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Abstract In this paper, we introduce new methods to evaluate inte-
ger polynomials with GSW FHE. Our solution has much slower noise
growth and per homomorphic integer multiplication cost, which is only

O( (log k)w+1

kw·n ) percent of the original GSW scheme, where k is the input
plaintext width, n is the LWE dimention, and ω = 2.373. Technically,
we reduce the integer multiplication noise by performing the evaluation
between two kinds of ciphertexts, one in Zq and the other in Fdlog qe

2 . To
achieve generality, we propose an integer bootstrapping scheme which
converts these two kinds of ciphertexts into each other. To solve the ci-
phertext expansion problem due to ciphertexts in Fdlog qe

2 , we propose a
solution based on symmetric encryption with stream ciphers.

Keywords: GSW, Homomorphic Encryption, integer multiplication, Polyno-
mial, bootstrapping, packing

1 Introduction

Fully Homomorphic encryption (FHE) has received considerable attention since
the breakthrough by Gentry in [15], which put forward a paradigm for con-
verting a “somewhat homomorphic” encryption scheme with a limited evalua-
tion depth to “fully homomorphic” encryption scheme with unlimited depth, by
bootstrapping a noisy ciphertext to less noisy one. Since then, a lot of efforts
have been dedicated to make FHE more practical by improving the evaluation
performance and reducing the number of bootstrapping times. The second gen-
eration of schemes such as BGV [9], LTV [19](NTRU based), its scale-invariant
version like FV [14] and YASHE [7] utilize techniques such as bit decomposition,
modulus switching, key switching to reduce the noise growth when performing
evaluations, particularly multiplications. However, the unnatural key switching
leads to serious computation overhead. To resolve this problem, the third gen-
eration FHE was proposed by Gentry in [16], which encrypts the plaintexts as
eigenvalues of matrix ciphertexts, while the secret key as the eigenvector. Later,



[11] achieved quasi-additive noise growth property by utilizing the asymmetric
property of the matrix multiplication. [1] improved the bootstrapping procedure
by arithmetically evaluating the decryption circuit and embedding elements in
Zq into smaller symmetric groups using Chinese Reminder Theorem (CRT). Re-
cently, [18] enabled packing multiple bits by adopting a new structure for the
ciphertexts, and further improved the bootstrapping procedure in [1]. However,
all the above improvements target at binary plaintexts, since the multiplication
noise growth in an integer multiplication chain is exponential with the plaintext
size.

Later, Leo et al. [13] proposed FHEW which accelerates bootstrapping with
the cyclic group elements Zq encoded into the group of roots of unity: i 7→ Xi,
where i is a primitive q-th root of unity. This method was further improved by
Jean et al. [4] who choose to bootstrap multiple bits to allow more types of gates
by using membership test. Theoretically they can bootstrap any integer in Zp,
but in an inefficient way, since the membership set is limited with the resolution
of m/p. Besides, the disadvantage of both methods is that the bootstrap is
required after every non-free gate and only limited to boolean operations, which
is inefficient to build arithmetic circuits.

In this paper, we consider the problem of evaluating integer polynomials,
which can be used to approximate functions such as ex, log(1−x), 1/(1−x). We
perform arithmetic operations between two kinds of ciphertexts, in F`2 and Zq,
rather than using boolean circuits or direct multiplication of Zq elements.

1.1 Our contribution

Firstly, we observe that, for univariate polynomials, the most efficient evaluation
method is Horner’s Rule [6], which can be adjusted so that for every integer mul-
tiplication, one operator can always be the input value. We also realize that in
GSW scheme, for the homomorphic multiplication, by selecting a special kind of
modulus q and setting one operator in F`2 and the other in Zq where ` = dlog qe,
we can achieve very low noise increase. As such, during the polynomial evalua-
tion, we keep the accumulator in Zq and perform additions and multiplications
with the fresh ciphertext encrypting F`2. This requires us to encrypt the plain-
text after decomposing it into an element in F`2. This bit-decomposition method
is a traditional method for FHE cryptosystems such as key switching [8] and
bootstrapping [10], but inherently with different motivations and noise effects.
For example, these works decompose the ciphertext rather than the plaintext
and their noise comes from scaling noise rather our asymmetric noise.

Secondly, generalize our evaluation method by converting the two kinds of
ciphertexts encrypting F`2 and Zq elements separately. The conversion v ∈ F`2 7→
µ ∈ Zq is µ =< v,g >, g = (20, 21, · · · , 2`−1), the conversion µ ∈ Zq 7→
v ∈ F`2 can be seen as the bit decomposition function. The first conversion
can be homomorphically computed with very little added noise. For the second
conversion, we propose one algorithm to bootstrap a ciphertext encrypting Zq to
its bit-decomposed F`2. Interestingly, this also solves the problem for composition
functions and the plaintext space expansion for float point polynomials.
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Finally, we extend the method to packing by encrypting the integers diag-
onally in a matrix. We also propose to solve the ciphertext expansion problem
with stream cipher encryption and homomorphic decryption [20].

