
AEP-M: Practical Anonymous E-Payment for Mobile
Devices using ARM TrustZone and Divisible E-Cash

(Full Version)?

Bo Yang1, Kang Yang1, Zhenfeng Zhang1, Yu Qin1, and Dengguo Feng1,2

1 Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences, Beijing, China
2 State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing, China
{yangbo,yangkang,zfzhang,qin_yu,feng}@tca.iscas.ac.cn

Abstract. Electronic payment (e-payment) has been widely applied to electronic
commerce and has especially attracted a large number of mobile users. However, cur-
rent solutions often focus on protecting users’ money security without concerning
the issue of users’ privacy leakage. In this paper, we propose AEP-M, a practical
anonymous e-payment scheme specifically designed for mobile devices using Trust-
Zone. On account of the limited resources on mobile devices and time constraints of
electronic transactions, we construct our scheme based on efficient divisible e-cash
system. Precisely, AEP-M allows users to withdraw a large coin of value 2n at once,
and then spend it in several times by dividing it without revealing users’ identities
to others, including banks and merchants. Users’ payments cannot be linked either.
AEP-M utilizes bit-decomposition technique and pre-computation to further increase
the flexibility and efficiency of spending phase for mobile users. As a consequence,
the frequent online spending process just needs at most n exponentiations on elliptic
curve on mobile devices. Moreover, we elaborately adapt AEP-M to TrustZone archi-
tecture for the sake of protecting users’ money and critical data. The methods about
key derivation and sensitive data management relying on a root of trust from SRAM
Physical Unclonable Function (PUF) are presented. We implement a prototype sys-
tem and evaluate AEP-M using Barreto-Naehrig (BN) curve with 128-bit security
level. The security analysis and experimental results indicate that our scheme could
meet the practical requirement of mobile users in respects of security and efficiency.

Keywords: E-Payment, Privacy, Mobile Devices, TrustZone, Divisible E-Cash, PUF.

1 Introduction

Depending on the development and achievements of wireless network as well as modern
mobile devices, electronic commerce (e-commerce) is benefiting more and more people’s
daily lives. As e-commerce becomes a major component of business operations, e-payment,
which builds up e-commerce, has become one of the most critical issues for successful business
and financial services [16]. Defined as the transfer of an electronic value of payment from
a payer to a payee through the Internet, e-payment has been already realized in different
ways and applied to mobile devices by intermediaries such as PayPal, Google Wallet, Apple
Pay and Alipay [18]. Unfortunately, with the widespread use of mobile e-payment, users are
faced with the risk of privacy disclosure.

Although the intermediaries and online banks try the best to enhance the security of
their e-payment solutions, the privacy-preserving scheme is often neglected or weakened in
the implementation [25]. Generally, authenticating the user’s legitimate identity is regarded
as one prerequisite for withdrawing digital coins from the banks. The following spending

? An extended abstract of this paper appears in ISC 2016.

2 B. Yang et al.

procedure is also associated with the authenticated identity, so that all the user’s relevant
consuming behaviors are identified and linked. In reality, the most of current deployed e-
payment solutions unintentionally reveal user personal information, perhaps involving user
real identity, billing and shopping records etc., to banks, intermediaries or payees [27,39,29].
Such sensitive information implies one’s political view, location, religion or health condition.
And what is worse, the personal information could be further shared with some third parties,
for example, to send consumers behaviorally targeted advertisements [1]. Statistically, mobile
users account for a high proportion among all the e-payment users [26]. Thus, the issue of
information leakage is seriously threatening mobile e-payment users’ personal privacy.

In theory, constructing anonymous e-payment scheme is able to effectively solve the above
problem. Some anonymous protocols are the candidates here including direct anonymous
attestation (DAA) [4] and U-Prove [23]. Based on DAA, Yang et al. [41] put forward LAMS
for anonymous mobile shopping. However, these protocols hardly fulfill the anonymous e-
payment from the perspectives of both anonymity and flexibility for payment. Acting as
a targeted component for e-payment, electronic cash (e-cash), introduced by Chaum [10],
allows users to withdraw digital coins from a bank and to spend them to merchants in an
anonymous way, thus perfectly emulating conventional cash transactions. Derived from e-
cash, divisible e-cash systems are proposed to address the issue of splitting coins of large
values. Depending on it, users could withdraw a large coin of value 2n at once and spend
it in several times by dividing it. In practice, divisible e-cash makes the cash transactions
more efficient and flexible. In regard to mobile devices, the limited resources along with the
strong time constraints of electronic transactions indeed require the practical withdrawal
and spending procedures. Therefore, it is advisable to build anonymous e-payment scheme
upon efficient divisible e-cash for mobile devices.

It is commonly believed that good security and trust will ultimately increase the use of
e-payment. Nevertheless, the direct application of anonymous e-payment scheme on mobile
devices would bring potential security risks. Without the dedicated protection, the scheme’s
executing codes and sensitive data are easily either compromised or stolen by the malwares.
In some cases, the attacks on mobile e-payment could cause user’s great loss of property.
The technique of Trusted Execution Environment (TEE) on mobile devices is able to lend
us a helping hand. Isolated from a Rich Execution Environment (REE) where the Guest
OS runs, TEE aims to protect sensitive codes execution and assets. As a prevalent example
of providing TEE for embedded devices, ARM TrustZone [2] has been used to execute
security-critical services [38,37]. Actually, TrustZone enables a single physical processor to
execute codes in one of two possible isolated operating worlds: the normal world (NW)
for REE and the secure world (SW) for TEE. The two worlds have independent memory
address spaces and different privileges. As a hardware-based security extension of ARM
architecture, TrustZone is widely supported and applied by mobile devices. But there is a
fly in the ointment that TrustZone does not definitely provide the root of trust with inside
root key for sensitive data management. To the best of our knowledge, there is no anonymous
e-payment scheme specially designed for mobile devices using TrustZone.

1.1 Our Contribution

Based on ARM TrustZone and the divisible e-cash scheme with the best efficiency by Canard
et al. [8], we propose AEP-M, a practical anonymous e-payment scheme for mobile devices,
which enables a user to spend his digital coins securely and efficiently while preserving his
privacy. This is the first complete work to design an efficient anonymous e-payment scheme
integrated with TrustZone. We substantially modify the original e-cash scheme for adapting
it to the executing mode of TrustZone and guaranteeing its security on mobile devices.

For device-centered design, we make following steps towards practical and secure usage:

– the sensitive codes on the user side of AEP-M are isolated and executed in TEE provided
by TrustZone for the possibility that the guest OS is compromised;

AEP-M: Practical Anonymous E-Payment for Mobile Devices 3

– AEP-M utilizes some secret keys, which are derived from a root key seed reproduced via
an on-chip SRAM PUF [13], to protect users’ coins and data;

– in AEP-M, online banks could authenticate a user who holds a mobile device with
available TrustZone and a valid account-password pair.

AEP-M elaborately protects the security of the user’s passwords and coins even if the NW
of his mobile device is corrupted while the SW still keeps honest. The pre-computation stage
is carefully added into our scheme such that the computation amounts of the frequent online
spending phase for mobile users are decreased. Furthermore, while the original divisible e-
cash scheme [8] only allows one to spend a coin of value 2` for some 0 ≤ ` ≤ n at once, our
scheme supports that one spends a coin of value v for any 1 ≤ v ≤ 2n at once by using the
bit-decomposition technique, where the maximum denomination of a coin is 2n.

We implement a prototype system of AEP-M and evaluate its efficiency using BN curve
at the security level of 128-bit. The experimental results show that our scheme is efficient
enough for practical usage, even from the perspective of mobile devices.

1.2 Related Work

E-Payment Scheme. Based on pre-paid cards, credit cards, debit cards and electron-
ic checks, most current e-payment schemes attempt to ensure the user’s data and money
security without addressing the privacy protection [16,24]. Different from those schemes,
e-cash system does a better job to construct anonymous e-payment. After Chaum first in-
troduced e-cash [10], fair e-cash [24] was proposed to detect double-spending and identify
the defrauders, which however weakened the anonymity of the scheme. Camenisch et al. [5]
presented the compact e-cash system allowing users to withdraw wallets with 2n coins at
once. Unfortunately, its spending procedure should be done coin by coin. To deal with the
problem of splitting coins of large values, some divisible e-cash schemes [21,9] were given
without achieving high levels of anonymity. Afterwards, some truly anonymous divisible e-
cash systems [6,7,14] were described. Nevertheless, they were quite inefficiency to implement,
especially for resource-constrained devices. Recently, Canard et al. [8] proposed the first re-
ally efficient divisible e-cash system by defining one global binary tree that is common to
all the coins. Our scheme takes this system as a reference and further increases its efficiency
and security according to our architecture of trusted mobile device.

