience, a given customer ¢ will
actually hold many such public-private key pairs—essentially
one per transaction. The user then transfers funds anonymously
(e.g., via Zerocash [6]) to ¢,y She finally transfers funds from
cpk to the public key associated with the item she wishes to
purchase. She may use the transaction to supply other relevant
information such as a shipping address or any special requests
for the order, or she may send that information out of band
(e.g., through a vendor’s website), along with the proof of the
purchase via anonymous communication.

In Beaver, we do not provide transaction privacy for the
vendor; i.e., the recipient of the payment transaction is not
hidden, unlike in Zerocash. This is done so that the users can
understand the explicit anonymity set when leaving a review.
The implications of this design choice are discussed in §VIII.

A payment transaction p looks similar to that of Bitcoin:
p = (PAYMENT, TXID, ¢y, ipk, &, CUSTOMERINFO)

where PAYMENT is the type of transaction, TXID is the unique
transaction ID, ¢, is the customer’s fresh pseudonym (public
key) that holds enough funds to pay amount Z to the vendor’s
account %, as well as any additional fees. £ is at least the price
2 of the item 4, but could be more, for instance if several
quantities of the items are purchased, or if the customer wishes
to include a tip for the vendor. If the underlying cryptocurrency
supports adding supplementary information to transactions,
then CUSTOMERINFO is passed along as information specific
to the order such as a shipping address or special requests
encrypted under i,,. One key difference between payment
transactions in Beaver and payment transactions in Bitcoin is
that the transaction fee of the payment is broken into two
fees: a fax fux and a reviewing fee frey. fux i paid to the
miner who adds the payment transaction to the blockchain,
similar to transactions fees in traditional cryptocurrencies. fey
is paid later to the miner who adds the review associated
with this payment to the blockchain (§V-D). Upon submission,
miners use Algorithm 4 to verify that the payment satisfies
all requirements, and the miner that successfully adds p to £
claims fiux from cp. Any future transfer from cpy, to another
place will be considered invalid, except to claim the reviewing
fee, for reasons we describe next.

INPUTS:
1) p = (PAYMENT, TXID, ¢pk, ipk, &, CUSTOMERINFO)
2) L
OUTPUT: Miners add p to £ only if all of the steps are
satisfied.
1) Check that the available funds in ¢y, is larger than £ +
ftax + frev-
2) Check TXID ¢ L.
3) From L, verify that i, is a valid public key for an item.
4) Find ITEMINFO for iy in £, and the price = for ipy.
5) Check & > x.

D. Reviews

After the payment transaction p is added to the blockchain,
the customer has the option to form a review for the item.
The review will contain a message from the customer (e.g.,
a detailed product review) as well as a numeric rating a,
expressed as a small integer. Once she writes the review, the
customer can then sign the review with the private key cg
used to make the payment, and send it to the miners.

A naive signature would reveal the transaction associated
with the private signing key csx, and would therefore tie the
transaction to the review. Unfortunately, the transaction may
contain sensitive information about the customer, which may
limit the customer’s ability to leave truthful feedback. Though
we wish to hide the exact relationship between reviews and
transactions, we must also ensure that there exists a valid
payment associated with each review. To achieve this objective,
we use linkable ring signatures. The list of all payments left for
iy 18 first publicly divided into groups of size K, where K is
a public system parameter. For instance, the first K payments
form the first group, the second K payments form the next
group, and so on. The customer c, using cp,, who wishes
to leave a review for the item 4, figures out the group that
her payment transaction p belongs to, takes all public keys of
customers within that group, and uses them to sign the review
with an LRSig instead of a regular signature. With an LRSig,
no one is able to learn which one of the K payments is linked
to the review. An LRSig also guarantees that any attempt to
submit more than one review per payment will be caught via
the linkability of signatures.

With this change, we have to modify the reviewing fee
slightly, as the miner who adds the review to the chain cannot
figure out which transaction should pay the reviewing fee.
Instead, the miners can collect this reviewing fee from any
transaction in the same group that has not yet been claimed, as
all valid transactions have been specified to pay the reviewing
fee. Furthermore, as before, the miners will reject any attempt
to transfer the reviewing fee to another account before the fee is
legitimately claimed by a miner, ensuring there is enough funds
in the account to pay the miner. Although there could be a
delay in waiting for K transactions to appear on the chain, once
there are sufficiently many transactions, the reviews could be
submitted at any time (i.e., asynchronously) and still guarantee
the anonymity among the set of K transactions.

Customer reputation. In existing e-commerce systems like
Amazon and eBay, it is possible for a customer to build
up her reputation as a “good” reviewer or an “expert” of a

category of products, by linking all the reviews she leaves to
her account. For instance, if one person has left reviews for
many different headphones and speakers, then that person’s
reviews for another set of headphones may be more valuable
to prospective customers. However, a customer may also desire
the property that reviews for certain products do not link back
to other products she has reviewed for sake of privacy.

In Beaver, we allow the customer to choose which re-
views to tie together: When leaving a review, the customer
also generates a random value 7. that she keeps secret and
its commitment Comm(r.), that she includes in the review.
Unlike with special vendor transactions, a customer cannot
use NIZKPoKs for her secret key since that would require
revealing the public key. Instead, a customer who wishes to
link reviews together may refer to a previous review containing
Comm(r.) and include the NIZKPoK of r. in the new review.