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we recall some math-
ematical preliminaries such as subgaussian variables and DLWE and the GSW
variant from [1]. In Section 3 we discuss the homomorphic operations for inte-
gers and polynomials, then analyze their noise growth property. In Section 4 we
give our bootstrapping algorithm for an integer. In Section 5 we evaluate our
computational cost and make a comparison with other GSW based schemes. In
Section 6 we extend the evaluation method to packed GSW. In Section 7, we
show a real life scenario and propose an efficient procedure. Finally, we conclude
the paper.

2 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z, the set of
real numbers by R. Let G be a set, χ be some probability distribution, then we

use a
U←− G to denote that a is chosen from G uniformly at random, and use

b
R←− χ to denote that b is chosen along χ. We take all logarithms log to base 2,

unless otherwise noted.
We assume that column vectors are represented with bold lower case letters,

e.g., x, and the transpose as xt. We also use ()i∈[0,`) to represent a vector with the
length `. Let ⊗ be the tensor product, · be the multiplications between matrices
or scalars. The inner product between two vectors is denoted by < x,y >. We
denote ||x||2 as the Euclidean norm or the `2 norm, ||x||∞ as the Maximum
norm.

Matrices are represented with bold capital letters, e.g., X, and the i-th
column vector of a matrix is denoted by xi. For matrices A ∈ Zm×n1 and
B ∈ Zm×n2 , [A||B] ∈ Zm×(n1+n2) denotes the column concatenation of A
and B. We denote the n × n identity matrix with In. ` = dlog qe. Let g =
(20, 21, 22, . . . 2`−1) ∈ Z`q, G = gt ⊗ In ∈ Zn×n`q . For an integer x ∈ Zq, we use

x[i] to denote the i-bit of x and (x[i])i∈[0,`) ∈ Z`2 to denote the binary represen-
tation of x.

2.1 Subgaussian

Alperin-Sheriff and Peikert [1] used a randomized function G−1 : Zn×mq →
Zn`×mq instead of the decomposition procedure to randomize the ciphertexts and
more accurately analyze the noise growth property. Here, we take the necessary
Claims from these related papers.
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Definition 1 ( [27]). A real random variable X(or its distribution) is subgaus-
sian with parameter r > 0, if for all t ∈ R, its (scaled) moment-generating
function satisfies E[exp(2πtX)] ≤ exp(πr2t2).

The subgaussain random variables have two properties:

– Homogeneity: If the subgaussian variable X has parameter s, cX is subgaus-
sian with parameter cs.

– Pythagorean additivity: If two independent subgaussian random variables
X1 and X2 with parameters s1 and s2 respectively, X1 +X2 is subgaussian
with parameter

√
s21 + s22.

Claim 1 For a ∈ Zq, there is a randomized, efficiently computable function
g−1 : Zq → Z` such that x ← g−1(a) is subgaussian with parameter O(1) and
always satisfies < g,x >= a.

Claim 2 For A ∈ Zn×mq , there is a randomized, efficiently computable function

G−1 : Zn×mq → Zn`×m such that X ← G−1(A) is subgaussian with parameter
O(1) and always satisfies G ·X = A.

2.2 DLWE

The LWE problem by Regev [24] and its decisional version DLWEn,m,q,χ are
recapped in Definition 2. The reductions from DLWEn,m,q,χ to GapSVPÕ(n/α)

based on quantum algorithm [24] and classical algorithm [23] are illustrated in
Corollary 1, as we rewrite the Corollary from [11]. The GapSVPγ is assumed

to be hard, since the best algorithm requires at least 2Ω̃(n/ log γ) time [25].

Definition 2 (DLWE). For q = q(n) ∈ N and an error distribution χ =
χ(n) over Z,the (average-case) decision learning with errors problem, denoted
DLWEn,m,q,χ, is to distinguish (with non-negligible advantage) m samples cho-

sen according to As,χ (for s
U←− Znq ), from m samples chosen according to the

uniform distribution over Znq × Zq. We denote DLWEn,m,q,χ the variant where
the adversary gets oracle access to As,χ, and is not a-priori bounded in the num-
ber of samples.

Corollary 1 (DLWE to GapSVP). Let q = q(n) ∈ N be either a prime
power q = pr or a product of co-prime numbers q =

∏
qi such that for all i,

qi = poly(n), Let α ≥
√
n/q. If there is an efficient algorithm that solves the

(average-case) DLWEn,m,q,χ problem, then:

– There is an efficient quantum algorithm that solves GapSVPÕ(n/α) and
SIVPÕ(n/α) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.
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2.3 Alperin-Sheriff-Peikert GSW Symmetric Encryption Scheme

We first describe the GSW FHE variant in [1], which is identical to original GSW
FHE scheme [16] except for some syntactic differences.

Setup(λ, L) : Choose a modulus q = q(λ, L), the lattice dimension n = n(λ, L).
` = dlog qe. The distribution χ as subgaussian over Z. Output params =
(n, q, χ, `,G).

KeyGen(params) : sample s̄
R←− χn−1, output secret key s = [s̄||1] ∈ Zn.

Enc(params, s̄, µ ∈ Zq) : C̄
U←− Z(n−1)×n`

q , e
R←− χn`. Let bt = [et − s̄tC̄]q.

