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Abstract

Attribute-based methods provide authorization to parties based on whether their set of
attributes (e.g., age, organization, etc.) fulfills a policy. In attribute-based encryption (ABE),
authorized parties can decrypt, and in attribute-based credentials (ABCs), authorized parties
can authenticate themselves. In this paper, we combine elements of ABE and ABCs together
with garbled circuits to construct attribute-based key exchange (ABKE). Our focus is on an
interactive solution involving a client that holds a certificate (issued by an authority) vouching
for that client’s attributes and a server that holds a policy computable on such a set of attributes.
The goal is for the server to establish a shared key with the client but only if the client’s certified
attributes satisfy the policy. Our solution enjoys strong privacy guarantees for both the client
and the server, including attribute privacy and unlinkability of client sessions.

Our main contribution is a construction of ABKE for arbitrary circuits with high (concrete)
efficiency. Specifically, we support general policies expressible as boolean circuits computed on
a set of attributes. Even for policies containing hundreds of thousands of gates the performance
cost is dominated by two pairing computations per policy input. Put another way, for a similar
cost to prior ABE/ABC solutions, which can only support small formulas efficiently, we can
support vastly richer policies.

We implemented our solution and report on its performance. For policies with 100,000 gates
and 200 inputs over a realistic network, the server and client spend 957 ms and 176 ms on
computation, respectively. When using offline preprocessing and batch signature verification,
this drops to only 243 ms and 97 ms.

1 Introduction

The increasing need and complexity of authentication in the digital world, alongside ever growing
privacy concerns, has given rise to encryption and authentication mechanisms that combine privacy
aspects (anonymity, unlinkability, etc.) with credentials that go well beyond asserting an identity of
a client but rather vouch for a full set of attributes (age, rank, role, etc.). These mechanisms allow
for authentication and encryption that build on authorization policies computed on the provided
set of attributes. For example, in a hospital setting, access to a patient’s records can be provided
∗URL: https://eprint.iacr.org/2016/518. Presented at ACM CCS 2016.
†Portion of work done while at University of Maryland and Bell Labs
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to the patient, her doctor, nurses while on duty, or to the director of the hospital ward, and this
can be formalized as a policy.

The prime examples of these mechanisms are attribute-based credentials (ABCs) [Cha81, Bra00,
CL01, CL04, BCC+09, ide, upr] and attribute-based encryption (ABE) [SW05, GPSW06, BSW07,
Wat11]. The former is mainly directed towards identification and access control based on a set of
attributes, and emphasizes privacy aspects such as anonymity, unlinkability, and attribute privacy.
While ABCs generally assume an interactive setting between a client and a server, ABE focuses
on (non-interactive) encryption where authorization is enforced through an encryption scheme
that ties a ciphertext to a policy and a decryption key that ensures that only clients that have
attributes that satisfy the policy can decrypt (note that we focus on the “ciphertext policy” setting
of ABE [BSW07]). Since ABE schemes are non-interactive (and the party decrypting is completely
passive), they have certain implicit privacy properties of ABC solutions such as unlinkability and
attribute privacy. An essential requirement of the above primitives is that of collusion resistance.
This means that different clients of the system cannot combine their attributes in order to pass
policy verification that neither could have individually passed.

In many practical settings simply communicating a message to a party or just establishing rights
(such as validating a function of attributes) is not enough. For example, authentication to an online
service is usually followed with further communications that also need to be protected. In other
words, the goal in these systems is the use of credentials to bootstrap a key exchange protocol that
provides the parties with keys to protect a session.

In this paper we combine elements of ABE and ABCs to build attribute-based key exchange
(ABKE) where our focus is on an interactive solution involving a client that holds a certificate
(issued by an authority CA) vouching for the client’s attributes and a server that holds a policy
computable on the set of attributes. The goal is for the server to establish a shared key with the
client if and only if the client’s certified attributes satisfy the policy.1

Of course, the above goal is easy to achieve if the client is willing to reveal its attributes to the
server. The objective of our work is to enable the ABKE functionality while keeping the attributes
of the client private alongside ensuring additional important properties. The main features of our
ABKE solution are summarized next.

General policies. We support any policy expressible as a polynomial-size boolean circuit computed
on a set of attributes.

Attribute privacy. Client attributes are never disclosed. Of course, the server learns whether the
key exchange succeeded and thus learns that the client’s attributes fulfill the policy used in
the exchange. However, nothing beyond this fact is revealed.

Unlinkability. Multiple communications with the same client (with one or more servers) cannot be
linked together.

Collusion resistance. It is not possible for an adversary given keys associated with multiple clients
with different attributes (certified by the CA) to succeed in an exchange in which no single
client with its associated attributes fulfills the policy. In particular, attributes from different
clients cannot be mixed-and-matched.

1Note that we focus on the client-server setting where the client authenticates to the server. Server authentication
usually happens with regular public key certificates that identify the server and can use standard tools such as TLS.
Extensions of our system to the mutual authentication setting are possible but not treated here.
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1.1 Overview of Our Solutions

Our main contributions are a definition (cf. §4) and realization (cf. §6) of attribute-based key
exchange (ABKE) for public (circuit-based) policies.

