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Abstract. Biometric authentication methods are gaining popularity due to their convenience. For
an authentication without relying on trusted hardwares, biometrics or their hashed values should
be stored in the server. Storing biometrics in the clear or in an encrypted form, however, raises
a grave concern about biometric theft through hacking or man-in-the middle attack. Unlike ID
and password, once lost biometrics cannot practically be replaced. Encryption can be a tool for
protecting them from theft, but encrypted biometrics should be recovered for comparison.
In this work, we propose a secure biometric authentication scheme, named Ghostshell, in which an
encrypted template is stored in the server and then compared with an encrypted attempt without
decryption. The decryption key is stored only in a user’s device and so biometrics can be kept secret
even against a compromised server. Our solution relies on a somewhat homomorphic encryption
(SHE) and a message authentication code (MAC). Because known techniques for SHE is computa-
tionally expensive, we develop a more practical scheme by devising a significantly efficient matching
function exploiting SIMD operations and a one-time MAC chosen for efficient homomorphic evalu-
ations (of multiplication depth 2). When applied to Hamming distance matching on 2400-bit irises,
our implementation shows that the computation time is approximately 0.47 and 0.1 seconds for
the server and the user, respectively.
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1 Introduction

Biometric authentications are seeing greater industrial deployment, including mobile payment
systems such as Apple Pay and Alipay. Compared to other types of authentication (e.g., pass-
words and secure tokens), biometrics cannot be lost or forgotten and, in particular, users being
authenticated should be present at the time and place of authentication. On the other hand,
privacy loss in biometric authentication systems is substantially more serious than in other au-
thentication systems because biometrics are difficult to be replaced once stolen. Most recently,
hackers have stolen a total of 5.6 million fingerprint records from the U.S. government [2].
The stolen biometric databases could be used to fool certain systems. Thus, it is imperative to
develop a solution with a far stronger protection of such data.

x

U

Authentication
Server(AS)

b ∈ {accept, reject}User

· · · , (U , x̄∗), · · ·

Encrypted DB

Fig. 1. Our authentication framework.

Cryptographic protection. We investigate a secure biometric authentication method without
relying on trusted hardware. Our approach is to encrypt and store a users biometric template in
a server as in Figure 1. During authentication, the user sends an encrypted biometric attempt to
the server, which authenticates by comparing two ciphertexts without decryption. Comparing
ciphertexts without decryption is the main security property that our proposed scheme provides.

One may consider a trivial approach to store only hashed templates in the server through a
one-way hash function such as SHA3 [31]. However, biometric inputs are not exactly the same
every time they are captured due to scanning noise and so cannot have the same hashed values.
Indeed, we have no hash function to map two slightly different inputs to the same value.

Our solution. We employ a somewhat homomorphic encryption (SHE) that evaluates a poly-
nomial of certain degree on encrypted data without decryption [18, 35]. Upon an encrypted
template and an encrypted attempt, the server performs a matching algorithm without de-
cryption, which outputs an encrypted matching result. Hence, the server comes to learn the
matching result by asking its decryption to the user.

It is crucial to prevent an arbitrary manipulation of a result during the decryption process of
a user corrupted by an attacker. To achieve this, we attach a tag to the encrypted result, which
is decrypted to the message authentication code (MAC) of the result. It is possible by virtue of
the homomorphic properties of SHE, but which is hard for ordinary encryption functions.

This approach provides a sort of decryption oracle, which clearly could result in a security
weakness, allowing a malicious server to recover some biometrics. Note that SHE is secure only
against chosen plaintext attacks (CPAs), not against chosen ciphertext attacks (CCAs). In order
to prevent such an undesirable situation of obtaining decryption oracle, we further introduce a
method to enclose the tag using a one-way function with discrete logarithm settings so that the
sever can learn only the enclosed value of the tag. It prevents a misuse of the decryption key
through receiving a decryption query of its ciphertext.
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Optimization. Computing Hamming distance between two biometrics of n bits in length re-
quires at least n multiplications. Considering slow multiplication time of two ciphertexts, it
easily exceeds a tolerance range of practical systems, e.g., it takes at least 30 seconds for a
comparison of two irises of 2400 bits when the multiplication takes 14 milliseconds per bit as in
our implementation.

We utilize the packing techniques proposed in [38] to implement a homomorphic matching
algorithm performing N multiplications of ciphertexts at a time where an N -bit plaintext is
packed into one ciphertext. We mean by “homomorphic” that the matching algorithm runs on
ciphertexts, and a multiplication of two ciphertexts indicates an encryption of an N -bit output
which is a bitwise multiplication of two plaintexts. Further, we use single-instruction multiple-
data (SIMD) techniques on SHE ciphertexts [38]. This allows us to compute the sum of the N -bit
output only using logN additions. Recall that addition are far efficient than multiplication. To
sum up, these techniques help the homomorphic matching algorithm to run approximately N
times faster than a näıve one. To this end, we find an SHE system parameter with which an
SHE scheme instantiated encrypts N = 630 bits into a ciphertext at a time.

When we combine our matching algorithm with MAC, however, we meet with another obsta-
cle from the performance’s point of view. An ordinary MAC function has a large multiplication
degree, and so is considerably time-consuming to evaluate the MAC function homomorphically.
However carefully looking into our authentication process, the MAC tag is verified immediately
after generated and the server is the generator and the verifier of the MAC tag. This avoids the
necessity of the server sharing a long-term MAC secret key. Thus, we observed that it is enough
to use a lightweight one-time MAC scheme. We employ a variant of one-time MAC (OTM) pro-
posed by Simmons [37], requiring only one multiplication and one addition. In turn, we again
modify our homomorphic matching algorithm so as to accommodate the OTM scheme.

Despite the speedups of computation, the large size of SHE ciphertexts still causes long delays
in transmission. This problem is overcome by applying a ciphertext-compression technique by
Coron et al. [15]. Thus, we reduce the size of SHE ciphertext by half. By integrating those three
techniques, we obtain a practical biometric authentication scheme, named Ghostshell.

When applying our optimizations over Brakerski et al.’s scheme [7], our implementation
shows that encrypting a 2400-bit iris code only requires 16.2 milliseconds. The ciphertext size
of our SHE scheme for a 2400-bit plaintext iris is approximately 40.1 KB while the bit-by-bit
encryption requires 98.3 MB for the same iris. The server’s matching process runs in approx-
imately 0.46 second. Majority of the time is spent in computing the Hamming distance (0.45
seconds).

Organization. Our system architecture and participants are described in Section 2. We first
attempt to construct a simple, but insecure protocol in Section 3. In Section 4, then we renovate
our basic protocol to provide privacy and integrity of biometrics. Our authentication system is
provided in Section 5. Section 6 shows our optimizations for practical deployment to the real-
world applications. Section 7 provides our implementation and experimental results. Finally, we
discuss closely related works in Section 8.

2 Models and Settings

In this section, we present the system architecture for this work. Throughout this paper, our
proposal works in this framework.
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2.1 System Model and Participants

Our system is designed for an authentication server, or server for short, to authenticate each
user using the 1 : 1 method. Our system consists of two participants, namely, a user and an
authentication server (AS).

The user, denoted by U , has a binary feature x properly extracted from his biometric source.
The server, denoted by S, has rich computational resources and storage; thus, it can evaluate
arbitrary functions on SHE ciphertexts but cannot decrypt ciphertexts evaluated by itself as well
as ciphertexts given by the user. To enrich the applicability of our system, we may introduce a
third entity, called a service provider (SP), that communicates with the two other participants.
For example, telecoms could use our authentication platform for bridging between mobile users
and service providers (e.g., Amazon and Bank of America).

2.2 Threat Model

Our security goals are two-fold. The first is that no AS (or SP) should be able to learn anything
about the biometric data contributed by users beyond what is revealed by the final result of
the execution. In the case where the AS and some users collude, they should not learn anything
about the biometrics from other honest users beyond the final result and its implications. The
second goal is that an impostor should not be able to fool the AS into believing that he is
authentic; see reference [34] for the detailed threats.

In this work, we focus on the following attacks to ensure security for authentication and
privacy for the user’s biometrics.