Output the ciphertext

C =

(
C̄

bt

)
+ µG

Dec(params, s,C) : For q = 2`−1, select the last `− 1 columns of C as C(`−1).
Then stC(`−1) = µ ·gt+e′. Recover Least Significant Bit LSB(µ) from

µ · 2`−2 + e′`−2, then the next-LSB from (µ − LSB(µ)) · 2l−3 + e′`−3,
etc.

Definition 3. For a ciphertext C ∈ Zn×n`q , it’s designed to encrypt µ ∈ Z under

the secret key s, if there is an error vector et ∈ Zn`, and

stC− µ · stG = et mod q

If ||et||∞ < q/8, Dec(params, s,C) can correctly output µ. It also works for the
general case q ([21] Sec 4.2), for which we need to solve the closest vector problem
(CVP), but in polynomial time considering the small dimension of `. This bound
will set a limit to the final ciphertext noise, which can be estimated according
to the evaluated function and the noise growth by performing basic homomor-
phic operations such as addition and multiplication. These basic homomorphic
operation noise bound will be given in the section 3.2.

Homomorphic Addition. The addition is performed in the same way as in
[1][16] [11], we take the subgaussian analysis in [1].

Lemma 1. For two ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z re-
spectively with error vectors e1, e2, the homomorphic addition is:

Add(C1,C2) = [C1 + C2]q (1)

The result has a error vector e1 + e2.

Homomorphic Multiplication. Firstly, we recap the subgaussian analysis method
from [1] and later on we will introduce our new evaluation method in Section 3.

Lemma 2. For two ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z re-
spectively with error vectors e1, e2, the homomorphic multiplication is:

Mult(C1,C2) = [C1 ·G−1(C2)]q. (2)

This is a randomized procedure as shown in the Claim 2, because G−1 is ran-
domized. The result has a error vector et + µ1e

t
2, where the entries of e are

independent and subgaussian with the parameter O(||e1||).
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3 Polynonmial Evaluation

In this section, we first introduce our new homomorphic polynomial evaluation
method based on a new encryption procedure BEnc. We then investigate the
noise growth about homomorphic multiplication in detail. As to homomorphic
addition, the noise growth is small and the same as in other schemes.

3.1 Bit Encryption Procedure

With respect to the decryption algorithm Dec, we introduce an different proce-
dure BEnc which basically decomposes the input into a binary vector, which can
be seen as an element in F`2 and separately encrypts every bit in the vector.

BEnc(params, s̄, µ ∈ Zq) : For an integer µ ∈ Zq, decompose it into binary rep-
resentation (µ[i])i∈[0,l) ∈ F`2, then encrypt every bit respectively to
C[i] = Enc(params, s̄, µ[i] ∈ F2). The final ciphertext is (C[i])i∈[0,l),
together with a weight 2i for every C[i].

For a known constant α ∈ Zq, we define Mα = [αG]q.
Since the GSW variant in [1] is IND-CPA secure based on the DLWEn,m,q,χ

assumption, it is clear that adopting the new encryption procedure BEnc will
keep the same security property.

3.2 Homomorphic Multiplication

Now we consider computing the multiplication of two integers µ1, µ2 ∈ Zq.

µ1 · µ2 = µ1 · µ2[0] · 20 + µ1 · µ2[1] · 21 + . . .+ µ1 · µ2[`− 1] · 2`−1 (3)

=

`−1∑
i=0

µ2[i] · µ1 · 2i (4)

Where µ2 = (µ2[0], . . . , µ2[`− 1]) ∈ F`2 is the binary representation of µ2. Corre-
spondingly, we can use BEnc to encrypt µ2 and homomorphically evaluate the
above process.

We derive two Corollaries 2 and 3 for a special q to show the noise growth
property. Firstly, we show the selection criteria for q.

Proposition 1. There exists such q and a procedure G∗−1 : Zn×n`q → Zn`×n`

that for any i ∈ [0, `), M2i = 2i · G ∈ Zn×n`q , if X = G∗−1(M2i), then G ·
X = M2i . For any subgaussian variable e ∈ Zn` with the parameter O(||e||),
ea = e ·X, then ea has the parameter O(||ea||) ≈ O(||e||).

Proof. Here we don’t need the procedure to be randomized. It’s easy to find
such pair of q and G∗−1. Take q = 2`−1 as an example, G∗−1 is the bit
decomposition for every element in the matrix to a column vector Z`×1, ie,
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23 → (0, 0, 0, 1, 0, . . . , 0)t︸ ︷︷ ︸
`

∈ Z`×1. It can be verified that G · X = M. Then

X = G∗−1(2i ·G) ∈ Zn`×n` has no more than one non-zero element in every col-
umn, so for any e ∈ Zn`q , ea is about a permutation of e and they have about the
same subgaussian parameter. Here we use “≈” if the difference is much smaller
than the value O(||e||).

Actually q = 2`−1 −
∑
ti

2ti also works, as long as that the set {ti} is small,
ti < `− 1. ut

Fortunately, the restriction on q will not influence the efficiency or security.