Review revocation. The reviewers may want to update their
reviews of a product after some time. Often, for example, a
product works well in the first few days, and the customer
leaves a positive review. Soon after, the product breaks, and
the customer may desire to change the review to something
negative. In these scenarios, the reviewer simply re-signs the
review, using Algorithm 5 with the same private key and
public keys, and sends the new review to the miners. When
enumerating the reviews, if anyone finds reviews that are linked
(via LRSig), then she simply takes the latest review and ignores
older ones. This review, however, must be submitted with
a separate reviewing fee to incentivize the additional work
needed from the miners.

In summary, a review transaction r is the tuple
r = (REVIEW, TXID, a, M, ¢}, ipk, Comm(r,), Co» 70, Y0, o)

where REVIEW and TXID are the type and ID of the transac-
tion, a is the numerical rating, M is the detailed review, and
c;k is a fresh pseudonym to draw the review fee from if this
review is an update. If this review is not an update, c;k and
o, may both be null. iy is the public key of the item of the
review, Comm(r..) is the commitment of a random value used to
link reviews if desired later on, c?k the set (of size K) of public
keys, that includes the customer’s own public key ¢, (along
with others). ¥; contains the other reviews the customer ¢ has
previously written and wishes to link to this new review, if any;
and Z; contains the corresponding NIZKPoKs of the secret
random values in the reviews in r;. z; and ¥; may be empty,
if the customer does not wish to link any reviews. Finally,
o is a signature on all other values in r with the secret key
corresponding to c;k. Customers use Algorithm 5 to generate
reviews, and the miners run Algorithm 6 to verify the reviews
before adding them to the ledger.

E. Transaction enumeration

Beaver users will routinely want to enumerate certain types
of transactions (e.g., REGISTRATIONSs, REVIEWS). Enumeration
operations should thus be efficient. We outline here a mecha-
nism for users to efficiently query an untrusted node and verify
its response, instead of downloading £ themselves.

When a transaction t is added to £, the miners com-
pute the total number of transactions of that type thus far,
|[ET(TYPE(t), T, £)|, and append it to the transaction. For ex-
ample, if a review r for item ¢ is to be added to a block, miners

Algorithm 5 Review generation

INPUTS:
1) (cpr, €si): public-private key of the customer
2) ¢/,: public key of pseudonym to pay reviewing fee
(update only)
3) ipx: public key for the item listing
4) a: rating for this item
5) M: short message for this review
6) ry: set of reviews to link to
7) 77 secret random values in reviews to be linked
8) L: public ledger
OUTPUT: A review transaction and a linkable ring signature
o of the review for item %y.
1) From L, verify that i, is a valid public key for an item.
2) Divide payment transactions for iy, € L, into (public
decided) groups of K.
3) Find the group that ¢, belongs to, and extract the K
—=

public keys to yield G,f = (¢jpk)je[x]-

4) Generate a random value r. and its commitment
Comm(r).

5) Let Comm(rg; be the commitments to random values in
other reviews to be linked. Note that if the customer does
not wish to link reviews, then Z; = null, r; = null.

6) Generate review r’ =
(REVIEW, TXID, a, M, ¢, ipk, Comm(re), Coles 2, r}?).

7) Compute signature 0 = LRSig (v, s, CEC))

8) Output r = (r', o).

Algorithm 6 Review verification
INPUTS:
r=
REVIEW, TXID, a, M, ¢, , ipi, Comm(rc), Cots 50, ¥, O
) s Uy » Cpky Upks c)y Cpky <Ly 14,

2)
OUTPUT: Miners add r to £ only if all steps are satisfied.
1) Check TXID & L.
2) From L, verify cvpﬁ is a valid set of public keys associated
with K transactions to i,y.
3) Verify o onr.
4) Verify ¢/ . has at least fi., funds to cover the review fee.
5) If Z; is not null, then verify the NIZK.

compute |ET(REVIEW, 4, L)|, and append it to r. Likewise,
optional keywords in item descriptions can be used to keep
track of the number of items in £ featuring each keyword.

We then borrow ideas from Simplified Payment Verification
(SPV) in Bitcoin [37]. Transactions in every block are arranged
into a Merkle tree, and the root of the tree is added to the
block header. This enables a user with the root to efficiently
verify membership of a transaction in the block when given the
Merkle proof. In addition to quick verification of membership,
we may also want the users to be able to quickly check if a
transaction of particular type is present in the block. To this
end, we require the miners to also include in the header, Bloom
filters [9] indicating (1) for every ¢ € Z, whether there is a
review in this block for ¢, and (2) for every available item
description keyword, whether an item registered in this block
includes that keyword. Users locally only store the Merkle tree
root and Bloom filters for each block, i.e., about 1-3KB of data

per block.

Untrusted nodes maintain a separate representation of £
which is optimized for efficient queries, such as the Patricia
Trees employed by Ethereum [49]. When a user wants to
enumerate transactions, she queries an untrusted node, who
replies with (S,7), where S is the result of enumeration.
For each transaction in S, 7 contains a Merkle proof that the
transaction is in £, which users can quickly verify.

While the SPV provides a way for users to be convinced
that all transactions returned are indeed part of £, a malicious
node may still omit some transactions (e.g., leaving out nega-
tive reviews). To resolve this, the user can manually query the
most recent transaction of the keyword 7. She first searches for
the latest occurrence of the transaction associated with 7 by
using the Bloom filters. When a match is found, she downloads
the full block and checks it for the relevant transaction,
extracting the counter for the total number of transactions
of the type if found. In the event that the transaction was
not found in the matching block (i.e., false positive in the
filter), she keeps iterating until either the transaction is found
or the beginning of £ is reached. Once she has the counter,
the user can verify that |S| is equal to the counter in £ to
check if any transactions were omitted. A detailed evaluation
of enumeration performance can be found in §VII.