TrustZone Technology. As introduced before, e-payment needs to guarantee its codes
integrity and data security. ARM TrustZone technology for the mobile devices can offer
much help, which supports flexibly developing specified secure system. Relying on TrustZone,
many practical mobile schemes are proposed. In [32], the public transport ticketing system
on smartphone was designed exactly utilizing TrustZone. Also based on it, Yang et al. [41]
presented an anonymous mobile shopping scheme. AdAttester [17] was described specially
for secure mobile advertisement likewise on a TrustZone-enabled device. To date, TrustZone
has been popularized and applied by many mainstream mobile manufacturers, such as Apple,
Samsung and Huawei, to achieve secure applications [17,15]. However, no secure e-payment
solution has ever been designed for mobile devices and particularly adapted to TrustZone.

2 Preliminaries

2.1 Notation

Throughout the paper, we use the notation shown in Table 1.

2.2 Bilinear Groups

Bilinear groups consist of three (multiplicatively written) groups G1, G2 and GT of prime
order p equipped with a bilinear map e : G1 × G2 → GT . Let g and g̃ be generators of

4 B. Yang et al.

Table 1. Notation used in this paper

Notation Descriptions

λ security parameter

x
$← S x chosen uniformly at random from a set S

y := x y assigned as x

x||y concatenation of x and y

(y1, ..., yj)← A(x1, ..., xi) a (randomized) algorithm with input (x1, ..., xi) and output (y1, ..., yj)

1G the identity element of a group G
G∗ G \ {1G} for a group G

Σ1 = (KeyGen,Sign,Verify) digital signature algorithm

Σ2 = (MAC) message authentication code

Σ3 = (Encasym,Decasym) asymmetric (public key) encryption and decryption algorithm

Σ4 = (Encsym,Decsym) symmetric encryption and decryption algorithm

G1 and G2 respectively. We define Λ = (p,G1,G2,GT , e, g, g̃) to be a description of bilinear
groups parameters. The map e must satisfy the following properties:

1. Bilinear. for any u ∈ G1, v ∈ G2 and any a, b ∈ Zp, e(ua, vb) = e(u, v)
ab

.
2. Non-degenerate. e(g, g̃) 6= 1GT

.
3. Computable. the map e is efficiently computable.

In this paper, we only consider the Type-3 pairings [35], thus G1 6= G2 and there is no
known efficiently computable isomorphism between G1 and G2.

2.3 Cryptographic Assumptions

The security of AEP-M is based on the Decisional Diffie-Hellman assumption in G1 (DDHG1
),

Weak-EXDH assumption [8] and blind 4-LRSW (B-4-LRSW) assumption [3]. These three
assumptions are stated as follows:

Assumption 1 (DDHG1
). Given (g, ga, gb) for a, b

$← Zp, it is hard to distinguish gab from
a random element of G1.

Assumption 2 (Weak-EXDH). Given the bilinear group parameters Λ, (ga, gb, gbc) and

(g̃b, g̃c) for a, b, c
$← Zp, it is hard to distinguish gabc from a random element of G1.

Assumption 3 (B-4-LRSW). Given the bilinear group parameters Λ, (g̃x, g̃y) for x, y
$←

Zp and an oracle that on input of gm ∈ G1 outputs (A,Ay, Ax+mxy, Amy) for A
$← G∗1,

it is hard to output (m∗, A∗, B∗, C∗, D∗) such that m∗ ∈ Z∗p, A∗ ∈ G∗1, B∗ := (A∗)y,

C∗ := (A∗)x+m∗xy and D∗ := (A∗)m
∗y where gm

∗
was never queried to the oracle.

2.4 ARM TrustZone

ARM TrustZone [2] is a hardware-based security extension technology incorporated into
ARM processors. The whole system is separated into two worlds and each world has banked
registers and memory to run the domain-dedicated OS and software. The isolation mecha-
nisms of TrustZone are well defined. As a result, access permissions are strictly under the
control of the secure world that the normal world components cannot access the secure world
resources. As the processor only runs in one world at a time, to run in the other world re-
quires context switch. A secure monitor mode exists in the secure world to control the switch
and migration between the two worlds. The time overhead of the switch is small enough to
be ignored. Also, TrustZone leverages almost full power of the processor to run operations
in one world at one time, which provides good performance for computing processes.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 5

2.5 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) [30] are functions where the relationship between
input (or challenge) and output (or response) is decided by a physical system. Randomness
and unclonability are two significant properties of PUFs. The unclonability originates from
random variations in a device’s manufacturing process. With the help of a fuzzy extractor
that eliminates the noise from the response, PUFs are able to implicitly “store” a piece
of secret data. PUFs provide much higher physical security by extracting the secret data
from complex physical systems rather than directly reading them from non-volatile memory.
Additionally, PUFs are cost-effective, since they take the advantage of the results from a
preexisting manufacturing process.

Strictly speaking, TrustZone just provides an isolated environment. Only equipped with
a root of trust, it becomes a real “trusted” execution environment (TEE) [43]. Because
TrustZone almost does not internally install an available root key, it loses the capability to
offer a root of trust. To cover this shortage, a PUF can be employed to properly act as the
root of trust. In this paper, AEP-M takes the secret data extracted from the PUF as a root
key seed to generate other keys. We adopt SRAM PUF [13] that leverages the relationship
between an SRAM cell’s address for the challenge and its power up value for the response.

3 System Model and Assumptions

3.1 System Model

The system model of AEP-M is composed of five kinds of entities: mobile device D, merchant
M, trusted authority T , central bank B and traditional commercial bank. In practice, there
could be a number of mobile devices and merchants participating in our system. For the
sake of brevity and clarity, we use D andM to represent an individual instantiation respec-
tively. D is directly accessed by a user and equipped with ARM processor having TrustZone
extension technology. B is responsible for issuing digital coins to legitimate (or trusted) D
through Withdraw phase. B could be a bank card organization supporting e-payment or an
intermediary serving electronic transactions. In the background, several commercial banks,
where users actually deposit money, are in cooperation with B for dealing with money trans-
fers in the real world. Service or product providers play the role of M in this interactive
model. They collect digital coins from D via Spend phase and redeem them from B via
Deposit phase. Note that M verifies the digital coins of some user without revealing user’s
identity to any entities includingM itself. In various scenarios, D is able to payM the coins
via either Internet or other wireless technologies (e.g., NFC). Managed by the government
or the industry administration, in Identify phase T performs revealing identity of the users
who attempt to double-spend digital coins. From B, T receives the reports and proofs about
the double-spending. Figure 1 illustrates the system model for our proposed scheme.

3.2 Assumptions and Threat Model

To simplify our design in the system model, we assume that data communications between
B and traditional bank, and between B and T build on secure transport protocols, such
as TLS, which can provide confidentiality, authenticity and integrity protection for data
transmission. Also,M, D and B are able to acquire public parameters from T in the correct
way. Public Key Infrastructure (PKI) is supposed to be already realized for authenticating
B and M. As a consequence, (1) D and M can accurately obtain the public key of B by
verifying its certificate; (2) D and B can accurately obtain the public key of M similarly.

Actually, the establishment of the whole system requires some premised trust relation-
ships. First, B is trusted not to issue counterfeit digital coins. Second, the manufacturers are
considered to be so credible that they only embed device certificates into eligible Ds which

6 B. Yang et al.

Mobile Device 

Central Bank

TrustZone

Merchant 

Bank A Bank B Bank C

Trusted Authority

Fig. 1. System Model of AEP-M.

own available TrustZone. Another accepted fact is that T would never conspire maliciously
with any other entities. Constrained by the market supervision and the force of law, the
above-mentioned trust relationships are easily established and maintained.

Based on the assumptions, AEP-M protects against the following adversary:

– The adversary can attack the scheme itself by attempting to pretend entities, manipulate
data transmission between entities and forge data.

– The adversary can perform software-based attacks which compromise the mobile Rich
OS or existing applications running in REE. AEP-M interfaces in REE are also available
for the adversary.

– The adversary can physically access the mobile device. He can reboot the device and
gain access to data residing on persistent storage.

However, we ignore the malicious behaviors of tampering with the TrustZone hardware
or mounting side-channel attacks on PUF [22].