– Threat #1. Participants on the user side of our system are well motivated to be malicious
and thus make an honest AS output an accept at the conclusion of the user authentication.
Further, they may collude with arbitrary other users to attempt to break the security of the
system.

– Threat #2. Some participants on the server side in our system are also motivated to behave
maliciously and thus learn information about private biometrics from honest users because
the data can potentially be sold to an attacker, e.g., passport forgers. A typical example is
a biometric database administrator corrupted by an attacker.

However, our system does not consider additional tools to defend against the following
attack: we assume that an AS does not collude with an SP. In other words, for an application
where the SP need to use an authentication result from the AS, we assume that there exists an
authenticated channel between the two participants.

2.3 Security Model

Although a corresponding formal security definition will be given in Section 4, we give an outline
of the security and privacy properties exhibited by our authentication system.

Correctness: When all participants execute a given protocol faithfully, the verification result at
the end of an executed protocol is equal to the result of applying each honest participant to
a biometric database in the clear.

Privacy : The servers can only learn the verification result and its implications at the conclusion
of a protocol.

Security : A dishonest user cannot persuade an honest AS into accepting himself as an authentic
user.
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3 A Strawman Proposal

We assume that a biometric is represented by a binary sequence and that a matching algorithm
uses the Hamming distance (HD) between two input biometrics. Because the HD of two bit
sequences counts the number of different coordinates, we encrypt each bit separately, and thus,
the number of ciphertexts is equal to the length of the bit sequence. Herein, we use bold lower-
case letters (e.g., x) to denote a biometric, where xi ∈ {0, 1} means the i-th component of x.
In addition, a bar over an integer means that the integer is encrypted by an SHE encryption
function HEnc (i.e., x̄ = HEnc(x) for x ∈ Z).

Because any boolean circuit can be constructed via sequences of additions and multipli-
cations, we can consider an HD circuit constructed from Eq. (1) on two encrypted biomet-
rics. Indeed, we compute an HD value by evaluating the HD circuit. Specifically, for x̄ =
(x̄0, x̄1, . . . , x̄n−1) and x̄∗ = (x̄∗0, x̄

∗
1, . . . , x̄

∗
n−1),

HD(x̄, x̄∗) =
n−1∑
i=0

(x̄i − x̄∗i )2 (1)

As readers may see, it is clear that we do not simply take Z2 as the plaintext space of our
baseline SHE scheme because an HD value is a sum of subtraction and multiplication. Therefore,
we need to consider ZM as the plaintext space for an integer M � 2.

3.1 A Simple, but Insecure Design

For simplicity, we assume that there are two participants, a user U with his biometric template
x∗ and a server S. The point of departure of our construction is to protect x∗ using an SHE
scheme SHE = (HKg,HEnc,HDec); see Section 4.1 (and 6) for the details of our SHE scheme.

Let the user generate the key pair (pk, sk) by running the key generation function HKg, say,
Setup. Then, the user sends the encrypted biometric template to the server, x̄∗ = HEnc(pk,x∗),
say, Enrollment. We can depict the enrollment as shown in Figure 2.

(U ,x∗)

(pk, sk)

Enrollment(U , x̄∗)

AS

Fig. 2. Enrollment

If the user wants to be authenticated using his present biometric x, the user simply sends
(U , x̄) to the server, where x̄ = HEnc(pk,x). Then, the server retrieves x̄∗ indexed by U and runs
the HD circuit, denoted by HD, on the two ciphertexts x̄∗ and x̄. We write this as d̄ = HD(x̄∗, x̄),
where d̄ denotes a matching result. The server computes b by requesting the decryption of d̄.
We call it Match and depict the phase in Figure 3.

3.2 Challenges and Solution Sketch

In the construction shown in Figure 3, the server cannot detect whether d∗ is the real decryption
of d̄ or a fake decryption. This is our first challenge: decryption integrity problem. We solve
this problem by our woodenman protocol shown in Protocol 1 of Section 4.2. Conceptually, our
idea is to send the result value d̄ along with a tag. Later, the server can check the integrity of
a received message d∗ by verifying the tag.

6



(U , x̄∗)
(U ,x)

(pk, sk) d̄ = HD(x̄∗, x̄)d̄

d = HDecsk(d̄) d∗
b = verify(d∗)

Match(U , x̄)

AS

Fig. 3. Match

Unfortunately, this countermeasure is not able to prevent the server from learning personal
biometrics. A trivial attack is for the server to send an x̄i of its choice in place of d̄, together
with a valid tag for x̄i. SHE’s indistinguishability ensures that the user cannot distinguish x̄i
from d̄. Even an honest user with the decryption key still cannot tell xi and d because d can
be either 0 or 1. If the server repeatedly invokes the user as a decryption oracle, the user’s
biometric could be revealed to the server.

In order to tackle the second challenge, we present a privacy-enhanced protocol in Protocol 2
of Section 4.3. Our approach is to enable the server to execute a verification algorithm, denote
by verify(·), without knowing the decryption and the corresponding tag. Roughly speaking we
enclose the decryption of a matching result by the discrete logarithm setting, but we provide
an extra algorithm for the server to be able to verify the matching result.

In the following sections, we specify and evaluate the two protocols in a step-by-step manner.
We are attempting to a protocol for ensuring integrity of decryptions, we build a protocol for
privacy on this protocol. Thus, naturally the latter inherits much of the former. Then we plug
it into our authentication protocol.

4 Upgrading the Strawman Proposal

The goals of this section are two-fold: 1) design an efficient mechanism for the integrity (but not
necessarily privacy) of homomorphic evaluations for a server and 2) expand it into supporting
privacy for a user. These building blocks will plug in our authentication protocol presented in
Section 5. To this end, we utilize several known cryptographic tools. Our full solution will be
designed and analyzed in an incremental way. We start by recalling SHE and MAC and their
security concepts.

Notation. Throughout the paper, for a set A, we use a
$←− A to denote sampling from the

uniform distribution on A. For i ∈ N, we let [i] be the set {0, 1, . . . , i}. A function ν : N → R
is negligible in λ if for all positive polynomials p(·) and sufficiently large λ, ν(λ) ≤ 1

p(λ) . We

use poly(λ) and negl(λ) to represent unspecified polynomials and negligible functions in λ,
respectively. A probabilistic polynomial-time (PPT) algorithm is a randomized algorithm that
runs in time poly(λ).

We write Prt〈P1(a), P2(b)〉 → (x, y) to denote a protocol Prt between P1 and P2, where a is
P1’s input, b is P2’s input, x is P1’s output, and y is P2’s output. When describing protocols,
x ← y denotes that the value y is assigned to x; however, for two participants P1 and P2,
[P1 ← P2] denotes transmission from P2 to P1.

4.1 Cryptographic Background

Homomorphic encryption. A homomorphic encryption scheme is a quadruple of PPT algo-
rithms as follows:
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– (pk, sk) ← HKg(1λ). This algorithm takes the security parameter λ and outputs a public
encryption key pk and a secret decryption key sk. We assume that the public key specifies
both the plaintext space P and the ciphertext space C.

– x̄← HEnc(pk, x). The algorithm takes the public key pk and a message x ∈ P and outputs
a ciphertext x̄ ∈ C. For notational convenience, the randomizer will sometimes be omitted,
and HEnc(pk, x) is interchangeable with HEncpk(x).

– x ← HDec(sk, x̄). The algorithm takes the secret key sk and a ciphertext x̄ and outputs a
message x ∈ P. In addition, we use HDec(sk, x̄) together with HDecsk(x̄).

– x̄f ← HEv(pk, f, x̄1, . . . , x̄n). The homomorphic evaluation algorithm takes the evaluation
key ek, a function f : ({0, 1}∗)n → {0, 1}∗, and a set of n ciphertexts x̄1, . . . , x̄n and outputs
a ciphertext x̄f .

If a homomorphic encryption scheme is designed to allow a small number of homomorphic
multiplications, it is called a somewhat homomorphic encryption (SHE) scheme. SHE offers a
significant performance gain at the cost of the range of possible applications. For that reason,
it is preferable to use SHE.

An SHE scheme is said to be IND-CPA secure if it achieves the indistinguishability against
chosen plaintext adversaries. We use a widely known formulation of the IND-CPA security,
defined as follows.

