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Abstract. Private database query (PDQ) processing has received much attention from the fields
of both cryptography and databases. While previous approaches to design PDQ protocols exploit
several cryptographic tools concurrently, recently the appearance of fully homomorphic encryp-
tion (FHE) schemes enables us to design PDQ protocols without the aid of additional tools.
However, to the best of our knowledge, all currently existing FHE-based PDQ protocols focus
on protecting only constants in query statements, together with the client’s data stored in the
database server.
In this paper, we provide a FHE-based PDQ protocol achieving better security, protecting query
types as well as constants in query statements for conjunctive, disjunctive, and threshold queries
with equality comparison. Our contributions are three-fold: First, we present a new security defi-
nition that reflects our enhanced security model which additionally protects query types in query
statements. Second, we provide a new design for PDQ protocols using FHE schemes. To do this, we
come up with a method to homomorphically evaluate our encrypted target queries on the encrypted
database. Thereafter, we apply it to construct a protocol and show its security under our enhanced
security definition in the semi-honest model. Finally, we provide proof-of-concept implementation
results of our PDQ protocol. According to our rudimentary experiments, it takes 40 seconds to
perform a query on 2352 elements consisting of 11 attributes of 40-bit using Brakerski-Gentry-
Vaikuntanathan’s leveled FHE with SIMD techniques for 80-bit security, yielding an amortized
rate of just 0.12 seconds per element.
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1 Introduction

Cloud computing involves highly durable storage platforms supporting a wide scope of services.
One key application is running a relational database in the cloud, e.g., Amazon Relational
Database Service [2], but it is not limited to relational databases. Outsourcing databases to
a cloud server provides sustainable cost advantages, robustness, and availability. In particular,
the need to rapidly deploy leads many enterprises and organizations to move their databases
to the cloud, e.g., Akamai Technologies [12]. As a trade-off to these benefits, the main issue
that affects outsourcing is maintaining the privacy of information; particularly for those that
are sensitive. This makes sense in personal uses of cloud database services as well.

From the perspective of a client which has been storing data in the cloud, two key privacy
challenges arise.

– Protection of outsourced data from theft by hackers and workers on the cloud side: En-
cryption by the client and authenticated access seem to be a straightforward solution. In



particular, homomorphic encryption that supports computing on encrypted data seems to
be preferable because the decryption key must not be shared with the server.

– Protection of submitted queries from being disclosed to the server: SQL-like languages may
reveal much information about the client’s intentions and interest. In other words, learning
the client’s query details implies learning its possibly sensitive search interest. Moreover, a
long history of client queries could allow the server to gradually learn the information in the
encrypted database. A näıve solution is to encrypt constants used in the condition clauses
in a query statement.

A bit more formally, a private database query (PDQ) is a procedure which on input of an
encrypted database D with n encrypted tuples (α1, . . . , αn) and a query statement Q over D,
outputs n′ ciphertexts (γ1, . . . , γn′) while keeping the following two conditions:

1. Without the decryption key, no one can obtain any information about αi’s and γi’s from
any intermediate and final outputs of the procedure, including the encrypted database D =
(α1, . . . , αn) and the result set (γ1, . . . , γn′).

2. Without the decryption key, no one can obtain any information on the conditional clause of
Q (e.g., the constant a1 in an SQL query “select ∗ from R where A1 = a1 and A2 = a2”
for a schema of degree τ , R(A1, . . . , Aτ )).

The first property can be easily achieved by relying on the security of the exploited encryp-
tion scheme (e.g., indistinguishability against chosen plaintext attacks (IND-CPA)). However,
the second is relatively not easy to handle from the security’s point of view. One main rea-
son is the difficulty of balancing performance and security. For example, in the sense of the
relational model, a query Q is partitioned into three parts: the list of needed attributes, the
list of relations, and the selection condition. For example, we may represent a query Q as
π〈attribute list〉(σ〈selection condition〉(relation)) using a relational algebra expression. Obviously, all
parts of query reveal the client’s interest, but taking into account the query costs, i.e., running
time, for the specific database management system and database concerned, one may not choose
to protect all parts from the server.

For these reasons, we also limit our interest here to protecting the selection condition fol-
lowing existing work on PDQ (e.g., [3, 30]). Thus, the second security property states that the
server (and the adversary) should not know information on the selection condition of queries.
The most popular approach to provisioning PDQs with the second property is to encrypt the
constants in the conditional clause of the query.

However, unfortunately, encrypting the constants only is not sufficient to satisfy the second
condition. We note that the above SQL query protects a1 by encryption, but the attribute names
A1, A2 and the logical operator ‘and’ are still detected by the server. Therefore, the existing
works achieve a security model with the second condition altered such that it is sufficient to
hide only the constants. The contribution of this paper is to present an efficient technique to
protect logical operators as well as constants from the server, which makes it possible to design
a new PDQ protocol with better security. We remark that because protecting attributes in the
selection condition gives rise to the same performance issue as above, this is beyond our scope.
For the same reason, we only focus on conjunctive (and threshold conjunctive) and disjunctive
queries with equality comparison.

1.1 System Model

Our system model for PDQ consists of a client and a server: The client who has his/her own
database, stores it at the server. When a need arises, he/she sends a query request to the server
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and receives a result of the query over the stored database from the server. Here, the client does
not want to reveal any partial information about his/her queries and database to the server
and/or the adversary.

Server

Server Server

Server Server

Database
server

An encrypted database D

v w1 w2 · · · wτ

· · ·
a a1 a2 · · · aτ

· · · Client

Store D

Query Q

a result set R

Fig. 1. Our PDQ Model

In this work, we restrict our attention to the case that uses (leveled) fully homomorphic
encryption (FHE) since FHE-based query protocols are capable of privately performing search
and aggregate queries without the aid of other cryptographic tools.1 To provide a solution
of our system model, we consider the following scenario, shown in Fig. 1 (Throughout the
paper, m denotes an encryption of m for any message m.): In the initial deployment phase, the
client encrypts its database and stores it in the cloud database server. When he/she sends a
query request to the server, he/she sends encrypted constants in the query statement Q. Then,
the server evaluates the encrypted query with the encrypted database homomorphically and
returns an encrypted result set. Here, if the exploited encryption scheme is secure, then no
information about the plaintexts in the encrypted database will be revealed, thereby solving
the first challenge as in the previous literatures [11,26].

1.2 Basic Idea

In this paper, we focus on addressing the second challenge in PDQ for conjunctive, disjunctive,
and threshold queries with equality comparison. To this end, we come up with a method to
homomorphically evaluate our encrypted target queries in the same way, regardless of query
type. Our basic idea is as follows: Once the client poses a query statement Q, he/she parses it
into the textual part and conditional part.