VI. ANALYSIS

We first provide proof sketches and argue Beaver satisfies
all the properties of DAM (§111-B). We then analyze the impact
of different parameters. In our analysis, we assume that a
consensus on the £ has been reached, and the state of L
is publicly visible to everyone in the system. Note that the
operations on the ledger T and ET are done by interacting
with the miners, and is made available by underlying consensus
protocol in Beaver.

A. Properties of Beaver

P1. Correctness: A payment is completed when the payment
transaction p ends up in the ledger £. Upon K completed
transactions for an item, customers may generate a review
using Algorithm 5, and the signatures will verify as long
as a valid payment is in £. Thus, assuming the underlying
consensus protocol is secure, the miners will add the review
to the ledger.

P2. Soundness: Soundness is derived directly from the forgery
resistance and linkability of linkable ring signatures. Without
a payment transaction in £ an adversary would not have a
secret key for any of the public keys associated with the K
transactions. The forgery resistance of linkable ring signatures
implies that this adversary cannot generate a valid signature
that will verify. Similarly, if a customer signs two reviews
using the same secret key, then the two signatures will be
linked (via linkable property of the signatures), and anyone
can detect this misbehavior.

P3. Item listing completeness: Assuming consensus and
availability of £, any item listing is publicly visible to everyone
since £ holds item listings.

P4. Review completeness: Similar to item listing, assuming
consensus and availability of £, any review is publicly visible.
P5. Review-payment unlinkability: The anonymity property
of linkable ring signatures guarantees that any honest signers

identity remains hidden among the other honest signers within
the same anonymity set. In particular, the adversary, given two
signatures (reviews) and two public keys (payments), it cannot
learn which signature was signed by a private key associated
with which public key better than guessing, even if it knew
the messages associated with the signatures. Moreover, the
optional NIZKPoKs used to link reviews only link reviews
together without revealing any information about the payments
or the public keys used. Therefore, the advantage of the
adversary winning the game is negligible.

P6. Payment (review) unlinkability: For every purchase,
customers generate a fresh pseudonym which is not linked
to any other pseudonyms previously used (via security of the
underlying payment scheme), therefore no purchases can be
linked to other purchases. Reviews are also signed with the
fresh pseudonyms, so reviews cannot be linked to each other,
unless explicitly linked via NIZKPoKs.

O1. Open enrollment: As long as the underlying payment
system and consensus protocol allows for open enrollment
(e.g., Bitcoin), customers, vendors, and miners can all join
freely.

O2. Selective review linkability: A customer who previously
generated a review should know the random value in the
commitment used for that review. The customer can then use
NIZKPoK to prove possession of the random value in a new
review to link two reviews together.

03. Review exculpability: If the commitment scheme is
hiding, then the adversary cannot learn the secret value from
the commitment. Since only the honest customer knows the
secret value, no other person can generate a correct NIZKPoK
to link the reviews.

B. Parameters

Many parameters impact the performance and security of
Beaver.

Registration fee fieg. fic, is the cost that a vendor must pay
to register a new product. This cost mitigates the problem of
vendors with negative reviews simply creating new listings to
reset the reputation associated with an item. It also mitigates
attacks where an adversary attempts to flood the network
with item listings to make enumeration and identification of
legitimate item listings tedious. However, fi., should not be
not set too high as to discourage new vendors from joining the
network.

Transaction tax fi,x. fux 1S paid to miners when a customer
purchases an item, and directly impacts the credibility of
reviews in our system. Since fi,x is paid to the network
of miners and is lost to both the customer and the vendor,
high values of fi,x would deter adversaries from leaving fake
reviews to influence someone’s reputation, and would mitigate
Sybil attacks. For example, fi.x discourages a vendor from
acting as a customer and purchasing her own product to leave
positive reviews. However, if fi,x is too high, customers may be
discouraged from using Beaver and instead seek out cheaper
alternatives with less overhead. We believe that f,x should
be proportional to the value of the transaction being made—
perhaps around 10% of the item price similar to vendor fees
charged by Amazon Marketplace. This insight forms the basis
for formally defining the credibility of a review as the lower
bound on the cost to an adversary of creating for creating it.

Finally, f.x also incentivizes the miners to add the payment
transaction to L.

Reviewing fee frey. frev is paid to the miners for leaving a
review, and also helps establish the lower bound on the cost
of leaving a review in conjunction with f,,. In Beaver, reviews
transactions are separate from payment transactions although
practically, customer need to supply funds for them both at
the same time. We recommend either an absolute fixed fee for
frev, Or a fee proportional to the size of the review (i.e., length
of the message), similar to transaction fees in Bitcoin [36].

Anonymity set size K. K is the number of transactions that
must occur for an item listing before customers are allowed to
leave reviews, and each review will be anonymous within the
K transactions. Unforuntately, not all K transactions necessar-
ily come from honest users, and ~y of the K transactions may in
fact be generated by the adversary. In these settings, we should
try to estimate 7, and set K such that K — ~ is sufficiently
large with respect to the perceived adversary. For example, we
can use estimation of the adversary’s total budget along with
fiax to estimate . We can then set K appropriately so that
identifying a transaction out of K — ~ requires the adversary
to spend more resources than they are willing to spend. In
general, larger values of K provide stronger anonymity, at the
expense of a higher review latency (see §VII).

Reputation bootstrap fee fi,0r- Since vendors can only link
the items that it knows the secret keys for (i.e., owned by
the vendor), bootstrapping reputation should not be a costly
operation. fuoo should be set to be the minimal value that
would incentivize the miners to add this transaction to the L.