4 AEP-M Scheme for Mobile Devices

In this section, we provide the specific architecture of trusted mobile device, and then present
the key derivation and sensitive data management. Depending on these, the construction of
AEP-M scheme is detailed next. Finally, the security properties of AEP-M is analyzed.

4.1 The Architecture of Trusted Mobile Device

Leveraging TrustZone and PUF technology, we design the architecture of trusted mobile
device specifically for AEP-M based on our previous work [42]. The software-based imple-
mentation of AEP-M functionality on existing hardwares targets at economy, flexibility and
extensibility. Meanwhile, our architecture is designed to be compatible with the conven-
tional running model of secure applications using TrustZone. Figure 2 shows the detailed
architecture with the way components interact with each other.

AEP-M functionality in the architecture contains two components: untrusted AEP-M
Proxy in normal world (NW) and security-sensitive AEP-M Service in secure world (SW).
In reality, SW instantiates TEE, while NW implements REE. Depending on the whitelist
and integrity protection mechanism [28], only the trusted codes of programs in SW could
be loaded and executed. Thus, AEP-M Service resides in a relatively secure environment
isolated from other codes running in NW. The components are formally described as follows.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 7

Secure World (SW)

T
ru

st
Z

on
e

Is
ol

at
io

n
 B

ou
n

da
ry

U
se

r
M

od
e

K
er

n
el

 M
od

e

Hardwares with ARM TrustZone Extension

SW-Driver Monitor NW-Driver

AEP-M Service

Crypto Library

API Functions

Data Handler

Key Manager

SRAM PUF

AEP-M Proxy

Software Stack Crypto Library

Command Caller

Preprocessing Engine

Mobile OS KernelTEE OS Kernel

App1 App2 Appn

Normal World (NW)

. . .App1 Trustlet Appn Trustlet. . .

Secure Memory

Logic Engine Framebuffer

Fig. 2. Architecture of Trusted Mobile Device for AEP-M.

AEP-M Proxy. This is the component visible for mobile (e-payment) applications in NW.
Waiting for their AEP-M service requests, the proxy handles the parameters and preprocess-
es them. According to the request type, the proxy would call AEP-M Service for substantive
computations of the scheme and finally return the results. AEP-M Proxy consists of the
following four subcomponents:

– Software Stack: provides top AEP-M interfaces for mobile applications. It parses the
service requests and gives service response results.

– Crypto Library: offers cryptographic algorithm support for Preprocessing Engine. In
NW, this library only supports exponentiations on elliptic curves.

– Preprocessing Engine: executes pre-computation for AEP-M after digital coins are
successfully withdrawn from central bank to the mobile device.

– Command Caller: formats calling command and interacts with AEP-M Service. It
sends the command through the GP TEE Client API [33], requests to switch NW to
SW via NW-Driver and waits for the returned values.

AEP-M Service. This is the core component to perform AEP-M critical computations and
operations. The execution of the component codes is under the well protection of TrustZone
isolation mechanism. Six following subcomponents constitute AEP-M Service component:

– API Functions: receives a service request from AEP-M Proxy and parses the command.
The functions transmit instructions to Logic Engine and wait for results that would be
forwarded back to AEP-M Proxy.

– Key Manager: creates cryptographic keys using the unique root key seed extracted
from SRAM PUF and provides keys to Data Handler.

– Data Handler: receives message (e.g., the amount of digital coins to spend) and seals
or unseals sensitive data. To prevent adversary from forging message, Data Handler
only receives message produced by App Trustlet in SW. Besides, using keys from Key
Manager, Data Handler seals sensitive data to store them in the insecure non-volatile
storage space of mobile device.

– Framebuffer: stores the image of confirmation message (e.g., the identity of merchant
to be paid) to be securely displayed for the user. Different from the general frame buffer
in NW, Framebuffer is devoted to the reliable graphical user interface (GUI) for SW.

– Crypto Library: offers cryptographic algorithms support for Logic Engine and Data
Handler. In SW, it supports bilinear maps, computations on elliptic curves, and other
cryptographic operations.

– Logic Engine: executes the computations of security-sensitive parts of AEP-M scheme.
Engine reads parameters and data to run operations relying on scheme specification.

8 B. Yang et al.

Application and Application Trustlet. The corresponding application should be launched
if the user wants to enjoy e-payment service. For upper-level interaction, the application re-
leased by B consists of two parts: App for NW and App Trustlet for SW. App provides
the general GUI and basic functions, while App Trustlet is securely loaded by SW and
trusted for processing security-sensitive user inputs and data operations. When App has the
need to execute AEP-M procedures, it calls AEP-M Proxy using its Software Stack. App
could notify App Trustlet in SW to execute some sensitive operations through inter-domain
communication mechanism supported by TrustZone [15].

Components in Kernels. SW-Driver in TEE OS Kernel and NW-Driver in Mobile OS
Kernel handle the communication requests and responses with respect to switching the
worlds. As secure monitor, the Monitor controls hardwares to fulfill the switching action.

Components in Hardwares. The hardwares of mobile device support ARM TrustZone ex-
tension technology. Protected by TrustZone mechanism, SRAM PUF component and Secure
Memory component are only accessible for SW. Secure Memory contributes to temporally
saving sensitive data.

4.2 Key Derivation and Sensitive Data Management

Prior to describing the concrete construction of our AEP-M scheme, we show how to derive
various keys for different purposes using the root key seed extracted from SRAM PUF and
how to utilize the derived keys to protect sensitive data.

Root Key Seed Extraction. We use the technique of SRAM PUF in [43] to extract the
secret root key seed, which is a unique bit string picked randomly by the OEM who “stores”
it in D through the physical features of one SRAM inside D. From SRAM PUF component,
seed is only reproduced and securely cached by Key Manager when D starts up every time
in normal use. The confidentiality of seed is rigidly guaranteed by TrustZone.

Key Derivation. Key Manager has the deterministic key derivation function KDF: S̃ ×
{0, 1}∗ → K̃, where S̃ is the key seed space, and K̃ is the derived key space. Using the KDF,
the device key pair and the storage root key is derived as (dsk, dpk)← KDFseed("identity")
and srk← KDFseed("storage root") respectively. The unique device key pair is analogous
to the endorsement key defined in trusted computing [36] but supports encryption and
decryption. The storage root key srk is used for generating specific storage keys to preserve
sensitive data. The hierarchical structure of storage keys enhances the security for key usage.
Note that all the derived keys are never stored permanently. Instead, they are regained via
KDF with seed at the same way when needed.

Sensitive Data Management. We can utilize the storage keys derived from the storage
root key srk to seal the AEP-M’s public parameters params, D’s digital coin σ, the secret key
m, and other related variables CT and δ. What these variables represent will be explained
in Section 4.3. The sealed results of these data are stored in the insecure positions of D.

– Protect integrity for params: mkparams ← KDFsrk("storage key"||"MAC"||params), and
blobparams ← Data Seal("MAC",mkparams, params), where

blobparams := params||MAC(mkparams, params).

– Protect integrity for σ: mkσ ← KDFsrk("storage key"||"MAC"||σ), and
blobσ ← Data Seal("MAC",mkσ, σ), where

blobσ := σ||MAC(mkσ, σ).

– Protect both confidentiality and integrity for m, CT and δ with the aid of U :3

(skm,mkm)← KDFsrk("storage key"||"Enc+MAC"||U), and

3 In AEP-M scheme, U = gm for some fixed basis g.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 9

blobm ← Data Seal("Enc+MAC", skm,mkm,m||CT ||δ, U), where

blobm := Encsym(skm,m||CT ||δ)||U ||MAC(mkm,Encsym(skm,m||CT ||δ)||U).

Data Handler can use Data Unseal() to recover and verify the sensitive data from blobs with
the related keys regained by Key Manager.

4.3 The Details of AEP-M Scheme



0 1

00

... ...

01

010 011

... ...

Fig. 3. Public Global Tree for
All Coins.

Following the divisible e-cash scheme [8], a unique and public
global tree of depth n is used for all coins of value V = 2n

as illustrated in Figure 3. So each leaf denotes the smallest
unit of value to spend. We define Sn as the set of bit strings
of size smaller than or equal to n and Fn as the set of bit
strings of size exactly n. Thus, each node of the tree refers
to an element s ∈ Sn, the root to the empty string φ, and
each leaf to an element f ∈ Fn. For any node s ∈ Sn, Fn(s)
= {f ∈ Fn|s is a prefix of f} contains all the leaves in the
subtree below s.

Assume, before leaving the factory, D is initialized by the
OEM in SW to generate the unique device key (dsk, dpk) which
could uniquely identify D. Then, the OEM issues a certificate
certD w.r.t. the public key dpk to indicate the OEM’s recognition for D. The certificate certD
also contains some D’s configuration information (e.g., whether TrustZone is available).