ABKE using garbled circuits. Our construction uses garbled circuits in order to achieve ABKE.
The use of garbled circuits enables us to obtain a solution that both supports arbitrarily-complex
policies (without requiring heavy machinery like multilinear maps or fully homomorphic encryption)
and is concretely efficient. In our approach, the server generates a garbled circuit and sends it to
the client. The client then obtains the garbled values on the input wires of the circuit, depending
on its attributes. This is achieved by encrypting the garbled values on the input wires using a type
of encryption that enables the client to decrypt only those values associated with its attributes.
We call this notion attribute selective encryption (ASE) (cf. §5). The main technical difficulty comes
with ensuring that the client obtains input labels corresponding to its credentials in a private,
unlinkable, and collusion-free manner. At a high level, we construct such an encryption scheme
using a rerandomizable set of public keys and a rerandomizable signature binding the public keys
together. The client then presents a set of rerandomized keys (along with a signature on them),
and the server encrypts the garbled labels knowing that the client can only decrypt the appropriate
set. We introduce and utilize the notion of extractable linearly homomorphic (ELH) signatures (cf.
§7) to construct two instantiations of ASE: one based on identity-based encryption (cf. §8) and
the other built directly from ELH signatures (cf. §9). The extractability requirement ensures that
a simulator can extract the original message that was signed, even though the adversary presents
a randomized message. We prove this extractability property using the knowledge-of-exponent
(KEA) assumption.

Our use of garbled circuits is a careful adaptation of the zero-knowledge-using-garbled-circuits
approach of Jawurek et al. [JKO13]. As shown in their work, we can use a single garbled circuit
while still achieving malicious security; this is discussed in more detail in §6.

Concrete performance. At a cost similar to that of prior ABE/ABC solutions, which only run
efficiently on (small) formulas, we can support vastly richer policies represented by large circuits.
Specifically, we instantiate our construction over bilinear groups requiring a number of pairings
proportional to the number of input attributes to the policy circuit. Then a garbled circuit compu-
tation of the policy circuit is performed with cost that is not noticeable for policies of even relatively
large circuit size2.

To directly measure the performance of our scheme, we implemented it and ran various exper-
iments; see §10. For example, in our implementation, the server and client computation time for a
1,000-gate policy and 10 attributes is 67 ms and 11 ms, respectively; for a 100,000-gate policy and
200 attributes the times are only 957 ms and 176 ms. We also note that much of the computation
can be moved offline and we can use batch signature verification on the server side. Again with a
100,000-gate policy and 200 attributes, this optimized time is only around 243 ms for the server,
when assuming the server is batching ten messages in its signature verification, and 97 ms for the
client.

Additional features. Our construction can be easily extended to provide additional useful fea-
tures, as detailed below.

2For example, we can garble (resp., evaluate) an AND gate in roughly 46 (resp., 28) cycles per gate using privacy-
free garbled circuits [FNO15, ZRE15].
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• Credential expiration, by having attributes encode the expiration date.
• Delegation of attributes. This follows directly from the projectability property of our ASE

definition (cf. §5).
• Multi-authority. This can be achieved generically by having credentials from different CAs

encode, as a sequence of attributes, a unique certified serial number which is verified to
be the same during ABKE. A more efficient alternative is offered by our ELH-based ASE
construction (cf. §9) by using a common value u in the clients’ public keys in lieu of a unique
serial number.
• Unlinkability with respect to CA. Our IBE-based construction for ASE (cf. §8) provides in-

formation theoretic unlinkability, which implies unlinkability even against a colluding server
and CA. Such unlinkability is also achieved by our ELH-based solution provided that the
public key components g and h are generated jointly between the client and CA.

Future work. In this work we consider public policies only. However, our techniques can be used
to provide some notion of private policies and we leave this for future work. Likewise, our focus
here has been on achieving practical efficiency, and we achieve this using the KEA assumption and
the random-oracle model. The goal of achieving comparable efficiency under standard assumptions
only and without a random oracle is important and we leave it for future work.

2 Related Work

Our ABKE notion relates to ciphertext-policy attribute-based encryption (CP-ABE) and attribute-
based credentials (ABCs). CP-ABE gives rise to a single-message key exchange (KE) solution in
which a session key is encrypted under ABE and hence is implicitly authenticated by clients that
can decrypt. Since the same key is distributed to any client with a set of attributes satisfying
the policy, multiple clients may share the same key. This is the solution proposed by Gorantla et
al. [GBG10], who provide a game-based definition of attribute-based authenticated key exchange
(under the abbreviation AB-AKE) and note that such a scheme is more in line with group key
exchange than standard AKE.

ABE-based AKE requires several public-key operations per gate of the policy formula. Recent
solutions to ABE for general circuits [GGH+13, GVW15], while sufficient to show feasibility, are
mainly of theoretical interest due to the use of heavy underlying primitives. By using garbled
circuits, our protocol costs are dramatically lower than either of the above ABE-based solutions.

Since most key exchange settings allow for interaction (the session that they protect is in itself
typically interactive), our work leverages interaction to improve policy expressiveness as well as
performance. In this sense we are closer to the ABC setting, where clients own the credentials they
use in an interaction with a verifier. Our work inherits many of the challenges of ABCs, particularly
in the area of client privacy, with properties such as attribute-privacy and unlinkability being central
to our work. We note, however, two important differences.