Corollary 2. For such q and G∗−1 that satisfies the Proposition 1, for two
ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z respectively with error

vectors e1, e2, and a constant M2i = 2i ·G, the homomorphic multiplication is:

Mult(C1,C2,M2i) = [([C1 ·G−1(C2)]q) ·G∗−1(M2i)]q. (5)

The result has an error vector where the entries are independent and subgaussian
with the parameter O(||(et1 + µ1e

t
2)||).

Proof. This is the homomorphic evaluation process of the Equation (3). The
multiplication result [C1 · G−1(C2)]q has the noise vector (et + µ1e

t
2), where

the entries of e are independent and subgaussian with the parameter O(||e1||).
According to the Proposition 1, the multiplication with G∗−1(M2i) will not
add extra noise, so the final noise has about the same subgaussian parameter.

ut

Now, we use the Corollary 2 to get the noise growth of the homomorphic
evaluation of the Equation (3).

Corollary 3. For such q and G∗−1 that satisfies the Proposition 1, for a
ciphertext C1 ∈ Zn×n`q which encrypts µ1 ∈ Zq with the error vector e1, and a

vector of ciphertexts (C2[i])i∈[`] encrypting (µ2[i])i∈[`] ∈ F`2 respectively with the
noise vector (et2[i])i∈[`], and a vector (M2i)i∈[`] = (2i ·G)i∈[`]. The homomorphic
evaluation of the Equation (3) is:

C1 � (C2[i])i∈[`] =

[
`−1∑
i=0

(C2[i] ·G−1(C1)) ·G∗−1(M2i)

]
q

. (6)

Here, we define the symbol � as the operation of one ciphertext with a vector
of ciphertexts which encrypt F`2. The result has an error vector whose entries
are independent and subgaussian with the parameter O(||e||), where in the worst
case,

et = [et1|| . . . et1︸ ︷︷ ︸
`

||et2[0]||et2[1]|| . . . ||et2[`− 1]] ∈ Z2n`2 .
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Proof. Considering every (C2[i] ·G−1(C1)) ·G∗−1(M2i), the result has an er-
ror vector (et[i] + µ2[i]et1), where the entries of et[i] are fresh independent and
subgaussian with the parameter O(||e2[i]||). Since all the noise e2[i] are indepen-
dent, the final result has the error vector of the sum of (et[i] + µ2[i]et1) for all i.
The worse case means µ2[i] = 1 for all i. ut

3.3 Homomorphic Polynomial Evaluation

For any integer univariate monic polynomial

F(x) = p0 + p1 · x+ . . .+ xd (7)

= p0 + (p1 + (p2 + (. . . (pd−1 + x) · x . . .) · x) · x︸ ︷︷ ︸
d

(8)

This Horner’s Rule allows one operand in every multiplication to be the fresh
input x all the time, so that all the homomorphic multiplication can be performed
in the way as mentioned in Corollary 3.

Corollary 4. For a polynomial F (x) = p0+p1·x+. . .+xd with all its coefficients
pi ∈ Zq, for such q and G∗−1 that satisfies Proposition 1, an integer µ ∈
[0, 2k), k < `. The vector of ciphertexts (C[i])i∈[0,`) encrypting (µ[i])i∈[0,`) ∈ Z`2
respectively with the noise vector (e[i])i∈[0,`) ∈ F`2, and a vector (Mpj )j∈[0,d)
encoding the constant coefficient (pj)j∈[0,d). The homomorphic evaluation of F(µ)
is:

Eval((C[i])i∈[0,`),F) =Mp0 + (Mp1 + (. . . (Mpd−1
+

G � (C[i])i∈[0,`)) � (C[i])i∈[0,`)) . . .) � (C[i])i∈[0,`))︸ ︷︷ ︸
d

Here the multiplication �(C[i])i∈[0,`) is performed as shown in Corollary 3.
The result has an error vector whose entries are independent and subgaussian
with the parameter O(||e′||), in the worst case

(e′)t = [ etp|| . . . ||etp︸ ︷︷ ︸
(kd−1−1)/(k−1)

], etp = [et[0]||et[1]|| . . . ||et[`− 1]] ∈ Zn`
2

.

Proof. Considering that the addition with Mpi has no noise increase, we can see
the polynomial as an integer multiplication chain, which is xd = x · . . . · x︸ ︷︷ ︸

d

. For

every integer multiplication of one intermediate ciphertext (with the noise vec-
tor e1) with encrypted (µ[i])i∈[0,`)(with the noise vector (e[i])i∈[0,`)), the noise

growth is
∑`−1
i=0(et[i] + µ[i]et1) ≤

∑
i e
t[i] + ket1, because µ < 2k. The noise

e1 and (e[i]) are independent of each other because of the randomized pro-
cedure G−1, so iteratively we can calculate that the overall noise growth is∑j<(kd−1−1)/(k−1)
j=0

∑`−1
i=0(et[i]). ut
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3.4 More Techniques

Non-Adjacent Encoding. From the Corollary 2, we know that if µ1 is
nonzero, the noise in the multiplication result will inherit the noise e2. To avoid
this, we can use Non-Adjacent Encoding [17] to the bit-decomposed integer,
which is the vector (µ2[i])i∈[0,`) ∈ F`2 in the equation 3. We choose Booth encod-
ing method [5], which eliminates continuous 1 by introducing −1, reducing the
worst case number of non-zero bits in F`2 from ` to (b`/2c+ 1).