Item update fee f,,q. A vendor should be able to update their
items, so fypa should be set to be the minimal value that would
incentivize the miners sufficiently to add this transaction to L.
A vendor may change the price very frequently in an attempt to
differentiate prices for different customers, but this is visible
to the public, and the price at a given time is the same for
every customer.

1) Review credibility: Customers who are interested in
purchasing an item will first want to look at the reviews left
by previous customers. In addition to observing the score and
message of a previous review, a customer may be interested in
evaluating a review’s credibility, or what it would have costed
an adversary to create the review himself.

While it might be tempting to assume that cost to an
adversary for generating a review is the price of the item plus
the associated tax fnx and reviewing fee f.y, it may be the
case that an adversary is purchasing the item from himself, and
is therefore recovering the price of the item. The cost to an
adversary for generating a review is therefore lower bounded
by fux+ (£ + 1) frey, Where fiux is the tax paid on the payment
transaction, ¢ is the number of times the review has been
updated. fi., is recommended to be set to a constant value, and
frax Will likely scale with the price of an item. With the ability
to change the price of an item (§V-B), f..x may be different
for different transactions, and users cannot link a review to
any particular transaction. However, customers do know the
lowest possible tax for a review since the K transactions
that form the anonymity set are public. Therefore, customers
should be conservative, and assume the lowest fi,x out of the
K transactions to estimate the credibility of a review.

The baseline credibility, fux + (¢ + 1) frey, may however

TABLE I: Size and space benchmarks for basic building block
operations in Beaver

Time Space
NIZKPoK (Generate) 6.89ms 96 B
NIZKPoK (Verify) 11.91ms -
Ring Signature, K = 1 (Generate) 13.5ms 64 B
Ring Signature, K = 2 (Generate) 21.5ms 96 B
Ring Signature, K = 10 (Generate) 133.7ms 352 B
Ring Signature, K = 100 (Generate) 1420ms 3232 B
Ring Signature, K = 1 (Verity) 13.5ms -
Ring Signature, K = 10 (Verify) 142ms -
Ring Signature, K = 100 (Verify) 1390ms -
Digital Signature (Generate) 6.82ms 64 B
Digital Signature (Verify) 11.88ms -
Moving funds to fresh pseudonym [6] > 2min -

be augmented by other reviews that were linked. A naive aug-
mentation of the credibility would be to add up the credibility
of all linked reviews. However, this enables an adversary to
pay (out-of-band) a good reviewer to generate a NIZKPoK,
and all of sudden get a review of very high credibility for
potentially much less cost than estimated. There may be other
out-of-band attacks that Beaver may not protect against, so
customers should be careful when augmenting credibility of a
review using linked reviews.

VII. EVALUATION

We next evaluate Beaver’s practicality in terms of compu-
tational performance and storage overhead; we also evaluate
Beaver’s usefulness in providing anonymity in a marketplace
setting.

A. Computation and storage overhead

1) Blockchain query latency: To estimate the time to query
transactions in Beaver, we first obtained (from the authors)
the online anonymous (centralized) marketplace transaction
dataset Soska and Christin collected [41]. This dataset rep-
resents a large ecosystem of real-world transactions over
two years. We converted this entire transaction data into a
blockchain, which we used to construct an indexed database
optimized for fast lookup operations, something that we would
encourage users (i.e., Beaver clients) to do in practice.

Queries for random transactions take less than 1 ms on
the 10 GB dataset on a RAID 5 consisting of 8 solid state
drives. We then upsampled the database to a size of 4 TB,
and random lookups still took less than 1 ms each. This result
gives us confidence that the lookup overhead will be negligible
compared to other operations in the system.

2) Algorithm runtime and space: We next evaluate the
performance of the basic cryptographic operations used in
Beaver. For NIZKPoKs, we implemented zero-knowledge
proofs for discrete logs [13] with Fiat-Shamir heuristic [24]
in Go programming language using Curve25519. For LRSigs,
we used the implementation of ring signatures found in the
DeDiS crypto package [1].

Table I shows the time to perform each operation as well
as the amount of state created. The basic operations are quite
reasonable, taking just a few milliseconds of processing time
on a system running an i7-3612QM @ 2.1 GHZ with 8 GB

TABLE II: Size and space benchmarks for operations in
Beaver
Time (Expected) Space

Item Listing Transaction 7 ms 1120 B
Item Listing Verification 12 ms -
Vendor Bootstrap Transaction 14 ms 224 B
Vendor Bootstrap Verification 12 ms -
Listing Update Transaction 14 ms 1216 B
Listing Update Verification 12 ms -
Payment Transaction 7 ms 1160 B
Payment Verification 12 ms -
Review Transaction 7 + 14-K ms 1412 B
Review Verification 14-K ms -

of RAM. The generation and verification time as well as the
size of the ring signatures all scale linearly with the size of the
anonymity set K. Our choice of anonymous payment scheme
determines latency of the purchase. One potential candidate,
Zerocash [0], yields operations more than two orders of
magnitude slower than other operations in Beaver, but could
be easily replaced with a faster anonymous payment scheme
in the future. Moreover, customers could also move funds in
advance to decrease the overall latency.

Next, we look at the performance of the higher level
operations in Beaver, shown in Table II. For these operations,
we fix the size of ITEMINFO, CUSTOMERINFO and M the
review message to 1024 bytes. We also assume that only one
proof is linked at a time and that users are running commodity
hardware with 4 cores, as in practice, basic operations may
be computed in parallel such as verifying the signature of a
transaction and the correctness of a proof inside.