First and foremost, prior ABC protocols and systems focus on (but are not limited to) small
formula-based policies [Cha81, Bra00, CL01, CL04, BCC+09, ide, upr, ABC] due to the high cost
of needing several public-key operations per gate. Besides the cost, difficulty of policy design and
analysis of non-trivial hand-generated small formulas is the reason that today’s deployed systems
mainly implement conjunction policies. In this work, we dramatically increase the computation
power of the policy by enabling its implementation via garbled circuits. We believe that in addition
to improving efficiency of existing ABC use cases, our work enables a much larger application scope
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for ABCs, due to the ability to run (large) policies auto-generated from easy-to-understand high-
level code.

Secondly, the ABC literature focuses on verification of credentials and not on bootstrapping an
authenticated session. In general, the ability to verify client credentials (i.e., a yes/no result) is insuf-
ficient for authenticating a session, even if the communication is carried over a server-authenticated
channel (e.g., TLS). The relationship between credentials and key exchange is explicitly studied
by Camenisch et al. [CCGS10], but their implementations do not cover rich policies, and do not
outperform ABCs.

ABCs provide several practical features which we regard as future work, such as credential
revocation and CA-verifier collusion. Other features, such as non-boolean and multi-authority
credentials can be easily and cheaply built within our system (cf. §1.1).

In a concurrent and independent work, Chase et al. [CGM16] approach the problem of ABCs for
non-boolean attributes by relying on garbled circuits to represent policies and, as a consequence,
allow general circuit-based policies. The method of delivery of wire labels to the prover (in our
notation, the client) is indeed the technical core of both of our approaches. Chase et al. allow
the prover to enter arbitrary inputs to the garbled circuit, requiring a zero-knowledge proof that
its garbled circuit inputs are consistent with arithmetic committed values, which, in turn, are
consistent with the credential vector on which there exists a valid CA signature. This results in a
number of exponentiations per boolean attribute, even in cases where a small subset of them are
used in the policy. Chase et al. offer an alternative algorithm to reduce the number of public-key
operations at the expense of message authentication code computation inside the garbled circuit,
which introduces a significant communication overhead but may be a worthy trade-off for provers
with many attributes. This approach, too, scales with the total number of attributes. In contrast,
in our approach the client needs to only compute public-key operations per policy attribute (rather
than over all the client’s attributes as is required by Chase et al.), which may be significantly faster in
many settings. However, our improved performance is a trade-off for using stronger assumptions.
Additionally, we present the first implementation of general circuit ABKE (and hence ABCs),
and report on its concrete performance. Finally, the construction of [CGM16] does not support
delegation, and it is not immediately clear how to enable it there.

Finally, Sakai et al. [SAH16] very recently proposed attribute-based signatures for circuits based
on bilinear maps. In their setting, only signers satisfying a certain policy on their attributes could
successfully sign a message. Their scheme could be a basis for an ABC solution; however, they
require several public-key operations and about 1 Kb of data sent per circuit gate; our garbled
circuit-based solution is much more efficient (16 bytes and several symmetric key operations per
circuit gate).

3 Preliminaries

Let P1, . . . ,P` and S1, . . . ,St be the set of clients and servers, respectively, and let A = {a1, . . . , am}
be the universe of all possible attributes. We associate an m-bit string χi = χi[1] · · ·χi[m] ∈ {0, 1}m
with each Pi such that χi[j] = 1 if and only if Pi has attribute aj . A policy is a (polynomial sized)
circuit C with m inputs and a single-bit output. We say that Pi satisfies policy C if and only if
C(χi) = 1.

Garbled circuits. One of our main building blocks is garbled circuits. As the circuit description
is public and only one party has input, we can utilize privacy-free garbled circuits [FNO15], which

5



are more efficient than standard garbled circuits. We use the garbled circuit notation of Bellare
et al. [BHR12], with one function (verification) introduced by Jawurek et al. [JKO13]. We only
consider circuits with a single bit of output, as this is all that is needed in our setting.

We define a verifiable garbling scheme by a tuple of functions G = (Gb,Ev,Ve) with each function
defined as follows:
• Garbling algorithm Gb(1n,C): A randomized algorithm which takes as input the security pa-

rameter and a circuit C : {0, 1}m → {0, 1} and outputs a tuple of strings (GC, {X0
j , X

1
j }j∈[m],

{Z0, Z1}), where GC is the garbled circuit, the values {X0
j , X

1
j }j∈[m] denote the input-wire

labels, and the values {Z0, Z1} denote the output-wire labels.

• Evaluation algorithm Ev(GC, {Xj}j∈[m]): A deterministic algorithm which evaluates garbled
circuit GC on input-wire labels {Xj}j∈[m].

• Verification algorithm Ve(C,GC, {X0
j , X

1
j }j∈[m]): A deterministic algorithm which takes as

input a circuit C, garbled circuit GC, and input-wire labels {X0
j , X

1
j }j∈[m], and outputs accept

if GC is a valid garbling of C and reject otherwise.
A verifiable garbling scheme must satisfy three security properties: (1) correctness, (2) authen-

ticity, and (3) verifiability. The definitions for correctness and authenticity are standard: correct-
ness enforces that a correctly garbled circuit, when evaluated, outputs the correct output of the
underlying circuit; authenticity enforces that the evaluator can only learn the output label that
corresponds to the value of the function. Verifiability [JKO13] allows one to check that the garbled
circuit indeed implements the specified plaintext circuit C.