1. We first observe that the conditional part for conjunction, disjunction, and threshold queries
with equality comparison can be represented with the same circuit structure by using an
equality test circuit. Let EQTest be a circuit that on input ciphertexts m1 and m2, outputs
1 if m1 = m2 and otherwise outputs 0. Then, for b, c, d, Ai, ai ∈ F2` with a finite field F2` of
characteristic 2, we can consider a circuit

d+
τ∏
i=1

[b+ EQTest(Ai, ai) · c] (1)

1 For reasons of efficiency, a leveled FHE scheme that supports computation of arbitrary functions of pre-
determined polynomial depth may be applied, as in our implementation, instead of pure fully homomorphic
encryption (see Section 5).
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to represent conjunctive, disjunctive, and threshold queries with equality comparison be-
tween Ai and ai for each 1 ≤ i ≤ τ . Then, the results of the circuit in Equation (1) are
determined as in Table 1 with respect to queries and the choice of constants b, c, and d.2

Table 1. Results of Eq. (1) for Queries and Constants

Query Type b c d Result of Eq. (1)

Conjunction 0 1 0 0/1

Disjunction 1 1 1 0/1

Threshold 1 1 + t 0 tκ

t: a proper element in a multiplicative group F∗2`
κ: the number of conditions that an ele-
ment satisfies in the threshold query

2. In Table 1, the results for threshold queries are still ti for a proper element t in a mul-
tiplicative group F∗

2`
and some non-negative integer i, whereas those for conjunctive and

disjunctive queries are 0 and 1. Hence, we need an additional step, evaluating a polynomial,
to obtain correct results (0 or 1) for threshold queries. To make threshold and non-threshold
queries indistinguishable, the client forces the server to evaluate an encrypted polynomial g
for all queries, where

g(x) =

{
x for non-threshold queries

h(x) for threshold queries

such that h(tκ) = 1 if T < κ ≤ τ and 0 if 0 ≤ κ ≤ τ for a threshold T and number of
attributes in the database τ .

After the above steps, the server has the intermediate results of the query i.e., 1 for true and 0
for false. Therefore, he/she can obtain the final result by multiplying the encrypted data (the
values in the v column in Fig. 1) and the intermediate results.

Therefore, if the client encrypts all constant terms in Step 1 and coefficients of the polyno-
mial g in Step 2, sends all to the server, and lets the server evaluate correctly, then the client
will receive an encrypted set of correct results. Informally speaking, in the above, the client can
hide his query by relying on the security of the exploited FHE scheme. Our description here is
given in the abstract level, but we defer the full description to Section 4.

1.3 Our Results

This paper aims at making the following three contributions.

New security definitions. We provide a new security definition for PDQ that achieves better
security than the existing works by additionally considering the protection of logical operators
as well as constants in query statements. To this end, we first review existing security definitions
for PDQs and describe some of their limitations. Specifically, we recall that existing definitions
do not guarantee the privacy of the client’s queries (and is therefore not an adequate notion
of security for constructing PDQ protocols) and then highlight technical issues. Thereafter, we
address this issue by proposing a new definition that provides better security for both type of
queries and constants in the conditional part of a query.

2 See Section 4 for the detail of the element t ∈ F∗2` .
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New constructions. We present a construction for PDQs, that is secure under our new security
definition in the semi-honest model. Our protocol can efficiently handle conjunctive queries,
disjunctive queries, and threshold conjunctive queries with equality comparison. As mentioned
before, our construction mainly relies on the equality test circuit, but pays the price of increasing
computation and communication size to achieve a higher level of security.

In fact, our protocol achieves searches in two communication rounds, requires an amount of
work from the server that is linear in the number of tuples of databases, and requires a total
multiplicative depth of dlog `e + 2dlog(1 + τ)e + 2 where ` is the extension degree of plaintext
space of an exploited FHE scheme and τ is the number of attributes of elements in the database.
It also requires the total communication cost n+ 4τ + 1 from the client where n is the number
of tuples in the database.

Experimental study. We provide implementation results of our design of a PDQ protocol
and discuss the details in Section 5. As an FHE scheme, we exploit the Brakerski-Gentry-
Vaikuntanathan (BGV) leveled FHE scheme [8]. Because our protocol is computationally in-
tensive, we apply some additional techniques to improve the performance of the protocol. For
example, we utilize depth-free Frobenius map evaluation for performing polynomial evaluation
as well as computing an equality test algorithm on encrypted data. We also employ dynamic
programming techniques to boost the computational efficiency in polynomial evaluations. (See
Section 5.1 for details.)

We report on our experimental results for various settings in Section 5.3. Further, we provide
a comparison of ours with the previous standard query over encrypted data using FHE in [26],
that achieves weaker security than ours. From our experiments, for 80-bit security, it requires
40 seconds to perform a query on 2352 elements consisting of 11 attributes of 40-bit, yielding
an amortized rate of just 0.12 seconds per element.

1.4 Related Work

A popular PDQ system CryptDB [35] and its offshoot Monomi [39] are two systems that have
combined encryption schemes with different properties and a proxy server to translate standard
database queries into instructions for a database server to work on stored encrypted data.
However, some details such as the type of query received are leaked to the database server
based on instructions from the proxy.

Since the appearance of plausible somewhat homomorphic encryption (SHE) and FHE,
there were several proposed PDQ solutions [5, 11, 26] based on SHE and FHE. Boneh et al. [5]
provided PDQ protocols for conjunctive and threshold conjunctive queries. In their suggestion,
they represent each attribute as a polynomial whose roots are the indices of recodes that satisfy
the attribute. The coefficients of those polynomials are encrypted and they are manipulated
based on the incoming query. Later, Cheon et al. [11] proposed a PDQ protocol for searching
on encrypted database using an equality test algorithm on encrypted data. The basic idea of
their suggestion is to find a predicate to efficiently represent a search condition and then to
evaluate at each FHE ciphertext by applying an equality test algorithm. We note that their
work restricts the plaintext space of the exploited FHE to a set {0, 1}.

Very recently, Kim et al. [26] proposed three PDQ protocols for conjunctive, disjunctive, and
threshold conjunctive queries with equality comparison, respectively, and provided the efficiency
analysis of their constructions based on the required multiplicative depth to perform equality
test between encrypted data using FHE with respect to plaintext spaces of the exploited FHE
schemes. They also suggested a communication-efficient method that reduces a communication
cost on the server side by adapting the technique to represent a set by a polynomial as in
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previous works on private set operations and PDQs [5, 17, 27]. However, the works mentioned
above are not also concerned with hiding the type of query that will be evaluated.

For hiding the type of query, Goldwasser et al. [22] proposed multi-input functional encryp-
tion (MI-FE) and described a method that allows a user to compute database queries without
revealing them to anyone else. Boneh et al. [6] constructed a secret-key MI-FE that is more
efficient but they are not practical yet.