Definition 1 (IND-CPA Security) An SHE scheme is IND-CPA secure if for any PPT ad-
versary A, it holds that

|P[A(pk, ek,HEnc(pk,m0)) = 1]− P[A(pk, ek,HEnc(pk,m1)) = 1]| ≤ negl(λ)

where (pk, ek, sk)← HKg(1λ) and m0,m1 ∈ P are chosen by the adversary A.

Specific SHE Instantiation. Fully homomorphic encryption (FHE) schemes (e.g., [14, 19]) that
follow Gentry’s idea [18] exhibit a fairly poor performance. A later series of results were proposed
to address this concern. In particular, Brakerski and Vaikuntanathan introduced the concept of
leveled FHE, which allows the evaluation of arbitrary circuits of polynomial depth [9]. Following
this proposal, Brakerski, Gentry, and Vaikuntanathan (BGV) in [7] further presented a leveled
FHE scheme with significantly improved performance.

Our implementation is built on the BGV scheme because it not only supports the SIMD
operations but is also stably supported by HElib [21], which is a widely used software library of
the BGV scheme. Although the BGV scheme supports a polynomial number of homomorphic
multiplications, we instantiate the BGV scheme with a small multiplication depth.

Message authentication code (MAC). MAC is a cryptographic primitive used to provide
data integrity. A MAC scheme, denoted by MAC = (MKg,Tag,Vrf), is a triple of PPT algorithms
as follows:

– (mk)← MKg(1λ). The key generation algorithm takes the security parameter λ and outputs
a secret key mk ∈ {0, 1}λ for generating a tag.

– (x, τ) ← Tag(mk, x). The algorithm takes as input a secret key mk and a message x ∈ M
and outputs a tag τ along with the message x, where M is a message space.

– (b)← Vrf(mk, x, τ). The verification algorithm takes as input the secret key mk, a message
x, and a tag τ and outputs b ∈ {0, 1}. If τ is a valid tag for x, then b = 1; otherwise, b = 0.

If a secret key computed by the MAC key generation function can be used only once (other-
wise, the MAC scheme can be forged), we call it a one-time MAC (OTM) scheme. An OTM is
secure if an OTM withstands a chosen message attack. A formal definition for security of OTM
is as follows.

8



Definition 2 (OTM Security Expermiment) Consider the following experiment, denoted
by ExOTM

A (λ), between an adversary A and a challenger C:

1. The challenger C runs MKg(1λ) and obtains a secret key mk for a MAC.

2. The adversary A adaptively determines a message x. In Tag queries, the adversary A sends
x and receives a MAC tag τ ← Tag(x).

3. Once the adversary A decides that the query is over, A outputs (x∗, τ∗).

4. The game outputs 1 if and only if Vrf(mk, x∗, τ∗) = 1 and x 6= x∗.

Definition 3 An OTM scheme OTM = (MKg,Tag,Vrf) is secure if for all PPT adversaries A

P
[
ExOTM
A (λ) = 1

]
≤ negl(λ).

4.2 A Woodenman Protocol

In this section, we design a protocol Π between a user U and a server S, defined by

Π〈U(sk),S(d̄)〉 → (⊥, (d, b))

where ⊥ indicates no output being generated, b ∈ {0, 1}, and sk is the decryption key for an
SHE ciphertext d̄ (i.e., d̄ = HEnc(pk, d) under a public key pk corresponding to sk). Roughly
speaking, at the end of running the protocol Π only the server learns the decryption of d̄ via
interactions with the user holding the decryption key while ensuring integrity of the decryption.
Later, the value d̄ will enclose an encrypted result of a matching function in our authentication
protocol.

The concept. Our starting point is MAC which is a cryptographic tool for data integrity,
and our main observation is that using the homomorphic property of SHE, it is possible
to run a MAC generation algorithm over encryptions. More precisely, given an SHE scheme
SHE = (HKg,HEnc,HDec,HEv), we can consider a function Tag∗ such that for a MAC genera-
tion function Tag,

Tag∗ ◦ HEnc(d) = HEnc ◦ Tag(d).

Indeed, we take Tag∗ as HEvek(Tag,mk, d̄), and this leads us to a more concrete realization as
shown in Figure 4. This possibility results from a property of our settings in which the server
can be viewed as the originator and, simultaneously, as the recipient.

User U(sk) AS S(mk, d̄)

τ̄ = HEvek(Tag,mk, d̄)
d̄, τ̄

d = HDecsk(d̄)

τ = HDecsk(τ̄)
d, τ

b = Vrf(mk, d, τ)

Fig. 4. Protocol-level activities of our basic idea.

However, this design strategy makes our choice of underlying MAC schemes determine the
whole performance of a higher layer protocol using it. Therefore, we need to use a highly efficient
MAC scheme. Besides, the server will communicate a number of users and then should provide
a large storage for storing all secret keys. For these reasons, we apply a one-time variant of
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MAC to our protocol. Specifically, we devise a simple variant of the Simmons OTM [37], which
requires only one modular multiplication. However, our variant does not include the process of
modular reduction because modular arithmetics over encryptions are significantly expensive.

Description. We assume that the server finished a computation of distance between an en-
crypted template and an encrypted attempt, and d̄ denotes the computation’s encrypted result.
This work concentrates on the Hamming distance (HD) between two biometrics, but The details
of HD computation will be given when discussing our full-fledged authentication protocol.

Let R` be a set of ` = `(λ)-bit integers. Given an encrypted HD value d̄, the server chooses
r0 and r1 uniformly at random in R` and then computes τ̄ = r0 · d̄ + r1. The server sets
mk = (r0, r1). The user can obtain τ = r0 · d+ r1 by decrypting τ̄ but cannot recover d because
it does not know the secret key mk. The server recovers d using its secret key mk and outputs
b = Vrf(mk, τ, d) by checking if d = (τ−r1)

r0
. We present the woodenman protocol in Protocol 1.

protocol Ensuring integrity of a matching result

syntax: 〈U(sk),S(d̄)〉 → (⊥, (d, b)) where b ∈ {0, 1}
1. [S] (r0, r1)

$←− (R`)
2,

τ̄ ← r0 · d̄+ r1
2. [U ← S] (d̄, τ̄)

3. [U ] (d, τ)←
(
HDec(d̄),HDec(τ̄)

)
4. [U → S] (d, τ)

5. [S] Check if d
?
= τ−r1

r0

Protocol 1. Our Woodenman Scheme ΠT1

Performance. Once after the server obtains d̄, it only has to perform one addition and multi-
plication by constants. These operations are fairly cheaper than other homomorphic operations
(see Table 4). On server’s side the heaviest computation is to compute d̄ by evaluating a match-
ing function at encrypted biometrics. As before, let N be the number of plaintext slots, and let
n be the bit length of plaintexts. For a plaintext, κ = dn/Ne SHE ciphertexts are generated.
Then the evaluation requires κ homomorphic squarings, κ + dlogNe additions (exactly logN
additions and κ subtractions), and dlogNe rotations over plaintext slots.

Security against Threat #1. As described above, the server generates an encrypted tag τ̄
and receives the decryption of τ̄ with the help of the user. From the MAC security point of
view, the user (i.e., decryptor) is modeled as an attacker. Thus we develop a new security model
in which the user is allowed to produce any output that it intends to return. We define security
against one-time decryptor forgery attacks. This concept requires that, even if the adversary
possesses the decryption key for the challenge input, the adversary should not be able to return
an incorrect output that passes verification.

Definition 4 (Decryptor Forgery Experiment) Let SHE = (HKg,HEnc,HDec,HEv) be an
SHE scheme and OTM = (MKg,Tag,Vrf) be an OTM scheme, and let Π be a protocol associated
with SHE and OTM. We consider the following experiment between a PPT adversary A and the
server S,

Experiment Exdfa
A,Π(SHE,OTM, λ)

(pk, ek)← AHKg(·)

Run the protocol Π〈A(sk),S(d̄)〉
A outputs (d∗, τ∗) such that d∗ 6= HDec(sk, d̄)
If Vrf(mk, d∗, τ∗) = 1, output 1; else, output 0

10



For correctness, we require that, for everymk and for every d such that Vrf(mk, d,Tag(mk, d)) =
b ∈ {0, 1}, we have Π〈U(sk),S(mk, d̄)〉 → (⊥, (d, b)). Next, we require that an adversary con-
trolling a user succeeds in the experiment Ex with negligible probability.