We include the definitions of these properties for completeness.
Definition 3.1. (Correctness) A garbling scheme G is correct if for all input lengths m ≤ poly(n),
circuits C : {0, 1}m → {0, 1} and inputs x ∈ {0, 1}m, the following probability is negligible in n:

Pr
(

Ev(GC, {Xxj

j }j∈[m]) 6= ZC(x) : (GC, {X0
j , X

1
j }j∈[m], {Z0, Z1})← Gb(1n,C)

)
.

Definition 3.2. (Authenticity) A garbling scheme G is authentic if for all input lengths m ≤
poly(n), circuits C : {0, 1}m → {0, 1}, inputs x ∈ {0, 1}m, and all probabilistic polynomial-time
adversaries Adv, the following probability is negligible in n:

Pr
(

Adv(C, x,GC, {Xxj

j }j∈[m]) = Z1−C(x) : (GC, {X0
j , X

1
j }j∈[m], {Z0, Z1})← Gb(1n,C)

)
.

Definition 3.3. (Verifiability [JKO13]) A garbling scheme G is verifiable if for all input lengths m ≤
poly(n), circuits C : {0, 1}m → {0, 1}, inputs x, y ∈ {0, 1}m such that x 6= y and C(x) = C(y) = 1,
and all probabilistic polynomial-time adversaries Adv, the following probability is negligible in n:

Pr
(

Ev(GC, {Xxj

j }j∈[m])
6= Ev(GC, {Xyj

j }j∈[m])
: (GC, {X0

j , X
1
j }j∈[m])← Adv(1n,C)

Ve(C,GC, {X0
j , X

1
j }j∈[m]) = accept

)
.

t-KEA assumption. We recall the t-KEA assumption used in our implementation of extractable
linearly homomorphic signature from §7. The assumption was formulated in [BCCT12, BCC+14].
See these papers and [GS14] for a good discussion and further references related to this assumption
and its recent use. See also [AF07, Gro10] for a proof of security for t-KEA in the generic (bilinear)
group model. The formulation below is simplified by not including an auxiliary input that, if
present, is the same for both algorithms E and E′. We will use the plain acronym KEA when
referring to the 1-KEA assumption.
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Fcom runs between a sender and a receiver and works as follows.

1. On sender input (commit, sid, i,m), if no message of the form (sid, i, ·) is already stored, store
(sid, i,m) and send (committed, sid, i, |m|) to the receiver.

2. On sender input (reveal, sid, i), if a message of the form (sid, i,m) is stored, send
(reveal, sid, i,m) to the receiver and halt.

Figure 3.1: Functionality Fcom for commitment, taken mostly verbatim from Jawurek et al. [JKO13, Fig. 4].

Fcointoss runs between two parties Pi and Pj and works as follows.

1. On input (toss, sid), if no message of the form (sid) is stored, store (sid), otherwise choose
r←$ {0, 1}n, send (tossed, sid, r) to both parties, and halt.

Figure 3.2: Functionality Fcointoss for secure coin-tossing.

Definition 3.4. (t-KEA [BCCT12, BCC+14]) Let G be a cyclic group of prime order q. Consider
algorithms that on input t random elements g1, . . . , gt in G and t values gx1 , . . . , gxt for x ∈R Zq,
output a pair (f, f ′) in G2. Such an algorithm E is said to be a t-KEA algorithm if with non-
negligible probability (over the choice of inputs to E and E’s random coins) E outputs (f, f ′) such
that f ′ = fx. We say that the t-KEA assumption holds over G if for every efficient t-KEA algorithm
E in G there exists another efficient algorithm E′ for which the following property holds except for
a negligible probability: Let g1, . . . , gt, g

x
1 , . . . , g

x
t be an input to E and ρ a vector of random coins

for E on which E outputs (f, f ′ = fx) then on the same inputs (and random coins) E′ outputs a
vector (f, f ′ = fx, x1, . . . , xn) such that f = gx1

1 · · · gxn
n .

Auxiliary functionalities. Our construction makes use of two (standard) functionalities for
commitments (Fcom) and secure coin-tossing (Fcointoss). We recall them here for completeness; see
Figure 3.1 and Figure 3.2.

Anonymous channels. Our protocol assumes that the parties interact over anonymous channels.
In practice, the anonymity provided by the network used by the clients is the level of anonymity that
they achieve. For the purpose of proving security, we assume a perfect anonymous channel. In the
simple-UC framework [CCL15], which we use in this work, all messages to and from functionalities
have public headers consisting of the type of operation, and the private content itself; the public
header is revealed to the adversary but not the private content. However, the adversary is always
given the identity of the party sending the message to the functionality and the identity of the party
receiving the message from the functionality. Thus, in order to model anonymous channels, all
parties must send and receive together. (This actually makes sense since in principle, an adversary
who can view the entire network can break anonymity unless every party interacts in each round.
Nevertheless, here we use this simply as a way to model the requirements.) The Fanon functionality
appears in Figure 3.3. In the functionality all parties send a message to all other parties in each
round. Note that if a party has no message at all to send, or it only needs to send to some parties,
then it can simply use an empty message. We stress again that in practice not all parties need to
interact in each round; this is merely for the purpose of modeling.
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Fanon works with clients P1, . . . ,P` as follows:

1. Upon receiving a message (send, sid,Pi, (mi
1, . . . ,m

i
`)) from Pi, Fanon stores the message.