A more practical approach to hiding queries is [33] which uses Bloom filters (BF) to make
searching efficient and a proxy server that transforms a user’s encrypted query into BF indices
that are used to extract the data identifiers from the actual database. The database sends the
identifiers to the proxy who encrypts and returns the result to the user. However, there is the
possibility of false positives due to BF and it leaks some patterns in the submitted queries and
results.

In [16, 32], there have been proposed improvements of this result in a scheme called Blind
Seer. They add more primitives such as Yao’s garbled circuits and oblivious transfer. Although
it can support arbitrary Boolean formulas over large databases, the drawback remains that false
positives are still possible and it requires a non-constant number of rounds of communication
when evaluating the Yao’s garbled circuit that is the search tree and in the process leaks the
traversal pattern of the tree.

1.5 The Outline of the Paper

Our paper is structured in the following way. In Section 2, we take a look at concepts of FHE
and recent results on the required depth for an equality test algorithm using FHE, which are two
main components of our proposed protocol. We provide a new security definition of our PDQ
model in Section 3. Our new PDQ protocol is presented in Section 4, followed by subsections
that show an in-depth performance evaluation and analyze the security. In Section 5, we provide
our proof-of-concept implementation and its experimental results with various parameters.

2 Preliminaries

In this section, we briefly introduce concepts of FHE and look into the recent result on the
required multiplicative depth to perform an equality test algorithm between encrypted data
using FHE, which is a main component of our proposed protocol.

2.1 Notation

Throughout the paper, a
$← A denotes that an element a is chosen uniformly and randomly

from a set A. For an algorithm A, A→ a denotes that the algorithm A outputs a. Let a denote
an encryption of a plaintext message a. The set of integers from 1 to a is denoted by [a]. We
denote by dae (resp. bac) the smallest (resp. largest) integer that is larger (resp. smaller) than
or equal to a real number a.

We denote by λ the security parameter and for simplicity, assume that all algorithms take
it as input. A function ν : N → R is negligible in λ if for all positive polynomials p(·) and
sufficiently large λ, ν(λ) ≤ 1

p(λ) . We use poly(λ) and negl(λ) to represent unspecified polynomials

and negligible functions in λ, respectively. A probabilistic polynomial-time (PPT) algorithm is
a randomized algorithm that runs in time poly(λ).

Database. Let D = (α1, . . . , αn) be a database of n tuples, and each tuple αi is an ordered list
of τ+1 attributes (v, w1, . . . , wτ ). We use |D| to indicate the size of the database D, i.e., n = |D|.
We then refer to each element by αi.v or αi.wj for j ∈ [τ ]. Here, each attribute αi.wj represents
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a keyword attribute (e.g., student ID) which is checked against the conditions in a search (e.g., a
where-clause in SQL). In contrast, the element αi.v represents a value attribute (e.g., his grade)
which is retrieved if the tuple αi satisfies the search condition. Because we are interested in the
privacy of search conditions, we simply assume that the schema has one value attribute (and
note that it is straightforward to expand it to multiple value attributes).

Furthermore, we use id(αi) to denote the identifier of tuple αi, which is any string that
uniquely identifies it, such as a memory address. We denote by IdD(Q) the list consisting of
the identifiers of all tuples in D such that a query Q over D is evaluated to true. Let QD[η1, η2]
be the set of all queries over a database D which have not more than η1 logical operators (e.g.,
and) and η2 constants (or literals) at the search condition where η1 = poly(λ), η2 = poly(λ).3

Lastly, we denote by RD(Q) a result set from executing a query Q over a database D.

2.2 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme consists of the following four PPT algorithms,
KeyGen,Enc,Dec, and Eval:

– KeyGen(λ) → (pk, ek, sk): It takes a security parameter λ as input and outputs a public
key pk, an evaluation key ek, and a secret key sk. We assume that pk, sk, and ek each
include the information of both the plaintext space P and ciphertext space C.

– Enc(pk,m) → m: Given the public key pk and a plaintext message m ∈ P, it outputs a
ciphertext m.

– Dec(sk,m)→ m∗/ ⊥: Given the secret key sk and a ciphertext m, it outputs a message m∗ ∈
P or ⊥.

– Eval(ek, ϕ,m1, · · · ,mn) → mϕ: It takes the evaluation key ek, a function ϕ : Pn → P, and
a set of n ciphertexts m1, · · · ,mn as inputs and outputs a cihpertext mϕ.

Here, arbitrary functions ϕ are allowed to be evaluated in the Eval algorithm of pure FHE
schemes.

An FHE scheme is said to be IND-CPA secure if it achieves indistinguishability against
chosen plaintext adversaries. We use a widely known formulation of IND-CPA security, defined
as follows.

Definition 1 (IND-CPA Security) An FHE scheme is IND-CPA secure if for any polynomial-
time adversary A, it holds that∣∣∣Pr[A(pk, ek,Enc(pk,m0)) = 1]

−Pr[A(pk, ek,Enc(pk,m1)) = 1]
∣∣∣ ≤ negl(λ)

where KeyGen(1λ)→ (pk, ek, sk) and m0,m1 ∈ P are chosen by the adversary A.

Since Rivest et al. [36] proposed the concept of FHE in 1978, it remained an open problem to
realize a plausible construction for 30 years. In 2009, Gentry proposed the first FHE scheme from
ideal lattices [18]. Following his design philosophy, various studies [13,15,40] have been presented
on constructing efficient FHE schemes, however they have fairly poor performance. As a solu-
tion of efficient FHE, Brakerski and Vaikuntanathan [9] introduced the concept of leveled FHE
schemes, which allows the evaluation of functions of at most a pre-determined multiplicative

3 For example, an SQL statement select ∗ from ACCOUNT where Age = 25 and Gender = ’male’ is in QD[1, 2],
where Age and Gender are the attribute names of relation ACCOUNT.
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depth, instead of arbitrary functions. Shortly after, Brakerski, Gentry, and Vaikuntanathan [8]
proposed a leveled FHE scheme over polynomial rings, which has significantly improved perfor-
mance over the previous schemes.

When an FHE scheme is fixed, the efficiency of evaluating a function is primarily deter-
mined by the required levels to evaluate a circuit corresponding to the function. Furthermore,
when plaintext spaces of FHE schemes are extension fields, we can further reduce the required
multiplicative depth by using FHE schemes that support depth-free automorphism evaluation.
We will exploit such FHE schemes [7, 8] in our proposed protocol.