Another important reason we choose Booth encoding is that it can be ef-
ficiently homomorphically evaluated using 2µ 	 µ, where 	 denotes a bitwise
substraction.

Partial Computation. The matrix multiplication cost Mult(C1,C2,M2i) in
Corollary 2 can be reduced to O(1/n(n`)ω) instead of O((n`)ω). Considering
the fact that to decrypt a ciphertext C, only the last ` columns are necessary, so
for [C1 ·G−1(C2)]q, only the last ` columns need to be calculated. Considering
another fact that M2i = 2iG, i ∈ [0, `) are such matrices that for the last `
columns, only the last row is non-zero, so for the multiplication with G∗−1(M2i),
only the right most ` columns are needed. In fact, since G∗−1(M2i) is quite
sparse, the matrix multiplication is equivalent to column permutation and a few
additions.

The same optimization can be done for the homomorphic addition operation.
The addition with Mpi , i ∈ [0, d) can be further accelerated to O(`) additions
since the non-zeros are only one row in the last ` columns.

CRT (Chinese Reminder Theorem). For polynomial evaluation, the plain-
text space may be very large, which means a larger q and more computational
cost. We can use CRT with a set of co-prime modulus {q1, . . . , qt} and cryptosys-
tems separately based on qi, i ∈ [1, t]. Even though we have some restrictions
such as qi = 2`−1 − 2k − 1, it’s still easy to select enough co-prime modulus.

It is worth noting that in the original GSW scheme [16], the multiplication
noise is so influenced by the plaintext size that it’s impossible to multiply with
one ciphertext that encrypts a plaintext close to q, because the resulted noise
will be greater than q/8 and make it impossible to decode.

Optimized Storage. Mpi and M2i are sparse matrices with n` non-zero ele-
ments each, so there is no need to store them and the calculation can be done
online in a very fast way with just shifting and modular operations.

4 Bootstrapping an Integer for GSW

One problem about our evaluation is that we actually use a special kind of fresh
ciphertext which encrypts a F`2 element, while all the intermediate ciphertexts

9



are those encrypting Zq, so one problem is how to convert between them. An-
other issue is that to continuously evaluate multiple polynomials, we need to
refresh the ciphertext to one that encrypts F`2, otherwise the composition of
these polynomials leads an exponential increase in the polynomial degree.

It’s easy to convert v = (µ[i])i∈[0,`) ∈ F`2 to µ ∈ Zq by homomorphically using
µ =< v,g >. However, the inversion needs homomorphic bit decomposition
algorithm. We notice that when q is a power of two, the decoding algorithm
in [21] is actually a LSB to MSB(Most Significant Bit) extraction algorithm,
so by homomorphically perform this decoding algorithm, we can achieve bit
decomposition. The key reason it works is that the homomorphic multiplication
with M2i barely increases the noise.

In detail, the bootstrapping algorithm works as described in Algorithm 1.
Since the modulus is a power of two, the plaintext has at most `− 1 bits, so the
bootstrapped result has `− 1 ciphertexts.

Algorithm 1: Bootstrapping an integer

1 INPUT: Given q = 2`−1, the bootstrapping key set bk, a ciphertext C ∈ Zn×N
q ,

which encrypts an integer µ ∈ Zq

2 OUTPUT: (C[i])i∈[0,`−1), which encrypts (µ[i])i∈[0,`−1) ∈ F`−1
2

3 i = 0
4 while i < `− 1 do
5 set cvec as the (N − 1− i)-th column of C
6 C[i] = Bootstrap(bk, cvec) // C[i] encrypts µ[i]
7 C = C−C[i] ·G−1(M2i)
8 i = i+ 1

In this algorithm, we use the bootstrapping method from [1] as the function
Bootstrap(bk, cvec), which generates a bootstrapped ciphertext that has inde-
pendent subgaussian entries with parameter O(sn`

√
rdq) = Õ(sn`λ), except

with probability 2−Ω(n`), where s is the fresh ciphertext subgaussian parameter
and r is the maximal prime-power divisor used in CRT, d = Õ(λ).

The bootstrapping process will be correct, as long as the noise before every
bootstrapping satisfies the requirement in [1], which means that the noise of
C−

∑
i∈[0,`−3] C[i] ·G−1(M2i) should be small. Considering all the Ci are boot-

strapped “fresh” ciphertexts, the noise for C is lower bounded byO(sn`
√
rdq(`− 2)).

Therefore, in order to achieve FHE, q need to be about (
√
`− 2 =

√
dlog qe − 2)

times larger, which is a small factor.
The iteration number in the bootstrapping process can be less than ` − 1,

if the integer size can be exposed to the evaluator without security problems.
Besides, if we are processing a float point based polynomial, we can reduce the
precision after the bootstrapping by removing ciphertexts which encrypt these
least significant bits. In this way, it solves the plaintext space problem for high-
degree polynomials.
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We note that the GSW symmetric encryption can be easily transformed to
GSW public key encryption. Besides, since our bootstrapping algorithm needs
encrypted secret keys, it relies on the circular security assumption [2].