2. After Fanon receives a send message from every client P1, . . . ,P`, Fanon sends
(receive, sid,Pj , (m1

j , . . . ,m
`
j)) to client Pj for j = 1, . . . , `.

The public header of each message is (send, sid,Pi) and (receive, sid,Pj), respectively, for send and
receive messages. The private contents is the vector of messages.

Figure 3.3: Anonymous communications functionality Fanon.

Fabke runs with clients P1, . . . ,P` with attribute vectors χ1, . . . , χ` ∈ {0, 1}m, and servers S1, . . . ,St,
and works as follows:

1. Upon receiving (policy, sid,C) from some Sj , where C is either a circuit C′ : {0, 1}m → {0, 1}
or ⊥, send (policy, sid,Sj ,C) to all P1, . . . ,P`. If C = ⊥ then halt, and otherwise store
(policy, sid,Sj ,C).

2. Upon receiving (exchange, sid,Sj) from Sj and (exchange, sid,Sj ,Pi) from Pi, if some message
(policy, sid,Sj ,C) is stored, then:

• If C(χi) = 1 then choose k ∈R {0, 1}n and send (completed, sid, k) to Pi and Sj .
• If C(χi) = 0 then send (completed, sid,⊥) to Pi and Sj .

3. Upon receiving (abort, sid) from Sim, clear any message (policy, sid,Sj ,C) that is stored, send
(abort, sid) to Pi and Sj , and halt.

The public header of each message is: (policy, sid,Sj ,C), (exchange, sid,Sj), and (completed, sid); all
other content is private.

Figure 4.1: Attribute-based key exchange functionality Fabke with attribute privacy, unlinkability and
collusion resistance.

4 Security Definition

All of our definitions and proofs are in the simple-UC (SUC) model [CCL15]. As was shown in the
aforementioned work [CCL15], any protocol that is secure in the SUC framework is also secure in
the full UC framework.

Attribute-based key exchange. We present a functionality Fabke for attribute-based key ex-
change supporting attribute privacy, unlinkability, and collusion resistance. The functionality is
initialized with a set of attribute vectors {χi}, where χi corresponds to the attribute vector of
client Pi. The functionality begins by waiting for a message from a server Sj that contains a circuit
C representing Sj ’s policy. The functionality stores this information and broadcasts a notification
to all parties P1, . . . ,P` that a policy is available. Upon receiving a response by one of the parties,
say, Pi, the functionality proceeds as follows. If C(χi) = 1, the policy is satisfied and so the func-
tionality forwards a random key k to both Pi and Sj . If C(χi) = 0, then Fabke sends ⊥ to both Pi
and Sj . The full description of Fabke can be found in Figure 4.1.

Attribute privacy is captured by the fact that Sj never receives the attribute vector χi of
client Pi. Collusion resistance is handled by the fact that each party’s attribute vector is fixed
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Upon initialization with length parameter m, Fsetup runs (PP,mVK,mSK) ← Setup(1n,m) and
stores (mVK,mSK).

1. Upon receiving (generate, sid, χi) from player Pi, Fsetup checks if there exists a record (i, ·, ·, ·).
If so, Fsetup sends (result, sid,⊥) to Pi. Otherwise, Fsetup runs (pk, sk) ← GenCert(mSK, χi),
records (i, χi) and sends (result, sid,mVK, pk, sk) to Pi.

The public header of each message is: (generate, sid) and (result, sid); all other content is private.

Figure 4.2: Setup functionality Fsetup.

upon functionality initialization and cannot be changed. Thus, parties cannot use any attribute
vector that differs from their initial ones. This implies that collusions between parties to effectively
use a different attribute vector are impossible. Finally, unlinkability follows since the functionality
does not pass on the identity of the client Pi to the server Sj at any time. We note that we do
not provide server anonymity in our definition, since it does not seem to be required for the ABKE
setting. Thus, the server’s identity is revealed in the functionality definition.

We also introduce a functionality Fsetup for providing each party with the keys used in our
protocol construction; see Figure 4.2.

5 Attribute Selective Encryption

We introduce the notion of attribute selective encryption (ASE). ASE is related to ABE in the sense
that clients’ keys and decryption capabilities are related to the attributes they possess. In ASE a
plaintext is comprised of a set of messages, and a client’s credentials determine which subset can
be decrypted. In more detail, each client has an m-bit vector χ ∈ {0, 1}m representing a set of
attributes: χ[j] is set to 1 if and only if the client possesses the jth attribute. The client holds public

and secret keys associated with χ. Anyone can encrypt a set of 2m messages
(
x1,0 · · · xm,0
x1,1 · · · xm,1

)
under the client’s public key, and ASE enforces an OT-like property where the client can decrypt
using its secret key only one of each (xi,0, xi,1), depending on χ[j]. That is, the client decrypts the
messages x1,χ[1], . . . , xm,χ[m], and nothing else. We stress that ASE, unlike ABE, encrypts under a
specific client’s public key, and only that client can decrypt.