2.3 Equality Test Algorithm

Our protocol will utilize an equality test algorithm on encrypted data using FHE schemes as a
building block. An equality test algorithm between two encrypted data, denoted by EQTest(·, ·),
is defined as follows: For two messages m1,m2 ∈ P,

EQTest(m1,m2) =

{
1 if m1 = m2

0 otherwise.

When an FHE scheme is fixed, the computational efficiency of the equality test algorithm is
determined by the required multiplicative depth when evaluated using that FHE scheme. Some
works in the literature [10, 11, 26] measured the required multiplicative depth of performing
an equality test algorithm on encrypted data using FHE schemes. According to a very recent
analysis by Kim et al. [26], it consumes an optimal multiplicative depth dlog `e to perform an
equality test algorithm between two ciphertexts of `-bit messages, when the plaintext space of
the exploited FHE scheme is a field of characteristic 2 and no multiplicative depth is consumed
to evaluate the Frobenius map. Therefore, our protocol will utilize FHE schemes, such as [7,
8], whose plaintext space is F2` and which consumes no multiplicative depth to evaluate the
Frobenius map.

3 Our Security Model

In this section, we provide the security model for our PDQ model. We first look at security
definitions of previous PDQ protocols and their limitations. Then, we define our new security
model for PDQ protocols to address those limitations.

3.1 Revisiting Query Privacy Definitions

While security for database queries is typically captured as the requirement that nothing be
leaked beyond the result of a query or the access pattern (i.e., the unique identifiers of records
that satisfy its query condition), we are not aware of any previous work other than that
of [19, 21, 28, 31, 38] that satisfies this intuitive definition. This is simply because with the
exception of oblivious RAMs, all the constructions in the literature also reveal whether different
searches share the same conditions or not. We refer to this as the condition pattern and note
that it is clearly revealed by the schemes presented in [11, 30, 35]. Therefore, a more accurate
characterization of the security notion achieved for PDQs is that nothing is leaked beyond the
access pattern and the condition pattern (see below for precise definitions).

Limitations of Previous Definitions. To date, one definition of security have been used for
PDQ which was introduced by Kantarcioǧlu and Clifton [25]: For two messages, MQ1 and MQ2 ,
associated with respective queries, Q1 and Q2, of same size over a database D, any adversary
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cannot distinguish between an encryption of MQ1 and MQ2 . Borrowing from cryptographic
terminology, we can rephrase it as follows: For all PPT distinguishing algorithms D,∣∣Pr[D(MQ1) = 1]− Pr[D(MQ2) = 1]

∣∣ ≤ negl(λ). (2)

To our knowledge, existing works address the security problem by limiting the security
goal to hide private constants of a query. As Olumofin and Goldberg remark (p. 77 of [30]),
the literature considers that the textual statement of an SQL query is not private, only the
constants that the client provides at the execution time are sensitive and so should be kept
secret. However, we believe that protecting only the constants is not enough security for PDQ,
since logical operators appearing in a query condition can reveal some information that should
not be known to any adversary. Though one might be tempted to remedy the situation by
introducing functional encryption (e.g., [22]), it cannot be done in an efficient manner yet.

In the same setting, Hore et al.’s scheme [24] splits a query Q into a public part and a
private part, and requires that the private section be executed in a trusted area on the server
side. The authors, however, did not further refine it. Regarding existing definitions, Yang et
al. [41] consider only very simple queries in QD[0, 1]. For queries in QD[η1, η2], subsequent works
including [3–5, 16, 29, 30, 32, 34] in the privacy-preserving query literature support only hiding
the private constants of a SQL query (see [29, Section 8]) where η1, η2 ∈ N. As a consequence,
their security definitions are given in tune with their own cases.

In summary, all existing definitions assume that a message MQ associated with a query Q
consists of only the private constants in Q’s search condition.

3.2 Our Definitions

We now attempt to address the above issues. Before providing our definition for PDQ, we would
like to introduce some supporting notions which we will use.

Semi-Honest Model. In this paper, we restrict an adversary model to the semi-honest case.
In this model, we assume that all players faithfully follow the described actions of the protocol
and they may try to attain additional information other than the result of the protocol from
transcripts produced during the execution of the protocol. (See Chapter 7 of [20] for the details.)

and

and

and

w1 = a1 w2 = a2

w3 = a3

w4 = a4

Fig. 2. Example of a Query Tree

Query and Tree Representation. We focus on the conditional content of a query because we
exclude the other part of the query (e.g., table name and result attributes) from our targets to
be protected in this paper. For this reason, we identify a query with its condition and represent
the query into a sequential binary tree representation induced by the condition. For convenience,
although a slight abuse of notation, we call it a query tree (e.g., see Fig. 2). Denoting a query
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tree for a query as TQ, for a query Q ∈ QD[η1, η2], we see that η1 is the number of internal
nodes in TQ and η2 is the number of leaf nodes in TQ. Note that we do not consider comparisons
between attributes. We denote a vector of internal nodes by o = (o1, . . . , oη1) and a vector of
leaf nodes c = (c1, . . . , cη2). For simplicity, we assume that each query has the unique sequential
tree representation by keeping the order of attributes in the query statement.

Definitions. The interaction between the client and the server is determined by a database
and a query with Boolean conditions that the client wishes to search for and that we want to
hide from the server. We use a history to indicate a specific execution of such an interaction,
following the notion introduced in [14].

Definition 2 (History) Let η1, η2 ∈ N. Let D be a database and Q = (o, c) be a query in
QD[η1, η2]. A history over D and Q is a tuple H = (D,o, c) that consists of a database D and
(o, c) induced by the query tree TQ.

Definition 3 (Access Pattern) Let η1, η2 ∈ N. Let D be a database and Q = (o, c) be a query
in QD[η1, η2]. The access pattern induced by a query history H = (D,o, c) is the list IdD(Q)
whose query condition is determined by (o, c) and attributes of D.

Definition 4 (Condition Pattern) Let η1, η2 ∈ N. Let D be a database and Q = (o, c) be a
query in QD[η1, η2]. Then the condition pattern induced by a query history H = (D,o, c) is a
binary tree TQ(H) such that the structure of TQ is determined by o and c.

The final notion we study is that of a trace of a history, following the notion from [14]. What
we would like to achieve via this notion is to clearly identify which information within a history
we are willing to disclose and which information should be hidden from the adversary. Thus, we
refer to the former information, that we are willing to reveal, as a trace. The primary difference
from existing works is that in our security requirement, the trace does not include the condition
pattern. Of course, our definition as well as existing definitions require the trace to carry the
access pattern. In addition, the server can see the size of D and the textual content of given
queries. Therefore we add these to the trace.

Definition 5 (Trace) Let η1, η2 ∈ N. Let D be a database and Q = (o, c) be a query in
QD[η1, η2]. The trace induced by a query history H = (D,o, c) is a tuple tr(H) = (|D|, IdD(Q))
that consists of the number of tuples |D| and the access pattern IdD(Q) induced by H.