AEP-M scheme consists of six phases: Setup, KeyGen, Withdraw, Spend, Deposit and
Identify. First of all, Setup is executed to create the public parameters by T . After that,
B and M can execute KeyGen to generate their public-private key pairs according to the
public parameters. Then, other phases are enabled to be executed according to requirements.
The phases of the scheme are presented in detail as follows.

Setup. In this phase, the trusted authority T creates the public parameters. Given a security
parameter λ, T picks the suitable bilinear groups parameters Λ := (p,G1,G2,GT , e, g, g̃)
described in Section 2.2 such that |p| ≥ 2λ. And then, according to the global tree, T
generates (1) rs

$← Zp and gs := grs for each s ∈ Sn, and (2) lf
$← Zp and g̃s7→f := g̃lf/rs

for each s ∈ Sn and each f ∈ Fn(s). T keeps sck = {rs|s ∈ Sn} as its secret keys to be
used in Identify phase. Also, T determines a series of algorithms Ψ including the algorithms
covering from Σ1 to Σ4 in Table 1, and four independent collision-resistant hash functions:

H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ → {0, 1}2λ, H4 : {0, 1}∗ → {0, 1}2λ.
Finally, T sets (Λ, n, Ψ, {rs|s ∈ Sn}, {g̃s 7→f |s ∈ Sn ∧ f ∈ Fn(s)}) as the public parameters,
where D and M only need to know params := (Λ, n, Ψ, {rs|s ∈ Sn}), while B requires
params′ := (Λ, n, Ψ, {rs|s ∈ Sn}, {g̃s7→f |s ∈ Sn ∧ f ∈ Fn(s)}). After obtaining params, D
calls Data Seal() to seal it and stores the output blobparams.

KeyGen. This phase initializes the public-private key pair for the central bank B and a
merchant M.

– Key Generation for Central Bank. First, given params′ as input, B picks x, y
$← Z∗p,

and computes X := g̃x and Y := g̃y. B sets (x, y) as the private key skB and publishes
(X,Y) as the public key pkB. Second, B uses KeyGen() in Σ1 to generate key pair for
establishing sessions with D: (skB, pkB)← KeyGen(1λ), where skB is the private key.

– Key Generation for Merchant. Similarly, M uses KeyGen() to generate key pair for
establishing sessions with D: (skM, pkM)← KeyGen(1λ).

10 B. Yang et al.

Accordingly, D could get the correct pkB and pkM from B and M via verifying their
certificates 4. And likewise, M and B could acquire the correct pkB and pkM respectively
as well as T obtains pkB.

Withdraw. In this phase, a user with mobile device D could withdraw some digital coins
from the central bank B as follows.

1. The user operates App in NW of D to prepare for withdrawing some digital coins. D
switches into SW and chooses a nonce nD

$← {0, 1}λ. nD is saved in Secure Memory
and delivered to AEP-M Proxy that sends nD, D’s dpk with its certificate certD to B.

2. B checks whether dpk is valid with certD and checks the configuration information on

certD. If the check is passed, B chooses a nonce nB
$← {0, 1}λ, a key kmac

$← {0, 1}λ for

MAC and a key kenc
$← {0, 1}λ for Encsym and Decsym. Then, B encrypts nB, kmac and

kenc using dpk to get a cipher text CB ← Encasym(dpk, nB||kmac||kenc) and signs dpk, nD
and CB using skB to output a signature α ← Sign(skB, dpk||nD||CB). Finally, B sends
a commitment request commreq := (CB, α) to D.

3. AEP-M Proxy invokes AEP-M Service with input commreq. In SW, App Trustlet waits
for the user to input his bank account accountD, the corresponding password pwd and
the amount of digital coins to withdraw. For simplicity, we only describe how to with-
draw one coin. The Withdraw phase could be easily extended to support withdrawing
multiple coins at once. After the user finishes inputting, Logic Engine calls the API
AEPM SW Withdraw() to generate a commitment response:

commres ← AEPM SW Withdraw(blobparams, nD, pkB, commreq, accountD, pwd),

where the API is executed as follows:

1) Unseal the blob blobparams to get params by calling Data Unseal().
2) Verify α using pkB: res← Verify(pkB, dpk||nD||CB, α). If res = false, commres := ⊥

and return.
3) Decrypt CB using dsk: (n′B, kmac, kenc)← Decasym(dsk, CB).

4) Choose m
$← Z∗p as the secret key for a coin, and compute the commitment U := gm.

5) Set δ := V where δ denotes the current balance of the coin.
6) Set CT as a string of 2n+1−1 bits where each bit is 1. CT denotes the current tree

structure of the unspent coin.
7) Call Data Seal() to seal m, CT and δ, and generate blobm(see Section 4.2).

8) Choose a random number rD
$← Z∗p and compute RD := grD .

9) Compute cD := H1(g||U ||RD||CB||α||n′B).
10) Compute sD := rD + cD ·m (mod p).
11) Generate a cipher context CD ← Encsym(kenc, accountD||pwd).
12) Generate τD ← MAC(kmac, U ||n′B||cD||sD||CD), and output

commres := (τD, U, n
′
B, cD, sD, CD).

AEP-M Service saves n′B and kmac in Secure Memory as well as stores blobm in non-
volatile storage. Then D switches back to NW and sends commres to B.

4. On input commres, B runs the following algorithm to generate a digital coin σ on m
for D:

(σ, τB)← Gen DC(commres, params
′, kmac, kenc, nB, skB).

The algorithm has seven steps:

1) Verify τD = MAC(kmac, U ||n′B||cD||sD||CD), and check whether n′B = nB.
2) Check whether U has not been used before by querying the database.
3) Compute R′D := gsD · U−cD and c′D := H1(g||U ||R′D||CB||α||nB).
4) Check whether c′D = cD.

4 Utilizing PKI solution, a Certificate Authority (CA) issues public key certificates for the keys to
B and M respectively.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 11

5) Decrypt CD using Decsym and kenc: accountD||pwd← Decsym(kenc, CD), then check
the plaintext’s validness via communicating with the related commercial bank. If
the account balance is enough, deduct money from the account and temporarily
save it in B.

6) Choose a random number a
$← Z∗p, compute A := ga, B := Ay, C := gax ·Uaxy and

D := Uay, and generate σ := (A,B,C,D).
7) Generate τB ← MAC(kmac, σ||nD||nB).

In the above algorithm, if any check is failed, B aborts the process. If not, B sends
(σ, τB) to D, and sends (U, dpk, IDbank, IDuser) to T to backup for detecting possible
double-spender. IDbank is the identity of the commercial bank which the user account
belongs to, and IDuser is the identity of the user.

5. Upon receiving (σ, τB), D switches into SW and verifies τB using MAC, kmac and n′B.
Then, Data Handler calls Data Seal() to seal σ and generates blobσ. Finally, Logic
Engine deletes nD, n′B and kmac from Secure Memory.

Pre-Compute. After the above step, D returns back to NW. AEP-M Proxy executes pre-
computation in the background (off-line) to prepare for the following Spend phase. Pre-
processing Engine calls AEPM NW PreCmpt() to generate a blinded coin:

(l, R, S, T,W)← AEPM NW PreCmpt(blobparams, blobσ),

where the algorithm consists of the following steps.

1) Get params and digital coin σ by directly reading the plaintext part of blobparams and
blobσ respectively.

2) Parse σ as (A,B,C,D).

3) Choose l
$← Z∗p and compute (R,S, T,W) := (Al, Bl, Cl, Dl).

4) Output (l, R, S, T,W).

Preprocessing Engine stores (l, R, S, T,W) together with blobσ.

Spend. This is an interactive phase executed between a user with his mobile device D and
a merchant M , which enables D to anonymously pay some digital coins to M.

1. App of D sends a nonce n̄D
$← {0, 1}λ to the merchant M for initiating a transaction.

2. Receiving n̄′D, M chooses a nonce nM
$← {0, 1}λ and generates a signature β ←

Sign(skM, "Spend"||info) where info := (v, date, trans, pkM, n̄
′
D, nM). info is the string

collection containing the amount value v of coins to pay, transaction date, other nec-
essary transaction information and the related nonce values. M sends (info, certM, β)
to D. In fact, issued by CA, certM is M’s certificate, containing IDM, pkM and the
signature SignCA(IDM||pkM), where IDM indicates the identitiy of M.