Besides the basic semantic security notion of ASE, we consider four additional properties: at-
tribute privacy, collusion resistance, unlinkability, and projectability. Each property on its own is
easy to achieve, yet the combination, especially that of collusion resistance and unlinkability, makes
the construction challenging.

Attribute privacy. This property requires that the public key pkχ hides attribute vector χ. That
is, publishing pkχ does not reveal which attributes the client holds. The following trivial solution
achieves attribute privacy: generate a set of 2m public keys and define the secret key to consist of
only one of the secret keys in each pair.

Collusion resistance. A set P of clients with attribute vectors X = {χi}Pi∈P and corresponding
keypairs must not be able to construct a keypair representing χ /∈ X (or χ representing a subset
of attributes not implied by X — cf. projectability below). Collusion resistance can be achieved
by combining the trivial solution from above with a secure signature scheme; i.e., by providing a
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signature on the set of the client’s public keys. This prevents clients from mixing and matching the
individual keys in their public keys, giving collusion resistance.

Unlinkability. Unlinkability is the inability to link between different uses of the same public key.
Specifically, we require that it be possible to randomize a public key using some algorithm Unlink so
that the pair (pkχ,Unlink(pkχ)) looks like two independent public keys. Without the requirement
of collusion resistance, unlinkability is easy to achieve (e.g., by using ElGamal keys). However,
as we are interested in collusion resistance we thus need to enable the creation of a signature on
the randomized key. For this we need to use homomorphic signatures. However, existing signature
schemes do not provide the capabilities that are needed for our schemes. Thus, combining signatures
with unlinkability is not straightforward.

Projectability. We require that given a keypair associated with a vector χ, one can generate a
keypair that is associated with any orthogonal projection of χ onto some subset S ⊆ [m]. We stress
that the subset S is explicit in the projection (otherwise, the encrypting party cannot know what
the projection is, and this could be used to obtain unauthorized decryptions). As each public key
needs to be certified, this implies that the certificate for the new key also needs to be derived from
the certificate of pkχ.

Committing encryption. We require that ASE encryption is committing.

5.1 Formal Definition

Let n denote the security parameter and let m be the length of the attribute vector. We assume
for simplicity that the client receives a public key on the entire attribute vector.

Definition 5.1. An attribute selective encryption (ASE) scheme with attribute privacy, collusion
resistance, and unlinkability is a tuple of probabilistic-polynomial time algorithms (Setup,GenCert,
Vrfy,Enc,Dec,Unlink,Project) as follows:

• Setup(1n,m) takes as input an attribute set size m, and outputs a master verification key
and a master secret key (mVK,mSK) along with public parameters PP. All the following
algorithms implicitly take PP as input.
• GenCert(mSK, χ) takes as input the master secret key and attribute vector χ ∈ {0, 1}m, and

outputs a certified keypair (pkχ, skχ) associated with χ.
• Vrfy(mVK, pkχ) takes as input the master verification key and a public key pkχ, and outputs 1

if and only if pkχ is a valid public key.

• Enc(pkχ, ~x) takes as input a public key pkχ, and a vector ~x, where ~x =
(
x1,0 · · · xm,0
x1,1 · · · xm,1

)
is a series of 2m messages. The function outputs an encryption c. For simplicity, we assume
that each xi,b is of length n (this suffices for our use).
• Dec(skχ, c) takes as input a secret key skχ and a ciphertext c, and outputs a set of m plaintexts

based on χ.
• Unlink(pkχ, skχ) takes as input a public key pkχ and its associated private key skχ, and

outputs a new keypair (pk′χ, sk′χ) for the same χ.
• Project(pkχ, skχ, S) takes as input a public key pkχ, its associated secret key skχ, and a set
S ⊆ {0, 1}m which defines χ′ by specifying which attributes of χ are to be preserved. Project
outputs a keypair (pk′χ′ , sk′χ′) on the projected attribute vector χ′.
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We require the following properties on the algorithms:

• (Correctness) For every (PP,mVK,mSK)← Setup(1n,m), χ ∈ {0, 1}m, (pkχ, skχ)← GenCert(mSK, χ),

and ~x =
(
x1,0 · · · xm,0
x1,1 · · · xm,1

)
, it holds that Dec (skχ,Enc(pkχ, ~x)) = (x1,χ1 , . . . , xm,χm).

• For every (pkχ, skχ), the output of Unlink(pkχ, skχ) is distributed identically to the output of
GenCert.
• For every (PP,mVK,mSK)← Setup(1n,m), χ ∈ {0, 1}m, and (pkχ, skχ)← GenCert(mSK, χ),

it holds that Vrfy(mVK, pkχ) = 1.
• The algorithm Enc is a committing encryption scheme.

Finally, we require the existence of the following two algorithms, which are used in our security
definitions:

• GenCert∗(mSK) takes as input the master secret key and outputs a certified keypair (pk, sk)
associated with both the 0 and 1 value of each attribute.
• Dec∗(sk, c) takes as input a secret key sk generated by GenCert∗ and a ciphertext c, and

outputs the full set of 2m plaintexts.

