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Abstract. This paper deals with block ciphers embedding a trapdoor which consists in
mapping a partition of the plaintext space to a partition of the ciphertext space. In a first
part, this issue is reduced to the study of the S-boxes of the cipher satisfying a few criteria.
Then, differential and linear properties of such S-boxes are assessed and an algorithm to
build optimal S-boxes is provided. Finally, these primitives are used to design a small
trapdoor cipher resistant to both linear and differential cryptanalysis. This trapdoor makes
it possible to recover the κ-bit master key with only one plaintext/ciphertext pair and an
effort of 2κ2 encryptions.
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1 Introduction

1.1 Motivation

Trapdoors are a two-face, key concept in modern cryptography. They are primarily related to
the concept of “trapdoor function” – a function that is easy to compute in one direction, yet
difficult to compute in the opposite direction without special information, called the “trapdoor”.
This first “face” relates most of the time to asymmetric cryptography algorithms. It is a neces-
sary condition to get reversibility between the sender/receiver (encryption) or the signer/verifier
(digital signature). The trapdoor mechanism is always fully public and detailed. The security
and the core principle are based on the existence of a secret information (the private key) which
is essentially part of the trapdoor. In other words, the private key can be seen as the trapdoor.

The second “face” of the concept of trapdoor relates to the more subtle and perverse concept
of “mathematical backdoor” and is a key issue in symmetric cryptography (even if it may be
extended to asymmetric cryptography; see for example the case of the DUAL EC_DRBG [16]).
In this case, the aim is to insert hidden mathematical weaknesses which enable one who knows
them to break the cipher. If possible, these weaknesses should be independent of the secret key.
In this context, the existence of a backdoor is a strongly undesirable property.

In the rest of the present section, we will oppose the term of trapdoor (desirable property)
to that of backdoor (undesirable property). However, in the subsequent sections of the paper we
will keep the term of trapdoor which has been already used in the very few literature covering
this second face of this problem. We suggest however to use the term of backdoor to describe the
issue of hidden mathematical weaknesses. This would avoid ambiguity and maybe would favor
the research work around a topic which is nowadays mostly addressed by governmental entities
in the context of cryptography control and regulations.

Inserting backdoors in encryption algorithms underlies quite systematically the choice of
cryptographic standards (DES, AES. . . ). The reason is that the testing, validation and selection
process is always conducted by governmental entities (NIST or equivalent) with the technical
support of secret entities (NSA or equivalent). So an interesting and critical research area is: “how
easy and feasible is it to design backdoors (at the mathematical level) in encryption algorithms?”



This paper intends to address one very particular case of this question. It is important to keep
in mind that a backdoor may be itself defined in the following two ways.

– As a “natural weakness” known – but non disclosed – only by the tester/validator/final
decision-maker (e.g. the NSA). The best historic example is that of differential cryptanalysis.
Following Biham and Shamir’s seminal work in 1991, NSA acknowledged that it was aware
of that cryptanalysis years ago. Most experts estimate that it was nearly 20 years ago.

– As an intended design weakness put by the author of the algorithm. To the authors’ knowl-
edge, there is no known case for public algorithms yet.

As far as symmetric cryptography is concerned, there are two major families of cipher systems
for which the issue of backdoors must be considered differently.

– Stream ciphers. Their design complexity is rather low since they mostly rely on algebraic
primitives (LFSRs and Boolean functions which have intensely been studied in the open
literature). Until the late 70s, backdoors relied on the fact that nearly all algorithms were
proprietary and hence secret. It was then easy to hide non primitive polynomials, weak com-
bining Boolean functions. . . The Hans Buehler case in 1995 [17] shed light on that particular
situation.

– Block ciphers. This class of encryption algorithm is rather recent (end of the 70s for the
public part). They exhibit a huge combinatorial complexity that it is reasonable to think of
backdoors. As described in [7, section 5.5] for a κ-bit secret key and a m-bit input/output
block cipher there are ((2m)!)2κ possible such block ciphers. For such an algorithm, the
number of possible internal states is so huge that we are condemned to have only a local
view of the system, that is, the round function or the basic cryptographic primitives. We
cannot be sure that there is no degeneration effect at a higher level. This point has been
addressed in [7, pp 124] when considering correlation attacks. Therefore, it seems reasonable
to think that this combinatorial richness of block ciphers may be used to hide a backdoor.

1.2 Previous Work

One of the first trapdoor ciphers was created in 1997 by Rijmen and Preneel in [15]. The S-boxes
are selected randomly and then modified to be weak to the linear cryptanalysis. They are finally
applied to a Feistel cipher such as CAST or LOKI91. But because of the big size of the S-boxes,
the linear table of such an S-box cannot be computed. However the knowledge of the trapdoor
gives a good linear approximation of the S-boxes which is then used in a linear cryptanalysis. As
an example, the authors created a 64-bit block cipher based on CAST cipher, and four 8 × 32
S-boxes. If the parameters of the trapdoor are known, a probabilistic algorithm recovers the
key easily. Such a family of trapdoor ciphers leads to the recovery of only a part of the key,
and the authors claim that the trapdoor is undetectable. But in [18], Wu and al. discovered
a way to recover the trapdoor if the attacker knows its global design but not the parameters.
They also showed that there exists no parameter allowing to hide the trapdoor. Nevertheless,
it is worthwhile to mention that in practice, if a real cipher containing a trapdoor is given, the
presence of the trapdoor will certainly not be revealed. Thereby, we will not focus in this section
and in the rest of this article on ways to recover the trapdoor, but rather propose strong enough
S-boxes to hide this trapdoor if its global design is not revealed.

Our work is mainly a generalization of the ideas presented by Paterson in [14]. In this article,
a DES-like trapdoor cipher exploiting a weakness induced by the round functions is presented.
The group generated by the round functions acts imprimitively on the message space to allow
the design of the trapdoor. In other words, this group preserves a partition of the message space
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between input and output of the round function. Such a construction leads to the design of a
trapdoor cipher composed of 32 rounds and using an 80 bits key. The knowledge of the trapdoor
allows to recover the key using 241 operations and 232 plaintexts. Even if the mathematical
material to build the trapdoor is given, no general algorithm is detailed to construct such S-
boxes. Furthermore, as the author says, S-boxes using these principles are incomplete (half of
the ciphertext bits are independent of half of the plaintext bits). Finally, the security against a
differential attack is said to be not as high as one might expect. Moreover, the author wondered
whether the structure of trapped S-boxes acting imprimitively on the message space had to be
linear.

In [8], Harpes introduced a more general family of trapdoor ciphers. Such ciphers map a
partition of the plaintexts to a partition of the ciphertexts and these partitions form the trapdoor.
Harpes suggested using this trapdoor with its partitioning cryptanalysis.

More recently in [1], the authors created non-surjective S-boxes embedding a parity check to
create a trapdoor cipher. The message space is thus divided into cosets and leads to create an
attack on their DES-like cipher in less than 223 operations. The security of the whole algorithm,
particularly against linear and differential cryptanalysis is not given and the authors admit that
their attack is dependent on the first and last permutation of the cipher. Finally, the non-
surjective S-boxes may lead to an easy detection of the trapdoor by simply calculating the image
of each input vector. This problem is naturally avoided in an SPN in which S-boxes are bijective
by definition. Finally, in [3], Calderini and Sala defined the concept of “hidden sum” to design
another family of trapdoor ciphers.

In a slightly different context, Caranti and al. provided a first answer to Paterson’s question
[5], by proving that the imprimitivity of the group generated by round functions is actually
related to the cosets of a linear subspace. They also gave some conditions to create such a
primitive group to design a secure cipher that cannot contain such trapdoor, and finally show
that AES respects these conditions. They add in [4] an algorithm to verify this last condition
simply and show that AES and Serpent S-boxes verify this property.

1.3 Contributions

As detailed in the previous section, we intend to generalize the work of [14] and [8] for Substitu-
tion-Permutation Networks (SPN). We study such encryption systems which map a partition
of the plaintext space to a partition of the ciphertext space, independently of the round keys.
To this end, the next section introduces some notations and definitions. Then, our results are
organized as follows.

First, we show in Section 3 that the round function of such an encryption system must
necessarily map a partition to another one. Moreover, this partition must be linear (the set of
vector space cosets). Then we show that the substitution layer must necessarily map a linear
partition to another one.

Second, we show in Section 4 that at least one S-box must map a linear partition to another
one. When combining all these results, we prove that any encryption system which maps a
partition to another one, must involve at least one S-box which itself maps a linear partition to
another one. This result fully answers Paterson’s question. In practical terms, it means that we
can restrict the study of the global encryption algorithm to that of a single S-box.

Then, we study in Section 5 the linear and differential properties of S-boxes which map a
linear partition to another one. We obtain several structural theorems as well as lower bounds
regarding both linear and differential uniformities of such S-boxes. We also give an effective
algorithm to build such S-boxes reaching these bounds.
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As a practical application, we give in Section 6 an example (a toy cipher) of a trapdoor
encryption system, based on our results. We explain how it works and its global design. Let us
mention the fact that our attack used to break this system (with the knowledge of the trapdoor)
has been suggested by Paterson who never used it practically. Furthermore, our S-boxes and the
whole toy cipher are no longer incomplete.

Eventually, the conclusion and future works are presented in Section 7. Furthermore, it should
be stressed that almost all the proofs of our results will be given in Appendices.

2 Preliminaries

Let us begin with some notations and conventions.

Notation. Let n and s denote positive integers. For two maps f and g, the composition g ◦ f
(or simply gf) denotes the evaluation of f followed by g. For any set E, let #E denotes its
cardinality. If F is a subset of E, F c denotes its complement.

Let us denote the Galois field of order two by F2 and 0n = (0, . . . , 0) the zero vector of Fn2 .
All the vector spaces considered in this paper are over the finite field F2. It is worthwhile to
mention that (Fn2 )s will be often identified with Fns2 . The concatenation of two vectors x and y
is denoted by [x ‖ y].

An n-bit S-box is any permutation of Fn2 . If x and y are two elements of Fn2 , then 〈x, y〉 =∑n
i=1 xiyi. If L : Fn2 → Fm2 is a linear map, define Lᵀ : Fm2 → Fn2 by 〈Lᵀ(x), y〉 = 〈x, L(y)〉 for

every (x, y) ∈ Fn2 × Fm2 . In other words, Lᵀ is the transpose of L for the bilinear form 〈·, ·〉.

Since we are concerned with ciphers which associate a partition of the ciphertext space to
another partition of the plaintext space, let us introduce the following definition.

Definition 2.1. Let f be a permutation of E and A, B be two partitions of E. Let f(A) denote
the set {f(A) | A ∈ A}. We say that f maps A to B if f(A) = B.

The two partitions {{x} | x ∈ E} and {E} are called the trivial partitions of E. Observe that,
for any permutation f of E,

f({{x} | x ∈ E}) = {{x} | x ∈ E} and f({E}) = {E} .

That is, every permutation maps a trivial partition to another one. Moreover it should be high-
lighted that if f maps A to B and if A is non-trivial, then so is B.

In this paper, we are going to use a special kind of partitions which consists of cosets of
a linear subspace. Such partitions have already been introduced by [8, Definition 4.4] and are
recalled below.

Definition 2.2 (linear partition). Let A be a partition of Fn2 . Let V denote its part containing
0n. The partition A is said to be linear if V is a subspace of Fn2 and if every part of A is a coset
of V in Fn2 , in other words, if

A = {x+ V | x ∈ Fn2} = Fn2 / V .

We denote by L(V ) such a partition.

It turns out that the linear partitions associated with the two trivial subspaces of Fn2 , that
is {0n} and Fn2 , correspond with the two trivial partitions of Fn2 . Moreover, if V is a non-trivial
subspace of Fn2 , then the linear partition L(V ) is also non-trivial.

The following two propositions are interesting properties of linear partitions which will be
used in the rest of the paper.
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Proposition 2.3. Let V1, V2,W1,W2 be four subspaces of Fn2 and f be a permutation of Fn2 which
maps L(V1) to L(W1) and L(V2) to L(W2). Then f maps L(V1 ∩ V2) to L(W1 ∩W2).

Proposition 2.4. Let V , W be two subspaces of Fn2 and f be a permutation of Fn2 which maps
L(V ) to L(W ). There exists an automorphism L of Fn2 such that L(V ) = W . In particular, V
and W are isomorphic.