3. When D receives the above data, AEP-M Proxy assembles the command to request
AEP-M Service for payment. Without loss of generality, we assume that the user has
a coin of value δ such that δ ≥ v. For the case that δ < v, the user could spend
another several coins in the same way in order that the sum amounts value of all coins
equals v. On account of the request, D’s environment is switched into SW. First, Logic
Engine verifies β using Verify and pkM with certM. Then, D enters the secure GUI
after authenticating the user’s inputted PIN (or fingerprint). Relying on Framebuffer,
the secure GUI displays IDM and the content of v, date and trans. It is important for
the user to confirm the exact IDM and transaction information in case an adversary
falsifies the transaction. When the user presses the button of “OK”, Logic Engine calls
AEPM SW Spend() to create a master serial number Z of value v of coins together with
a proof π of its validity, using the related pre-computation result as:

(Z, π)← AEPM SW Spend(blobparams, blobm, blobσ||(l, R, S, T,W), info),

where the detailed process is presented as follows:

1) Unseal the blobs to get params, (m, CT , δ) and (A,B,C,D) by calling Data Unseal().

12 B. Yang et al.

2) Check whether n̄′D = n̄D.
3) Represent v by bits: v = bnbn−1...b0 and set Φ := {i| 0 ≤ i ≤ n ∧ bi = 1}.
4) For each i ∈ Φ from n to 0, based on CT , select uniformly at random an unspent

node si ∈ Sn of level n− i in the tree, and then mark it as the spent one.
5) For each chosen node si, compute tsi := gmsi , and form three sets: s := {si|i ∈ Φ},

gs := {gsi |i ∈ Φ} and ts := {tsi |i ∈ Φ}. Set Z := (s, ts).

6) Choose a random number r̄
$← Z∗p, compute Li := gr̄si for each i ∈ Φ, form a set

L := {Li|i ∈ Φ} and compute L := Bl·r.
7) Compute c̄ := H2(gs||ts||R||S||T ||W ||L||L||info).
8) Compute z̄ := r̄ + c̄ ·m (mod p).
9) Set π := (R,S, T,W, c̄, z̄).

10) Delete (l, R, S, T,W) from the non-volatile storage.
11) Update CT and δ := δ − v. If δ > 0, call Data Seal() again to regenerate blobm

using the updated CT and δ, else delete blobm and blobσ.

After the API finally returns, D switches back into NW and sends (Z, π) to M.

4. M sets Tr := (info,Z, π) and verifies Tr by the means of calling the specialized verifi-
cation algorithm Tr Verify() as:

res← Tr Verify(params, pkB,Tr),

where the algorithm runs in detail as follows:

1) Parse Tr as (info,Z = (s, ts), π = (R,S, T,W, c̄, z̄)).
2) For any two nodes in s, check that the one does not belong to the subtree rooted

at the other one (i.e., each node is not a prefix of any other one).

3) Compute L
′

:= S z̄ ·W−c̄, L′i := gz̄si · t
−c̄
si for each si ∈ s, and set L′ := {L′i|i ∈ Φ}.

4) Compute c̄′ := H2(gs||ts||R||S||T ||W ||L
′||L′||info).

5) Check whether the relations R 6= 1, W 6= 1, e(R, Y) = e(S, g̃), e(T, g̃) = e(R ·W,X)
and c̄′ = c̄ hold.

6) If all the above checks are passed, then res := true, else res := false.

According to the verification result res,M decides whether to accept the payment from
D and provide services or goods for the user. IfM accepts the transaction, he sends D
a receipt θM ← Sign(skM, "receipt"||Tr) as the proof of accepting digital coins.

Pre-Compute. After Step 3 above, AEP-M Proxy of D in NW executes pre-computation
again in the background to generate a new tuple (l′, R′, S′, T ′,W ′) w.r.t. some blobσ, if
exists, for the next Spend use.

Deposit. In this phase, M could deposit money from Tr to his preferable bank accountM
through the central bank B.

1. M generates a signature γ ← Sign(skM, "Deposit"||Tr||accountM). Then he sends Tr,
accountM and γ together with certM to B.

2. B first verifies γ using Verify and certM. Secondly, B retrieves pkM from info and
checks whether it is the same one inside certM. Thirdly, B computes H3(Tr) and queries
database DBTr to check whether Tr has been used before. If not, B runs the verification
algorithm Tr Verify() to verify the validity of Tr. If it is valid, B immediately transfers
the exact amount v of real money to accountM with the help of some commercial bank.

3. B detects double-spending off-line after the above step. The detection process is pre-
sented as follows:

1) Retrieve s and ts from Tr, and load params′.
2) For each tsi ∈ ts and each f ∈ Fn(si), compute dsi 7→f := e(tsi , g̃si 7→f) and dsi,f :=

H4(dsi 7→f).
3) Set d := {dsi,f |si ∈ s ∧ f ∈ Fn(si)}.
4) Insert the item (H3(Tr),Tr,d) into DBTr.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 13

5) For each dsi,f , query DBTr to check whether there exists a transaction Tr′ that has
the same dsi,f . If exists, send both Tr and Tr′ to T through the secure channel for
revealing the identity of the double-spender.

Identify. This phase endows T with the ability to reveal the identity of some double-spender.

1. When T receives the double-spending report (Tr,Tr′) from B, it executes the verification
algorithm Tr Verify() to verify the validity of Tr and Tr′. If both valid, T chooses one
node si ∈ s from data of Tr and finds out the related rsi from its secret coin keys sck

to recover U by computing U := t
1/rsi
si (i.e. gm). Likewise, B recovers U ′ from Tr′.

2. If U = U ′, it indicates that Tr and Tr′ lead to a double-spending. T would publish
the spender’s information (Tr,Tr′, U, dpk, IDbank, IDuser). Then, some possible penalties
on the user IDuser, for example deducting money from the user’s account or temporally
prohibiting the user from using e-payment system, would be triggered.

4.4 Optional Defense Mechanisms

Secure Non-Volatile Storage. Generally, our scheme could resist the conventional at-
tacks. However, if there is a powerful adversary in NW of D to maliciously delete crucial
data, such as blobm and blobσ, from non-volatile storage, the user risks losing the digital
coins withdrawn from B. A possible solution here is to add the secure non-volatile storage
which is only accessible to SW. Then, we can back-up the crucial data in it in case of lost.
The specific technique has been implemented by Sun et al. [31].

Acknowledgement of receipt. During Withdraw phase, an adversary may malicious-
ly impede D from receiving (σ, τB). Consequently, the user would lose the related dig-
ital coins even if anyone else cannot spend them. In fact, B could generate a receipt
τ ′D ← MAC(kmac, "receipt"||σ) and sends ("receipt", n′B, τ

′
D) back to B as the acknowl-

edgement of receiving (σ, τB). If B does not immediately receive the acknowledgement, it
would try to send (σ, τB) for several times, and eventually publish it on B’s website for user
downloading suppose B does not at last receive the acknowledgement.

4.5 Security Analysis

Based on the security definition and proof in [8], we describe the desired security properties
of our anonymous e-payment scheme for mobile devices, and then analyze these properties.

Security Properties. Informally, AEP-M should satisfy the following properties:

– Correctness means that a user runs honestly the Withdraw protocol with the honest bank
will obtain a divisible coin which is accepted by any honest merchant.

– Unlinkability requires that the bank, even colluding with malicious users and merchants,
cannot decide whether two transcripts of the Spend protocol were produced by the same
user even if the position of the spent parts (i.e., the spent nodes) in a coin can be revealed.

– Traceability requires that no coalition of users can spend more (and then accepted as
deposit) than they withdrew, or double-spend a coin without revealing their identities.

– Exculpability requires that the bank, even colluding with malicious users and merchants,
cannot falsely accuse an honest user for having double-spent a coin, even if it compromises
the NW of the user’s mobile device.

– Confidentiality requires that no coalition of malicious users and merchants can reveal any
secret information (e.g., password) of a user from the Withdraw protocol, even if the NW
of the user’s device has been corrupted.

– Authenticity requires that 1) only the user in possess of a mobile device with TrustZone,
a valid account and the corresponding password, can authenticate himself to the bank; 2)
only a merchant accepted by the user can deposit the transaction from the user.