Now we are ready to give our security definition for PDQ. Our definition requires that the
view of an adversary (i.e., the textual content and the ciphertexts) generated from its chosen
history be simulatable given only the trace.

Let D = (α1, . . . , αn) where αi means Enc(αi) by an encryption function Enc. Given an
encrypted database D, we can reuse the above definitions and notations except for the use of D
instead of D. For example, IdD(Q) means a set of identities of αi such that Q’s query condition
at αi ∈ D is evaluated to true. We define V as the view of an adversary A (e.g., the server)
over the transcript of the interactions between the client and the server along with the public
knowledge. Specifically, V = (D,Q, IdD(Q),RD(Q)). Accordingly, the trace over the encrypted
database D means tr(H) = (|D|, IdD(Q)).

Definition 6 (Query Condition Privacy) Let the client and server engage in a query pro-
cessing protocol π that computes a functionality f(inc, ins) = (outc, outs) where inc, outc (resp.,
ins, outs) denote input and output of client (resp., server), respectively. Let Vπ denote the view
of server during the execution of the protocol π. More precisely, the server’s view is formed by
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its input ins = D, internal random coin tosses rs, messages Q passed between client and server
during protocol execution:

Vπ = (D, rs, Q, IdD(Q)).

Then, we say that a query processing protocol π achieves query-condition privacy if for all
databases D, queries Q over D, and PPT algorithms A, there exists a PPT algorithm (i.e., the
simulator) S such that for all Vπ and traces tr(H) over D, and for any function f :

{S(tr(H), f(D,Q))}
c
≈
{
Vπ, outs = RD(Q)

}
where

c
≈ denotes computational indistinguishability.

By the definition of condition privacy, we require that all information on the database D
and submitted query Q over D that can be computed by the adversary (i.e., the server) from
the transcript of the interactions with the client can also be computed by using public knowl-
edge (i.e., the trace). Intuitively, the notion captures that if a query is condition-private, then it
does not leak any information beyond the information that is allowed to leak to the adversary.

4 Our Protocol for Queries with Better Security

In this section, we present our PDQ protocol for conjunction, disjunction, and threshold queries
on encrypted databases using FHE schemes. Subsequently, we look into the correctness, the
efficiency, and the security of our proposed protocol.

4.1 Preparation

We assume that an encrypted database D = α1‖α2‖ · · · ‖αn using a special FHE scheme is given,
where αi = (αi.v, αi.w1, · · · , αi.wτ ) with αi.v ∈ {0, 1}`−1 and αi.wj ∈ {0, 1}` for all i ∈ [n],
j ∈ [τ ] and where αi is a component-wise encryption of αi, i.e., αi = (αi.v, αi.w1, · · · , αi.wτ ).
As mentioned before, for convenience, we frequently use vi and wij in place of αi.v and αi.wj ,
respectively.

For the correctness of our protocol, we assume that vi 6= 0 for all i ∈ [n]. To handle this
issue, we exploit an FHE scheme with the plaintext space F2` , not F2`−1 , and assume that each
vi is encoded as 1‖vi in advance, where a‖b denotes the concatenation of strings a and b. Unless
confusion arises, we omit encoding and decoding steps between vi and 1‖vi in our protocol.

For the efficiency, we exploit FHE schemes that consume no multiplicative depth to evaluate
the Frobenius map and its plaintext space is F2` , such as [7, 8]. In this case, the EQTest algo-
rithm that is a main component of our protocol, consumes dlog `e multiplicative depth from
the analysis in [26]. Throughout the paper, p(x) denotes an irreducible polynomial of degree `
where F2` is isomorphic to F2[x]/((p(x)). t ∈ F2` denotes a root of p(x) and it is predetermined
before beginning the protocol.

To encrypt an `-bit messages a = (a`, · · · , a1) ∈ {0, 1}` using an FHE scheme with the
plaintext space F2` , we first encode the message a to

∑`−1
i=0 ai+1t

i ∈ F2` . Then, we can write an
encryption of the message a as

a := Enc

(
pk,

`−1∑
i=0

ai+1t
i

)
where pk is the public key of the exploited FHE scheme.

Henceforth, a+b and a ·b denote operations between ciphertexts that they preserve addition
and multiplication on encrypted data, respectively. We remark that 1 + 1 = 0 because it is
assumed that the plaintext space of the exploited FHE scheme in our protocol is F2` .
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4.2 Our Protocol

Descrption. Now, we present the description of our PDQ protocol between the client and the
server.

1. The client performs as follows:
(a) Depending on the type of query,

– Conjunction: For a query to return vi’s such that
∧
j∈J (αi.wj = aj),

i. For each j ∈ [τ ],
• If j ∈ J , set bj = 0 and cj = 1.

• Otherwise, set bj = 1, cj = 0, and aj
$← {0, 1}`.

ii. Set di = 0 for all i ∈ [n].

iii. Compute a polynomial g ∈ F2` [x] such that g(1) = 1 and g(0) = 0.

– Disjunction: For a query to return vi’s such that
∨
j∈J (αi.wj = aj),

i. For each j ∈ [τ ],
• If j ∈ J , set bj = 1 and cj = 1.

• Otherwise, set bj = 1, cj = 0, and aj
$← {0, 1}`.

ii. Set di = 1 for all i ∈ [n].

iii. Compute a polynomial g ∈ F2` [x] such that g(1) = 1 and g(0) = 0.

– Threshold conjunction: For a query to return vi’s such that κ > T where T is a
non-negative integer and κ = |{j ∈ J |αi.wj = aj}|.
i. For each j ∈ [τ ],
• If j ∈ J , set bj = 1 and cj = t+ 1.

• Otherwise, set bj = 1, cj = 0, and aj
$← {0, 1}`.

ii. Set di = 0 for all i ∈ [n].

iii. Compute a polynomial g ∈ F2` [x] such that g(tκ) =

{
1 if T < κ ≤ τ
0 if 0 ≤ κ ≤ T.

(b) The client encrypts aj , bj , cj , di, and gk for all i ∈ [n], j ∈ [τ ], and k ∈ ({0} ∪ [τ ]) where
g(x) =

∑τ
k=0 gkx

k and sends them to the server.

2. The server performs as follows:
(a) computes

βij = bj + EQTest(αi.wj , aj) · cj (3)

for all i ∈ [n] and j ∈ [τ ].

(b) computes ζi = di +
∏
j∈[τ ] βij for all i ∈ [n].

(c) computes γi = g(ζi) · vi for all i ∈ [n].

(d) sends {γ1, · · · , γn} to the client.