3 Substitution-Permutation Networks and Partitions

Substitution-Permutation Networks, or SPN for short, belong to the class of iterated block ci-
phers. As every iterated block cipher, the encryption function consists in applying a simple keyed
operation called round function several times. A different round key is used for each iteration
of the round function. In practice, these rounds keys are extracted from a master key using an
algorithm called key schedule. In an SPN, the round function is made up of three distinct stages:
a key addition, a substitution layer and a permutation or diffusion layer. The substitution layer
consists of the parallel evaluation of several S-boxes and is the only part of the cipher which is
not linear or affine. Then, the diffusion layer is the evaluation of some linear maps (generally
one).

Definition 3.1 (SPN). Let s, n ≥ 1 be two integers. Let σ1, . . . , σs be n-bit S-boxes and π :
Fns2 → Fns2 be an isomorphism. Define the map

σ : (Fn2 )s −→ (Fn2 )s

(x1, . . . , xs) 7−→ (σ1(x1), . . . , σs(xs)) .

For any round key k in Fns2 , let αk : Fns2 → Fsn2 be defined by αk(x) = x + k. The maps αk, σ
and π are called the key addition, the substitution layer and the diffusion layer respectively.

The round function Fk associated with the round key k in Fns2 is defined by Fk = πσαk. Let
r ≥ 1 be an integer. The r-round encryption function associated with the round keys (k1, . . . , kr+1)
in (Fns2 )r+1 is defined by

E(k1,...,kr+1) = αkr+1Fkr . . . Fk1 .

It is worth recalling that we consider an SPN which maps a partition to another one indepen-
dently of the round keys used. Thus, we consider round keys which are not necessarily derived
from a master key by a key schedule. Consequently, the key schedule will be deliberately omitted
throughout the article.

Now, we turn our attention to the key addition and to the diffusion layer. The next proposi-
tion explains the fundamental property of linear partitions according to the key addition. This
result was introduced by Harpes in [8]. Later, Caranti et al. gave a similar result expressed for
imprimitive groups in [5]. For convenience, we restate this result with our own notations.

Proposition 3.2. Let m be a positive integer. Let A and B be two partitions of Fm2 . For each
k in Fm2 , let αk denote the permutation of Fm2 defined by αk(x) = x+ k. Then, the permutation
αk maps A to B for any k in Fm2 if and only if A = B and A is a linear partition.

Then, we focus on the diffusion layer in the next proposition.

Proposition 3.3. Let m be a positive integer. Let L be an automorphism of Fm2 and V be a
subspace of Fm2 . Then, L(L(V )) = L(L(V )). In particular, L maps a linear partition to another
one.
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Using the previous two propositions, we can now state our first main result about the structure
of an SPN which maps a partition of the plaintext space to a partition of the ciphertext space
independently of the round keys.

Theorem 3.4. Let A and B be two partitions of Fns2 . Suppose for any (k + 1)-tuples of round
keys (k1, . . . , kr+1) in (Fns2 )r+1 that the encryption function E(k1,...,kr+1) maps A to B. Define
A1 = A and for all 2 ≤ i ≤ r + 1, Ai = (πσ)i−1(A). Then,
– Ar+1 = B;
– for any 1 ≤ i < r + 1 and for any ki in Fns2 , Fki(Ai) = Ai+1;
– for any 1 ≤ i ≤ r + 1, Ai is a linear partition.

The result of this theorem can be restated in the following way. Firstly, the partitions A
and B must be linear. However, the number of linear partitions is well below the number of any
partition. Hence, the apparent and initial combinatorial aspect of our study is reduced to an
algebraic one.

Secondly, we only suppose that the encryption function maps A to B after r rounds. Never-
theless, Theorem 3.4 ensures that any reduced version of this function also maps the partition A
to another linear partition. In particular, the round function necessarily maps one linear partition
to another one. As a consequence, our study of the full cipher is reduced to the study of the
round function. Moreover, we have the following result.

A

=

A1

α
k

1 A1 σ π A2 . . . Ar α
k
r Ar σ π Ar+1

α
k
r

+
1 B

=
Ar+1

Fk1 Fkr

E(k1,...,kr+1)

Fig. 1. Representation of Theorem 3.4

Corollary 3.5. Keep the notations of Theorem 3.4. For all 1 ≤ i ≤ r+ 1, let Vi denote the part
of Ai containing 0. According to Theorem 3.4, Ai = L(Vi). Let 1 ≤ i ≤ r be an integer. Then,

σ(L(Vi)) = L(Wi) .

where Wi denotes the subspace π−1(Vi+1). In particular, the substitution layer must at least map
one linear partition to another one.

Combined with Theorem 3.4, this corollary ensures that if a cipher maps a partition A to a
partition B, then the substitution layer has to map at least one linear partition to another one.
Our study is thus reduced to the substitution layer, which is the aim of the following section.

4 Structure of the Substitution Layer

In the remainder of this section, V and W denote two subspaces of (Fn2 )s. Recall that the
substitution layer is itself composed of several cryptographic primitives, the S-boxes. Suppose
that the substitution layer σ maps L(V ) to L(W ). At first sight, this hypothesis implies properties
over all the S-boxes and not over each S-box independently of the others. The goal of this section
is to highlight properties which only apply to one S-box.
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4.1 Truncating a Few S-Boxes

Let E be any non-empty subset of J1, sK. Let us define the following maps

TE : (Fn2 )s −→ (Fn2 )E σE : (Fn2 )E −→ (Fn2 )E

(xi)1≤i≤s 7−→ (xi)i∈E (xi)i∈E 7−→ (σi(xi))i∈E .

If E has cardinality m, then we identify (Fn2 )E with (Fn2 )m. The map TE enables to shorten a
vector of (Fn2 )s by keeping only the coordinates whose indices belongs to E. Note that TE is a
linear map. The application σE is a substitution layer limited to the S-boxes whose indices lies
in E. Observe that σJ1,sK is the substitution layer of the SPN. Moreover, the maps σ{i} and σi
are equal for all 1 ≤ i ≤ s.

Proposition 4.1 (Truncating a few S-boxes). Suppose that σ maps L(V ) to L(W ). Let E
be a non-empty subset of J1, sK. Then, the permutation σE maps L(TE(V )) to L(TE(W )).

Choosing E = {i} in the previous proposition gives that the i-th S-box σi maps a linear
partition to another one. Therefore, the hypothesis on σ implies one property on each S-box.
Nonetheless, these properties can be trivial.

Let I be a partition of J1, sK. According to Proposition 4.1, for any part I of I, the limited
substitution layer σI maps a linear partition to another one. However, the converse being false
in general, this proposition alone cannot characterize the whole substitution layer. The next
subsection intends to obtain the equivalence.

Example 4.2. Consider the subspace V = {(x, x) | x ∈ F3
2} of (F3

2)2. Define the permutations
f and g of F3

2 by the following tables. Here, the elements of F3
2 are given in hexadecimal. For

instance, 3 stands for (0, 1, 1).

x 0 1 2 3 4 5 6 7
f(x) 0 4 2 6 1 5 3 7

x 0 1 2 3 4 5 6 7
g(x) 2 6 4 1 5 7 0 3

It is easy to verify that f is a linear map whereas g is not.
Firstly, let the 3-bit S-boxes σ1 and σ2 be both equal to f . Thus, the substitution layer σ is

also a linear map on (F3
2)2. According to Proposition 3.3, σ maps L(V ) to L(V ) as σ(V ) = V .

However, the previous proposition does not imply anything on the S-boxes σ1 and σ2. Indeed,
T{1}(V ) and T{2}(V ) are both equal to F3

2, and hence L(T{1}(V )) and L(T{2}(V )) are trivial
partitions.

Secondly, let σ1 and σ2 be both equal to g. By contradiction, suppose that σ maps L(V )
to L(W ) where W is any subspace of (F3

2)2. As σ(V ) = V , we obtain that V = W . Then,
σ(0, 1) = (2, 6). Using Lemma A.2 given in Appendix, it follows that σ((0, 1) + V ) = (2, 6) + V .
However, (1, 2) belongs to (0, 1) + V and σ(1, 2) = (6, 4) does not lie in (2, 6) + V . This is a
contradiction.

Let I denote {{1}, {2}}. As explain above, σI maps L(TI(V )) to L(TI(V )) for each part I
of I, but σ does not maps L(V ) to any linear partition. This illustrates that the converse of
Proposition 4.1 does not hold.

4.2 Structure of the Subspaces V and W

Let I be a subset of J1, sK. Let us define

TrivI =
s∏
i=1

Triv(i)
I with Triv(i)

I =
{
{0n} if i ∈ Ic

Fn2 if i ∈ I .
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In other words, TrivI = {x ∈ (Fn2 )s | ∀i ∈ Ic, xi = 0n}. We call TrivI the trivial product subspace
associated with I. It is indeed easily seen that TrivI is a subspace of (Fn2 )s. Note that any trivial
product subspace is the Cartesian product of trivial spaces for each S-box. They are essential in
our study because σ always maps L(TrivI) to L(TrivI), no matter the S-boxes σi are.

Moreover, we define VI = V ∩ TrivI = {v ∈ V | ∀i ∈ Ic, vi = 0n} and WI = W ∩ TrivI . Note
that both VI and WI are subspaces of (Fn2 )s since they are the intersection of two subspaces. It
is worthwhile to note that σ maps L(VI) to L(WI) according to Proposition 2.3.

Finally, let us define the linear map PI : (Fn2 )s → TrivI which maps the vector (x1, . . . , xs)
to (y1, . . . , ys) where yi = xi if i belongs to I and 0n otherwise. Observe that PI is a projection
from (Fn2 )s onto the subspace TrivI . Note also that VI is always a subspace of PI(V ). Moreover,
TI(V ) = TI(PI(V )).

The next lemma gives some relations between the above notations. It will be then especially
used in the proof of the main theorem of Subsection 4.4.

Lemma 4.3. Let I be a partition of J1, sK. Then V equals the internal direct sum
⊕

I∈I VI if
and only if VI = PI(V ) for any part I of I. In this case, the decomposition of an element v of V
is v =

∑
I∈I PI(v).

Lemma 4.4. Suppose that σ maps L(V ) to L(W ). Let I be a partition of J1, sK. Then V =⊕
I∈I VI if and only if W =

⊕
I∈IWI .

The previous lemma allows to focus only on partitions I of J1, sK such that V =
⊕

I∈I VI
instead of partitions satisfying both V =

⊕
I∈I VI and W =

⊕
I∈IWI .

Proposition 4.5 (Substitution layer structure). Let I be a partition of J1, sK such that
V =

⊕
I∈I VI . The permutation σ maps L(V ) to L(W ) if and only if σI maps L(TI(V )) to

L(TI(W )) for any I in I.

In the case where V =
⊕

I∈I VI , this proposition gives the converse of Proposition 4.1. Recall
that if I and J are two partitions of J1, sK, then the partition I is said finer than J if for any
I in I, there exists J in J such that I ⊆ J . Thus, the finer the partition I is, the less S-boxes
are involved in the limited substitution layers σI , the closer we are to the primitives of the SPN.
Fortunately, we have the following lemma.

Lemma 4.6. The set of the partitions I of J1, sK satisfying V =
⊕

I∈I VI has a least element
(or a minimum) denoted Imin.

Consequently, we consider this minimal partition Imin in the remainder of this section.

4.3 Linked and Independent S-Boxes

Proposition 4.5 and Lemma 4.6 then suggest the following definition.

Definition 4.7 (Linked and independent S-boxes). Suppose that σ maps L(V ) to L(W ).
Let I be a part of Imin.

– If I = {i} with i in J1, sK, the S-box σi is said to be independent. Moreover, if V{i} = {0nb}
or V{i} = Triv{i}, the S-box σi is inactive. Otherwise, σi is active.

– If #I ≥ 2, then the S-boxes whose indices lie in I are said to be linked together.
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Actually, if an S-box σi is independent with regards to the subspaces V and W , then it can
be replaced with any other S-box which maps L(T{i}(V )) to L(T{i}(W )) and the substitution
layer σ still maps L(V ) to L(W ). Furthermore, if σi is inactive, then it can be replaced with any
other n-bit S-box. On the contrary, if only one of the linked S-boxes is replaced, then the desired
property of the substitution layer may not hold.

Example 4.8. Let us go on with Example 4.2. It is easy to check that Imin = {{1, 2}}, and
thus, the two S-boxes are linked together. If σ1 denotes the map f and σ2 the map g, it can be
verified that σ does not map L(V ) to L(V ) anymore. Thus, linked S-boxes cannot be replaced
independently.