We call an ASE scheme projectable if:

• For every (PP,mVK,mSK) ← Setup(1n,m), χ ∈ {0, 1}m, (pkχ, skχ) ← GenCert(mSK, χ),
S ⊆ {0, 1}m, the output of Project(pkχ, skχ, S) is distributed according to GenCert(mSK, χ′)
for χ′ derived according to S.
• Correctness holds for every projected attribute vector.

Having defined the syntax, we now define security. We define this via experiments between a
challenger C and an adversary Adv for an ASE scheme π.

Collusion resistance. Our collusion resistance experiment guarantees that players can only
obtain decryptions authorized by their attribute vectors. The adversary Adv is given oracle access
to GenCert in order to model Adv corrupting multiple parties and learning their attribute vectors.
Eventually, Adv sends a public key to C, who responds with a random plaintext ~x encrypted under
this public key. The adversary Adv responds with a set of potential plaintext messages. If some
subset of this set corresponds to an attribute vector (or any of its projections) that were not queried
by Adv to GenCert, then Adv wins.

The reason we need to define collusion resistance in this way is that when proving security of
our ABKE scheme, we extract the plaintext through the adversary’s calls to the random oracle.
Namely, the plaintext messages xi,b are input into the random oracle by the adversary. However,
the adversary is not limited to just inputting the proper messages to the random oracle, and thus
we need to consider the set of all queries to the random oracle, a subset of these which may contain
the extracted plaintext.

Note that it is easy for the challenger to check whether such a subset exists as follows. It checks
whether each message in M is a valid plaintext message xi,b. Given this set of valid plaintext
messages, the challenger can extract an attribute vector (based on the (i, b) values) and check
whether such an attribute vector is unauthorized as per the definition.

Experiment Exptcollude
π,Adv (1n,m):

1. C computes (PP,mVK,mSK)← Setup(1n,m) and sends PP and mVK to Adv.
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2. Adv, with oracle access to GenCert(mSK, ·), outputs a public key pk. Let X be the set of
attribute vectors Adv used as input to its oracle.

3. C chooses a random plaintext ~x, as specified by the ASE syntax, and sends Enc(pk, ~x) to Adv.
4. Adv outputs a set M of potential plaintext messages.
5. The output of the experiment is 1 (and Adv wins) if and only if the following conditions all

hold:
(a) Vrfy(mVK, pk) = 1;
(b) There exists some subset M′ ⊆M such that either (1) the strings in M′ correspond to
{xi,χ[i]}i∈[m] for some attribute vector χ, or (2) there exist two strings s, s′ ∈ M′ such
that s = xi,0 and s′ = xi,1 for some i ∈ [m].

(c) χ /∈ X , and χ is not a projection of any vector from X .

Note that Adv does not have oracle access to GenCert after Step 3. This models the fact that Fabke
assumes a static setup after which the clients and their attributes are fixed.
Attribute privacy. We now consider an adversary who aims to infer χ from pkχ. This fol-
lows a standard indistinguishability-based formulation. At a high level, the adversary is trying to
distinguish a public key generated for some attribute vector χ with an “all-powerful” public key
generated by GenCert∗. Note that the inability to distinguish these two settings implies the inability
to distinguish between any two attribute vectors by a simple hybrid argument.
Experiment Exptatt-priv

π,Adv (1n,m):
1. C computes (PP,mVK,mSK)← Setup(1n,m) and sends PP and mVK to Adv.
2. Adv, with oracle access to GenCert(mSK, ·), sends attribute vector χ ∈ {0, 1}m to C.
3. C chooses b ∈R {0, 1}, and proceeds as follows:

• If b = 0, compute (pk, sk)← GenCert(mSK, χ) and send pk to Adv.
• If b = 1, compute (pk, sk)← GenCert∗(mSK) and send pk to Adv.

4. Adv outputs a bit b′.
5. The output of the experiment is 1 (and Adv wins) if and only if b′ = b.

Unlinkability. Finally, we define an experiment to formalize the property of unlinkability. The
definition is relatively weak in that we only need to prevent an adversary from determining whether
a keypair has been run through Unlink or not. However, this is sufficient for our purposes. In
particular, unlinkability of keys used in our ABKE protocols will hold due to the conjunction of
the guarantees of both attribute privacy and unlinkability.
Experiment Exptlink

π,Adv(1n,m):
1. C computes (PP,mVK,mSK)← Setup(1n,m) and sends PP and mVK to Adv.
2. Adv with oracle access to GenCert(mSK, ·) eventually sends χ to C.
3. C computes (pk0, sk0)← GenCert(mSK, χ) and (pk1, sk1)← Unlink(pk0, sk0). C chooses b ∈R
{0, 1} and sends (pkb, skb) to Adv.

4. Adv outputs b′.
5. The output of the experiment is 1 (and Adv wins) if and only if b′ = b.
Note that we cannot simply set Unlink to the identity function as we need the output distribution

of Unlink to be the same as that of GenCert, as required in Definition 5.1.
Security definition. We are now ready to define security.
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Definition 5.2. A (projectable) attribute selective encryption scheme π with attribute privacy,
collusion resistance, and unlinkability is secure if for every probabilistic-polynomial time adversary
Adv there exists a negligible function µ such that for every n and every Y ∈ {att-priv, link} it holds
that

Pr
[
ExptY

π,Adv(1n,m) = 1
]
≤ 1

2 + µ(n)

and
Pr
[
Exptcollude

π,Adv (1n,m) = 1
]
≤ µ(n).