5 Performance

In this section, we analyze the noise increase and computational cost of our
evaluation method, using the subgaussian variable analysis in [1]. We compare
our computational cost with the method based on the original GSW [16] and
these based on Boolean circuits [1][11][13][3]. While performing the analysis, we
take the ` ciphertexts expansion into consideration.

5.1 Reduced q

In our scheme, suppose that we have the fresh GSW ciphertext with independent
subgaussian entries with the parameter s, the `2 norm is O(s

√
n`), except with

probability 2−Ω(n`). The input is bounded in k-bit, for which we can represent
with a length k binary vector, with (bk/2c + 1) non-zeros in the worst case by
Booth encoding.

The initial ciphertext noise has subgaussian parameter s
√
` · n`. Based on

Corollary 3, after one homomorphic multiplication, the noise will have sub-
gaussian parameter s

√
(k/2 · `+ `) · n`. By recursively perform this analysis,

for a polynomial with d degrees, the final noise will have subgaussian param-
eter O(s`

√
n(k/2)d). In order to successfully decode the ciphertext, q/8 >

O(s`
√
n(k/2)d) should hold so that log q = Õ(d log k + log n).

For the original GSW scheme [16], for a polynomial with the degree d, if we
evaluate with a binary tree with the multiplication depth of h = log d, the plain-

text will grow exponentially from 2k to (2k)2
h

= 2k2
h

= 2kd. For a multplication

depth h, the noise will be (N + 2k)(N + 22k) . . . (N + 2(k2
h))B. To correctly

decode the ciphertext, q/8 > (N + 2k)(N + 22k) . . . (N + 2(k2
h))B should hold

so that log q = Õ(k2h+1) = Õ(kd). If we take the large N into consideration,
the noise increases much faster. Besides, it will be impossible to multiply with
a ciphertext encrypting an integer close to q/8, because the noise will be larger
than q/8 to cause decode failure.

Overall, our method reduces q size at least from Õ(kd) to Õ(d log k+ log n),
which helps reducing the computational cost, see below.

5.2 Computational Cost

For the BEnc, we need ` times ciphertexts compared with [16], since we encrypt
the bit decomposed ciphertext.

For the polynomial evalutation, we define our unit cost being one homomor-
phic integer multiplication, which is reduced to ` matrix multiplication (Reduced
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to 1/n due to partial computation). The cost for one homomorphic integer mul-
tiplication is O((n`)ω · `/n) = O(nω−1(d log k + log n)ω+1), where ω = 2.373
according to the fast matrix multiplication algorithm [28].

Compared with the original GSW O((n`)ω) = O((nkd)ω) [16], ours is about

O( (log k)ω+1

kω·n ) times less.
Compared with ours, for the polynomial evaluation based on boolean cir-

cuits [1][11][13][3], their costs are too high to be practical, even with the fast
bootstrapping from FHEW [13]. For a single full adder, 7 NAND gates are nec-
essary and for 32-bit Adder, 127 AND gates are needed [26]. For every NAND or
AND gate, one matrix multiplication and bootstrapping are required. The amor-
tized cost is too high to be practical. Besides, it may not be able to efficiently
sequentialize the circuit.

6 Polynomial Evaluation for Packed GSW FHE

In this section, we extend our method in Section 3 to the packed GSW scheme,
and analyse its efficiency properties.

6.1 Packed GSW FHE

We explore the possibility of packing more integers into a ciphertext by modify-
ing the scheme from [18] which only deals with binary messages, and try to allow
SIMD operations. First, we recap the scheme from [18]. Note that this scheme
is public key encryption, while the previous one is symmetric key.

Let λ be the security parameter, r be the number of integers to be packed,
L be the depth of evaluated circuit.

Setup(λ, L, r) : Choose a modulus q = q(λ, L), lattice dimension n = n(λ, L), ` =

dlog qe, N = (n+r)`, G = gt⊗ In+r ∈ Z(n+r)×(n+r)`
q . The distribution

χ is subgaussian over Z. m = O((n + r) log q). Output params =
(r,m, n, q,N, χ,G).

KeyGen(params) : A
U←− Zn×mq , S′

R←− χr×n, E
R←− χr×m. Let S = [I|| − S′] ∈

Zr×(n+r)q . Set

B =

(
S′A + E

A

)
∈ Z(n+r)×m

q

Let M(i,j) ∈ Zr×r2 (i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-
th position and 0 in the other. For all i, j = 1, . . . , r, first sample
R(i,j) ∈ Zm×N2 , and set

P(i,j) = BR(i,j) +

(
M(i,j)S

0

)
G ∈ Z(n+r)×N

q

Output pk = ({P(i,j)}i,j∈[r],B) and sk = S.

12



Enc(params, pk,M ∈ Zr×r) : R(i,j)
U←− Zm×N2 , output the ciphertext

C = BR +
∑

i,j∈[r]:M[i,j]=1

P(i,j) ∈ Z(n+r)×N
q

where M[i, j] is the (i, j)-th element of M.