Lemma 4.9. Let I be a part of Imin and E be a non-empty proper subset of I.

– If VE is a trivial product subspace, then VE = Triv∅ = {0ns}.
– If PE(V ) is a trivial product subspace, then PE(V ) = TrivE.

The next lemma states an important result about a particular case of linked S-boxes.

Lemma 4.10. Let E be a non-empty proper subset of I. Suppose that VE = VI\E = {0ns} and
PE(V ) = TE. Then, for all i in E, σi is an affine map.

Example 4.11. Let us continue Example 4.8. One can check that Lemma 4.10 applies for both
E = {1} and E = {2}. As a consequence, σ1 and σ2 must be affine maps.

4.4 Reduction to an S-Box

It is now time to present our main result concerning the substitution layer. The proof is excep-
tionally put in the body of the paper since it helps to understand the structure of the subspaces
V , W and their relations with the S-boxes.

Theorem 4.12. Let n > 2 and s be two positive integers. Let σ1, . . . , σs be n-bit S-boxes. Define
the permutation σ of (Fn2 )s which maps the element (xi)1≤i≤s to (σi(xi))1≤i≤s. Let V and W be
two subspaces of (Fn2 )s such that σ maps L(V ) to L(W ). Suppose that V is not a trivial product
subspace. Then, at least one of the S-boxes maps a non-trivial linear partition to another one.

Proof. Let us prove this result by complete induction on the number s of S-boxes. Suppose that
s = 1. In this case, σ = σ1. By hypothesis, V is different from {0n} and Fn2 . Hence, L(V ) is a
non-trivial partition and σ1 maps L(V ) to L(W ).

Let s ≥ 2 be an integer. Suppose that the result holds for any positive integer strictly lower
than s. Firstly, suppose that all the S-boxes are independent. In other words, Imin = {{i} | i ∈
J1, sK}. If each S-box is inactive, then V is a trivial product subspace, a contradiction with our
hypothesis. Thus, there exists at least one active S-box σi. In this case, {0ns} ( V{i} ( Triv{i}.
According to Lemma 4.3, the equality P{i}(V ) = V{i} holds. Then, T{i}(V{i}) = T{i}(P{i}(V )) =
T{i}(V ) is a non-trivial subspace of Fn2 , so L(T{i}(V )) is also non-trivial. Finally, Proposition 4.1
states that σi maps L(T{i}(V )) to L(T{i}(W )), and thus the result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an element I of Imin
such that #I ≥ 2. Next, at least one of the following three cases holds.

– Suppose that there exists a non-empty proper subset E of I such that PE(V ) is not a trivial
product subspace. Let m denote the cardinality of E. Recall that TE(PE(V )) = TE(V ). It
follows that TE(V ) is not a trivial product subspace of (Fn2 )m. According to Proposition 4.1,
σE maps L(TE(V )) to L(TE(W )). Note that E is a non-empty proper subset of I, so of J1, sK.
Hence m < s, so the induction hypothesis ensures that at least one of the S-boxes of σE maps
a non-trivial partition to another one.
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– Suppose that there exists a subset E of I such that VE is not a trivial product subspace.
Recall that σ maps L(VE) to L(WE). Proposition 4.1 ensures that σE maps L(TE(VE)) to
L(TE(WE)). It is easily seen that TE(VE) is not a trivial product subspace. As before, the
result is a consequence of the induction hypothesis.

– Suppose that PE(V ) and VE are trivial product subspaces for any non-empty proper subset
E of I. Let E be a non-empty proper subset of I. Hence, PE(V ), VE and VI\E are trivial
product subspaces. Then, Lemma 4.9 implies that PE(V ) = TrivE , VE = VI\E = {0ns}.
According to Lemma 4.10, the S-boxes σ1, . . . , σm are affine maps. Combining Proposition
3.3 and 3.2, we obtain that these S-boxes maps any non-trivial linear partition to another
linear one.

In any case, the result holds for this integer s. Finally, the theorem follows by induction. ut

Combining Theorem 3.4 and Corollary 3.5 with Theorem 4.12, we have proven that in a
cipher which maps a partition to another one, at least one of the S-boxes must map a linear
partition to another linear one.

The following section aims to design such an S-box with the best security against the main
known cryptanalysis of block ciphers.

5 Relation with Linear and Differential Cryptanalysis

Differential [2] and linear [12] cryptanalysis are considered as the most important attacks against
block ciphers [9]. The resistance of an S-box against these cryptanalysis is assessed with its
difference distribution table and its linear approximation table respectively.

Let f be a permutation of Fn2 . The difference distribution table and the linear distribution
table of f are the two families DTf and LTf indexed by (Fn2 )2 and defined for any (a, b) in (Fn2 )2

by

(DTf )a,b = #{x ∈ Fn2 | f(x) + f(x+ a) = b}
(LTf )a,b = #{x ∈ Fn2 | 〈a, x〉 = 〈b, f(x)〉} − 2m−1 .

Moreover, the permutation f is said differentially δ-uniform if (DTf )a,b ≤ δ for any (a, b) in
(Fn2 )2 with a 6= 0. Similarly, f is linearly λ-uniform if |(LTf )a,b| ≤ λ for every (a, b) in (Fn2 )2

with a 6= 0. It is worthwhile to mention that the smaller the differential uniformity is, the more
resistant f is against differential cryptanalysis. The same applies for linear cryptanalysis.

Recall that two permutations f and g of Fn2 are said to be equivalent is there exist two linear
maps L1, L2 of Fn2 and two elements v1, v2 of Fn2 such that

∀x ∈ Fn2 , g(x) = L2(f(L1(x) + v1)) + v2 .

It is well known that equivalent permutations have the same differential uniformity and the same
linear uniformity, see for instance [6] and [13]. More precisely, their differential tables are equal
up to row and column permutations. This result holds for linear tables up to the sign of the
coefficients.

Suppose that f is a permutation of Fn2 which maps L(V ) to L(W ). Proposition 2.4 ensures
that there exists an automorphism L of Fn2 such that L(V ) = W . According to Proposition 3.3,
L−1 maps L(W ) to L(V ). Then, L−1f is equivalent to f and maps L(V ) to L(V ). Consequently,
without loss of generality, we can suppose that V = W in our study of the linear and differential
properties of f .
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In this section, we consider the following elements. Let V be a subspace of Fn2 and f be a
permutation of Fn2 which maps L(V ) to L(V ). Recall that L(V ) = Fn2 / V . Let d denote the
dimension of V . To avoid the trivial cases V = {0n} and V = Fn2 , we suppose that 1 ≤ d ≤ n−1.
Therefore, the subspace V admits a complement space U of dimension n−d. Thus, the space Fn2
can be written as the direct sum U ⊕ V . In other words, every element x in Fn2 can be uniquely
written as u+ v with u and v in U and V respectively. Hence, the linear partition L(V ) equals
{[u] | u ∈ U} where [u] = u+ V denotes the coset of u in the quotient space Fn2 / V .

The following theorem is the structure result of permutations preserving a linear partition.
It can be seen as a corollary of the Krasner-Kaloujnine embedding theorem [10]. However, for
convenience, a proof of our special case is given in Appendix.

Theorem 5.1. There exist a unique permutation ρ of U and a unique family of permutations
(τu)u∈U of V such that, for all x = u+ v in Fn2 ,

f(u+ v) = ρ(u) + τu(v) .

Conversely, if ρ is a permutation of U and if (τu)u∈U is a family of permutations of V , then the
map g defined by g(u+ v) = ρ(u) + τu(v) maps L(V ) to L(V ).

This theorem allows one to design an S-box which maps L(V ) to L(V ) using permutations
with smaller domains. Furthermore, these permutations can be chosen arbitrarily.

Example 5.2. Let us consider the permutation f of F5
2 defined by the following table.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 1F 0D 08 1B 06 15 10 18 14 11 07 04 03 1D 0B 13
1. 1A 19 0E 16 0C 09 1E 00 0F 01 02 17 0A 05 1C 12

For instance, f maps 1A to 02, both denoted in hexadecimal. Denote V = {00, 07, 1A, 1D} and
U = {00, 01, 02, 03, 08, 09, 0A, 0B}. It is easy to check that V is a subspace of F5

2 and that U is a
complement subspace of V in F5

2. Therefore, L(V ) = F5
2 / V = {[u] | u ∈ U}. The different cosets

of this quotient space are given in the following table.

[00] [01] [02] [03] [08] [09] [0A] [0B]
u+ 00 00 01 02 03 08 09 0A 0B
u+ 07 07 06 05 04 0F 0E 0D 0C
u+ 1A 1A 1B 18 19 12 13 10 11
u+ 1D 1D 1C 1F 1E 15 14 17 16

We can easily check that the permutation f maps L(V ) to L(V ). Consequently, f induces a
permutation of F5

2 /V and thus a permutation ρ of U . As an example, f(00) = 1F belongs to [02],
so f([00]) = [02]. Therefore, ρ(00) = 02. In the same way, we obtain the following permutation
of U . For each u in U , define the permutation τu of V by τu(v) = f(u+ v) + ρ(u). We have the
following permutations.

u 00 01 02 03 08 09 0A 0B
ρ(u) 02 0A 08 01 09 0B 00 03

τ00 τ01 τ02 τ03 τ08 τ09 τ0A τ0B

00 1D 07 00 1A 1D 1A 07 07
07 1A 1A 1D 07 1A 00 1D 00
1A 00 1D 07 00 07 1D 1A 1A
1D 07 00 1A 1D 00 07 00 1D

By construction, we finally have f(u+ v) = ρ(u) + τu(v) for any x = u+ v in F5
2.

11



In the rest of this section, let us fix the permutation ρ and the family (τu)u∈U given by
Theorem 5.1.

The goal of this part is to express the linear and differential properties of f according to the
ones of the permutations ρ and (τu)u∈U . However, these permutations are not defined on Fn2 but
on the subspaces U and V of Fn2 . Thus, the concept of linear or differential table is inexistent for
such maps. To solve this problem, we define two isomorphisms between U and Fn−d2 and between
V and Fd2. Then, we consider the maps induced by ρ and (τu)u∈U on these spaces.

Notation. Let B = (bi)1≤i≤n−d be a basis of U and C = (ci)1≤i≤d a basis of V . Let us denote

LU : Fn−d2 −→ U LV : Fd2 −→ V

(x1, . . . , xn−d) 7−→
∑n−d
i=1 xibi (y1, . . . , yd) 7−→

∑d
i=1 yici .

It is easily seen that LU and LV are both isomorphisms of vector spaces. Define the permutation
ρ′ = L−1

U ρLU of Fn−d2 . Finally, for each u in U , let τ ′u denote the permutation L−1
V τuLV of Fd2.

Example 5.3. Using the previous example, let us consider the basis B = (07, 1A) of V and the
basis C = (01, 02, 08) of U . Thus, the isomorphisms LU : F3

2 → U and LV : F2
2 → V are given by:

x 0 1 2 3 4 5 6 7
LU (x) 00 01 02 03 08 09 0A 0B

x 0 1 2 3
LV (x) 00 07 1A 1D

The permutation ρ′ of F3
2 and the permutations τ ′u of F2

2 are given by

u 0 1 2 3 4 5 6 7
ρ′(u) 2 6 4 1 5 7 0 3

τ ′00 τ
′
01 τ

′
02 τ

′
03 τ

′
08 τ

′
09 τ

′
0A τ

′
0B

0 3 1 0 2 3 2 1 1
1 2 2 3 1 2 0 3 0
2 0 3 1 0 1 3 2 2
3 1 0 2 3 0 1 0 3

5.1 Linear Approximation Table

The next theorem relates the linear table of f to the one of ρ′. The coefficients of the linear
approximation table of f taken into account by this result are in practice the greatest. Thus,
they determine the linear uniformity of f .

Theorem 5.4. Let a and b be two elements of V ⊥. Denote at = Lᵀ
U (a) and bt = Lᵀ

U (b). Then,

(LTf )a,b = 2d × (LTρ′)at,bt .

Remark 5.5. Let us consider the map Lᵀ
U : Fn2 → Fn−d2 . Then,

ker(Lᵀ
U ) = (ImLU )⊥ = U⊥ .

Observe that U⊥∩V ⊥ = (U+V )⊥ = (Fn2 )⊥ = {0}. Consequently, the restriction Lᵀ
U : V ⊥ → Fn−d2

is one-to-one and thus onto because of the rank-nullity theorem.