14 B. Yang et al.

Security Analysis. As giving a formal security proof is outside the scope of this paper, we
only provide an informal security analysis to argue that AEP-M satisfies the above security
properties, if the DDHG1 , Weak-EXDH, B-4-LRSW assumptions hold, Σ1 is EUF-CMA
secure [12], Σ2 is unforgeable against chosen message and chosen verification queries attack
(uf-cmva) [11], Σ3 is IND-CPA secure, and Σ4 is IND-CPA secure. As Σ2 is uf-cmva secure
and Σ4 is IND-CPA secure, blobparams, blobσ and blobm provide the integrity protection,
and blobm provides the confidentiality of m. For the sake of simplicity, we omit the analysis
of these blobs in the following analysis. Note that we could actually prove AEP-M achieves
correctness, unlinkability, traceability and exculpability, based on the security proofs in [8]
and [3]. Confidentiality and authenticity of AEP-M could also be proved in the standard
way. Below, we interpret the intuition why AEP-M satisfies the above security properties.

– Correctness: This can be checked by working through all the phases.

– Unlinkability: In a transcript of the Spend protocol, only (Z = (s, ts), π = (R,S, T,W, c̄, z̄))
is associated with the spent coin (m,σ). Below, we show that s is the unique revealed
information about the spent coin, and thus (Z, π) cannot be linked to other transaction-
s. Recall that (c̄, z̄) is a non-interactive zero-knowledge proof on proving knowledge of
m such that tsi = gmsi for each si ∈ s and W = Sm. Thus, (c̄, z̄) does not reveal any
information of m. Note that (R,S, T,W) is randomized with a randomness l, S = Ry,
T = Rx+mxy = Rx · (Rm)xy and W = Sm = (Rm)y. Following the fact that given g,
U = gm and R, it is hard to decide if an element of G1 is random or equal to Rm under
the DDHG1 assumption, the tuple (R,S, T,W) does not reveal the information of (m,σ).
Besides, based on the security proof in [8], gms is indistinguishable from a random element
in G1 under the Weak-EXDH assumption. Thus, using the standard hybrid argument, we
have ts is computationally indistinguishable from random elements. Note that σ must be
produced by B, as kmac is only known by the SW of D and B (c.f., the security analysis of
Confidentiality), and τB provides the integrity protection of σ due to the uf-cmva security
of Σ2. In conclusion, s is the only revealed information on the spent coin.

– Traceability: No probabilistic polynomial time adversary can forge a coin that cannot
be traced to an execution of the Withdraw protocol under the B-4-LRSW assumption.
Furthermore, tsi for each si ∈ s and W must be generated using the same secret key m,
following the zero-knowledge proof (c̄, z̄) is sound. According to the verification equations
e(R, Y) = e(S, g̃) and e(T, g̃) = e(R ·W,X), we have T contains the same m, i.e., m is
certified by B. Thus, malicious users cannot spend more than they have withdrawn, and
any double-spending can be detected by B and identified by the trusted authority T .

– Exculpability: In fact, (c̄, z̄) is a signature proof of knowledge on message info. Thus, an
adversary attempting to spend a coin of an honest user must know the secret key m.
However, given U = gm, the corresponding zero-knowledge proof (cD, sD), and (Z, π)
generated with the coin, it is hard to obtain m under the discrete-logarithm assumption.
Therefore, exculpability is obtained.

– Confidentiality: A pair (CB, α) accepted by SW of a device D must be generated by B,
since Σ1 is EUF-CMA secure and nD collides with other nonce with negligible probability.
Besides Σ3 is IND-CPA secure, so kmac and kenc are only known by the SW and the bank.
Moreover, Σ2 is uf-cmva secure and Σ4 is IND-CPA secure. Thus, the user’s password
pwd can only be known by B. As a result, AEP-M satisfies the confidentiality.

– Authenticity: 1) The certificate certD certifies that a mobile device owning dpk is equipped
with ARM TrustZone. By the “Challenge-and-Response” paradigm (i.e., a ciphertext CB
is sent as challenge, and a nonce nB and a tag τD are sent back as response), the mobile
device D can prove knowledge of the secret key dsk and provide the authenticity and
integrity of U and CD = Encsym(kenc, accountD||pwd) by generating a tag τD with kmac.
The central bank B is convinced that D supports TrustZone and U and CD are created
by D. By checking the validity of (accountD, pwd), B is convinced that the user of device

AEP-M: Practical Anonymous E-Payment for Mobile Devices 15

D is the owner of accountD. 2) The signature β must be produced by the merchant
M with identity IDM, as the digital signature algorithm Σ1 is EUF-CMA secure. By
displaying (IDM, v, date, trans), the user can decide whether M is the desired merchant.
The public key pkM included in info is signed as (c̄, z̄). In the Deposit phase, a signature
γ is generated, and thus only the merchant knowing the secret key skM can deposit for
Tr = (info,Z, π). In all, AEP-M has the authenticity.

5 Implementation and Evaluation

In this section, we first present the prototype system of AEP-M from both aspects of hard-
ware and software. Afterwards, we show the efficiency of the proposed scheme. Finally, we
give the performance evaluation and analysis based on our prototype system.

5.1 Implementation

Hardware Platform. To simulate real environment, we implement the role of merchant
on one PC platform, and central bank as well as trusted authority on another one. For
simulating mobile device, we leverage a development board Zynq-7000 AP Soc Evaluation
Kit [40] to implement functions of AEP-M. It is TrustZone-enabled and equipped with ARM
Cortex-A9 MPCore, 1GB DDR3 memory and On-Chip Memory (OCM) module including
256 KB SRAM. However, this SRAM is initialized by BootROM once the board is powered
on, which prevents us from reading its initial data. Then we utilize an SRAM chip that is
the type IS61LV6416-10TL [34] to act as our SRAM PUF. SRAM initial data is transferred
to the Zynq development board by an FPGA implementation of Universal Asynchronous
Receiver/Transmitter (UART) in Verilog hardware description language. A UART receiver
in the Zynq board receives and stores the SRAM data in a RAM cache. Then the processor
can fetch the SRAM data in the RAM cache via the bus. In addition, the methods given in
[31] are applied to fulfill Secure Memory for data storage and Framebuffer for secure display.

Software Implementation. The software implementation on the development board for
mobile device is divided into two parts. In secure world, we use Open Virtualization Sierra-
TEE as the basic TEE OS which is compliant with GP’s TEE Specifications [33]. For Key
Manager of AEP-M Service, the fuzzy extractor of PUF is constructed on an open source
BCH code [19]. For Crypto Library, we use OpenSSL-1.0.2g for general cryptographic algo-
rithms, and Pairing-Based Cryptography (PBC) 0.5.14 library for computations of elliptic
curves and bilinear maps. The security parameter λ is set to 128 (bits), so we choose SHA256
for H3 and H4, HMAC-SHA256 for MAC, 3072-bit RSA for Encasym-Decasym, 256-bit ECDSA
for Sign-Verify and 128-bit AES-CBC for Encsym-Decsym. The implementation of KDF for
generating different types of keys makes references to the relevant methods in PKCS #11
v2.40 [20]. 5268 lines of code (LOC) in C language totally make up our components and
auxiliary functions in secure world. In normal world, we run a Linux as REE OS with kernel
3.8.6. The SierraTEE project provides the Linux with NW-Driver and GP TEE Client API.
AEP-M Proxy totally comprises 2879 LOC. Besides we program one test application that
could execute upon AEP-M scheme. It contains 1268 LOC for App running in NW and 661
LOC for App Trustlet in SW. Furthermore, there are several tens of thousands of LOC for
implementing central bank, merchant and trusted authority.

5.2 Efficiency

AEP-M achieves some valuable and meaningful properties (e.g., sensitive data computing
and management). Nevertheless, our customized construction makes it difficult to compare
with other anonymous e-payment solutions which are mainly designed for PC platform. We
therefore only list the main statistics in efficiency of our AEP-M for coins of value 2n in

16 B. Yang et al.

Table 2. Main statistics in efficiency of AEP-M for coins of value 2n. The space and time com-
plexities are given from three major entities’ points of view. EG1 refers to an exponentiation in G1,
E2

G1
to 2 simultaneous exponentiations in G1, and P to a pairing computation. The symbols of

cryptographic functions, such as Verify, denote their corresponding computations respectively. |G1|
and |G2| indicate the sizes of elements in G1 and G2. |p| means the size of random number in Z∗

p.