All transactions are generated and verified reasonably
quickly with reviews scaling linearly with the anonymity set
size due to the ring signature. All operations can be performed
in constant size, but the space complexity of traceable ring
signatures is typically linear in the group size. We avoid this
issue by instead looking up the public keys of the anonymity
set from £ during verification, which yields ring signatures that
only add constant size without the use of accumulators [42].

B. Anonymity Set Size

Crucial to the practicality of Beaver is the size of the
anonymity set to which customers belong, and the latency
between the times a customer buys an item and when she
is able to leave a review. To evaluate these components we
again use Soska and Christin’s marketplace dataset to simulate
Beaver in a real-world setting.

Figure 2 shows a cumulative distribution function of the
latency in days from when a customer purchases an item to
when they are able to leave a review for different choices of
the system-wide anonymity set size parameter K. For small
anonymity sets such as K = 5, about 80% of customers
are able to leave a review within one week, while larger
anonymity sets (K = 50 or K = 100) take more than 75
days when dealing with unpopular items. Despite high latency
for these reviews to appear, vendors can still ensure consumer
confidence by bootstrapping reputation from other item listings
that they control. Similar to the notion of cover traffic in
anonymous communication networks, widespread adoption of

Cumulative distéibution function
@
o

|
75 100

50
Latency (days)

Fig. 2: Latency to leave feedback as a function of K.

g

o

=)
!

o

~

o
d

t=1day
—t=7days

t =14 days
— t =30 days

0 25 75 100

I

N

a
\

Cumulative distéibution function
@
o

o

o

s}
;

50
Anonymity set size

Fig. 3: Anonymity set size given minimum review latency.

Beaver and high amounts of transactions would build the
anonymity sets faster, and therefore reduce latency.

We also explore adjusting K independently for each item
so that it meets certain review latency requirements. Figure 3
presents cumulative distribution functions of K when we fix
the time it takes for a customer to build her anonymity set
(i.e., minimum review latency). As expected, the more popular
item listings are able to provide larger anonymity sets without
sacrificing review latency. Less popular listings, on the other
hand, can be adjusted so that the time to leave a review is not
prohibitively long.

Although setting K per item enables more optimal set
sizes, it also enables vendors to make insecure choices as
they could, for example, create listings where X = 1 and
completely remove customer anonymity. Under such a design,
users would be responsible for only purchasing products
offering an anonymity set size they are comfortable with.

C. Review and Item Listing Enumeration

The primary bottlenecks in the enumeration process are
the size of the block headers that must be stored, and the
number of blocks that need to be downloaded by a resource-
constrained user. To evaluate these, and explore the tradeoff
between persistent state and block downloads per query, we
use, again, the dataset from Soska and Christin [41] to obtain
a realistic distribution for item listings and reviews.

As stated in §V-E, a user needs to find the last review
for the item to check if there are any reviews missing in
the response of the untrusted node. Thus, user is required to
download some number of blocks, and the number of blocks
that a user downloads depends on the number of times she
erroneously believes that the transaction of interest is stored in

400+

300

200+

1004

Expected Number of Block Downloads

2 3 4
Bloom filter size (KB/block)

Fig. 4: Expected number of blocks downloaded to enumerate
R(..iy vs. per-block Bloom filter size.

a particular block due to a false positive in the Bloom filter. The
number of these mistakes that she commits depends on (1) the
false positive rate of the Bloom filter, which comes at the cost
of size and (2) the number of blocks between the transaction
she is looking for and the end of L. To test the second point,
we inserted 500 random transactions between every transaction
in the real dataset to produce a blockchain with 722,242 blocks
containing 1,500 transactions each, which is approximately
the average number of transactions per block in Bitcoin [2].
We then performed benchmarks by testing only the samples
drawn from the real dataset, effectively creating a ledger which
is larger than that of Bitcoin at the time of writing and
simulating a highly active system where transactions become
buried quickly while maintaining the ground truth shape of the
distribution.

Figure 4 shows the trade-off between the size of the Bloom
filter stored in the block header and the expected number of
blocks that the user needs to download when enumerating
R(.)- When using less than 2KB of storage, users will
on average be required to download anywhere from 30 to
100s of blocks per enumeration which may be prohibitively
high. At 2.9KB, a user will download less than 3 blocks per
enumeration on average, and at 3.7 KB will download less
than 1.2 blocks. A user that stores the headers of all 722,242
blocks in the system containing, each containing a 2.9 KB
Bloom filter, would require about 2 GB of storage. The cost
of checking for matches in the filters is quite low, checking
the entire blockchain on a single-threaded CPU takes less than
4 seconds.

In practice, a block may contain several different headers
comprised of Bloom filters of different sizes so that a user
may strike the trade-off that is most optimal for her. A user
may also cache the blocks she has downloaded, reducing the
number of blocks required in future queries.

VIII. DISCUSSION AND LIMITATIONS

We next discuss some aspects of Beaver that our design
does not fully address, or that present room for improvement.

Anonymity sets and other anonymity metrics. As mentioned
previously, we would like the anonymity set to be the full
P(c,s for each item i. However, if the anonymity sets for the
reviews are publicly known and can overlap, it could lead to
intersection attacks. For instance, let us assume r, has the
anonymity set P(c ;). Now let assume a new payment p’ is

added to P ;) to form P{C,i)’ and a review ry is added to
the ledger with anonymity set of ,PEC.i)' In the worst case,
|R(c.i)] = |Pc,i| and all of the past transactions were already
used for reviews. Trivially, the anonymity set of ry is {p’}
and the relationship is uniquely identified. We therefore use
mutually exclusive anonymity sets to avoid such attacks. In
Beaver, creating such sets causes the delay in reviews.