Example 5.6. Let us consider the restriction of Lᵀ
U : F5

2 → F3
2 to V ⊥.

a 00 05 0B 0E 13 16 18 1D
Lᵀ
U (a) 0 1 7 6 3 2 4 5
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The linear approximation tables LTf of f and LTρ′ of ρ′ are presented in Section E of the
appendices. The rows and columns of LTf have been rearranged in order to highlight Theorem
5.4. As an example, (LTf )1D,16 = 23 × (LTρ′)5,2 = −8 because Lᵀ

U (1D) = 5 and Lᵀ
U (16) = 2.

Corollary 5.7. For the linear cryptanalysis, the permutation f is at least

– 2d+1-uniform if d < n− 1,
– 2n−1-uniform if d = n− 1.

Note 5.8. We know that any 4-bit S-box is at least 4-uniform for the linear cryptanalysis, see
for example [11]. As a consequence, the permutation f is at least 2d+2-uniform if n− d = 4.

Example 5.9. In Section E, we can see that the permutation f is 8-uniform for the linear crypt-
analysis. Thus, we reach the lower bound given by Corollary 5.7 since the parameters of this
example are n = 5 and d = 2.

5.2 Differential Distribution Table

Unlike linear cryptanalysis, where only a local view of the table was provided, the results for
differential cryptanalysis brings both local and global outlooks.

Theorem 5.10. Let a = ua + va and b = ub + vb be elements of Fn2 . Denote u′a = L−1
U (ua) and

u′b = L−1
U (ub). Then ∑

i∈[ua]

(DTf )i,b =
∑
j∈[ub]

(DTf )a,j = 2d × (DTρ′)u′a,u′b .

Especially, (DTf )a,b ≤ 2d × (DTρ′)u′a,u′b .

The previous theorem can restated in the following way. If DTf is rearranged coset by coset,
a trivial operation allows to recover DTρ′ . On the other hand, the next theorem is similar to
Theorem 5.4 but for differential cryptanalysis. Again, it generally highlights the coefficients of
DTf involved in the differential uniformity of f .

Theorem 5.11. Let va and vb be two elements of V . Denote v′a = L−1
V (va) and v′b = L−1

V (vb).
Then

(DTf )va,vb =
∑
u∈U

(DTτ ′u)v′a,v′b .

Particularly, the subtable ((DTf )va,vb)va,vb∈V can be expressed according to the differential tables
DTτ ′u with u in U .

Example 5.12. To illustrate Theorems 5.10 and 5.11, we rearrange the rows and the columns
of the differential table of f presented in Section E of the appendices. With this order, we can
see the differential table of ρ′ by considering the differential table of f coset by coset. In fact,
Theorem 5.10 states that the sum of all elements in the same row or column of the subtable
(DTf )[u1],[u2] is equal to the coefficient (x1, x2) of DTρ′ multiplied by 22, where xi = L−1

V (ui).
For instance, if we consider the subtable

(DTf )[09],[03] =

03 04 19 1E
09 4 · 4 ·
0E · 4 · 4
13 4 · 4 ·
14 · 4 · 4
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we can see that the sum of each row or column equals 8 = 22 × (DTρ′)5,3 since LV (5) = 09 and
LV (3) = 03.

Finally, Theorem 5.11 ensures that the subtable (DTf )V,V = (DTf )[00],[00] is the sum of the
differential tables of the τu.

Corollary 5.13. The permutation f is at least λ-uniform for the differential cryptanalysis where
λ denotes the even integer directly greater than 2n

2d−1 .

Example 5.14. In Section E of the appendices, we can see that f is 12-uniform for the differential
cryptanalysis. Thus, we reach the lower bound given by Corollary 5.13.

5.3 The Design of a Trapdoor S-Box and Further Observations

We now explain how to design such a trapdoor S-box. To this end, let us express the conditions
given by the theorems of this section.

– Theorem 5.4 implies to reduce at most the linear uniformity of ρ′ to keep the one of f as
small as possible.

– In the same way, Theorem 5.10 implies to reduce at most the differential uniformity of ρ′.
– The same theorem also stresses that the greater the number of non-zero coefficient of DTρ′

is, the better.
– Finally, Theorem 5.11 teaches us that the sum of the differential distribution tables DTτ ′u

should be as low as possible.

Now, to design the S-box f , one needs to pick a permutation ρ′ of Fn−d2 that is 4-uniform if n−d
is even or 2-uniform otherwise, for both linear and differential cryptanalysis. Then, one searches
for permutations τ ′u of Fd2 satisfying the last condition. This search can be conduced randomly
over every d-bit S-boxes. Finally, construct the S-box f as in Theorem 5.1. If the differential and
linear uniformities of f are too far from the lower bounds given by Corollaries 5.7 and 5.13, then
start again. In practice, these bounds are reached (or almost reached) after a small number of
iterations. According to Theorem 5.4, the smaller the linear uniformity of ρ′ is, the smaller the
one of f is.

Moreover, we should emphasize that the closer the dimension d of V from n is, the weaker the
S-box f is against linear cryptanalysis and the stronger f is against differential cryptanalysis.
The lower bounds given by Corollaries 5.7 and 5.13 are represented on Figure 2 for any value of
n ≤ 8.

n\d 1 2 3 4 5 6 7
4 4 8 8 . . . .
5 8 8 16 16 . . .
6 4 16 16 32 32 . .
7 4 8 32 32 64 64 .
8 4 8 16 64 64 128 128

n\d 1 2 3 4 5 6 7
4 16 6 4 . . . .
5 32 12 6 4 . . .
6 64 22 10 6 4 . .
7 128 44 20 10 6 4 .
8 256 86 38 18 10 6 4

Fig. 2. Lower bounds for the linear (left) and differential (right) uniformities of f .

Finally, it should be highlighted that the linear and differential uniformities of the S-box
of Rijndael [7] are far below the lower bounds given by Corollaries 5.7 and 5.13, no matter the
dimension d of the subspace V is. As a consequence, this S-box does not map any linear partition
to another linear one.

14



6 An Illustrative Example of a Trapdoor Cipher

6.1 Description of the Algorithm

In this last part, we use the previous results to design a toy trapdoor cipher. This cipher is a
24-bit Substitution-Permutation Network with 8 rounds (see Definition 3.1). The substitution
layer σ consists of four parallel evaluations of the same 6-bit S-box S given in Section F of the
appendices. The diffusion layer π is an isomorphism of (F6

2)4 also defined in Section F.

The round function

S S S S

⊕

π

⊕

The key schedule

⊕ ⊕

ki

⊕

L L

ki+1

ci

Fig. 3. Representation of the toy trapdoor cipher

The key schedule and the round function are represented in Figure 3. This algorithm derives
8 round keys from a 24-bit master key. Note that the master key is exactly the first round key k1.
The only primitive of the key schedule is an isomorphism L of (F6

2)2 described in Section F. Every
round of the key schedule follows the same pattern. Suppose that ki = (x1, x2, x3, x4) in (F6

2)4 is
the i-th round key. First, a round constant ci is added to the current round key. This addition
is computed in (F6

2)4, with the exclusive-or operation. The round constant ci of the i-th round
is defined as the binary decomposition of the 4-tuple (i, 2i, 3i, 4i) of integers. For example, in
hexadecimal, we have c7 = (07, 0E, 15, 1C). Let y = (y1, y2, y3, y4) be the result of this operation.
Then y is seen as the element ((y1, y2), (y3, y4)) and the isomorphism L is evaluated in parallel. In
other words, y is mapped to z = (z1, z2, z3, z4) with (z1, z2) = L(y1, y2) and (z3, z4) = L(y3, y4).
Finally, the (i+ 1)-th round key is defined as (z1 + z3, z2, z3, z2 + z4).

Before analyzing our cipher resistance to differential and linear cryptanalysis, we ask the
reader to forget for a while that this cipher can obviously be broken very easily with a single
plaintext/ciphertext pair through an exhaustive search. The purpose is to compare the known
key recovery attacks (linear and differential cryptanalysis) when the attacker is unaware of the
trapdoor with attack which exploit the knowledge of the trapdoor. While this comparison is
a bit artificial here and holds only for illustrative purposes, it totally makes sense for real-life
cryptosystems.

6.2 Differential and Linear Cryptanalysis

In [7], Daemen and Rijmen introduced the differential and the linear branch number of a linear
transformation. With an exhaustive search, it can be checked that the differential and linear
branch numbers of π are both equal to 4. This implies that any 2-round trail has at least 4
active S-boxes. Thus, a 6-round trail involves at least 12 active S-boxes. Note that the S-box

15



S is differentially 14-uniform and linearly 16-uniform. Therefore, the probability of a 6-round
differential trail is upper bounded by ( 14

64 )12 ≈ 2−26.3 and the absolute bias of a 6-round linear
trail is upper bounded by ( 16

32 )12 = 2−12. Consequently, a differential cryptanalysis of the 6-round
version of our cipher would require at least 226 chosen plaintext/ciphertext pairs and a linear
cryptanalysis would require 224 known plaintext/ciphertext pairs. Here it does not make sense
according to the cipher block size. Since our cipher is a 24-bit SPN, these cryptanalysis are
ineffective on the 6-round version, so on the full cipher.

6.3 The Trapdoor
Let us define the following two 3-dimensional subspaces of F6

2

V = {00, 0C, 17, 1B, 25, 29, 32, 3E} and W = {00, 07, 11, 16, 2B, 2C, 3A, 3D} .

It can be verified that S maps L(V ) to L(W ), π maps L(W 4) to L(V 4) and L maps L(V 2) to
L(V 2). First, we consider the round function. The partition L(V 4) is left invariant under the
key addition. Next, the substitution layer σ maps L(V 4) to L(W 4) and the diffusion layer maps
L(W 4) to L(V 4). Thus, the whole round function maps L(V 4) to L(V 4). At this point, the cipher
is vulnerable to the basic attack of [14] which uses 212 chosen plaintext/ciphertext pairs and gives
partial information about the unknown plaintext of any ciphertext. Moreover, in contrast to the
trapdoor cipher presented in [14], ours has not the drawback of being incomplete, thanks to the
more complicated definition of the subspace V .

Now, let us present a key schedule dependent attack suggested in [14] but not achieved. Let
k1 and k′1 be two keys in (F6

2)4 and suppose that they lie in the same coset of V 4. Since L(V 4) is
equal to the quotient space (F6

2)4/V 4 and as the cosets [k1] and [k′1] are equal, the maps αk1 and
αk′1 (representing the two key additions) induce the same permutation of the cosets in L(V 4).

With a close look to our key schedule, we can see that it also maps L(V 4) to L(V 4). In other
words, if ki and k′i are in the same coset of V 4 in the quotient space (F6

2)4/V 4, then so are ki+1
and k′i+1. Consequently, if the two first round keys k1 and k′1 (i.e. the master keys) lies in the
same coset, then the two corresponding encryption functions induce the same permutations of
the cosets of the message space.

Let U denote the subspace {00, 01, 02, 03, 04, 05, 06, 07} of F6
2 which is a complement of V .

Then L(V ) = {[u] | u ∈ U}. We can now present the trapdoor. Suppose that (p, c) is a single
known plaintext/ciphertext pair.
– For each k1 in U4, test whether the encryption of p with the master key k1 lies in the same

coset of L(V 4) as c.
– For each candidate k1, test for each k′1 in [k1] whether the encryption of p with k′1 is equal

to c.
Observe that in practice, there is a very small number of candidates. Thus, the overall complexity
of this cryptanalysis is roughly 2× 212 encryptions compared to 224 for the brute force. Besides,
if there are too many candidates, we can use two known plaintext/ciphertext pairs instead of
one.

The main disadvantage of this cipher is that the linear approximation table and the difference
distribution table of the S-box S can seem very suspicious. To this end, we define the S-box S′
given in Section F. This other S-box is equal to S with probability 60

64 . Now, let E and E′

denote the encryption functions of our cipher using the S-boxes S and S′ respectively. Assuming
that all the round keys are independent and uniformly distributed (which is false, but works in
practice) and that the plaintext p is chosen uniformly, we obtain E(p) = E′(p) with probability
( 60

64 )32 ≈ 12% since the whole 8-round ciphers involve 32 S-boxes. Let us explain the trapdoor of
this second cipher which is a chosen plaintext attack.
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– Pick roughly 5× 100
12 ≈ 40 plaintexts in the same coset and get the associated ciphertexts.