Definition 5 A protocol Π is secure against decryptor-forgery attacks if it is correct and if
there exists a negligible function negl(·) for every PPT algorithm A such that

P
[
Exdfa
A,Π(SHE,OTM, λ) = 1

]
≤ negl(λ).

We argue that the woodenman protocol ΠT1 is secure against a corrupted user. In Lemma 1,
we first show that our OTM variant is secure against one-time chosen-message forgery. Then,
we prove Theorem 1 using the lemma.

Lemma 1 Let R` be a set of `-bit integers. Given d and τ such that τ = r0 · d + r1 for two
integers r0, r1 uniformly chosen from R`,

P
r0,r1

[τ = r0 · d+ r1] < 22−`

where the probability is taken over the random choice of r0 and r1 from R`.

Proof. Because d and τ = r0 · d+ r1 are given, we can obtain a set of candidate points r0 and
r1. More specifically, by the extended Euclidean algorithm for d and τ , there exist unique r̃0
and r̃1 such that τ = r̃0d+ r̃1 with r̃1 < d. Because r̃0 ≥ 2`−1, this can be transformed into

τ = r̃0d+ r̃1

= (r̃0 − 1)d+ (d+ r̃1) = (r̃0 − 2)d+ (2d+ r̃1) = · · ·
= 2`−1d+ (r̃0 − 2`)d+ r̃1.

We see that these are all candidates for r0 and r1, and thus, the number of candidates is
r̃0 − 2` + 1. Further, r̃0 is a quotient of τ and d, r̃0 = bτ/dc. Therefore, the probability of
choosing the correct pair of r0 and r1 is 1

r̃0−2`−1+1
= 1
bτ/dc−2`−1+1

. Moreover, because r0 is

randomly chosen in R`, we can assume that r0 ≈ 3/2 · 2`−1 = 3 · 2`−2, and thus, the probability
of this assumption becomes

P
r0,r1

[τ = r0 · d+ r1] ≈
1

2`−2 + 1
<

1

2`−2
.

Thus, we may conclude the lemma. 2

Before proceeding to the next step, we need to define two random variables dirty and verify.
Intuitively, dirty = 1 if a user modifies the decryptions of a pair (d̄, τ̄) and verify = 1 if the
protocol outputs an accept.

Definition 6 We define a random variable dirty such that dirty = 1 if and only if d∗ 6= HDec(d̄)
or τ∗ 6= HDec(τ̄). In addition, we define verify such that verify = 1 if and only if the honest
server outputs an accept (i.e., b = 1) at the end of the protocol ΠT1.

Theorem 1 states that our basic protocol ΠT1 is secure against Threat #1 except for a
negligible probability in the security parameter λ.

Theorem 1 Let R` be a set of `-bit integers. Assume that the underlying OTM scheme is secure
against one-time existential forgery attacks. Then, for every PPT adversary A, there exists a
negligible function negl(·) such that

P[Exdfa
A,ΠT1

(SHE,OTM, λ) = 1] ≤ 23−` + negl(λ).

11



Proof. To prove the theorem, it suffices to show that

P [dirty = 1 ∧ verify = 1] ≤ negl(λ).

To do this, we prove that we can construct an efficient algorithm that can forge our OTM
scheme with non-negligible probability, assuming that there is an adversary that can succeed in
passing the protocol ΠT1 with non-negligible probability, using (d∗, τ∗) such that d∗ 6= HDec(d̄)
or τ∗ 6= HDec(τ̄). The remainder of the proof follows directly by a standard reduction argument;
however, the calculation of the success probabilities can be quite tedious.

We proceed to construct an OTM adversary Aotm that works as follows. Let A be an
adversary for the protocol ΠT1 such that P [dirty = verify = 1] = ε(λ).

The adversary Aotm. On input 1λ and the values (d, τ) from the challenger,

1. Aotm invokes A on input 1λ and outputs (pk, ek).

2. Aotm interacts with A, playing the honest server in the protocol as follows:

(a) Aotm sets up the OTM key mk of the honest server as in the protocol and sets d̄ =
HEncpk(d) but computes τ̄ = HEncpk(τ) without the key mk, where (d, τ) is given by
the challenger.

(b) Aotm sends the pair (d̄, τ̄) to the adversary A.

3. On receiving a pair of decryptions (d∗, τ∗), Aotm checks if d = d∗. If d = d∗, then Aotm

outputs a pair of random values (r0, r1) ∈ (R`)
2. Otherwise, if d 6= d∗ and τ 6= τ∗, it outputs(

r0 = τ−τ∗
d−d∗ , τ − d · r0

)
; however, if d 6= d∗ and τ = τ∗, it outputs (0, τ).

The intuition behind the attack strategy by Aotm is straightforward. Next, we proceed to
prove that Aotm outputs the correct pair of values (r0, r1) with probability ε(λ)(1 − negl(λ)),
which is non-negligible if ε(λ) is non-negligible. To do this, define Fail to be the event where
Aotm outputs a pair of random values in this attack. We have

P[Exotm
Aotm

(1λ) = 1] = P[Exotm
Aotm

(1λ) = 1|¬Fail] · P[¬Fail] +

P[Exotm
Aotm

(1λ) = 1|Fail] · P[Fail] (2)

We see that P[Exotm
Aotm,ΠT1

(1λ) = 1|Fail] = 22−` by the definition of Fail, and the probability
that Aotm outputs an incorrect pair of values, conditioned on Fail not occurring, is at most
negligible. Thus we have

P[Exotm
Aotm

(1λ) = 1|¬Fail] ≥ 1− negl(λ)

for a negligible function negl(·).
We now only have to compute P[Fail] and P[¬Fail] to evaluate Eq. (2). We compute P[¬Fail]

by

P[¬Fail] = P[¬Fail|dirty = verify = 1] · P[dirty = verify = 1] +

P[¬Fail|dirty = 0 ∨ verify = 0] · P[dirty = 0 ∨ verify = 0].

By our assumption regarding A, we have that P[dirty = verify = 1] = ε(λ). Hence, it follows
that P[dirty = 0 ∨ verify = 0] = 1− ε(λ). Next, if dirty = verify = 1, then Aotm outputs a pair of
random values only when d = d∗ ∧ τ 6= τ∗. Thus

P[¬Fail|dirty = verify = 1] = 1− 22−`.
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In contrast, if dirty = 0 or verify = 0, then Aotm always outputs a pair of random values. Thus,
P[¬Fail|dirty = 0 ∨ verify = 0] = 0. Combining these, we have that

P[¬Fail] = (1− 22−`)ε(λ) and P[Fail] = 22−`ε(λ).

Merging this into Eq (2), we have that

P[Exotm
Aotm

(1λ) = 1] = (1− negl(λ))(1− 22−`)ε(λ) + 24−2`ε(λ)

= ε(λ)
(

1− negl(λ)− 22−`(1− negl(λ)− 22−`)
)

= ε(λ)(1− negl(λ))− negl?(λ)

for a negligible function negl?(·). Thus, if ε(λ) is non-negligible, thenAotm succeeds in Exotm
Aotm

(1λ)
with probability ε(λ)(1−negl(λ)), which is also non-negligible. However, this contradicts Lemma 1.

We have proven that P[dirty = verify = 1] is negligible. For notational convenience, we
assume that the experiment Exdfa

A,ΠT1
takes (SHE,OTM, λ) as input. To show the remainder of

the proof, we observe that

P[Exdfa
A,ΠT1

= 1] = P[Exdfa
A,ΠT1

= 1 ∧ dirty = 1] + P[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

= P[Exdfa
A,ΠT1

= 1 ∧ dirty = 1 ∧ verify = 1]

+P[Exdfa
A,ΠT1

= 1 ∧ dirty = 1 ∧ verify = 0] + P[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

≤ P[dirty = verify = 1] + P[Exdfa
A,ΠT1

= 1 ∧ verify = 0]

+P[Exdfa
A,ΠT1

= 1 ∧ dirty = 0]

≤ P[Exdfa
A,ΠT1

= 1 ∧ verify = 0] + P[Exdfa
A,ΠT1

= 1 ∧ dirty = 0] + negl(λ).