Entities D B M

Size of Public Parameters (2n+1 − 1)|G1| (2n+1 − 1)|G1|
+(n+ 1)2n|G2|

(2n+1 − 1)|G1|

Coin Size |p|+ 4|G1| – –

Withdraw Computations
1Verify+1Decasym

+2EG1

1 Encasym +1 Sign+2E2
G1

+ 3EG1
–

Pre-Compute
Computations

4EG1
– –

Spend Computations 2Verify+|Φ|EG1
–

2 Sign+(|Φ|+ 1)E2
G1

+4P
Double-Spending Detection

Computations
– (|Φ|+ 1)E2

G1
+ (v + 4)P –

Table 2. The statistics focus on the critical space and time complexities, during which the
data sizes in constant level and the computations in low complexity (e.g., MAC and Encsym)
are omitted. In the table, as some amounts of computations are related to consuming the
coins of value v, we use |Φ| (where 1 ≤ |Φ| ≤ n) to denote the number of elements in set Φ.

From the perspective of D, if we choose BN curve [35] to implement the scheme for
λ = 128 and n = 10 (enabling users to divide one coin into 1024 parts), the storage space
for public parameters is 66 KBytes and for coin size 160 Bytes. These can easily be handled
by any mobile devices. M needs the same space for public parameters, while B requires
additional 721 KBytes. Besides, the space required to store DBTr of one million transactions
is in a range from 320 MBytes to 17 GBytes, which is still practical for B.

For computational complexity, except for some verifications and decryptions,D just needs
several exportations in G1 during both Withdraw and Spend. Especially, there are only |Φ|
exportations required by the most frequent execution, i.e. online Spend. The most expensive
step for B is detecting double-spending because of v+ 4 pairing computations. Fortunately,
this step is completely off-line, so that it would not block the normal online transactions and
is quite feasible for the modern data center running behind B. Likewise,M could undertake
the computations during Spend without much pressure. Thus, in general, under high security
level, the efficiency of AEP-M is theoretically feasible for current mainstream storage and
computing power, even if provided by resource-constrained mobile devices.

5.3 Performance Evaluation

Since the resource-constrained mobile device is the performance bottleneck as well as the
focus of our attention, we measure the performance of AEP-M on the prototype system
revolving around mobile device through a series of experiments with different parameters.
Referring to ISO/IEC 15946-5 standard [35], we select a kind of elliptic curve that is suit-
able for realizing Type-3 pairings. It is BN curve with embedding degree 12. For testing
the security level of 128-bit, we conduct the experiments using BN256. Our experiments
simulate the whole AEP-M running process covering instantiated scheme, TrustZone switch
and sensitive data management. Each average experimental result is taken over 50 test-runs.

For coins of value 210 and 220 respectively, and spending 287 of them, Figure 4 illustrates
the average time overheads of critical processes including the computations of Withdraw,
Pre-Compute and Spend on mobile device for user side and Spend on PC for merchant side.
The results show that using the curve with high security level for mobile device, the frequent
computations about either Pre-Compute or Spend only take less than 450 milliseconds
(ms), while infrequent and time-consuming Withdraw spends less than 660 ms. Even if the
computation amount of Spend for merchant part is quite large, the time overhead is indeed

AEP-M: Practical Anonymous E-Payment for Mobile Devices 17

BN256 n=10 n=20 v=287,|Φ|=6 switch add
M_pre_NM 543.9 271.95 G1 pow 26.78 Withdraw 647 659 1Verify+1Decasym+2EG1 3 250
M_sign_SW 1013.8 506.9 Z random 5.1 Pre-Compute 207 210 4EG1 0 100
M_rejoin_SW 3067.5 1533.75 ECDSA 256 sign 193 45 Spend 383 415 2Verify+|Φ|EG1 1 150
V_verify 181.6 181.6 verify 255 36 Spend M (PC) 271 273 2Sign+(|Φ|+1) EG1

2+4P
RSA 3072 encrypt 266 9

decrypt 235 312

PC G1 pow 3.7
G1 pow2 2.3

M_pre_NM 1299.8 649.9 pairing 63
Sign 1.8

M_sign_SW 1266 633 n = 100000 n = 20
M_rejoin_SW 5074.3 2537.15 Withdraw 647 659
V_verify 231.7 Pre-Compute 207 210

Spend 383 415
M_pre_NM 1493 746.5 Spend () 231 233
M_sign_SW 1466.5 733.25
M_rejoin_SW 5351.5 2675.75
V_verify 286.6

M_pre_NM 1670.9 835.45
M_sign_SW 1630 815
M_rejoin_SW 6117.8 3058.9
V_verify 339.2

M_pre_NM 656.1 328.05
M_sign_SW 865.9 432.95
M_rejoin_SW 2371.1 1185.55
V_verify 157.2 157.2

M_pre_NM 1317.5 658.75
M_sign_SW 1529.6 764.8
M_rejoin_SW 4612.5 2306.25
V_verify 289.6

v =122 |Φ|=5 v=287,|Φ|=6 v=512,|Φ|=1 v=683,|Φ|=6 v=736,|Φ|=4 v=1023,|Φ|=9
Sign 352 383 249 388 327 467

MNT160 80bit /ms

MNT224 96bit /ms

BN160 80bit /ms

BN192 96bit /ms

BN256 128bit /ms

0

100

200

300

400

500

600

700

Withdraw Pre-Compute Spend Spend ()

T
im

e
O

ve
rh

ea
d

(m
s)

n= 100000 n= 20

0

100

200

300

400

500

T
im

e
O

ve
rh

ea
d

(m
s)

n = 10 n = 20
v=122
|Φ|=5

v=287
|Φ|=6

v=512
|Φ|=1

v=683
|Φ|=6

v=1023
|Φ|=9

v=736
|Φ|=4



Fig. 4. Time overheads of the critical
processes for coins of 2n and v = 287.

BN256 n=10 n=20 v=287,|Φ|=6 switch add
M_pre_NM 543.9 271.95 G1 pow 26.78 Withdraw 647 659 1Verify+1Decasym+2EG1 3 250
M_sign_SW 1013.8 506.9 Z random 5.1 Pre-Compute 207 210 4EG1 0 100
M_rejoin_SW 3067.5 1533.75 ECDSA 256 sign 193 45 Spend 383 415 2Verify+|Φ|EG1 1 150
V_verify 181.6 181.6 verify 255 36 Spend M (PC) 271 273 2Sign+(|Φ|+1) EG1

2+4P
RSA 3072 encrypt 266 9

decrypt 235 312

PC G1 pow 3.7
G1 pow2 2.3

M_pre_NM 1299.8 649.9 pairing 63
Sign 1.8

M_sign_SW 1266 633 n = 100000 n = 20
M_rejoin_SW 5074.3 2537.15 Withdraw 647 659
V_verify 231.7 Pre-Compute 207 210

Spend 383 415
M_pre_NM 1493 746.5 Spend () 231 233
M_sign_SW 1466.5 733.25
M_rejoin_SW 5351.5 2675.75
V_verify 286.6

M_pre_NM 1670.9 835.45
M_sign_SW 1630 815
M_rejoin_SW 6117.8 3058.9
V_verify 339.2

M_pre_NM 656.1 328.05
M_sign_SW 865.9 432.95
M_rejoin_SW 2371.1 1185.55
V_verify 157.2 157.2

M_pre_NM 1317.5 658.75
M_sign_SW 1529.6 764.8
M_rejoin_SW 4612.5 2306.25
V_verify 289.6

v =122 |Φ|=5 v=287,|Φ|=6 v=512,|Φ|=1 v=683,|Φ|=6 v=736,|Φ|=4 v=1023,|Φ|=9
Sign 352 383 249 388 327 467

MNT160 80bit /ms

MNT224 96bit /ms

BN160 80bit /ms

BN192 96bit /ms

BN256 128bit /ms

0

100

200

300

400

500

600

700

Withdraw Pre-Compute Spend Spend ()

T
im

e
O

ve
rh

ea
d

(m
s)

n= 100000 n= 20

0

100

200

300

400

500

T
im

e
O

ve
rh

ea
d

(m
s)

n = 10 n = 20
v=122
|Φ|=5

v=287
|Φ|=6

v=512
|Φ|=1

v=683
|Φ|=6

v=1023
|Φ|=10

v=736
|Φ|=4



Fig. 5. Time overheads of Spend phase for
n = 10 with different values of v.

low on PC platform. Additionally, the value of n has no significant influence on the time
overhead for these critical processes.

Figure 5 shows the average time overheads of Spend phase on mobile device for user side
using n = 10 and v ∈ {122, 287, 512, 683, 736, 1023}. Depending on different values of v,
|Φ| takes corresponding values from v’s representations by bits. From the figure, we can see
that as the value of |Φ| increases, the time overheads of Spend have evident growth, which
nearly has nothing to do with v itself, big or small. Encouragingly, under the worst-case
scenario where |Φ| = 10, the resulting overhead spends less than 500ms, which is completely
acceptable for a mobile user.