– Find the coset containing the greatest number of ciphertexts and let (pi, ci) be the pairs such
that ci lies in this coset.

– For almost all these pairs, E(pi) = ci. The key can then be recovered using the previous
trapdoor.

7 Conclusion and Future Works

In this paper, we have addressed the following issue: “is it possible to design a mathematical back-
door which would rely mostly on suitable partitioning techniques of the plaintext and ciphertext
spaces, independently of the round (sub)keys”. We had in mind initially to exploit combinatorial
properties of the core primitives. The overall conclusion we get is that if we want to design such
a backdoor, the only solution is to stay in the algebraic domain. Let us summarize in detail the
main results.

If one wishes to design any encryption system which maps any (plaintext) partition A to any
other (ciphertext) partition B, independently of the round keys (here the knowledge of the pair
(A,B) is precisely the trapdoor) then

– the round function must map a linear partition to another linear one, and
– at least one S-box must do the same.

This means that the partitions considered for the trapdoor are in the algebraic domain and not
in the combinatorial one. We are condemned to consider highly structured algebraic objects.

From that, we have been able to design and propose a trapdoored encryption system which
is weak for the cryptanalysis suggested by Paterson [14] and which enables to recover the secret
κ-bit key with a single plaintext/ciphertext pair and with computing complexity in O(2κ2 ).

For the candidates S-boxes enabling to design such a trapdoor (partitioning trapdoor), we
have performed a detailed study with respect to their linear and differential properties. We have
given lower bounds with respect to their linear and differential uniformities and we have explained
how to achieve them totally (linear) or nearly totally (differential). Finally, we have designed an
almost optimal trapdoored system with respect to our approach and initial goal.

This study shows that the linear and differential tables we have obtained are highly structured.
Thus we have proved that this trapdoor class implies necessarily a high algebraic structure. In
terms of trapdoor detectability, we conjecture that it is easy to detect and identify our trapdoor
from the results presented in this paper.

As future works, we would primarily address the two following issues. Firstly, what would be
the results if we consider non-independent round keys? In other words, we would like to consider
a key schedule algorithm which therefore would be part of the trapdoor.

Secondly, we want to explore and formalize exhaustively a criterion which would enable either
to design better hidden trapdoors or in the contrary to evaluate the presence of a potential hidden
backdoor in the same way as linear and differential tables do (refer to Harpes work [8]). The
idea with respect to this criterion is the following: let denote S the set of S-boxes which map
any linear partition to any other linear partition. For any S-box f we define the distance with
respect to S as follows

min{#Supp(τ) | τ ∈ S(Fn2 ), f ◦ τ ∈ S} .

This represents the minimal number of points we have to modify in the S-box to obtain an
S-box which lies in S. In other words, the aim is to have a distance measure to a trapdoored
S-box. In the second version of our toy trapdoored system (Section 6) we have indeed deterio-
rated the S-box (modified a few points). This second version “behaves” similarly to the original
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version with a probability 0.12. As a consequence, recovering the secret key will require more
plaintext/ciphertext pairs.
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A Proofs for Section 2

Proposition A.1. Let f be a permutation of E and A, B be two partitions of E. If for any part
A of A, f(A) lies in B, then f maps A to B.

Proof. Suppose that for all A in A, f(A) lies in B. By hypothesis, f(A) is included in B. It
remains to show that B is a subset of f(A). Let B be a part of B and let y be an element of B.
Since f is onto, there exists x in E such that f(x) = y. Furthermore, there exists a unique part
A of A which contains x as A is a partition of E. Then, y belongs to f(A) and B. Observe that
f(A) and B are two non-disjoint parts of B. Consequently, f(A) = B and B belongs to f(A).
The result follows. ut

Lemma A.2. Let V , W be two subspaces of Fn2 and f be a permutation of Fn2 which maps L(V )
to L(W ). For any x in Fn2 , f maps x+ V to f(x) +W .

Proof. Let x be an element of Fn2 . By hypothesis, there exists y in Fn2 such that f(x+V ) = y+W .
Observe that x lies in x+V , so f(x) lies in both y+W and f(x)+W . Since y+W and f(x)+W
are two non-disjoint parts of L(W ), they must be equal. Thus, f(x+ V ) = f(x) +W . ut

Proof (of Proposition 2.3). Let x+ (V1 ∩ V2) be a part L(V1 ∩ V2). Observe that x+ (V1 ∩ V2) =
(x+ V1) ∩ (x+ V2). Now,

f(x+ (V1 ∩ V2)) = f((x+ V1) ∩ (x+ V2)) = f(x+ V1) ∩ f(x+ V2)

as f is one-to-one. Then, Lemma A.2 ensures that f(x + V1) = f(x) + W1 and f(x + V2) =
f(x) +W2. Next,

f(x+ (V1 ∩ V2)) = (f(x) +W1) ∩ (f(x) +W2) = f(x) + (W1 ∩W2) .

This proves that the image of any part of L(V1 ∩ V2) under f lies in L(W1 ∩W2). The result is
then a consequence of Proposition A.1. ut

Proof (of Proposition 2.4). By definition, f(V ) belongs to L(W ). Thus, there exists an element x
of Fn2 such that f(V ) = x+W . Consequently, V and W have the same finite cardinality. Hence,
V and W have the same dimension denoted by d. Let (vi)i≤d and (wi)i≤d be two basis of V and
W respectively. According to the incomplete basis theorem, there exist two families (vi)d<i≤n
and (wi)d<i≤n such that BV = (vi)i≤n and BW = (wi)i≤n are two basis of Fn2 . Denoting by L
the linear map which maps vi to wi for all 1 ≤ i ≤ n, we get an automorphism of Fn2 satisfying
the equality L(V ) = W . ut

B Proofs for Section 3

Proof (of Proposition 3.2). Suppose that αx(A) = B for any x in Fm2 . Especially, A = α0m(A) =
B as α0m is the identity map. Let V denote the part of A containing 0m. It is sufficient to show
that V is a subgroup of Fm2 because any subgroup of Fm2 is also an F2-linear subspace of Fm2 . Let
v1 and v2 be two elements of V . Since αv1(0n) = v1, the intersection αv1(V ) ∩ V is non-empty.
We know that αv1 maps A to A, so αv1(V ) lies in A. Thus, αv1(V ) = V since A is a partition. It
follows that αv1(v2) = v1 + v2 is an element of V . Therefore, the subset V of Fm2 is closed under
the operation of addition and because every element of Fn2 is its own inverse, V is a subgroup of
Fm2 . Furthermore, for any x in Fm2 , αx(V ) = x+ V must be a part of A. Thus, A is linear.
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Conversely, suppose that A is linear and that A = B. Let V denote the part containing 0m
and let x be an element of Fm2 . Then,

αx(A) = αx({y + V | y ∈ Fm2 }) = {(x+ y) + V | y ∈ Fm2 } = A .

The result is proven. ut

Proof (of Proposition 3.3). Since L is an automorphism, we have

L(L(V )) = L({x+ V | x ∈ Fm2 }) = {L(x+ V ) | x ∈ Fm2 }
= {L(x) + L(V ) | x ∈ Fm2 } = {x+ L(V ) | x ∈ Fm2 } .

Moreover, L(V ) is a subspace of Fm2 because L is a linear map. Consequently, L(L(V )) =
L(L(V )). ut

Proof (of Theorem 3.4). Observe that α0 = Id, and thus F0 = πσα0 = πσ. Now, choosing
(k1, . . . , kr+1) = (0, . . . , 0) gives

B = E(k1,...,kr+1)(A1) = αkr+1Fkr . . . Fk1(A1) = α0(F0)r(A1)
= (πσ)r(A1) = Ar+1 .

Let 1 ≤ i ≤ r be an integer. Let ki be any element of Fns2 . Define kj = 0ns for all j 6=
i. By hypothesis, the equality αkr+1Fkr . . . Fk1(A1) = Ar+1 holds. Thus, Fki . . . Fk1(A1) =
(αkr+1Fkr . . . Fki+1)−1(Ar−1). On one hand,

Fki . . . Fk1(A1) = Fki(Fki−1 . . . Fk1)(A1) = Fki(F0)i(A1)
= Fki(πσ)i(A1) = Fki(Ai) .

On the other hand,

(αkr+1Fkr . . . Fki+1)−1(Ar+1) = (α0(F0)r−i−1)−1(Ar+1)
= ((πσ)r−i−1)−1(Ar+1) = Ai+1 .

Therefore, Fki(Ai) = Ai+1, or equivalently αki(Ai) = (πσ)−1(Ai+1). Since this equality holds
for every ki, Proposition 3.2 states that Ai is a linear partition.

It remains to show that Ar+1 is linear. Let kr+1 be an element of Fns2 . Define ki = 0 for any
1 ≤ i ≤ r. Then,

Ar+1 = αkr+1Fkr . . . Fk1(A1) = αkr+1(F0)r(A1) = αkr+1(Ar+1) .

Again, Proposition 3.2 implies that Ar+1 is linear and the result is proven. ut

Proof (of Corollary 3.5). By virtue of Theorem 3.4, πσ(Ai) = Ai+1. This equality can be restated
as πσ(L(Vi)) = L(Vi+1), or equivalently σ(L(Vi)) = π−1(L(Vi+1)). As π is an automorphism of
Fns2 , then so π−1 is. By Proposition 3.3, we have π−1(L(Vi+1)) = L(π−1(Vi+1)). The result
follows. ut

C Proofs for Section 4

C.1 Proofs for Subsection 4.1
Proof (of Proposition 4.1). Let x = (xi)i∈E be an element of (Fn2 )E . Let y be the element of
(Fn2 )s defined by yi = xi if i belongs to E and yi = 0n otherwise. Thus, TE(y) = x. By hypothesis,
σ maps L(V ) to L(W ). Hence, Lemma A.2 implies that, σ(y + V ) = σ(y) +W . Next,

TE(σ(y + V )) = TE(σ(y)) + TE(W )
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since TE is a linear map. Furthermore,

TE(σ(y + V )) = TEσ({y + v | v ∈ V }) = {TEσ(y + v) | v ∈ V }
= {σE(TE(y + v)) | v ∈ V } = σE({TE(y + v) | v ∈ V })
= σE({TE(y) + TE(v) | v ∈ V }) = σE(TE(y) + TE(V )) .

Therefore, σE(x + TE(V )) = TE(σ(y)) + TE(W ). In other words, the image of any part of
L(TE(V )) under σ lies in L(TE(W )). The result is a consequence of Proposition A.1. ut

C.2 Proofs for Subsection 4.2

Proof (of Lemma 4.3). Suppose that V =
⊕

I∈I VI . Let v = (v1, . . . , vs) be an element of V . By
hypothesis, v can be uniquely written as

∑
I∈I vI where vI belongs to VI for every I in I. Let I

be a part of I. For every i in I, we have

(PI(v))i = vi =
∑
I′∈I

(vI′)i = (vI)i ,

since (vI′) = 0n for all part I ′ of I distinct from I. As PI(v)i = 0n = (vI)i for every i in Ic, we
obtain that PI(v) = vI . Thus, PI(v) is included in VI . The equality follows because the other
inclusion always holds.

Conversely, suppose that VI = PI(V ) for all I in I. Let v be an element of V . Clearly,
v =

∑
I∈I PI(v). By hypothesis, PI(v) belongs to VI for any I in I. The uniqueness of this

decomposition directly follows from the definition of the VI . Therefore, V =
⊕

I∈I VI . ut

Proof (of Lemma 4.4). Suppose that V =
⊕

I∈I VI . Firstly, let us prove that W =
∑
I∈IWI .

Since the WI are subspaces of W , the inclusion
∑
I∈IWI ⊆ W clearly holds. Now, let w be

an element of W . Define x = σ−1(0ns) = (σ−1
i (0n))1≤i≤n. According to Lemma A.2, we have

σ(x + V ) = σ(x) + W = W . Hence, there exists an element v of V satisfying the equality
σ(x+ v) = w. Then, Lemma 4.3 ensures that v =

∑
I∈I PI(v). For any 1 ≤ i ≤ s, we have

σ(x+ PI(v))i = σi(xi + PI(v)i) =
{

0n if i ∈ Ic ,
σi(xi + vi) if i ∈ I ,

because σi(xi) = 0n. Consequently, σ(x+ PI(v)) lies in TrivI and W , so in WI . Note that

w = σ(x+ v) =
∑
I∈I

σ(x+ PI(v))

since I is a partition of J1, sK. The inclusion W ⊆
∑
I∈IWI follows. Finally, the definition of the

WI implies that W =
⊕

I∈IWI .
Conversely, suppose thatW =

⊕
I∈IWI . Conducting the previous reasoning with σ−1 instead

of σ gives the equality V =
⊕

I∈I VI , as desired. ut

Proof (of Proposition 4.5). The implication is an immediate consequence of Proposition 4.1.
Conversely, suppose that σI maps L(TI(V )) to L(TI(W )) for any I in I. According to Lemma
4.3, for any part I of I, VI = PI(V ) and thus TI(V ) = TI(PI(V )) = TI(VI). Then Lemma 4.4
ensures that the same result holds of the subspace W .