Because we see that P[Exdfa
A,ΠT1

= 1∧ verify = 0] = 22−` and P[Exdfa
A,ΠT1

= 1∧ dirty = 0] = 22−`,
we conclude that

P[Exdfa
A,ΠT1

= 1] ≤ 23−` + negl(λ).

This completes the proof of the theorem. 2

Discussion. We argue that our choice of OTM implies optimality in the multiplicative depth.
This is because its Boolean circuit construction requires only one multiplication by a random
value r0; however, if we omit either multiplication by r0 or addition of r1, we lose its security.

We may interpret the security as the false positive rate (FPR). Specifically, If we choose
r0, r1 ∈ R83, we see that the FPR is approximately 2−80. Theoretically, SHE can handle homo-
morphic operations over such large integers. However, as a tradeoff, an SHE instance with this
capability cannot avoid serious performance degradation. One solution to address the efficiency
issue is to split into multiple tags consisting of random numbers of small bits.

4.3 An Ironman Protocol

Allowing decryption queries results in an attack to compromise biometric privacy. We have
discussed how to mount the attack in Section 3.2. Our idea for circumventing this attack is that
a user does not send d directly but rather a hint enclosing d, by which the server can verify 1)
whether the d in the hint is authentic and 2) whether the d hidden in the hint is less than a
matching threshold T .

The concept and description. We borrow this idea from a standard technique appending
a non-interactive proof of well-formedness (satisfying certain criteria) to a message. To realize
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our idea, we require that all decrypted values by the user be raised to the power of a generator
in the discrete logarithm (DL) setting.

Let G be a cyclic group of a large prime order p in which the DL assumption holds, and let
h be a generator of G. Let H1 : {0, 1}∗ → R` and H2 : G → {0, 1}poly(λ) be random oracles.
Then, a user chooses a random generator h ∈ G, computes v = hτ with τ = HDec(sk, τ̄). From
the DL assumption, the server cannot construct an efficient algorithm to compute τ from v.
The only remaining problem is how to enable the server to run the verification using the value
v. Our idea is as follows: given a threshold T , we require the user to build a set G of hashed
values by G = {H2(h

j)|j ∈ [T ]}, and send the value v along with the set G to the server.

The MAC verification Vrf(r0, r1, u, v) is straightforward: compute h∗ = (vu−r1)
1
r0 and check

if H2(h
∗) ∈ G, where u = h. Notice that neither d nor hd is given to the server. The full

description of the protocol is shown in Protocol 2.

protocol Ensuring privacy of biometrics

syntax: 〈U(sk),S(d̄)〉 → (⊥, b)
1. [S] (r∗0 , r

∗
1)

$←− ({0, 1}∗)2,
(r0, r1)← (H1(r∗0), H1(r∗1)) ,

τ̄ ← r0 · d̄+ r1
2. [U ← S] (d̄, τ̄)

3. [U ] (d, τ)←
(
HDec(d̄),HDec(τ̄)

)
,

h
$←− G such that 〈h〉 = G

4. [U → S] (u, v,G)←
(
h, hτ ,

{
H2(hj)|j ∈ [T ]

})
5. [S] h∗ ←

(
vu−r1

) 1
r0 ,

check if H2(h∗)
?
∈ G

Protocol 2. Our Ironman Scheme ΠT2

Performance. An additional overhead in computation arises on the user side. The user per-
forms T exponentiations in modulo p along with T hash operations. Because a biometric is
encrypted into κ ciphertexts, the total cost amounts to κT exponentiations and κT hashings.
However, each exponent is very small (in our case, at most 8 bits), and hash operations are neg-
ligible in computation overhead. User’s decryption costs are the same as before, i.e., 2κ times
HDec operations.

Security against Threat #2. We define a precise security model for analyzing the security
of Protocol 2. We would like to note that we do not need to allow the adversary to have full
access to a decryption oracle, as observed above. Nevertheless, the protocol seems to be useful
for the attacker to extract some biometric information because it reveals something at Step 5
of the protocol ΠT2.

To characterize privacy, we need to modify the protocol Π given in Section 4.2, and newly
define an ideal functionality F as

Π̃〈U(sk),S(d̄)〉 → (⊥, b)

where b ∈ {0, 1}. We notice that d does not appear at the output of the server.

Our privacy requirement captures the notion of protecting users’ biometric templates during
protocol executions. In the secure computation model, participants have their own private input
and are willing to evaluate a desired functionality F on their inputs without revealing any
information except the outputs and their unavoidable implications [20].
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Intuitively, the following two scenarios should be indistinguishable in a computational sense:
1) securely computing F by executing a protocol, and 2) privately sending their private inputs
to a trusted party, who then computes F and privately returns the outputs to each partici-
pant. This formalization of securely computing is referred to as the simulation-based approach.
The idea of the standard simulation-based privacy proof technique is that, given a well-defined
privacy-leakage, a simulator running in polynomial time can generate a transcript that is indis-
tinguishable from the output of the real protocol. If such an efficient simulator exists, then an
adversary cannot learn any additional information beyond the defined leakage. The simulator
must perform its task without knowing the private information of the participant who wants to
proves his authenticity.

We now argue that our ironman protocol ΠT2 is secure against Threat #2. In this proof,
we show that given a participant is corrupted (either user or server), there exists a simulator,
denoted by A, that can produce a view which is statistically indistinguishable from the view
of that participant interacting with the honest counterpart. Assuming that one participant
is corrupted, we build an efficient simulator that has access to the public input and private
materials (e.g., secret key and biometrics) of the corrupted participant. In addition, the simulator
knows the public output.

It is worth mentioning that the proposed protocol gives computational privacy to both
the user and the server because the underlying SHE scheme provides the IND-CPA security.
Furthermore, these simulations produce views which are statistically indistinguishable from the
views in the real protocol executions.

Theorem 2 Assuming that the SHE scheme provides the IND-CPA security, the protocol ΠT2

in Protocol 2 is secure in the presence of semi-honest adversaries.

We first sketch an idea showing why we can construct an efficient simulator A. Because
the attacker owns the decryption key of the SHE scheme and the corrupted user’s biometric,
the simulator can output an indistinguishable view from that in the real protocol executions
using the ciphertext indistinguishability of SHE. The simulator knows the secret key of a MAC
scheme and, further, all decryptions of matching results are enclosed in the discrete logarithm
setting. For that reason, the adversary against the real protocol cannot distinguish from the
output of the simulator.

Proof. We show that given a participant is corrupted, there exists a simulator that can produce
a view to the adversary that is statistically indistinguishable from the view in the real protocol
execution based on its secret inputs as well as public information.

Case I: User is corrupted. In this case, we prove that our protocol is secure when a user is
corrupted. The simulatorA has the decryption key sk of the user and knows the user’s biometrics
including other public information generated by the protocol.

Now the simulator constructs a view for the user which is statistically indistinguishable to
the one that the user observes during interacting with the honest server over these values. The
simulator works as follows:

1. The simulator obtains a pair of attempt and template biometrics (x,x∗) and the identity U .

2. The simulator computes x̄ = HEnc(pk,x) and x̄∗ = HEnc(pk,x∗).

3. The simulator computes δ = s0 ·d+s1 for randomizers s0, s1 ∈ R` and a HD value d between
x and x∗.

4. The simulator encrypts the value δ into δ̄ = HEnc(pk, δ) and the encryption δ̄ is the simulated
output.
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Each step of the proposed authentication protocol for the simulator is simulated and this
completes the simulation for the compromised user. The transcript is consistent and statistically
indistinguishable from the users view when interacting with the honest server.

Case II: Server is corrupted. In this case, we prove that our protocol is secure when a server
is compromised by an attacker in the real-world protocol. The simulator A has the secret ket
mk = (r0, r1) of the server and user’s encrypted biometric attempt x̄ and template x̄∗ from the
protocol. Now we can construct the simulator that runs as follows:

1. The simulator outputs an encryption δ̄ = r0 · x̄ + r1.
2. Upon receiving (u, v,G) from the honest user, the simulator would run the remaining steps

the protocol.
3. The simulator outputs β ∈ {0, 1} of his choice.