Dec(params, sk,C) : For q = 2`−1, to decode M ∈ Zr×rq , we calculate SC =
MSG + E. For the integer µ in the position (i, i) of M, select the i
row, i · `+ 1 to (i+ 1) · `− 1 columns of SC as Ci. Then Ci = µ ·g + e,
where g = (1, 2, . . . , 2l−2). Recover LSB(µ) from µ · 2`−2 + e`−2, then
the next-LSB from (µ− LSB(µ)) · 2l−3 + e`−3, etc.

The scheme from [18] uses matrix plaintexts, ciphertexts and keys in order
to realize the packing, so we put the integers here diagonally to achieve parallel
homomorphic multiplications. We introduce a new encryption procedure PBEnc.

PBEnc(params, pk, (µj)j∈[1,r] ∈ Zrq) : For r input integers (µj)j∈[1,r] ∈ Zrq, de-
compose them into binary representations, which include ` vectors,
such that for i ∈ [0, `), the weight is 2i and the corresponding plaintext
matrix is M[i] = diag(µ1[i], . . . , µr[i]) ∈ Zr×r2 , then encrypt the matrix
with C[i] = Enc(params, pk,M[i]). The final ciphertext is (C[i])i∈[1,`),
together with a weight 2i for every (C[i])i∈[1,`).

For a known constant scalar α ∈ Zq, we define Mα = [αG]q.

6.2 Correctness and Security

The correctness analysis is the same as that of the unpacked scheme.

Definition 4. For a ciphertext C ∈ Z(n+r)×N
q , it’s designed to encrypt M with

(µi)i∈[1,r] ∈ Zrq in the diagnal, under the secret key S, if there is an error matrix

Et ∈ Zn`, and

StC−MSG = E mod q

This naturally comes from the proof in [18] and from [21], if ||E||∞ < q/8,
Dec(params, s,C) can correctly output µ.

Since the packed GSW FHE variant in [18] is IND-CPA secure based on the
DLWEn,m,q,χ assumption, it is clear that adopting the new encryption proce-
dure PBEnc will keep the same security property.

6.3 Homomorphic operations

For homomorphic addition and multiplication, we can easily extend the proof in
[18] to the Zq field.
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Corollary 5. For two ciphertexts C1,C2 ∈ Z(n+r)×N
q which encrypt M1,M2 ∈

Zr×rq respectively with error matrixes E1,E2, the homomorphic addition is:

Add(C1,C2) = [C1 + C2]q. (9)

The homomorphic multiplication is:

Mult(C1,C2) = [C1 ·G−1(C2)]q (10)

This is a randomized procedure, because G−1 is randomized. The result has a
error matrix E+M1E2, where the entries of E has in the i-th row the independent
and subgaussian entries with the parameter O(||e1,i||), e1,i is the i-th row of E1.

We then consider the packed integer matrix multiplication

M1 ·M2 = diag(µ1,1, . . . , µ1,r) · diag(µ2,1, . . . , µ2,r)

=

`−1∑
i=0

diag(µ2,1[i], . . . , µ2,r[i]) · diag(µ1,1, . . . , µ1,r) · diag(2i, . . . , 2i)

(11)

where µ2,j = (µ2,j [0], µ2,j [1], . . . , µ2,j [`− 1]) ∈ Z`2 is the binary representation of
the element µ2,j in the matrix M2, for j ∈ [1, r].

In the evaluation, if we always keep the M2 as a fresh ciphertext vector
encrypted with our encryption procedure PBEnc, then the noise growth rate
can be calculated as follows. The only difference from Corollary 3 is that n is
changed to n+ r.

Corollary 6. For such q and G∗−1 that satisfies Proposition 1 , for a cipher-

texts C1 ∈ Z(n+r)×N
q which encrypt M1 ∈ Zr×rq with the error matrix E1, and

a vector of ciphertexts (C2[i])i∈[`] encrypting (M2[i])i∈[`] respectively with the
noise matrix (E2[i])i∈[`], and a vector of ciphertexts (M2i)i∈[0,`) = (2i ·G)i∈[0,`).
the homomorphic evaluation of the Equation (11) is:

C1 � (C2[i])i∈[`] = [

`−1∑
i=0

(C2[i] ·G−1(C1)) ·G∗−1(M2i)]q. (12)

This is a randomized procedure, because G−1 is randomized. Let e2,j [i], e1,j, ej
be the j-th row vector of E2[i], E1 and the final ciphertext noise respectively,
then ej has independent and subgaussian entries with the parameter O(||ej ||),
where

ej = [e1,j || . . . ||e1,j︸ ︷︷ ︸
`

||e2,j [0]||e2,j [1]|| . . . ||et2,j [`− 1]] ∈ Z2n`2 .

The proof can be done similar to Corollary 3, while the only difference is that
we treat the error in every row in the ciphertext independently. We skip the
details here.
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For the polynomial evaluation, we can perform noise growth analysis similar
to the Corollary 4. We can consider every polynomial evaluation as a matrix
multiplication chain, which is Md = M · . . . ·M︸ ︷︷ ︸

d

. The input is a vector of cipher-

texts (C[i])i∈[`] with the noise (E[i])i∈[`]. For every multiplication, the noise of
the two ciphertexts is independent of each other because of the randomized pro-
cedure with G−1, so iteratively we can calculate that the overall noise growth is∑j<(kd−1−1)/(k−1)
j=0

∑`−1
i=0(E[i]), where all packed integers are bounded with 2k.