Even if it means to change the order of the S-boxes and the coordinates of the spaces V and
W , we can assume that every part of I is an integer interval. Denote I = {I1, . . . , Im} such
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that x = [TI1(x) ‖ . . . ‖ TIm(x)] for every x in (Fn2 )s. Let x and v be elements of (Fn2 )s and V
respectively. By hypothesis, for all 1 ≤ i ≤ m, there exists an element wIi of TIi(WIi) such that

σIi(TIi(x) + TIi(v)) = σIi(TIi(x)) + wIi .

As W =
⊕m

i=1 WIi , the vector w = [wI1 ‖ . . . ‖ wIm ] belongs to W . Observe that TIi(w) = wIi
for any 1 ≤ i ≤ m. Hence,

σ(x+ v) = [σI1(TI1(x) + TI1(v)) ‖ . . . ‖ σIm(TIm(x) + TIm(v))]
= [σI1(TI1(x)) + wI1 ‖ . . . ‖ σIm(TI1(x)) + wIm ]
= [σI1(TI1(x)) ‖ . . . ‖ σIm(TI1(x))] + [wI1 ‖ . . . ‖ wIm ] = σ(x) + w .

Consequently, σ(x + V ) ⊆ σ(x) + W . Furthermore, Proposition 2.4 states that V and W are
isomorphic. Thus, #σ(x + V ) = #(σ(x) + W ) because σ is bijective. The equality σ(x + V ) =
σ(x) +W follows. Finally, the result comes from Proposition A.1. ut

Minimal Partition

Notation (partition intersection). Let I and J be two partitions of J1, sK. We denote by I ∩ J
the set {I ∩ J | I ∈ I and J ∈ J } \ {∅}. Note that I ∩J is a partition of J1, sK finer than I and
J .

Lemma C.1. Let I and J be two partitions of J1, sK such that V =
⊕

I∈I VI =
⊕

J∈J VJ .
Then, V =

⊕
K∈I∩J VK .

Proof. Let v be an element of V and K be a part of I ∩J . According to Lemma 4.3, we have to
prove that PK(v) belongs to VK . By definition, there exist two parts I and J of I and J such
that K = I ∩ J . Since V =

⊕
I′∈I VI′ , the same lemma ensures that PI(v) lies in VI , hence in

V . In the same way, using the equality V =
⊕

J′∈J VJ′ , we obtain that PJ(PI(v)) lies in VJ , so
in V . The result follows because PJ(PI(v)) = PI∩J(v) = PK(v). ut

Proof (of Lemma 4.6). Let P denote the set of the partitions I of J1, sK satisfying V =
⊕

I∈I VI .
By virtue of Lemma C.1, the set P is closed under the operation of intersection. Then, it is
sufficient to define Imin as the intersection of all the elements of P. ut

C.3 Proofs for Subsection 4.3

Generality on Linked S-Boxes

Lemma C.2. Let I be a part of Imin. Let E be a non-empty proper subset of I. Then VE (
PE(V ) and PE(V ) 6= {0ns}.

Proof. By construction, VE is a subset of PE(V ). Let us prove that VE 6= PE(V ). By contradic-
tion, suppose that VE = PE(V ). Let v be an element of V . By hypothesis, PE(v) belongs to VE .
Especially, PE(v) lies in V , so v+PE(v) also lies in V . Since v+PE(v) = PEc(v), we obtain that
PEc(v) belongs to VEc . Define J = {E,Ec}. From Lemma 4.3, we have that V =

⊕
J∈J VJ .

Then, V =
⊕

K∈Imin∩J VK follows from Lemma C.1. Observe that the partition Imin ∩ J is
strictly finer than Imin because E is a proper subset of I. This is a contradiction, and therefore
VE ( PE(V ).

By contradiction, suppose that PE(V ) = {0ns}. From the previous result, we have that
{0ns} ⊆ VE ⊆ PE(V ) = {0ns}, which is a contradiction. Thus, PE(V ) 6= {0ns}. ut
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Proof (of Lemma 4.9). By contradiction, suppose that VE is any trivial product space different
from {0ns}. Hence, there exists a non-empty subset F of E such that VE = TrivF . Therefore
TrivF ⊆ V and so TrivF = VF . Next, TrivF = VF ⊆ PF (V ) = TrivF , and thus VF = PF (V ). Since
F is a non-empty proper subset of P , we have a contradiction with Lemma C.2. Consequently,
VE = {0ns}.

By contradiction, suppose that PE(V ) is any trivial product space different from TrivE . There
exists a proper subset F of E such that PE(V ) = TrivF . Thus, for every v in V and every i in
E \ F , PE(v)i = 0n. As a consequence, PE\F (V ) = {0ns}. This is a contradiction with Lemma
C.2 because E \ F is a non-empty proper subset of I. The result follows. ut

Study of a Special Case of Linked S-Boxes Without loss of generality, Proposition 4.5
allows to suppose that Imin = {I} with I = J1, sK.

Lemma C.3. Let E be a subset of J1, sK. Then #V = #TE(V )×#VEc .

Proof. Denote #E by m. Consider the restriction of the linear map TE to V . Its kernel is

ker(TE) = {v ∈ V | TE(v) = 0nm} = {v ∈ V | ∀i ∈ E, vi = 0n} = VEc .

From the first isomorphism theorem, the quotient space V/VEc is isomorphic to the image TE(V ).
Particularly, the equality #V/#VEc = #TE(V ) holds. ut

Lemma C.4. Let E = J1,mK with 1 ≤ m < s. Suppose that VE = VEc = {0ns} and TE(V ) =
(Fn2 )m. There exist two isomorphisms ϕ : TE(V )→ TEc(V ) and ψ : TE(W )→ TEc(W ) such that

V = {[a ‖ ϕ(a)] | a ∈ (Fn2 )m} and W = {[b ‖ ψ(b)] | b ∈ (Fn2 )m} .

Proof. Lemma C.3 ensures that #V = #TE(V )×#VEc . By hypothesis, VEc = {0ns}, so #VEc =
1. It follows that #V = #TE(V ). Therefore, V and TE(V ) have the same dimension d. Let
B = (b1, . . . , bd) be a basis of TE(V ). By definition, there exist elements c1, . . . , cd of V such
that TE(ci) = bi for all 1 ≤ i ≤ d. That is, ci = [bi ‖ TEc(ci)]. Note that c1, . . . , cd are
linearly independent as the bi are and thus (ci)1≤i≤d is a basis of V . Define the linear map
ϕ : TE(V ) → TEc(V ) that associates TEc(ci) with bi. Let v be an element of V . Then v can be
written as v =

∑d
i=1 λic

i where the λi are elements of F2. Next,

v =
d∑
i=1

λic
i =

d∑
i=1

[λiTE(ci) ‖ λiTEc(ci)] =
[ d∑
i=1

λib
i ‖ ϕ(

d∑
i=1

λib
i)
]

= [a ‖ ϕ(a)]

where a denotes the element
∑d
i=1 λib

i of TE(V ). Consequently, every element of V can be
written in the desired form. As the converse inclusion is obvious, the equality V = {[a ‖ ϕ(a)] |
a ∈ (Fn2 )m} follows. Hence, the map ϕ is onto. Applying Lemma C.3 with the subset Ec gives
#V = #TEc(V )×#VE = #TEc(V ), and thus TEc(V ) is also a d-dimensional subspace. Therefore,
ϕ is a isomorphism.

Recall that σ maps L(VE) to L(WE). Then, Proposition 2.4 states that VE and WE are
isomorphic, and soWE = {0ns}. In the same way, we obtain thatWEc = {0ns}. Next, Proposition
4.1 implies that σE maps L(TE(V )) to L(TE(W )). Again, we get that TE(W ) = (Fn2 )m. The
preceding argument gives an isomorphism ψ : TE(W )→ TEc(W ) such that W = {[b ‖ ψ(b)] | b ∈
(Fn2 )m} which concludes this proof. ut
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Lemma C.5. Let m be a non-negative integer. Let f : (Fn2 )m → (Fn2 )m be a map such that there
exists a map τ : (Fn2 )m → (Fn2 )m satisfying

∀x ∈ (Fn2 )m, ∃y ∈ (Fn2 )m, ∀z ∈ (Fn2 )m, f(x+ z) = y + τ(z) .

Then f is an affine map.

Proof. By hypothesis, choosing x = 0 gives the existence of an element y0 of (Fn2 )m such that
f(z) = y0 + τ(z) for every z in (Fn2 )m. Thus,

∀z ∈ (Fn2 )m, τ(z) = f(z) + y0 . (1)

Let x be an element of (Fn2 )m. By hypothesis, there exists an element y of (Fn2 )m such that
f(x+z) = y+τ(z) for any z in (Fn2 )m. Especially, choosing z = x gives f(0) = f(x+x) = y+τ(x),
and thus y = τ(x) + f(0). Let z be an element of (Fn2 )m. Hence,

f(x+ z) = y + τ(z) = τ(x) + τ(z) + f(0) . (2)

Then, we can combine equations (1) and (2) to obtain

f(x+ z) =
(
f(x) + y0

)
+
(
f(z) + y0

)
+ f(0) = f(x) + f(z) + f(0) .

Since this equality holds for every x and z in (Fn2 )m, f is an affine map. ut

Proof (of Lemma 4.10). Firstly, we have TE(V ) = (Fn2 )m since PE(V ) = TE . Even if it means
to change the order of the S-boxes and the coordinates of the spaces V and W , we can assume
that E = J1,mK with 0 < m < s. According to Lemma C.4, there exist two isomorphisms
ϕ : TE(V )→ TEc(V ) and ψ : TE(W )→ TEc(W ) such that

V = {[a ‖ ϕ(a)] | a ∈ (Fn2 )m} and W = {[b ‖ ψ(b)] | b ∈ (Fn2 )m} .

Let τ denote the permutation ψ−1σEcϕ of (Fn2 )m because TE(V ) = TE(W ) = (Fn2 )m. Let x be
an element of (Fn2 )m. From Lemma A.2, we have

σ([x ‖ 0b(n−m)] + V ) = y +W .

with y = σ([x ‖ 0b(n−m)]). Then, let c denote the element TE(y) + ψ−1TEc(y) of (Fn2 )m. On one
hand,

σ([x ‖ 0b(n−m)] + V ) = σ({[x ‖ 0b(n−m)] + [a ‖ ϕ(a)] | a ∈ (Fn2 )m})
= σ({[x+ a ‖ ϕ(a)] | a ∈ (Fn2 )m})
= {[σE(x+ a) ‖ σEc(ϕ(a))] | a ∈ (Fn2 )m} .

On the other hand,

y +W = {y + [b ‖ ψ(b)] | b ∈ (Fn2 )m}
= {[TE(y) + b ‖ TEc(y) + ψ(b)] | b ∈ (Fn2 )m} .

Let a be an element of (Fn2 )m. Since [σE(x + a) ‖ σEc(ϕ(a))] belongs to y + W , there exists an
element b of (Fn2 )m such that

[σE(x+ a) ‖ σEc(ϕ(a))] = [TE(y) + b ‖ TEc(y) + ψ(b)] .
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This is equivalent to the equalities σE(x+ a) = TE(y) + b and σEc(ϕ(a)) = TEc(y) + ψ(b). This
last one can be restated as

b = ψ−1σEcϕ(a) + ψ−1TEc(y) = τ(a) + ψ−1TEc(y) .

When combined with the first equality it gives

σE(x+ a) = TE(y) + b = TE(y) + τ(a) + ψ−1TEc(y) = τ(a) + c .

We have proven that for any x in (Fn2 )m, there exists c in (Fn2 )m such that, for all a in (Fn2 )m,
σE(x+ a) = τ(a) + c. Then, Lemma C.5 states that σE is an affine map.