Consequently, each step of the proposed authentication protocol for the simulator is simu-
lated and this completes the simulation for the corrupted server. The transcript is consistent
and statistically indistinguishable from the users view because u, v are random elements in the
DL group which is uniformly distributed. Moreover, the set G also contains only elements in
the DL group Gp. 2

Discussion. We need to take care of choosing the group G. The inverse of r0 modulo p − 1
should exist for correctness on the server side. For security’s sake, it is desirable for the set R` to
be large. Thus, we suggest the use of Sophie Germain primes since they allow the use of larger
exponents. Then, the server only has to choose an odd number r0, randomly.

If the size of τ is relatively small, the server can find logarithms modulo p. This reveals the
number of different coordinates in two encrypted biometrics. However, the adversary cannot see
the precise positions of different coordinates.

One may worry about privacy breach by device theft. An adversary could steal a smartphone
of a target victim, and try to authenticate himself by playing the victim. More specifically, if an
attacker can intercept a communication transcript between a user and a server during the user’s
enrollment with x̄∗, it may later play the user. One approach to averting such an attack depends
on forward secrecy, and thus, we require that all protocol messages be encrypted under a session
key k induced by an forward-secure key agreement (FKA) protocol. In our implementation, we
used the MTI/A0 variant of the Diffie-Hellman key agreement [30, §12.6].

5 Our Biometric Authentication

In this section, we demonstrate our biometric authentication protocol by putting together en-
hancements developed in Sections 4. We argue that our suggestion meets the security require-
ments, and analyze the computation and communication overheads.

5.1 How Ghostshell Works

Ghostshell consists of three phases: Setup, Enrollment, and Match. In the Setup phase, Ghost-
shell fixes the system settings by running the key generation algorithm of each underlying
cryptographic scheme (see Section 4.1). Ghostshell then lets a user extract its biometric tem-
plate, encodes the template as a binary string, and stores the encrypted template to the server.
In subsequent uses, the user’s attempt biometric is compared with the encrypted template.

In what follows, we provide the detailed descriptions for each phase.

Setup. For the security parameter λ, a user determines a pair of keys (pk, sk) by invoking
HKg(1λ) of our SHE scheme together with other system parameters.
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Our authentication system is designed to run on a symmetric variant of SHE. Namely, the
server cannot generate an encryption of its choice because it does not know the secret key sk,
but it still can perform homomorphic evaluations using the public key pk. This approach enables
us to obtain several benefits: On the security side, the server is not allowed to encrypt arbitrary
matching result. On the practical side, this approach reduces the computational cost.

Enrollment. The user first extracts his biometric feature x∗, computes its SHE ciphertext
x̄∗ = HEnc(sk,x∗), and sends (U , x̄∗) to the server. On receiving it, the server stores (U , x̄∗) on
its database.

For better security against device-theft attack discussed in Section 4.3, we may encrypt all
interactions between two participants using a session key deduced by an FKA protocol. In this
case, the user encrypts (U , x̄∗) by a symmetric encryption scheme; the server stores (U , x̄∗) after
decryption under the session key.

Match. The first step of this phase is that the user encrypts his attempt biometric into x̄ =
HEnc(sk,x) and sends (U , x̄) to the server.

– Upon receiving it, the server retrieves x̄∗ indicated by U and computes d̄ = HD(x̄, x̄∗). Next,
the server and the user jointly execute the protocol ΠT2 given in Protocol 2, i.e.,

ΠT2〈U(sk),S(d̄)〉 → (⊥, b = {accept, reject})

5.2 Analysis

Performance. We evaluate the performance of Ghostshell by counting cryptographic opera-
tions and measuring the transmission amount by the bit lengths of biometrics. This analysis is
based on our performance tuning techniques in Section 6.

Let n be the size of x and x∗, and let γ denote the SHE ciphertext size. Assuming the SHE
instantiation with N plaintext slots, we only need to keep κ = dn/Ne SHE ciphertexts for an
n-bit biometric. By contrast, a näıve construction using the SHE yields n SHE ciphertexts. For
the Enrollment phase, the user invokes HEnc κ times. The performance of the Match phase is
determined by the performance of ΠT2 and the performance of the circuit HD which computes
a distance on encrypted biometrics. The heavier computation is to evaluate the HD circuit. On
the other hand, user’s most expensive computation is the SHE decryption.

Security. We examine the security of our protocol. In the Enrollment phase, biometric privacy
is protected by our SHE encryption. For the Match phase, a user corrupted by an attacker
cannot fool the AS by Theorem 1. Theorem 2 states that an attacker mounted on the server
side cannot learn any information about the user’s biometrics except for the verification result
and its unavoidable implications. In conclusion, Ghostshell provides security against Threats
#1 and #2.4

6 Optimizations

In this section, we demonstrate our optimization techniques; our solution demonstrates the tech-
nique’s preliminary feasibility for practical deployment to real-world systems. Our optimizations
have two different objectives: speeding-up computation times and reducing transmission costs.

4 Using an FKA protocol, our authentication protocol ensures security against device-theft attack.
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6.1 Speeding-up Computations

In Ghostshell, computing the Hamming distance between two ciphertexts for n-bit biometrics is
the most expensive computation. A näıve computation of the Hamming distance on ciphertexts
requires n homomorphic multiplications and subtractions and n − 1 homomorphic additions;
see Eq. (1). Among them, we focus on improving the computation efficiency of homomorphic
multiplication because this operation is about 280× slower than homomorphic addition.

Our technique builds on SIMD techniques, which were introduced by Smart and Ver-
cauteren [39] (Journal version of [38]). Their idea is that a plaintext space can be treated
as a partition of plaintext spaces of small size, called slots, and that a ciphertext carries a vec-
tor of plaintexts instead of a plaintext. By adding (resp., multiplying) such packed ciphertexts,
one can perform component-wise addition (resp., multiplication) of two vectors of plaintexts.

Obviously, ciphertext packing and SIMD operations allow to efficiently perform homomor-
phic evaluations on multiple data at once. Multiplication and subtraction of the HD circuit
benefit from two techniques. The problem with that we are faced is that the HD circuit requires
to sum all the components additionally. However, there is no intrinsic operation that supports
addition and multiplication across different positions (or slots). Accordingly, the question is how
to efficiently compute the sum over plaintext slots.

We resolve this problem by using automorphisms as a technique to move values between the
different slots in a given plaintext vector. More specifically, performing automorphism X 7→ Xi

means that a vector of messages (cyclically) rotates to the right i times, respectively. We denote
the automorphism mapping X to Xi by σi and a vector of N bits by w = (w0, . . . , wN−1).

A simple way of computing the Hamming distance for w is to add all vectors σi(w) for
i ∈ [N − 1]. Because this näıve method requires N − 1 homomorphic additions and automor-
phisms, the complexity remains O(N). Our idea for reducing this computational cost is to use
a tree structure and to proceed recursively with each of 2i elements. This leads to a binary
tree of depth dlogNe, where log is the binary logarithm. Applying this idea, we can compute
the HD value of two independent vectors with one homomorphic multiplication, one homomor-
phic subtraction, and O(logN) homomorphic additions and automorphisms. Recall that the
homomorphic automorphism does not change the noise estimate.

Example. Let N = 8 and w0 = (w0, w1, . . . , w7). Letting w1 := σ1(w0) = (w7, w0, . . . , w6), we
have w0+w1 = (w0+w7, w0+w1, . . . , w6+w7). Similarly, we obtain w2 = (w5+w6, . . . , w4+w5)
with σ2(w0 + w1) and w3 = (w1 + w2 + w3 + w4, . . . , w0 + w1 + w2 + w3) with σ4(w2). Then,
we can obtain the HD value

∑
wi by

∑
i∈[3] wi.

A Practical Variant of the Ironman Protocol Theoretically, this idea holds for arbitrary
N . However, the larger the number of slots N , the bigger the other parameters, which could
result in slowdowns of our system. Thus, we have to choose a modest N as a trade-off between
the size of associated parameters and the BGV instantiation’s performance using the HElib
library [21]. On balance, we take N = 630 and m = 8191, where m is a system parameter and
the m-th cyclotomic polynomial Φm(X) is used to determine polynomial rings on which the
BGV scheme runs.