For the j-th row in the final ciphertext noise, it has independent subgaussian

with parameters O(||e′j ||), where e′j =
∑j<(kd−1−1)/(k−1)
j=0

∑`−1
i=0(ej [i]), ej [i] being

the j-th row of E[i].
As to bootstrapping packed integers, we can use a combination of our boot-

strapping algorithm in Section 4 and the method in [18]. Basically it’s a process
of homomorphically extracting one ciphertext that encrypts a single integer and
then bootstrap it. We skip the details for simplicity.

7 Integration with Ciphertext Compression

In this section, we analyze two scenarios that we may be confronted with based
on our proposed methods.

– In one scenario, the inputs are all integers encrypted as elements in F`2. This
is the most convenient scenario for the evaluator, but the communication
cost is high and a burden for the client. So we propose that the client en-
crypts all their integers bitwisely with a stream cipher and the evaluator
homomorphically decrypts and performs the polynomial evaluation.

– In the other one, the inputs come from different parties, so some of them
may have plaintexts in F`2 and some in Zq. We can perform bootstrapping on
these encrypted in Zq to convert them to F`2, then perform the polynomial
evaluation.

Traditionally, to securely evaluate a specific function with an untrusted server,
the user needs to homomorphically encrypt the data, then upload the ciphertest
to the server who can then do perform the computations. Usually, the ciphertext
size is very large compared with the original plaintext, and it is referred to as the
ciphertext expansion problem. To avoid this problem, [22] proposed to send the
data encrypted with a block cipher such as AES to the cloud, so that the server
can homomorphically decrypt them and perform evaluation afterwards. How-
ever, existing symmetric ciphers encrypt the data with non-linear functions and
boolean circuits such as XOR, AND, which require the plaintext to be encrypted
as binary vectors. This forces the underlying homomorphic scheme to deal with
boolean circuits, which is quite inefficient in integer polynomial evaluation.

For symmetric ciphers, the depth of the decryption circuit need to be small
enough to allow further homomorphic evaluations. It is because, for somewhat
homomorphic encryption, the total depth for a specific parameters set is fixed.

15



To minimize the overhead of the decryption circuit, different block ciphers and
stream ciphers have been investigated, e.g. in [12,20]. The block ciphers such as
AES, Simon-32/64, have a lot of rounds to guarantee the security level, which
results in a high decryption depth such as 32 for Simon-32/64, 44 for Simon-
64/128, 40 for AES-128. The stream ciphers, on the other hand, has increased
noise with the number of decrypted ciphertext blocks, since the homomorphic
pseudorandom keystream generation will add noise to the encrypted secret key.
To tackle this problem, [20] proposed the stream cipher FLIP based on filter
permutator, which has such property that the non-linear filtering function always
acts on the key bits, rather than the previous output of some function, so the
noise level of every decrypted ciphertext is constant. Combined with the additive
noise property of the multiplicative chain in GSW, the decryption noise can be
restricted to a small number. As shown in [20], for 80-bit and 128-bit security
level, FLIP has a multiplicative depth of 4.

In our solution, we propose to concatenate the stream cipher FLIP decryp-
tion with the integer polynomial evaluation circuit. The homomorphic symmet-
ric key decryption needs NAND which will restrict the message space to F2 and
maintain small noise increase, while the polynomial evaluation uses Add and
Mult. What’s more, we can integrate the batching method. A high-level work-
flow is as follows.

– On the user side, for plaintext integers (µ1, µ2, . . . , µr), decompose every
integer into binary representations

(µ1[0], . . . , µ1[`− 1], µ2[0], . . . , µ2[`− 1], . . . , µr[0], . . . , µr[`− 1])

then aggregate bits with the same weight into the same block such as

(µ1[0], µ2[0], . . . , µr[0]), (µ1[1], µ2[1], . . . , µr[1]), · · ·

For every block, encrypt it with symmetric encryption, send it to the server
together with the corresponding weight.

– On the server side, homomorphically decrypt all blocks into ciphertexts (of
the FHE), then homomorphically evaluate the integer polynomial and send
the encrypted result back to the user.

– After receiving the encrypted result, the user can decrypt it to get the eval-
uated result.

8 Conclusion

In this paper, we have proposed some methods to improve the univariate polyno-
mial evaluation based on GSW FHE scheme. It is an interesting work to further
extend these methods to multi-variate polynomials and Ring-GSW. To make a
fair comparison with the state-of-art HE schemes such as BGV, YASHE, FV,
etc, detailed security/parameters/homomorphic operations analysis remain to
be a future work.
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Besides, from the implementation point of view, such as GPU and hardware
acceleration, it’s easy to adopt the GSW LWE structure, because the matrix
multiplication can be highly parallelized considering every element is indepen-
dent of each other. It avoids the complex logic from FFT. And what’s more
important is that there is even no need for integer multiplication in Fq because
of the randomization or bit decomposition G−1, since it’s just addition of se-
lected columns, which can be pipelined/parallelized or accelerated using SIMD
instructions in GPU/CPU.
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