Apart from anonymity sets, there are also other anonymity
metrics we could use. Differential privacy [22] in particular
has shown a lot of promise in guaranteeing privacy of data
in a database while maintaining utility. However, traditional
differential privacy usually focuses on protecting the database
(in case of a DAM, the ledger) when the users making
queries do not have access to the database. This is not the
case for Beaver, which makes it hard to apply directly to
protect the relationship between payments and reviews. We
could potentially use similar ideas to Vuvuzela [44], where
noise reviews (i.e., fake reviews) are injected to hide the
relationships. Unfortunately, this would significantly increase
the size of the ledger and could also lower the utility of the
reviews due to the abundance of indistinguishable fake reviews.
We believe that anonymity in Beaver, in particular with respect
to complicated adversaries that may have partial knowledge of
variables is intersting. We would still like to explore stronger
forms of anonymity in future work.

Vendor privacy. Though our system offers a high level of
privacy and anonymity for buyers, it only offers limited pro-
tection for vendors. Beaver provides the ability to hide which
items a vendor sells, since it generates a fresh pseudonym for
each item; however, the number of transactions is made public
via the ledger. This is necessary in Beaver, as customers need
explicit information about their anonymity set before leaving a
review. One could argue that such transparency and auditability
of the vendors may be good for the market as a whole, but
this may not be desirable for vendors who want to conceal
their transaction volume. We defer this potential improvement
to future work.

Unclaimed reviewing fees. When a payment transaction is
approved, a value of at least f., is left in the customer’s
account to cover the cost of the (future) review. Customers may
however elect not to leave reviews for a variety of reasons (lack
of interest, loss of cryptographic material...), causing the funds
to be effectively orphaned. This can be addressed through a
network-wide policy: review fees unused for a long time could
be claimed by miners, distributed among the customers in the
anonymity set, or locked forever and offset by printing new
currency.

Advanced Sybil detection and reputation calculation.
Beaver provides users with a large corpus of raw information in
the form of the public ledger £. Beaver makes no effort beyond
the details of its specification to identify reviews that have been
generated as the result of a Sybil attack. Other research [18],
[46], [47] uses a variety of heuristics and machine learning
techniques to detect Sybil behavior. Customers in Beaver can
run some of these algorithms themselves over the ledger to
make their own decisions. In a similar fashion, customers may
in practice run their own algorithms for distilling the richness
of review messages and values down to a concise number that
can be easilly compared across items.

Customers who deanonymize themselves. In the review

message field, a customer might link her transaction or reveal
her true identity, thereby reducing the anonymity set of all
other customers who bought the item. Such user errors fall
outside the scope of Beaver, but might be addressable through
well-designed user interfaces.

Economically irrational adversaries. Beaver aims to protect
its users against adversaries who are economically rational.
Our notion of credibility, for instance, is derived from the lower
bound of the cost to an adversary for generating reviews. This
line of defense may fail against economically irrational adver-
saries, who for instance, may spend $1,000 generating fake
reviews to setup a honeypot item listing, or to deanonymize a
customer buying a $20 product. Such adversaries are outside
the threat model of Beaver. However, large-scale attacks on
customer anonymity are harder. Deanonymizing every cus-
tomer requires that the adversary owns at least v = K — 1
transactions for every K anonymity set. For unpopular item
listings, such popularity surges should be easily detectable
on the public ledger. For popular listings, this attack would
require a tremendous amount of financial resources, which
even economically irrational adversaries may not have.

Collusion attacks. In a collusion attack, a customer or vendor
sends a transaction directly to a rogue miner instead of
broadcasting it. The miner eventually mines the transaction
into the network, and returns some of the awarded fees back
to the customer or vendor. Miners may have an incentive to do
this for expensive transactions (with a high tax), as they would
not compete against other miners; in exchange, the customer or
vendor could receive a discount on their transaction. Such an
attack undermines review credibility. This attack only works
when side-payments are possible: A defense is to simply
have the network reject mined transactions of which there
exists no prior knowledge. This defense may however be
too restrictive unless transactions can be instantaneously (and
reliably) broadcast to the entire network. Absent such an ideal
broadcast channel, a more permissive defense could be to use a
communication protocol, such as Riposte [16], with the ability
to reveal messages to the network anonymously.

Advanced searching. The search process we describe in this
paper for lightweight user nodes only consists of enumer-
ating all items whose description matches given keywords.
To improve usability, one may want more advanced search
features, such as date ranges, price ranges, and popularity.
Understanding the theoretical limits on the optimal trade-off
between enumeration efficiency and the amount of state a
user holds is also interesting. We defer the answers to these
questions to future work.

Values of fees. The values of the different fees, in particular
fuax> plays a crucial role in our system and impact the ability of
Beaver to deter Sybil attacks. Unfortunately, optimal fee values
are currently unknown, and thus we cannot rule out strange or
adversarial behaviors that may rise depending on the values
of the fees. However, these values are system-wide (unlike
transaction fees in Bitcoin), and we believe that users will not
be able to easily take advantage of unoptimal fee values. We
leave a more formal, likely game theoretic, analysis to future
work.

IX. RELATED WORK

We describe related efforts for establishing reputation in
distributed or anonymous settings, and anonymous payments

schemes.