3. The client obtains γ1, · · · , γn by decrypting γi’s using the secret key of FHE.

Correctness. The following theorem shows the correctness of our proposed protocol.

Theorem 1. Let Q be a query over an encrypted database D that the client submits at Step 1
of our proposed protocol, where Q is one of queries for conjunctive, disjunctive, and threshold
queries with equality comparison. Then, the client obtains the result set RD(Q) for the query Q
over D after the execution of the protocol.
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Proof. 1. Conjunction: At Step 2 (a), for a conjunction query
∧
j∈J (αi.wj = aj),

– If j ∈ J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 0 + EQTest(αi.wj , aj) · 1

=

{
1 if αi.wj = aj

0 if αi.wj 6= aj .

– If j 6= J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 1 + EQTest(αi.wj , aj) · 0 = 1.

Hence, at Step 2 (b), for each i ∈ [n],

ζi = di +
∏
j∈[τ ]

βij =

{
1 if αi.wj = aj for all j ∈ [τ ]

0 otherwise

because di = 0 and

γi = g(ζi) · vi =

{
vi if αi.wj = aj for all j ∈ [τ ]

0 otherwise

because g(0) = 0 and g(1) = 1.

2. Disjunction: At Step 2 (a), for a disjunction query
∨
j∈J (αi.wj = aj),

– If j ∈ J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 1 + EQTest(αi.wj , aj) · 1

=

{
1 if αi.wj 6= aj

0 if αi.wj = aj .

– If j 6= J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 1 + EQTest(αi.wj , aj) · 0 = 1.

Hence, at Step 2 (b), for each i ∈ [n],

ζi = di +
∏
j∈[τ ]

βij =

{
0 if αi.wj 6= aj for all j ∈ [τ ]

1 otherwise

because di = 1 and

γi = g(ζi) · vi =

{
0 if αi.wj 6= aj for all j ∈ [τ ]

vi if
∨
j∈J (αi.wj = aj)

because g(0) = 0 and g(1) = 1.
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3. Threshold Conjunction: At Step 2 (a), for a query to return vi’s such that κ > T where T
is a non-negative integer and κ = |{j ∈ J |αi.wj = aj}|,
– If j ∈ J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 1 + EQTest(αi.wj , aj) · t+ 1

=

{
t if αi.wj = aj

1 if αi.wj 6= aj .

– If j 6= J ,

βij = bj + EQTest(αi.wj , aj) · cj
= 1 + EQTest(αi.wj , aj) · 0 = 1.

Hence, at Step 2 (b), for each i ∈ [n],

ζi = di +
∏
j∈[τ ]

βij = 0 +
∏
j∈[τ ]

βij = tκ

where κ = |{j ∈ J |αi.wj = aj}| and

γi = g(ζi) · vi =

{
vi if T < κ ≤ τ
0 if 0 ≤ κ ≤ T

by the definition of the polynomial g.

From the above, we show that the client obtains the correct values once he decrypts γi’s
for all i ∈ [n] and therefore the client obtains the correct result set for each query over the
database. �

4.3 Efficiency

Now, we analyze the efficiency of our proposed protocol.

Computational Cost. We evaluate the computational cost of our proposed protocol in terms
of the required multiplicative depth. At Step 2 (a), it requires dlog `e + 1 multiplicative depth
to compute βij because the EQTest algorithm consumes dlog `e multiplicative depth when the
exploited FHE scheme of plaintext space F2` consumes no multiplicative depth to evaluate the
Frobenius map [26]. At Step 2 (b), it takes dlog τe multiplicative depth to compute

∏
j∈[τ ] βij .

Computing γi at Step 2 (c) consumes dlog (1 + τ)e + 1 multiplicative depth. 4 Thus, the total
required multiplicative depth is approximately dlog `e+ 2dlog τe+ 2.

Communication Cost. At Step 1 (b), the client sends encryptions of aj , bj , cj , di, and gk for
all j ∈ [τ ], i ∈ [n], and k ∈ ({0}∪ [τ ]) where g(x) =

∑τ
k=0 gkx

k. Hence, the communication cost
on the client side is n + 4τ + 1 ciphertexts of the exploited FHE scheme. On the other hand,
the server sends γi’s for all i ∈ [n] to the client at Step 2 (d). Hence, the communication cost
on the server side is n ciphertexts of the exploited FHE scheme.

4 In fact, we can further reduce the required multiplicative depth for computing Step 2 (c) to dlog dlog τee + 1
by applying Frobenius map. (See Section 5.1 for the detail.) Then, the total required multiplicative depth of
our protocol is also slightly reduced to dlog `e+ dlog τe+ dlog dlog τee+ 2.
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Remark 1. When an upper bound δ on the selectivity of a query over a database of n elements
is known, we can reduce the communication cost on the server side to bδnc by applying Kim et
al.’s suggestion [26, Section 5] to represent a result set by a polynomial at the cost of dlog ne
additional multiplicative depth. However, to apply their technique with SIMD, we require ad-
ditional techniques that impose heavy computational costs, e.g., extracting a ciphertext of each
message from a packed ciphertext. Hence, we do not consider to apply their technique in this
paper.

4.4 Security Analysis

In this section, we analyze the security of our proposed protocols. We show that the construction
of our PDQ protocol in Section 4.2 satisfies the security definition in Section 3 (see Definition 6).
Recall that in our proposed protocol the client encodes his/her queries differently if the type of
query is different, but the server always performs the same computation regardless.

Theorem 2. Assume that the exploited FHE scheme is IND-CPA secure, then our PDQ pro-
tocol achieves the query-condition privacy in Definition 6.

Proof. It suffices to build a PPT simulator S such that for all PPT adversariesA and functions f ,
given the trace of query tr(H) over an encrypted database D by the exploited FHE scheme, S
can simulate the adversary’s view A(V) with non-negligible probability. We assume that D is
already in place. Of course, the adversary can observe the generation of the encrypted database
D, but it has no extra information except for the size of D (i.e., n = |D|) since the exploited
FHE scheme is IND-CPA secure.

Specifically, we show that S taking as input tr(H) can generate a view V∗ which is compu-
tationally indistinguishable from V which, in turn, is the real view of the adversary A. By V∗,
we mean

V∗ =
(
D∗ = {α∗i }i∈[n], Q

∗, IdD∗(Q
∗),RD∗(Q

∗)
)
.

Now S constructs the simulated view V∗ as follows.

– Generating D∗. S first initializes D∗ ← ∅. For each α∗i∈[n]
$←− P, it computes α∗i with the

public key pk and a randomness r∗i , and set D∗ ← D∗ ∪ α∗i . Indeed each tuple α∗i consists
of τ + 1 attributes, but because their values are clear from the context we omit their full
descriptions.