Let i be an element of E. The map Ii : Fn2 → (Fn2 )s, x 7→ (δi,1x, . . . , δi,nx) is clearly linear
(where δi,j = 1 if i = j and 0 otherwise). Observe that σi = T{i}σEIi. Therefore, σi is the
composition of several affine maps and thus it is an affine map. ut

D Proofs for Section 5

Proof (of Theorem 5.1). Let us demonstrate the implication. By hypothesis, f maps L(V ) to
L(V ). Thus, f induces a permutation ρ of U defined as follows. Let u be an element of U . Hence,
there exists a unique u′ in U such that f([u]) = [u′]. Define then ρ(u) = u′. For each element u
of U , define the permutation τu of V which maps v to f(u+ v) + ρ(u). By construction, for any
u in U and any v in V , the following equalities hold:

τu(v) = f(u+ v) + ρ(u) and hence f(u+ v) = ρ(u) + τu(v) .

The existence of the permutations ρ and τu is now proven. Now, let show their uniqueness.
Suppose that there exist a permutation ρ̃ of U and a family of permutations (τ̃u)u∈U of V
satisfying the result. Let (u, v) be an element of U × V . By hypothesis, we have

ρ(u) + τu(v) = ρ̃(u) + τ̃u(v) .

Because the sum of U and V is direct, it follows that ρ(u) = ρ̃(u) and τu(v) = τ̃u(v). The
uniqueness of ρ and the τu follows.

Conversely, let ρ be a permutation of U and (τu)u∈U be a family of permutations of V . Let
g denote the map from Fn2 to Fn2 defined by g(u + v) = ρ(u) + τu(v). Since ρ and the τu are
permutations of U and V respectively and since Fn2 = U ⊕ V , the map g is a permutation of Fn2 .
Let u be an element of U . Therefore,

g([u]) = {g(u+ v) | v ∈ V } = {ρ(u) + τu(v) | v ∈ V }
= {ρ(u) + v | v ∈ V } = [ρ(u)] .

Hence, g maps L(V ) to L(V ). ut

The following lemma explains how the linear properties of ρ′ and the τ ′u are expressed ac-
cording to the applications ρ and τu.

Lemma D.1. Let W be a m-dimensional subspace of Fn2 and L : Fm2 → W be an isomorphism.
Let µ be a permutation ofW . Denote by µ′ the permutation L−1µL of Fm2 . Let a and b be elements
of W . Finally, define a′ = L−1(a), b′ = L−1(b), at = Lᵀ(a) and bt = Lᵀ(b). Then,

(DTµ′)a′,b′ = #{w ∈W | µ(w) + µ(w + a) = b} ,
(LTµ′)at,bt = #{w ∈W | 〈a,w〉 = 〈b, µ(w)〉} − 2m−1 .
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Proof. Let us begin with the linear table of µ′. By definition,
(LTµ′)at,bt + 2m−1 = #{x ∈ Fm2 | 〈at, x〉 = 〈bt, µ′(x)〉}

= #{x ∈ Fm2 | 〈Lᵀ(a), x〉 = 〈Lᵀ(b), L−1µL(x)〉} .
Using the property of the transposed map, it follows

(LTµ′)at,bt + 2m−1 = #{x ∈ Fm2 | 〈a, L(x)〉 = 〈b, µ(L(x))〉} .
Let E denote the set of the right side of the previous equality. Then, #E = #L(E) because L is
a bijection. Consequently,

(LTµ′)at,bt + 2m−1 = #{w ∈W | 〈a,w〉 = 〈b, µ(w)〉} .
It remains to prove the result about the differential table of µ′. By definition,

(DTµ′)a′,b′ = #{x ∈ Fm2 | µ′(x) + µ′(x+ a′) = b′}
= #{x ∈ Fm2 | L−1µL(x) + L−1µL(x+ L−1(a)) = L−1(b)} .

Because L is one-to-one, L(x) = L(y) if and only if x = y. Furthermore, using the linearity of L,
it follows that

(DTµ′)a′,b′ = #{x ∈ Fm2 | L(L−1µL(x) + L−1µL(x+ L−1(a))) = LL−1(b)}
= #{x ∈ Fm2 | µ(L(x)) + µ(L(x) + a) = b} .

Again, considering the image of the last set under L, we obtain
(DTµ′)a′,b′ = #{w ∈W | µ(w) + µ(w + a) = b} .

This concludes the proof. ut

D.1 Proofs for Subsection 5.1
Proof (of Theorem 5.4). By definition,

LTa,b + 2n−1 = #{x ∈ Fn2 | 〈a, x〉 = 〈b, f(x)〉} .
Let x = u+v be an element of Fn2 . According to Theorem 5.1, the equality f(u+v) = ρ(u)+τu(v)
holds. The following equivalences come from the bilinearity of the map 〈·, ·〉,

〈a, x〉 = 〈b, f(x)〉 ⇔ 〈a, u+ v〉 = 〈b, f(u+ v)〉
⇔ 〈a, u〉+ 〈a, v〉 = 〈b, ρ(u)〉+ 〈b, τu(v)〉 .

Then, 〈a, v〉 = 〈b, τu(v)〉 = 0 because a and b belong to V ⊥. We then obtain that
LTa,b + 2n−1 = #{u+ v ∈ Fn2 | 〈a, u〉 = 〈b, ρ(u)〉}

= #V ×#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉}
= 2d ×#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉} .

Finally, Lemma D.1 implies that
LTa,b = 2d

(
#{u ∈ U | 〈a, u〉 = 〈b, ρ(u)〉} − 2n−d−1) = 2d × (LTρ′)at,bt .

The desired result is proven. ut
Proof (of Corollary 5.7). Suppose that d < n − 1. Observe that there exist necessarily two
elements at and bt of Fn−d2 both non-zero such that |(LTρ′)at,bt | ≥ 2. Let a and b denote the
elements (Lᵀ

U )−1(at) and b = (Lᵀ
U )−1(bt) of Fn2 . Then, Theorem 5.4 implies that (LTf )a,b ≥ 2d+1.

Observing moreover that a and b are non-zero, the corollary is proven. The same reasoning applies
for d = n− 1, but this time, |(LTρ′)at,bt | ≥ 1. ut
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D.2 Proofs for Subsection 5.2

Lemma D.2. Let a = ua + va and b = ub + vb be two elements of Fn2 . Define U = {u ∈ U |
ρ(u) + ρ(u+ ua) = ub}. Then,

(DTf )a,b =
∑
u∈U

#{v ∈ V | τu(v) + τu+ua(v + va) = vb} .

Proof. By definition, we have

(DTf )a,b#{x ∈ Fn2 | f(x) + f(x+ a) = b}
= #{u+ v ∈ Fn2 | ρ(u) + τu(v) + ρ(u+ ua) + τu+ua(v + va) = ub + vb} .

Observe that ρ(u) + ρ(u + ua) and τu(v) + τu+ua(v + va) lie respectively in U and V . Since
any element of Fn2 can be uniquely written as u + v, the previous equality holds if and only if
ρ(u) + ρ(u+ ua) = ub and P (u, v) : τu(v) + τu+ua(v + va) = vb are satisfied. Note that the first
equality is equivalent to u ∈ U . Thus,

(DTf )a,b = #{u+ v ∈ Fn2 | u ∈ U and P (u, v)} =
∑
u∈U

#{v ∈ V | P (u, v)} .

The result is proven. ut

Lemma D.3. Let λ, µ be two permutations of V and va, vb be two elements of Fn2 . Then,∑
v0∈V #{v ∈ V | µ(v) + λ(v + va) = v0}

=
∑
v0∈V #{v ∈ V | µ(v) + λ(v + v0) = vb} = #V .

Proof. For each v0 in V , define Ev0 = {v ∈ V | µ(v) + λ(v + va) = v0}. Firstly, let us prove
that

⋃
v0∈V Ev0 = V . The inclusion is immediate. It remains to prove that the converse inclusion

holds. Let v be an element of V . Then, v belongs to Eµ(v)+λ(v+va). The sets Ev0 are obviously
pairwise disjoint, and thus #V = #

⋃
v0∈V Ev0 =

∑
v0∈V #Ev0 .

For each v0 in V , define Fv0 = {v ∈ V | µ(v) + λ(v + va) = v0}. It remains to prove that⋃
v0∈V Fv0 = V . As previously, we only have to prove the converse inclusion. Let v in V . Since λ

is onto, there exists an element x of V such that λ(x) = µ(v)+vb. Then, v lies in Fx+v. Moreover,
the sets Fv0 are pairwise disjoint as λ is one-to-one. Finally, #V =

∑
v0∈V #Fv0 as desired. ut

Proof (of Theorem 5.10). Let U denote the set {u ∈ U | ρ(u) + ρ(u + ua) = ub}. According to
Lemma D.2, we have∑

i∈[ua]

(DTf )i,b =
∑
v0∈V

(DTf )ua+v0,b

=
∑
v0∈V

(∑
u∈U

#{v ∈ V | τu(v) + τu+ua(v + v0) = vb}
)
.

Since these sums are finite, they can be exchanged. Hence,∑
i∈[ua]

(DTf )i,b =
∑
u∈U

( ∑
v0∈V

#{v ∈ V | τu(v) + τu+ua(v + v0) = vb}
)
.

In the same way, it can be proven that∑
j∈[ub]

(DTf )a,j =
∑
u∈U

( ∑
v0∈V

#{v ∈ V | τu(v) + τu+ua(v + va) = v0}
)
.
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By virtue of Lemma D.3, we obtain∑
i∈[ua]

(DTf )i,b =
∑
j∈[ub]

(DTf )a,j =
∑
u∈U

#V = #U × 2d .

Finally, Lemma D.1 ensures that #U = (DTρ′)u′a,u′b . The result follows. ut

Proof (of Theorem 5.11). Applying Lemma D.2 with a = 0 + va and b = 0 + vb, we obtain

(DTf )va,vb =
∑
u∈U

#{v ∈ V | τu(v) + τu(v + va) = vb} ,

since U = {u ∈ U | ρ(u) + ρ(u+ 0) = 0} = U . Then, the result comes from Lemma D.1. ut

Proof (of Corollary 5.13). According to Theorem 5.11, the subtable ((DTf )va,vb)va,vb∈V of f is
the sum of the differential tables of several d-bit S-boxes. Consider the second row of this subtable.
Necessarily, its first coefficient is zero. Hence, there are at most 2d−1 non-zero coefficients. Recall
that the sum of all the coefficients of the differential table of a d-bit S-box equals 2d. Consequently,
the sum of the coefficient of the second row of the subtable equals #U × 2d = 2n. In the perfect
case where this sum is uniformly distributed over all the coefficients, they all equal to 2n

2d−1 . The
result follows since any coefficient is the sum of even integers, so must also be an even integer. ut
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E Differential Distribution and Linear Approximation Tables of
Examples 5.6 and 5.12

In every table given is this section, the dots “·” stand for the integer 0. This helps to emphasize
the structures of the tables. The next tables represent the linear approximation tables LTf of f
and LTρ′ of ρ′. As explained in Example 5.6, the rows and columns of LTf does not follow the
natural order in F6

2.