Distributed and anonymous review systems. Dingledine
et al. [19] explored the idea of using centralized servers
to maintain reputation scores for a node’s reliability in a
decentralized network. Similarly, Gupta et al. [26] used a
third party that they called a reputation computation agent to
facilitate reputation in a peer-to-peer network. Androulaki et
al. [5] proposed using digital cash schemes where peers mint
and send reputation coins using a centralized bank. Unlike
Beaver, these proposals all require a trusted centralized agent.

Damiani et al. [17] proposed a system where a user queries
the reputation of another node in a peer-to-peer network by
polling her peers. The EigenTrust [29] algorithm goes a step
further and leverages the transitivity of trust, by computing a
normalized reputation score based off of a network of trust.
While the approach of polling peers in the network does not
require a trusted third party, each node’s view of the network
is biased by its peers, which store reputation information in a
public ledger using global consensus.

Bethencourt et al. [7] proposed using a third party, trusted
for both privacy and correctness to provide users with mono-
tonic reputation (bad actions cannot be punished). Blomer et
al. [8] have suggested using primitives such as zero-knowledge
proofs and ring signatures with the assistance of a third
party to enable users to leave feedback for each other and
query reputation in a privacy preserving way. Both of these
approaches require placing trust in a third party, unlike Beaver.

AnonRep [50] uses linkable ring signatures, verifiable
shuffles, and homomorphic encryption to build a reputation
system where peers can anonymously rate each other, as long
as at least one server in a set of powerful servers is honest.
Different from Beaver, this system, however, does not protect
again Sybil attacks.

Anonymous payments. Early on, Chaum [!4] understood
that payment schemes would present privacy issues for digital
commerce. Practical pseudonymous payment schemes such as
Bitcoin [36] have paved the way for adoption of anonymous
marketplaces. Since then, several proposals such as Zero-
coin [34], Zerocash [6], Mixcoin [12], and Blindcoin [43]
have attempted to either fix weaknesses in Bitcoin or replace
it altogether with varying security and usability trade-offs.

The anonymity of a customer in a marketplace can only
be as strong as the anonymity provided by the underlying
payment scheme. While Bitcoin has become the currency
of choice in online anonymous marketplaces, several papers
(e.g., [33], [40]) have demonstrated that one can cluster users
by aggregate behavior, thereby evidencing the weakness of
Bitcoin’s anonymity guarantees. For this reason, we advocate
the use of payment schemes with strong provable security
guarantees such as Zerocash [6].

X. CONCLUSION

We have presented Beaver, a decentralized anonymous
marketplace (DAM). Beaver uses anonymous payments, a
consensus protocol, zero-knowledge proofs, and linkable ring
signatures to instantiate a secure DAM. We showed Beaver
preserves the anonymity of customers, and incorporates an in-
centive structure inspired by existing cryptocurrencies, thereby
motivating a healthy network while simultaneously lower-
bounding the cost of Sybil attacks.

[2]
[3]
[4]
[5]

[6]

[8]

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

Advanced crypto library for the Go
https://github.com/DeDiS/crypto.

Bitcoin Block Explorer. https://blockchain.info/.
12P: The internet invisible project. http://www.geti2p.net.

language.

Openbazaar docs, 2016. https://docs.openbazaar.org/.

E. Androulaki and S. Choi. Reputation systems for anonymous
networks. In Proc. PETS 08, July 2008.

E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, and
E. Tromer. Zerocash : Decentralized Anonymous Payments from
Bitcoin. In Proc. IEEE S&P, pages 459-474, May 2014.

J. Bethencourt, E. Shi, and D. Song. Signatures of reputation: Towards
trust without identity. In Proc. Financial Crypto., pages 400407, Jan.
2010.

J. Blomer, J. Juhnke, and C. Kolb. Anonymous and publicly linkable
reputation systems. In Proc. Financial Crypto., pages 478—488. Jan.
2015.

B. Bloom. Space/time trade-offs in hash coding with allowable errors.
C. ACM, 13(7):422-426, 1970.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge
and its applications. In Proc. ACM STOC, pages 103-112, May 1988.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. Kroll, and E. Felten.
SoK: Research perspectives and challenges for Bitcoin and cryptocur-
rencies. In Proc. IEEE S&P, pages 104-121, May 2015.

J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. Kroll, and E. Felten.
Mixcoin: Anonymity for Bitcoin with accountable mixes. In Proc. Fin.
Crypto., pages 486-504. Feb. 2014.

J. Camenisch and M. Stadler. Proof systems for general statements
about discrete logarithms. Technical Report 260, ETH Ziirich, Mar.
1997.

D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. C. ACM, 28(70), 1985.

N. Christin. Traveling the Silk Road: A measurement analysis of a
large anonymous online marketplace. In Proc. WWW, pages 213-224,
Rio de Janeiro, Brazil, May 2013.

H. Corrigan-Gibbs, D. Boneh, and D. Mazieres. Riposte: An Anony-
mous Messaging System Handling Millions of Users. In Proc. IEEE
S&P, pages 321-338, May 2015.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.
Managing and sharing servents’ reputations in P2P systems. IEEE T.
Know. Data Engr., 15(4):840-854, 2003.

G. Danezis. Sybillnfer : Detecting Sybil Nodes using Social Networks.
In Proc. NDSS, Feb. 2009.

R. Dingledine, N. Mathewson, and P. Syverson. Reputation in P2P
anonymity systems. In Workshop on economics of peer-to-peer systems,
Berkeley, CA, June 2003.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proc. USENIX Security, San Diego, CA,
Aug. 2004.

J. Douceur. The Sybil attack. In Proc. Intl. Work. Peer-to-peer Systems,
pages 251-260. Springer, 2002.

C. Dwork. Differential privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part I (ICALP 2006), volume
4052, pages 1-12, Venice, Italy, July 2006. Springer Verlag.