Because n ≥ 2048 > N for some standard biometric features, when we implement the
ironman protocol ΠT2, we need to maintain one or more ciphertexts at a time. For example,
we have four ciphertexts for 2400-bit iris codes. As a consequence, the server should evaluate
the HD circuit as many as the number of required ciphertexts and, thus, the result HD value
is split and stored into each ciphertext in order. This is the reason why we revise the ironman
protocol.

18



As before, let use κ = d nN e to denote the minimum number of ciphertexts for carrying an
HD value. We describe only the differences from the original protocol as shown in Protocol 3.
We use d̄ = (d̄[0] ‖ · · · ‖ d̄[κ− 1]) to denote splitting a resutling HD value d̄ into κ ciphertexts
d̄[0], . . . , d̄[κ − 1], and we set uj = hj , vj = hj

τ [j], and Gj =
{
H2(hj

l)
}

for all l ∈ [Tκ] likewise
(see below for Tκ).

protocol Practical Variant of the Ironman Protocol

syntax: 〈U(sk),S(x̄)〉 → (⊥, b) where b ∈ {0, 1}
1. [S] Compute (r0[j], r1[j])j∈[κ−1] likewise

∀j ∈ [κ− 1], τ̄ [j]← r0[j] · d̄[j] + r1[j]

2. [U ← S]
{

(d̄[i], τ̄ [i])
}
i∈[κ]

3. [U ] For all j ∈ [κ− 1], obtain (d[j], τ [j]),

hj
$←− G such that 〈hj〉 = G

4. [U → S] {(uj , vj , Gj)}j∈[κ−1]

5. [S] ∀j ∈ [κ− 1], h∗j ←
(
vjuj

−r1[j]
) 1

r0[j]
,

check if H2(h∗j )
?
∈ Gj

Protocol 3. Adaptation of ΠT2 to implementation

Discussion. Following reference [13], we use a matching threshold T = 600 (approximately
30% of the 2048-bit iris code) on the Hamming distance. However, since we are restricted to
carrying a κ-th of an iris on an SHE ciphertext; we use a scaled threshold of T by κ, denoted
by Tκ. As a result, we need to consider some practical issues as follows:

– We compute a partial HD value per ciphertext and then compare the resulting HD value
with the scaled threshold Tκ. Thus, we set the scaled threshold Tκ = 150 for κ = 4. Consider
that an iris is separately encrypted and sent in four small pieces. There are

(
604
5

)
≈ 240 ways

that the sum of all HD values from two small pieces of encryptions is less than or equal to
T = 600. During a session, a dishonest user is far from correctly manipulating all pieces of
HD values at its disposal.

– Next, if we use Z2t as the plaintext space, then the FPR is
(
Tκ
2t

)κ
. For example, for the

plaintext space Z220 and κ = 4, the FPR comes to
(
150
215

)4 ≈ 2−31.

6.2 Ciphertext Compression

Ghostshell requires that each time the user attempts the authentication process, it send a set
of encrypted biometrics to the server. Biometrics are usually represented by a lengthy sequence
of bits (e.g., 2048 bits for standard iris codes [41]). Thus, encrypting biometrics in a bit-by-bit
manner leads to a long transmission delay. Two directions to avoid long delays are considered:
first is to pack numerous plaintext bits into a ciphertext and second is to compress the ciphertext
in a cryptographic manner. The former technique has been studied in Section 6.1; here, we only
discuss how to cryptographically compress ciphertexts.

Because ciphertext sizes are designed to be very large to avoid lattice attacks, they can
be a big burden in communications. Coron et al. [15] observed that the size of ciphertexts in
their integer-based scheme can be reduced by introducing a pseudorandom number generator
(PRG) to the encryption function. Further, the authors sketched an extension to Brakerski and
Vaikuntanathan’s scheme [8,9].

We borrow their idea for the BGV-type scheme. Recall that, for a plaintext x, the BGV ci-
phertext defined on a polynomial ring Aq := Zq[X]/〈Φm(X)〉 is of the form (a(X), 〈a(X), s(X)〉+
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x+2e(X)), where a(X) is a random polynomial, s(X) is a secret key, and e(X) is a small error,
and all components are in Aq. Now, let F be a q-bit PRG taking as input a public random seed
ω. We keep only ω rather than a(X), where H(ω ‖ i) corresponds to each coefficient of Xi for
all i ∈ [ϕ(m) − 1] and a random oracle H : {0, 1}∗ → Zq. As a result, the resulting ciphertext
size is dlog qeϕ(m), while the original ciphertext size is 2dlog qeϕ(m).

A side-effect of ciphertext compression is that we cannot perform homomorphic evaluations
on compressed ciphertexts because the PRG F is not homomorphic. That is, homomorphically
evaluating the ciphertexts requires to recover the original ciphertext.

7 Evaluation

7.1 Implementation

To validate the impact of our optimizations and to evaluate the practicability of our biometric
authentication system, we implemented the prototype in the setting below.

Test environment. A prototype of Ghostshell was implemented in C using the NTL library [36]
over GMP. In addition, our implementation utilized the HElib library for the BGV cryptosys-
tem. Our code was compiled using g++ 4.9.2 on Ubuntu 14.04.2 LTS. We ran all timing exper-
iments on a server with 56 2.60 GHz Intel Xenon E5-2697 processors and 264 GB RAM. Our
implementation includes a symmetric cryptosystem and random oracles. We used AES-CBC
and SHA1 for symmetric encryption and hash functions to instantiate the random oracles. For
public confidence, we utilized the AES and SHA1 modules provided by OpenSSL.

Parameter selection. To instantiate the BGV scheme via HElib, we should first determine
basic parameters such as the security parameter λ, the multiplicative depth L, and the plaintext
space ZM . In our implementation, we set λ = 80, L = 5, and M = 215. Moreover, as stated
in Section 6.1, we tested the four different plaintext slot numbers and corresponding degree
of cyclotomic polynomial. Our candidate degree m and the number of plaintext slots N is as
follows: (N,m) = (330, 10261), (630, 8191), (682, 15709), (1285, 43691).

We should take care when choosing an extension degree t of plaintext space ZM . In general,
it is preferable to use a large plaintext space, such Z250 ; however, this raises many performance
issues, especially in SHE settings. Such an example is whereby if t ≥ 20, then one homomorphic
multiplication consumes two or more levels. Worse yet, performing automorphism operations is
no longer achieved for free in the noise estimate; our choice is that t = 15.

As a side-effect, if the size of ZM gets small, the MAC key (r0, r1) should be small in length.
In our case, dlog r0e = 7. Then, the server is faced with a problem in ensuring the integrity
of the decryption d because a user has a high FPR . To fix this problem, we require that the
server sends a set of s tags (τ̄0, . . . , τ̄s−1) of d̄, where τ̄i = ri0 · d̄ + ri1 for uniformly random
values ri0, ri1 of small size and for each i ∈ [s]. By Lemma 1, it suffices to choose s such that
` ≤ s · dlog ri0e.
Biometric specification. In our implementation, we used the input biometric of irises. Among
the various biometric modalities, there is no universally best selection. However, the iris has
been shown to be a superior biometric due to the relatively higher accuracy obtainable (e.g.,
see [27,42]). We represented each iris code as a binary string of 300 bytes. Because any wavelet
can be adjusted to the output length of the bit sequence, participants may choose a proper iris
bit size n depending on the server’s environment. In contrast to the iris matching algorithms
found in commercial software, our matching procedure is performed only once. Although the
matching process must compensate for misalignment errors resulting from small rotations, the
total performance eventually depends on computing the Hamming distance, and this can be
executed in parallel.
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Table 4. Performances over 630 bits biometrics

Operations CPU Time (msec)

Encryption 16.16

Decryption 163.72

Addition 0.05

Multiplication 14.32

Multiplication by constant 0.196

7.2 Micro Experiments

Test datasets. There are various public iris databases, such as CASIA-Iris [32], for use in
research. CASIA-IrisV4 is composed of six subsets: CASIA-Iris-Interval, CASIA-Iris-Lamp,
CASIA-Iris-Twins, CASIA-Iris-Distance, CASIA-Iris-Thousand, and CASIA-Iris-Syn. Among
them, we used CASIA-Iris-Inverval, which consists of 2639 iris images from 249 subjects. We
used a public MATLAB code [29] for extracting a binary iris template. The original code takes
as input an image of the human eye and outputs a binary template of 9600 bits. We slightly
modified the code to extract iris templates of 2400 bits.