– Generating Q∗. From the query Q in the given view V, S can determine the same index

set [τ ] as in V. Then for each j ∈ [τ ], it computes a∗j , b
∗
j , and c∗j with a∗j

$←− P, b∗j
$←− P,

and c∗j
$←− P using FHE encryption under the public key pk in the same way as above.

Similarly, it computes {d∗i }i∈[n] under the public key pk for d∗i
$←− P. Finally, the client

chooses a polynomial g∗(x)
$←− F2` [x] such that deg(g∗) = τ and computes an encryption of

its coefficients g∗k for k ∈ {0} ∪ [τ ].

– Generating IdD∗(Q
∗). S constructs a set of unique identifiers {id(α∗i )}i∈[n]. It takes the set

as IdD∗(Q
∗).

– Generating RD∗(Q
∗). For each i ∈ [n], S generates γ∗i

$←− P, and computes γ∗i under the
public key pk in the same way as above. It then uses the collection of the encryptions as
RD∗(Q

∗).

We show that V∗ is computationally indistinguishable from V by comparing them in a
component-by-component manner. It is easy to check that if the exploited FHE scheme is IND-
CPA secure, then D and D∗ are computationally indistinguishable. Next let us consider an
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actual query Q and a simulated query Q∗, where two queries have the same textual content.
Then we see that

{aj , bj , cj}j∈[τ ]
c
≈ {a∗j , b∗j , c∗j}j∈[τ ],

{di}i∈[n]
c
≈ {d∗i }i∈[n],

and

{gk}0≤k≤τ
c
≈ {g∗k}0≤k≤τ

if the exploited FHE scheme is IND-CPA secure, where
c
≈ means computational indistinguisha-

bility. For IdD(Q) and IdD∗(Q
∗), it is not hard to see that id(αi) is indistinguishable from

id(α∗i ), if id is assumed to be a pseudorandom function. Note that we did not specify any as-
sumption to the function id since hiding the access pattern is beyond our interest. Finally for
all i ∈ [n], the indistinguishability between γi in the result set and γ∗i in the simulated result
set is straightforward. Thus, we can conclude the proof of Theorem 2. �

5 Implementation

In this section, we provide implementation results of our proposed PDQ protocol for several
scenarios.

5.1 Techniques for Speeding Up

In our implementation, we employed the BGV encryption scheme [8] as the underlying FHE
scheme and exploited two additional techniques to improve the performance of the protocol.

1. We apply depth-free Frobenius maps when evaluating the polynomial g on a ciphertext
as well as in the equality test algorithm. Frobenius maps can be used to compute powers
of two of any ciphertext without consuming levels in case of BGV encryption scheme of
plaintext space F2` . This in turn means that we can reduce the number of multiplications

required to evaluate a polynomial on a ciphertext. For each integer j, j =
∑dlog je

i=1 bi · 2i and

xj =
∏dlog je
i=1 bi · x2

i
with bi ∈ {0, 1}. This means that any monomial xj can be computed

in dlog dlog jee multiplications when Frobenius maps are used to pre-compute x2
i

for all
0 ≤ i ≤ dlog je. Thus, for ḡ of degree τ , ḡ is computed in dlog dlog τee levels.

2. Our implementation uses the dynamic programming paradigm to reduce the number of
multiplications that polynomial evaluation requires. For monomials ζ̄i, where the Hamming
weight of the binary representation of i is a power of two, we keep them aside before evalu-
ating ḡi · ζ̄ so that they can be used subsequently when evaluating higher degree monomials.
The reason we only keep these monomials specifically is to ensure that each monomial is
evaluated using the lowest number of levels.

5.2 Experiment Setting

Test Environment. The testing platform was a server with Intel R© Core
TM

i7-4790 @ 3.60
GHz with 8GB RAM. The implementation of our protocol was written in C++. We realized
the BGV leveled FHE scheme using HElib [23], NTL 9.7 [37], and GMP Library 6.1.0 [1].

Dataset Generation. A range of databases were randomly generated using a Python script
and each element of the databases utilized in the experiments consists of one value attribute and
11 keyword attributes. The maximum size of the entries are fixed at 40-bit. We apply a SIMD
technique, so each column in the database is packed and encrypted into a set of ciphertexts
with the protocol running over these ciphertexts.
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Parameter Selection for BGV Scheme. We employed the BGV scheme with 17 levels for
ours and 15 for Kim et al.’s [26] as the underlying FHE schemes. We set the plaintext space of
the utilized BGV scheme to be slightly larger and not exact. This is because the parameters of
the BGV scheme are determined by a security level, required depth, plaintext size, and so on,
but the scope of parameters that we can select is quite narrow and the plaintext space cannot
be exact.

An important parameter for the HElib implementation of the BGV scheme is an integer m,
which is used to evaluate the Fast Fourier Transform (FFT) of elements in P and C. This
allows ciphertext operations to be performed more efficiently than the standard coefficient
representation. To find a set of suitable parameters for plaintext space F240 , we conducted
an exhaustive search on integers m of up to 50000 to obtain ring dimensions φ(m) for the Euler
totient function φ, its corresponding plaintext space F2` and number of plaintext slots available.
But, we could not obtain any that was exactly F240 . Instead, we chose several ring dimensions
that support plaintext spaces larger than F240 . Strictly speaking, this is not an optimal technique
because a larger plaintext space decreases the number of plaintext slots in a ciphertext and so
amortized performance gets worse. Despite that, the overall performance might be better since
there exists no small ring dimensions that are suitable for plaintext space F240 .

5.3 Experimental Results for Various Settings

Now, we provide implementation results of our PDQ protocols. First, Table 2 shows the results
of some experiments with 40-bit plaintexts and a database that fills up one ciphertext. A large
majority (about 80-85%) of the time taken by the protocol is on the equality tests on encrypted
data. This is not surprising because it is one of the larger circuits in the protocol. Furthermore,
every ciphertext has to undergo this portion of the protocol whereas the rest of the protocol
processes only one column worth of data and that is only 1/11 of the database. On the client
side, it takes about 2-4 seconds to generate the encrypted query for various security levels and
0.02-0.05 seconds to decrypt the results of the protocol.

Table 2. Performance Results of Our PDQ Protocol for Various Security Levels

λ m φ(m) P
# of Slots Query Encrypt EQTest Total Time Amortised Time Result Decrypt

in a Ciphertext (Client) (Server) (Server) (Server) (Client)

80 14491 14112 F242 336 2.00 sec 33.66 sec 39.61 sec 0.12 sec 0.02 sec

99 30705 15488 F244 352 4.00 sec 64.29 sec 75.92 sec 0.22 sec 0.04 sec

104 17173 15840 F260 264 3.00 sec 64.17 sec 73.85 sec 0.28 sec 0.04 sec

118 31695 16896 F244 384 4.00 sec 67.96 sec 80.90 sec 0.21 sec 0.05 sec

125 27393 17424 F244 396 4.00 sec 67.90 sec 80.69 sec 0.20 sec 0.05 sec

Each element consists of 11 attributes of 40-bit entries and we used a leveled BGV scheme of 17 levels.