I. Eyal and E. G. Sirer. Majority Is Not Enough: Bitcoin Mining Is
Vulnerable. In Proc. Financial Crypto., volume 8437, pages 436-454,
2014.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Proc. CRYPTO, pages 186—
194, Aug. 1986.

R. Goldberg. Lack of trust in Internet privacy and security may
deter economic and other online activities, May 2016. https://
www.ntia.doc.gov/blog/2016/lack- trust- internet- privacy- and- security-
may-deter-economic-and-other-online-activities.

M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-
peer networks. In Proc. ACM NOSSDAV, pages 144-152, June 2003.

M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols.
In Secure Information Networks, pages 258-272. Springer, 1999.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Joey2781. Vendor threatened to pay me a “visit”. Reddit DarkNet-
Markets forum, Sept. 2015. https://www.reddit.com/r/DarkNetMarkets/
comments/3ms7pr/vendor_threatened_to_pay_me_a_visit/.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. pages 640-651,
May 2003.

A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: an efficient
communication system with strong anonymity. Proc. PETS, 2016(2):1-
20, 2016.

J. K. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous
group signature for ad hoc groups. Information Security and Privacy,
2108:325-335, 2004.

D. Mayzlin, Y. Dover, and J. Chevalier. Promotional reviews: An em-
pirical investigation of online review manipulation. American Economic
Review, 104(8):2421-55, August 2014.

S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage. A fistful of Bitcoins: characterizing
payments among men with no names. In Proc. ACM/USENIX IMC,
pages 127-140, Barcelona, Spain, Oct. 2013.

1. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
Distributed E-Cash from Bitcoin. pages 397-411, May 2013.

A. Molavi Kakhki, C. Kliman-Silver, and A. Mislove. Iolaus: securing
online content rating systems. Proc. WWW, pages 919-930, May 2013.

S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system, Oct. 2008.
Available from http://bitcoin.org/bitcoin.pdf.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Con-
sulted, pages 1-9, 2008.

P. Resnick and R. Zeckhauser. Trust among strangers in internet
transactions: Empirical analysis of eBay’s reputation system. Adv.
Applied Microecon., 11:127-157, 2002.

R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In
Proceedings of ASIACRYPT, pages 552-565, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

D. Ron and A. Shamir. Quantitative analysis of the full Bitcoin
transaction graph. In Proc. Financial Crypto., pages 6-24, Apr. 2013.

K. Soska and N. Christin. Measuring the longitudinal evolution of the
online anonymous marketplace ecosystem. In Proc. USENIX Security,
pages 33-48, Washington, DC, Aug. 2015.

P. Tsang and V. Wei. Short linkable ring signatures for e-voting, e-cash
and attestation. Information Security Practice and Experience, pages
48-60, 2005.

L. Valenta and B. Rowan. Blindcoin: Blinded, accountable mixes for
bitcoin. In Proc. Financial Crypto., pages 112—126, Jan. 2015.

J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 137-152, 2015.

L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:
Using hard Al problems for security. In Proc. EUROCRYPT, pages
294-311, 2003.

G. Wang, S. Barbara, T. Wang, H. Zheng, and B. Y. Zhao. Man vs .
Machine : Practical Adversarial Detection of Malicious Crowdsourcing
Workers. In Proc. USENIX Security, pages 239-254, San Diego, CA,
Aug. 2014.

G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng,
and B. Y. Zhao. Social Turing Tests: Crowdsourcing Sybil Detection.
In Proc. NDSS, pages 1-14, Feb. 2013.

D. 1. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent
in numbers: Making strong anonymity scale. In Proc. USENIX OSDI,
pages 179-182, Hollywood, CA, Oct. 2012.

G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 2014.

E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford.
Anonrep: Towards tracking-resistant anonymous reputation. In Proc.
USENIX NSDI, pages 583-596, Santa Clara, CA, Mar. 2016.

http://www.geti2p.net
https://docs.openbazaar.org/
https://www.ntia.doc.gov/blog/2016/lack-trust-internet-privacy-and-security-may-deter-economic-and-other-online-activities
https://www.ntia.doc.gov/blog/2016/lack-trust-internet-privacy-and-security-may-deter-economic-and-other-online-activities
https://www.ntia.doc.gov/blog/2016/lack-trust-internet-privacy-and-security-may-deter-economic-and-other-online-activities
https://www.reddit.com/r/DarkNetMarkets/comments/3ms7pr/vendor_threatened_to_pay_me_a_visit/
https://www.reddit.com/r/DarkNetMarkets/comments/3ms7pr/vendor_threatened_to_pay_me_a_visit/
http://bitcoin.org/bitcoin.pdf

	Introduction
	Background
	Anonymous reputation systems
	Decentralized reputation system
	Sybil attacks

	Decentralized Anonymous Marketplaces
	Definitions and notations
	DAM Components
	Basic transactions
	Operations on the ledger

	DAM Properties

	System Overview
	High-level design
	Threat model and assumptions
	Consensus
	Cryptographic primitives
	NIZK
	Linkable ring signatures

	System Design
	Registration
	Special vendor transactions
	Payments
	Reviews
	Transaction enumeration

	Analysis
	Properties of Beaver
	Parameters
	Review credibility

	Evaluation
	Computation and storage overhead
	Blockchain query latency
	Algorithm runtime and space

	Anonymity Set Size
	Review and Item Listing Enumeration

	Discussion and limitations
	Related Work
	Conclusion
	References