Basic operations. As shown in Section 5.1, the simplicity of Ghostshell results from our exclu-
sive use of SHE. This causes Ghostshell’s performance to heavily depend on SHE’s performance.
Thus, our optimizations extensively use SIMD and automorphims to reduce the number of basic
operations such as homomorphic addition and multiplication. In Table 4, we report on the run-
ning times for computing a ciphertext, deciphering the ciphertext, and adding and multiplying
two ciphertexts for each N . Accordingly, one can predict that the total encryption time for an
iris code is about four-times encryption time for each N . Indeed, this was confirmed by our
experiments. We observed the same result for the other operations and parameters.

HD circuit evaluation. The heaviest computational operation is to evaluate the HD circuit.
We measured the running time of computing the Hamming distance using the circuit optimized
in Section 6.1.

According to parameter selection (§7.1), an SHE ciphertext carries N plaintext bits at a
time. Hence, we only have to retain d2400/Ne ciphertexts for a 2400-bit iris code. For example,
if N = 630, the only four ciphertexts is used to represent 2400-bit iris code. For N = 630, the
evaluation requires four multiplications and additions, together with at most ten additions and
automorphisms. In our experiments, on average, 0.37 seconds were spent on computing an HD
value between two encrypted iris codes.

We have tested for various N and corresponding m and the number of retaining ciphertexts
is determined by N . Experiment results for these N and m selections are reported on Figure 5.
Since each of the multiple ciphertexts corresponding to an iris code can be independently pro-
cessed, this computation was executed using thread-level parallelism. However, this result is
substantially worse than our expectations from performance measures reported in Table 4. The
primary reason for the computation delay is that the HElib library spends much of this time in
the noise-control mechanism each time homomorphic operations are performed.

Overall performance. In the Setup phase, the user (1) runs the key generation algorithm
with the parameters (§7.1) and (2) sends the public parameters for running AES-CBC, SHA1,
and our FKA scheme to the server. In this paragraph, we only describe in case of N = 630
because this parameter shows the best performance among chosen N . As a result, the size of
SHE ciphertexts is 327, 600 bits with q of 40 bits, the block length of AES is 128 bits, and the
number of SHE ciphertext per iris code κ = 4.
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Fig. 5. Time evaluations for different selections of (N,m)

After the user takes an image and computes its feature vectors, it (1) encrypts the iris feature
code x∗ into x̄∗ and (2) sends it to the server. This computation is performed only once and
would continue to be used until re-enrollment. The delay from encryption is approximately 65
milliseconds.

After receiving the user’s authentication request with x̄, the server (1) computes the HD
distance d̄ = HD(x̄, x̄∗), (2) generates a tag τ̄ using a pair of randomly chosen keys, and (3)
sends the pair of resulting values.

Because the Hamming distance is divided into four chunks, d̄ consists of four SHE cipher-
texts, whose total size is 327600 bits and whose computation requires 0.37 seconds. Note that
the server has to perform the homomorphic evaluations after decompression. With the local
parameter s = 10 and d̄ := (d̄[0] ‖ · · · ‖ d̄[3]), the server randomly chooses (ri0[j], ri1[j]) ∈ (Z7)

2

for each i ∈ [9], j ∈ [3]. Then, the server computes τ̄i[j] = ri0[j] · d̄[j]+ri1[j]. The total computa-
tion time is approximately 0.01 seconds and the total bandwidth requirement is approximately
6.6 MB. The remaining computation time is significantly smaller than this computation time.
Indeed, the total computation time on the user’s side is approximately 5 milliseconds, and the
server’s computation time for the last verification is about 0.5 milliseconds.

Finally, we observed that a different selection of N and m does not have an effect on the
performance of the verification step. The higher the degree m of the cyclotomic polynomial,
the more computation required to perform on ciphertexts; however, since the verification step
works after decryption, performance does not differentiate among different choices of (N,m).
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8 Related Work

Possible Approaches. One solution for protecting biometric data during authentication is
to only store them in a user’s device and to use hardware-based security mechanisms, as in
Fast Identity Online (FIDO) [1]. However, it yields another authentication problem between
a user’s device and a server, so not proper for some applications. Further, trusted execution
environments (TEEs), such as ARM TrustZone [3], may not always be available and do not
provide theoretical security guarantees, though they are not easy to compromise [28]. Personal
computers, including desktops, notebooks, and basic mobiles, are all examples of devices widely
used for online payments but that do not support TEE.

Alternatively, one may recall searching on encrypted data (a.k.a., searchable encryption)
suggested by Song et al. [40]. However, this method is not satisfactory because we need to
match two ciphertexts whose plaintexts slightly differ from each other. Some others may recom-
mend using functional encryption [17] based on cryptographic multilinear maps, which allows
us to evaluate a specific function for computing on encrypted data and output its result in the
clear. This approach is conceptually simpler; however, we are currently unaware of any secure
cryptographic multilinear maps and it is not clear whether we can obtain secure and efficient
cryptographic multilinear maps in the near future.

Comparison with Previous Schemes. Recently, for the purpose of guaranteeing full pri-
vacy of biometric data, there have been studies using homomorphic encryption techniques for
the secure computation of matching algorithms and on secure multiparty computation (SMC)
techniques. SMC provides the same functionality with our approach based on SHE, but with
interaction-intensive computations. Kerschbaum et al. [25] suggested an SMC-based protocol
that is secure only when all participants are honest. Erkin et al. [16] proposed a protocol using
Paillier’s cryptosystem; however, their protocol also requires participants to be honest and is
limited to using an eigen-face recognition algorithm.

There are some related works on securely computing Hamming distance using oblivious
transfers (OTs) and garbled circuits (GCs), e.g., see [10, 12, 22, 23]. These results, however,
restrict the scope of their works only to secure Hamming distance computation with storing
biometrics in the clear. Moreover, their round complexity is in proportion to the number of
running an OT protocol (i.e., O(n) rounds for the input size n).

We can find more similar work in the privacy-preserving literature based on homomorphic
encryption, more precisely, additive homomorphic encryption. Osadchy et al. [33] proposed a
face identification protocol which is secure only when the participants are honest. They report
that server’s online computation requires about 0.3 second over 900-bit values; but 213 seconds
are spent for offline computations. Blanton and Gasti [5] suggested an iris identification protocol
in the semi-honest model. Their OT-based protocol also requires O(n) interactions between the
user and the server. Blanton and Aliasgari [4] proposed solutions for iris identification based on
predicate encryption, but which is efficient only when the size of biometric templates is very
small. Šeděnka et al.’s scheme [43] is also in this line.

Kulkarni and Namboodiri [26] presented an iris authentication scheme based on Boneh
et al.’s SHE scheme [6]; however, the online execution time of the server is 58 seconds for
2048-bit irises. Their scheme requires only 3 rounds as our solution. More recently, Bringer et
al. [11] showed that Oblivious RAM (ORAM) techniques can be used in an iris identification
protocol; however, a service provider is given user’s biometrics in the clear and then performs
the identification process with a server. Thus their scheme should trust the service provider.
Karabat et al. [24] proposed an authentication protocol solely using threshold homomorphic
encryption; however, their scheme requires 6.1 seconds at the server side, 2.1 seconds at the
user side, and 3 rounds as our solution.
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9 Summary

The future of biometrics is quite promising not only in the financial services area, but in our
social environment as well. The main drawback is that potential damages for privacy breaches
are extensive compared to other authentication tools. In this work, we showed that those con-
cerns can be significantly reduced by developing a secure authentication protocol. Our idea is
to adapt SHE and OTM to ensure the integrity of homomorphically evaluated ciphertexts. To
address the challenge of efficiency, we devised computation- and bandwidth-efficient SHE oper-
ations as well as applied an efficient OTM variant whose multiplicative depth is optimal. Our
experimental results support our argument that Ghostshell works almost practically and is an
evidence for practical applications of SHE.
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