λ: security parameter (bit), P: the plaintext space of the utilized BGV scheme

m: parameter for FFT, φ(m): the dimension of the polynomial ring of the utilized BGV scheme

The general trend of Table 2 is shown in Fig. 3. The time taken to run the protocol increases
as security level increases, although the increase is slight after 80-bit security. This could be due
to the high m that is used to achieve those levels of security; m is 14491 for 80-bit security but
greater than 27000 for 99, 118 and 125-bit security. At 104-bit security, there are fewer slots
compared to the rest so the amortised time per row actually increased despite taking similar
time to the other security levels. Optimal parameters for the system are hard to determine as
the parameters of BGV FHE encryption schemes depend on the integer m and its corresponding
ring dimension φ(m) and plaintext requirements.
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Fig. 3. Timings for Security Levels

Second, Table 3 and Fig. 4 show amortised times of our protocol for various security levels
and database sizes. The results show that amortised time of the protocol decreased when the
database increased to around 2048. This is likely due to the fact that the first computation
usually causes some important reusable data to be moved into memory and then subsequently
left there. This means that future computations can save the action of fetching these data again
and so take less time to complete.

Table 3. Performance Results for Various Database Sizes

λ m φ(m) P # of Slots Amortised Time I Amortised Time II Amortised Time III
in a Ciphertext (# of DB Elements) (# of DB Elements) (# of DB Elements)

80 14491 14112 F242 336
0.118 sec 0.097 sec 0.117 sec

(336) (2352) (16464)

99 30705 15488 F244 352
0.216 sec 0.163 sec 0.214 sec

(352) (2112) (16544)

104 17173 15840 F260 264
0.280 sec 0.212 sec 0.278 sec

(264) (2112) (16632)

118 31695 16895 F244 384
0.211 sec 0.158 sec 0.208 sec

(384) (2304) (16512)

125 27393 17424 F244 396
0.204 sec 0.156 sec 0.201 sec

(396) (2376) (16632)

Each element consists of 11 attributes of 40-bit entries and we used a leveled BGV scheme of 17 levels.
λ: security parameter (bit), P: the plaintext space of the utilized BGV scheme
m: parameter for FFT, φ(m): the dimension of a polynomial ring of the utilized BGV scheme
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However, this savings is not evident when the database size was pushed to 16384 elements.
In this case, the 8 GB RAM was probably insufficient and there is some shuffling of data from
the disk drives to the cache and the advantage of reusing data is offset. With more RAM, the
savings will be seen again and this shows that small databases can be worked on quite efficiently
with consumer level computers.

5.4 Comparison with the Previous Work

The current work improves the security of Kim et al.’s protocol [26] by protecting the user’s
query type as well as constants in the query statement. This incurs some performance overhead
since additional terms have to be encrypted and the number of homomorphic operations between
ciphertexts is increased. For more precise comparison, we also implement ours and Kim et al.’s
for 3-out-of-11 threshold queries.

Table 4. Timings on the Server Side of Ours and Kim et al.’s for 3-out-of-11 Threshold Query

Our Protocol Kim et al.’s Protocol

λ m φ(m) P
# of Total Amortized

λ m φ(m) P
# of Total Amortized

Slots† Time Time Slots† Time Time

80 14491 14112 F242 336 39.61 sec 0.12 sec 86 15481 12960 F245 288 31.70 sec 0.11 sec

99 30705 15488 F244 352 75.92 sec 0.22 sec 93 13367 13366 F241 326 26.54 sec 0.08 sec

104 17173 15840 F260 264 73.84 sec 0.28 sec 104 14491 14112 F242 336 29.89 sec 0.09 sec

118 31695 16895 F244 384 80.90 sec 0.21 sec 118 23343 15000 F250 300 52.94 sec 0.22 sec

125 27393 17424 F244 396 80.69 sec 0.20 sec 125 30705 15488 F244 352 55.42 sec 0.16 sec
† per each ciphetext

Each element consists of 11 attributes of 40-bit entries and a leveled BGV scheme of 15 levels was used for
Kim et al’s protocol and 17 for ours.

λ: security parameter (bit), P: the plaintext space of the utilized BGV scheme

m: parameter for FFT, φ(m): the dimension of a polynomial ring of the utilized BGV scheme

30

40

50

60

70

80

80 90 100 110 120 130

T
im

e
T

a
k
en

Security Level

This Work

+

+
+

+ +

+
Kim et al.

×
×

×

× ××

Fig. 5. Comparison of Our Protocol and Kim et al.’s [26].

Table 4 and Fig. 5 show the implementation results of running time on the server side of ours
and Kim et al.’s for various security levels. Due to the difference in the number of levels required,
the same m results in different security levels for ours and Kim et al.’s; this caused their scheme
to be about 20-30% faster than ours. With the same security level, similar P and when m is
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greater than 23000 for both schemes, the performance difference between the protocols is about
30-40%. Three interesting cases can be seen in the first three rows of Table 4. In the first row,
with similar m, our protocol is 20% slower than Kim et al.’s protocol but due to having more
plaintext slots, the amortised time of our protocol is slightly improved. In the second row, as a
result of the large difference in m used in our protocol and theirs, the performance difference
is almost 70%. In the third one, the larger plaintext space of F260 already makes it one of the
least efficient among the experiments. Coupled with the small m of 13367 and 2 fewer levels,
our performance is about 65% slower than Kim et al.’s. This highlights the difficulty in choosing
m, a φ(m) : m ratio of close to 1 and having a resulting plaintext space that is suitable is rare
and compromises have to be made.

The difference in performance will be slightly greater for conjunction and disjunctive queries,
because the polynomial g of these two cases are much simpler than that of threshold queries.
However, despite having worse performance, we remark again that the privacy of client is im-
proved since the query type is hidden in our protocol.

6 Summary

In this work, we revisited the problem of private database query (PDQ), which allows a client
to store its databases on a remote server in such a way that it can search over it in a private
manner. We make several contributions including new security definitions and a new construc-
tion. Motivated by a subtle problem in all previous security definitions for PDQ, we pointed out
that existing notions are not sufficient to cover the capabilities of attackers and propose new
definitions to model better security for PDQs. Thereafter, we proposed a new PDQ protocol
for conjunctive, disjunctive, and threshold conjunctive queries with equality comparison that
is secure under our new definition. Finally, we provided implementation results of our PDQ
protocol.
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