Actually, a direct performance comparison of our competitive scheme to others is also
meaningless because of some fundamental differences. Anyhow, according to our efficiency
analysis and experimental results, AEP-M can be considered as a reasonably efficient scheme
for mobile device. In regard to adopting modern mobile devices that are much more powerful
than our development board, with a more optimal library to implement elliptic curves and
parings, the time overhead of our scheme could be further decreased.

6 Conclusion

In this paper, we propose AEP-M, a complete and practical anonymous e-payment scheme
using TrustZone and divisible e-cash. AEP-M tackles both security and privacy issues spe-
cially for mobile electronic payers. The scheme allows users to withdraw a coin of value 2n

and spend it in several times by dividing it. Pre-computation and the bit-decomposition tech-
nique for coin’s representation are carefully taken into our consideration to raise scheme’s
efficiency and flexibility. What is more, TrustZone provides data and execution protection for
AEP-M. The root of trust from SRAM PUF, key derivation and sensitive data management
collectively further enhance the security of the scheme. Our implementation and evaluation
convince that AEP-M is quite practical for payers using resource-constrained mobile devices.

References

1. Mobile privacy disclosures: Building trust through transparency. Tech. rep., Federal Trade Com-
mission (February 2013)

2. ARM Limited: ARM Security Technology–Building a Secure System using TrustZone Technol-
ogy (April 2009)

3. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation
with user-controlled linkability. International Journal of Information Security 12(3), 219–249
(2013)

4. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of ACM
CCS 2004. pp. 132–145. ACM (2004)

18 B. Yang et al.

5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: EUROCRYPT 2005. pp.
302–321. Springer (2005)

6. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: EUROCRYPT
2007. pp. 482–497. Springer (2007)

7. Canard, S., Gouget, A.: Multiple denominations in e-cash with compact transaction data. In:
Financial Cryptography and Data Security (FC). pp. 82–97. Springer (2010)

8. Canard, S., Pointcheval, D., Sanders, O., Traore, J.: Divisible e-cash made practical. In: Public-
Key Cryptography (PKC). pp. 77–100. Springer (2015)

9. Chan, Agnes, H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. Theory and
Application of Cryptographic Techniques (1998)

10. Chaum, D.: Blind signatures for untraceable payments (1983)
11. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: EURO-

CRYPT 2012, pp. 355–374. Springer (2012)
12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive

chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)
13. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP

protection. Springer (2007)
14. Izabachene, M., Libert, B.: Divisible e-cash in the standard model. In: Proceedings of Pairing

2012. pp. 314–332. Springer (2013)
15. Jang, J., Kong, S., Kim, M., Kim, D., Kang, B.B.: SeCReT: Secure channel between rich

execution environment and trusted execution environment. NDSS 2015 (2015)
16. Kim, C., Wang, T., Shin, N., Kim, K.S.: An empirical study of customers perceptions of security

and trust in e-payment systems. Electronic Commerce Research and Applications 9(1), 84–95
(2010)

17. Li, W., Li, H., Chen, H., Xia, Y.: AdAttester: Secure online mobile advertisement attestation
using trustzone. In: Proceedings of MobiSys 2015. pp. 75–88. ACM (2015)

18. Lim, A.S.: Inter-consortia battles in mobile payments standardisation. Electronic Commerce
Research and Applications 7(2), 202–213 (2008)

19. Morelos-Zaragoza, R.: Encoder/decoder for binary bch codes in c (version 3.1)
20. OASIS Standard: PKCS #11 Cryptographic Token Interface Current Mechanisms Specification

Version 2.40 (April 2015)
21. Okamoto, T., Ohta, K.: Universal electronic cash. In: CRYPTO 1991. pp. 324–337 (1992)
22. Oren, Y., Sadeghi, A.R., Wachsmann, C.: On the effectiveness of the remanence decay side-

channel to clone memory-based pufs. In: CHES 2013, pp. 107–125. Springer (2013)
23. Paquin, C., Zaverucha, G.: U-Prove Cryptographic Specification V1.1. Microsoft (2013)
24. Plateaux, A., Coquet, V., Vernois, S., Lacharme, P., Murty, K., Rosenberger, C.: A privacy

preserving e-payment architecture. In: FC 2013. p. 402. Springer (2013)
25. Preibusch, S., Peetz, T., Acar, G., Berendt, B.: Purchase details leaked to paypal. In: Financial

Cryptography and Data Security (FC). pp. 217–226. Springer (2015)
26. Reaves, B., Scaife, N., Bates, A., Traynor, P., Butler, K.R.B.: Mo(bile) money, mo(bile) prob-

lems: analysis of branchless banking applications in the developing world. In: Proceedings of
the 24th USENIX Conference on Security Symposium (2015)

27. Rial, A.: Privacy-Preserving E-Commerce Protocols. Ph.D. thesis, Faculty of Engineering Sci-
ence, KU Leuven (March 2013)

28. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using ARM TrustZone to build a trusted language
runtime for mobile applications. In: Proceedings of ASPLOS 2014. pp. 67–80. ACM (2014)

29. Stilgherrian: Apple pay isn’t magic, and it isn’t ’private’. http://www.zdnet.com/article/

apple-pay-isnt-magic-and-it-isnt-private/ (2014), last accessed 20 February 2016
30. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key

generation. In: 44th ACM/IEEE DAC 2007. pp. 9–14 (2007)
31. Sun, H., Sun, K., Wang, Y., Jing, J.: TrustOTP: Transforming smartphones into secure one-

time password tokens. In: Proceedings of CCS 2015. pp. 976–988. ACM (2015)
32. Tamrakar, S., Ekberg, J.E.: Tapping and tripping with NFC. In: Trust and Trustworthy Com-

puting (TRUST), pp. 115–132. Springer (2013)
33. GlobalPlatform: Tee client api specification version 1.0 (2010)
34. Integrated Silicon Solution Inc: IS61LV6416-10TL. http://www.alldatasheet.com/

datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html

35. ISO/IEC: 15946-5: 2009 information technology-security techniques: Cryptographic techniques
based on elliptic curves: Part 5: Elliptic curve generation (2009)

http://www.zdnet.com/article/apple-pay-isnt-magic-and-it-isnt-private/
http://www.zdnet.com/article/apple-pay-isnt-magic-and-it-isnt-private/
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html

AEP-M: Practical Anonymous E-Payment for Mobile Devices 19

36. ISO/IEC: 11889:2015 information technology – trusted platform module library. http:

//www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66510

(2015), last accessed 1 March 2016
37. Proxama: http://www.proxama.com/platform/ (2015), last accessed 15 October 2015
38. Sansa Security: Discretix. https://www.sansasecurity.com/blog/

discretix-becomes-sansa-security/ (2014), last accessed 22 June 2014
39. Santander: Privacy policy - Santander Apple Pay. http://www.santander.co.uk/uk/

apple-pay/privacy-policy/ (2016), last accessed 15 February 2016
40. Xilinx: Zynq-7000 all programmable soc zc702 evaluation kit. http://www.xilinx.com/

products/boards-and-kits/EK-Z7-ZC702-G.htm

41. Yang, B., Feng, D., Qin, Y.: A lightweight anonymous mobile shopping scheme based on daa
for trusted mobile platform. In: IEEE TrustCom 2014. pp. 9–17. IEEE (2014)

42. Yang, B., Yang, K., Qin, Y., Zhang, Z., Feng, D.: DAA-TZ: An effcient DAA scheme for mobile
devices using ARM TrustZone. In: Trust and Trustworthy Computing, pp. 209–227. Springer
(2015)

43. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for ARM TrustZone
using on-chip SRAM. In: Proceedings of TrustED 2014. pp. 25–36. ACM (2014)

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66510
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66510
http://www.proxama.com/platform/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
http://www.santander.co.uk/uk/apple-pay/privacy-policy/
http://www.santander.co.uk/uk/apple-pay/privacy-policy/
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

	AEP-M: Practical Anonymous E-Payment for Mobile Devices using ARM TrustZone and Divisible E-Cash
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Notation
	Bilinear Groups
	Cryptographic Assumptions
	ARM TrustZone
	Physical Unclonable Functions

	System Model and Assumptions
	System Model
	Assumptions and Threat Model

	AEP-M Scheme for Mobile Devices
	The Architecture of Trusted Mobile Device
	Key Derivation and Sensitive Data Management
	The Details of AEP-M Scheme
	Optional Defense Mechanisms
	Security Analysis

	Implementation and Evaluation
	Implementation
	Efficiency
	Performance Evaluation

	Conclusion