00 05 16 13 18 1D 0E 0B 01 02 03 04 06 07 08 09 0A 0C 0D 0F 10 11 12 14 15 17 19 1A 1B 1C 1E 1F

00 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
05 · 8 8 · · 8 -8 · · · · · · · · · · · · · · · · · · · · · · · · ·
16 · · -8 -8 -8 8 · · · · · · · · · · · · · · · · · · · · · · · · · ·
13 · -8 · -8 8 · -8 · · · · · · · · · · · · · · · · · · · · · · · · ·
18 · 8 · -8 · -8 · -8 · · · · · · · · · · · · · · · · · · · · · · · ·
1D · · -8 8 · · -8 -8 · · · · · · · · · · · · · · · · · · · · · · · ·
0E · 8 -8 · 8 · · 8 · · · · · · · · · · · · · · · · · · · · · · · ·
0B · · · · 8 8 8 -8 · · · · · · · · · · · · · · · · · · · · · · · ·
01 · · · · · · · · 6 -6 4 -2 · -2 -4 -2 2 2 · 2 4 -2 -6 2 · 2 -2 -6 -4 -2 · -2
02 · · · · · · · · -6 4 -6 -2 -2 -4 -2 · 2 · -6 6 2 · -2 · -2 2 -2 -4 -2 2 2 4
03 · · · · · · · · 4 -6 6 · -2 -2 2 2 · -2 -6 4 -2 2 4 -2 -2 · · 2 2 4 2 6
04 · · · · · · · · -2 -2 · -2 4 -6 · 2 2 -2 -4 -6 · 2 2 -2 4 2 -2 -2 · 6 -4 -6
06 · · · · · · · · · 2 2 4 2 -2 -2 2 4 6 -2 · -6 -6 · -2 2 4 4 2 -2 · 6 -2
07 · · · · · · · · -2 · 2 -6 -2 · -2 4 6 -4 2 2 -6 -4 2 4 -2 -2 2 · -2 -2 -6 ·
08 · · · · · · · · 4 2 -2 · 6 6 -6 2 · -2 2 4 -2 2 4 -2 -2 · · -6 2 4 2 -2
09 · · · · · · · · 2 · -2 -2 2 · 2 -4 2 4 -2 -2 -2 4 6 -4 -6 2 -2 · -6 -6 -2 ·
0A · · · · · · · · -2 -2 · -2 -4 -6 · 2 -6 -2 4 2 · 2 2 -2 -4 2 6 -2 · -2 4 -6
0C · · · · · · · · -2 -4 -2 2 -6 4 -6 · -2 · -2 2 -2 · 2 · 2 6 -6 4 2 -2 -2 -4
0D · · · · · · · · · 2 2 4 2 -2 -2 -6 4 -2 -2 · 2 2 · 6 -6 4 4 2 6 · -2 -2
0F · · · · · · · · -2 -6 -4 6 · -2 4 -2 2 2 · 2 -4 -2 2 2 · -6 -2 -6 4 -2 · -2
10 · · · · · · · · -4 2 6 · -2 6 2 2 · -2 -6 -4 -2 2 -4 -2 -2 · · -6 2 -4 2 -2
11 · · · · · · · · -2 · 2 2 6 · 6 4 -2 -4 2 2 2 -4 2 4 -2 6 -6 · -2 -2 2 ·
12 · · · · · · · · 2 -2 -4 -6 · 2 4 2 -2 6 · -2 -4 2 -2 6 · 6 2 -2 4 2 · 2
14 · · · · · · · · 2 4 2 -2 -2 -4 -2 · 2 · 2 -2 2 · 6 · 6 2 -2 -4 6 -6 2 4
15 · · · · · · · · · 2 2 -4 2 -2 -2 -6 -4 -2 -2 · -6 2 · 6 2 -4 -4 2 -2 · 6 -2
17 · · · · · · · · 2 2 · 2 -4 -2 · 6 6 2 4 -2 · 6 -2 2 -4 -2 -6 2 · 2 4 -2
19 · · · · · · · · 2 2 · 2 4 -2 · 6 -2 2 -4 6 · 6 -2 2 4 -2 2 2 · -6 -4 -2
1A · · · · · · · · -2 -4 -2 -6 2 4 2 · 6 · -2 2 6 · 2 · 2 -2 2 4 2 -2 6 -4
1B · · · · · · · · -4 -6 -2 · 6 -2 -6 2 · -2 2 -4 -2 2 -4 -2 -2 · · 2 2 -4 2 6
1C · · · · · · · · -6 -2 4 2 · 2 -4 2 -2 6 · -2 4 2 6 6 · -2 2 -2 -4 2 · 2
1E · · · · · · · · · 2 2 -4 2 -2 -2 2 -4 6 -2 · 2 -6 · -2 -6 -4 -4 2 6 · -2 -2
1F · · · · · · · · -6 · 6 -2 2 · 2 -4 2 4 6 6 -2 4 -2 -4 2 2 -2 · 2 2 -2 ·

0 1 2 3 4 5 6 7

0 4 . . . . . . .
1 . 2 2 . . 2 -2 .
2 . . -2 -2 -2 2 . .
3 . -2 . -2 2 . -2 .
4 . 2 . -2 . -2 . -2
5 . . -2 2 . . -2 -2
6 . 2 -2 . 2 . . 2
7 . . . . 2 2 2 -2

ρ′

V ᵀ

V ᵀ
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In the same way, the next tables represent the difference distribution tables DTf of f and
DTρ′ of ρ′ and the DTτ ′u of the τ ′u. As explained in Example 5.12, the rows and columns of DTf
does not follow the natural order in F6

2.

00 07 1A 1D 01 06 1B 1C 02 05 18 1F 03 04 19 1E 08 0F 12 15 09 0E 13 14 0A 0D 10 17 0B 0C 11 16

00 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
07 · 12 8 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1A · 8 12 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1D · 12 12 8 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
01 · · · · · · · · · 4 4 · 4 · · 4 2 2 2 2 · 4 4 · · · · · · · · ·
06 · · · · · · · · 4 · · 4 · 4 4 · 2 2 2 2 · 4 4 · · · · · · · · ·
1B · · · · · · · · 4 · · 4 4 · · 4 2 2 2 2 4 · · 4 · · · · · · · ·
1C · · · · · · · · · 4 4 · · 4 4 · 2 2 2 2 4 · · 4 · · · · · · · ·
02 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 · 4 · 4 · · · 8
05 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 4 · 4 · 8 · · ·
18 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 4 · 4 · · 8 · ·
1F · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 · 4 · 4 · · 8 ·
03 · · · · · · · · · 4 4 · 2 2 2 2 · · · · · · · · · · 4 4 · 4 · 4
04 · · · · · · · · · 4 4 · 2 2 2 2 · · · · · · · · · · 4 4 · 4 · 4
19 · · · · · · · · 4 · · 4 2 2 2 2 · · · · · · · · 4 4 · · 4 · 4 ·
1E · · · · · · · · 4 · · 4 2 2 2 2 · · · · · · · · 4 4 · · 4 · 4 ·
08 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · 4 4 · ·
0F · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · 4 4 · ·
12 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · · · 4 4
15 · · · · 2 2 2 2 2 2 2 2 · · · · 2 2 2 2 · · · · · · · · · · 4 4
09 · · · · · · 4 4 · · · · 4 · 4 · · · · · 2 2 2 2 · · · · · 4 · 4
0E · · · · 4 4 · · · · · · · 4 · 4 · · · · 2 2 2 2 · · · · 4 · 4 ·
13 · · · · 4 4 · · · · · · 4 · 4 · · · · · 2 2 2 2 · · · · 4 · 4 ·
14 · · · · · · 4 4 · · · · · 4 · 4 · · · · 2 2 2 2 · · · · · 4 · 4
0A · · · · 2 2 2 2 · 4 4 · · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
0D · · · · 2 2 2 2 4 · · 4 · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
10 · · · · 2 2 2 2 · 4 4 · · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
17 · · · · 2 2 2 2 4 · · 4 · · · · · · · · 2 2 2 2 2 2 2 2 · · · ·
0B · · · · · · 8 · · · · · · · 4 4 · 4 · 4 · · · · 4 4 · · · · · ·
0C · · · · · · · 8 · · · · 4 4 · · 4 · 4 · · · · · · · 4 4 · · · ·
11 · · · · · 8 · · · · · · · · 4 4 · 4 · 4 · · · · · · 4 4 · · · ·
16 · · · · 8 · · · · · · · 4 4 · · 4 · 4 · · · · · 4 4 · · · · · ·

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . . 2 2 2 2 . .
2 . . . . 2 2 2 2
3 . . 2 2 . . 2 2
4 . 2 2 . 2 . . 2
5 . 2 . 2 . 2 . 2
6 . 2 2 . . 2 2 .
7 . 2 . 2 2 . 2 .

ρ′

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . . 4
3 . . 4 .

0 1 2 3

0 4 . . .
1 . . . 4
2 . . 4 .
3 . 4 . .

0 1 2 3

0 4 . . .
1 . . . 4
2 . 4 . .
3 . . 4 .

0 1 2 3

0 4 . . .
1 . . . 4
2 . . 4 .
3 . 4 . .

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . 4 .
3 . . . 4

0 1 2 3

0 4 . . .
1 . . 4 .
2 . 4 . .
3 . . . 4

0 1 2 3

0 4 . . .
1 . . 4 .
2 . . . 4
3 . 4 . .

0 1 2 3

0 4 . . .
1 . 4 . .
2 . . . 4
3 . . 4 .

[00]

[00]

[01]

[01]

[02]

[02]

[03]

[03]

[08]

[08]

[09]

[09]

[0A]

[0A]

[0B]

[0B]

τ ′00 τ ′01 τ ′02 τ ′03

τ ′08 τ ′09 τ ′0A τ ′0B
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F Primitives of the Toy Trapdoor Cipher of Section 6

The permutation S of F6
2 is given by the following table.

S .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 38 21 24 3C 25 20 2C 28 0E 0C 11 12 3F 0C 0F 3B
1. 3E 16 1A 34 10 23 37 02 2A 35 0A 2E 2F 3A 27 18
2. 31 33 03 3C 30 05 2C 1E 1B 29 17 08 0B 09 04 07
3. 32 06 13 1C 2B 39 1F 36 00 15 22 1C 19 01 14 26

For instance, S(25) = 05. The permutation S′ of F6
2 is then defined in a similar way.

S′ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 38 21 24 3C 25 20 2C 28 0E 0C 11 12 3F 0C 1C 3B
1. 3E 16 1A 34 10 23 37 02 2A 35 0A 2E 2F 3A 27 18
2. 31 33 03 3C 30 05 2C 1E 1B 29 17 08 0B 09 04 07
3. 32 06 15 13 2B 39 1F 36 00 0F 22 1C 19 01 14 26

Observe that S(x) 6= S′(x) if x lies in {0E, 32, 33, 39} and that S(x) = S′(x) for any other
element x of F6

2.
The diffusion layer π is an isomorphism of (F6

2)4. Because of the linearity of this map, π is
only defined on a basis of (F6

2)4. The following table gives the images under π of the elements of
the standard basis of (F6

2)4.

x 7→ π(x) x 7→ π(x)
(00, 00, 00, 01) 7→ (3B, 3D, 30, 26) (00, 01, 00, 00) 7→ (08, 33, 18, 2D)
(00, 00, 00, 02) 7→ (2E, 05, 16, 01) (00, 02, 00, 00) 7→ (39, 14, 1F, 2F)
(00, 00, 00, 04) 7→ (19, 11, 3D, 3C) (00, 04, 00, 00) 7→ (0F, 02, 2E, 19)
(00, 00, 00, 08) 7→ (01, 01, 38, 04) (00, 08, 00, 00) 7→ (20, 04, 0D, 03)
(00, 00, 00, 10) 7→ (05, 0F, 02, 2A) (00, 10, 00, 00) 7→ (2D, 28, 03, 1F)
(00, 00, 00, 20) 7→ (31, 1C, 12, 0A) (00, 20, 00, 00) 7→ (23, 34, 06, 16)
(00, 00, 01, 00) 7→ (2D, 04, 0E, 1A) (01, 00, 00, 00) 7→ (0A, 10, 24, 09)
(00, 00, 02, 00) 7→ (09, 1D, 16, 12) (02, 00, 00, 00) 7→ (0B, 1D, 19, 04)
(00, 00, 04, 00) 7→ (1A, 30, 3D, 04) (04, 00, 00, 00) 7→ (28, 16, 2A, 16)
(00, 00, 08, 00) 7→ (3D, 14, 21, 26) (08, 00, 00, 00) 7→ (05, 3A, 04, 15)
(00, 00, 10, 00) 7→ (04, 1F, 15, 0D) (10, 00, 00, 00) 7→ (1D, 39, 16, 3B)
(00, 00, 20, 00) 7→ (3C, 01, 0B, 10) (20, 00, 00, 00) 7→ (21, 09, 10, 14)

For example,

π(00, 00, 00, 03) = π(00, 00, 00, 01) + π(00, 00, 00, 02)
= (3B, 3D, 30, 26) + (2E, 05, 16, 01) = (15, 38, 26, 27) .

In the same way, we define the isomorphism L of (F6
2)2.

x 7→ L(x) x 7→ L(x) x 7→ L(x) x 7→ L(x)
(00, 01) 7→ (15, 08) (00, 08) 7→ (0B, 26) (01, 00) 7→ (19, 2B) (08, 00) 7→ (07, 08)
(00, 02) 7→ (0A, 09) (00, 10) 7→ (31, 15) (02, 00) 7→ (13, 31) (10, 00) 7→ (1A, 2C)
(00, 04) 7→ (1C, 31) (00, 20) 7→ (12, 07) (04, 00) 7→ (0B, 13) (20, 00) 7→ (20, 11)
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