ASE Instantiations. We present two schemes realizing Definition 5.2 in §8 and §9.

6 ABKE from ASE

We now construct ABKE for public policies by integrating ASE with garbled circuit-based zero-
knowledge proofs [JKO13] and key agreement. Jawurek et al. [JKO13] observed that for zero-
knowledge proofs, the verifier-constructed circuit may be opened to the prover post-evaluation
since it has no private data. Carefully arranging the prover’s and verifier’s commitments and
openings, they ensure that neither can cheat, and only a single garbled circuit needs to be garbled,
sent, and evaluated. Specifically, their protocol proceeds by the server using a sender-committing
oblivious transfer (OT) to transfer the input-wire labels to the client. Given the garbled circuit
and input-wire labels, the client can evaluate the garbled circuit and commit the output-wire label
to the server. Now, the server can decommit to its inputs of the OT, allowing the client to verify
that the garbled circuit was constructed correctly. If so, the client can open the commitment to its
output and the server can verify that the client indeed computed the correct output-wire label.

We adapt this protocol to realize Fabke by replacing sender-committing OT with ASE. That
is, instead of the parties running the OT step in Jawurek et al.’s protocol, the client sends its
(randomized) ASE public key to the server, who encrypts each input-wire label of the garbled
circuit with ASE, guaranteeing that the client is only able to decrypt labels corresponding to its
attribute vector. Next, the client evaluates the garbled circuit and commits to the output-wire
label it computed. The server can then open all the encrypted values, allowing the client to verify
the circuit was correctly garbled (before the client reveals anything). If the circuit is correct, the
client decommits the output-wire label it computed, allowing the server to verify that indeed the
client satisfied the policy. The parties then run a secure coin-tossing protocol to derive the shared
key. See Figure 6.1 for the full protocol description.

Garbling scheme for ABKE. For us to successfully reduce to the collusion experiment in our
ASE definition, we need to extract the plaintext from a malicious client to feed to the challenger in
the experiment. This plaintext corresponds to the input-wire labels of the garbled circuit. Thus,
we need some way to do this extraction. We do this by using a random oracle: we can monitor
the inputs to the random oracle and use these as “potential” plaintexts which we can feed to the
challenger in the collusion experiment. Thus, we construct a simple modified garbling scheme which
allows us to do this extraction.

ABKE garbling scheme GABKE = (GbABKE,EvABKE,VeABKE) for a circuit C with m inputs.
GbABKE is defined as follows.
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The protocol Πabke is between server S and client P with attribute vector χ. We assume a setup
where each client Pi sends (generate, sid, S, χi) for some set S ⊆ [m] and attribute vector χi to
Fsetup, receiving (result, sid,mVK, pk, sk) in response. We assume all messages are sent/received
through the Fanon functionality; for simplicity we omit the use of this functionality in the description
below. Also for simplicity, we assume the evaluated policy C uses all m attributes (otherwise, a
corresponding Project operation can be applied to the party’s key).

1. S broadcasts policy circuit C to all parties. If C is not a valid policy then P outputs ⊥.

2. S runs (GC, {X0
j , X

1
j }j∈[m], {Z0, Z1})← GbABKE(1n,C).

3. P computes (pk′, sk′)← Unlink(pk, sk) and sends pk′ to S.

4. S runs Vrfy(mVK, pk′). If the output is zero then S aborts; otherwise, S sets ~x =
{X0

j , X
1
j }j∈[m], computes c← Enc(pk′, ~x) and sends c and GC to P.

5. P computes ~m ← Dec(sk′, c), where ~m = X̂
χ0

j

0 , . . . , X̂
χm

j
m and computes Z ←

EvABKE(GC, {X̂χi
j

i }i∈[m]); P sets Z := ⊥ if EvABKE fails.

6. P sends (commit, sid, 1, Z) to Fcom, which sends (committed, sid, 1, |Z|) to S.

7. S sends the wire labels {Xb
i } and the randomness r used in the encryption to P, who verifies

that the encryptions match the wire labels and then computes VeABKE(C,GC, {X0
i , X

1
i }i∈[m]).

If either the wire labels did not match the encrypted values or the output of VeABKE is reject
then P outputs⊥. Likewise, if C(χj) = 0 then P outputs⊥. Otherwise, P sends (reveal, sid, 1)
to Fcom, which sends (reveal, sid, 1, Z) to S.

8. S checks that Z = Z1; if not, it sends ⊥ to P and halts. Otherwise, the parties both send
(toss, sid) to Fcointoss, receive (tossed, sid, k), and output k.

Figure 6.1: Protocol Πabke realizing Fabke in the (Fcom,Fcointoss,Fanon)-hybrid model.

1. Generate 2m random labels Xb
i ∈R {0, 1}n, where X0

i and X1
i correspond to input wire i.

The set of all Xb
i form the input-wire labels to be encrypted. Let hbi := RO(i‖b‖Xb

i ), where
RO is a random oracle.

2. Using any secure garbling scheme Gb, generate the garbled circuit, including the 2m input-
wire labels W b

i .
3. Append to the generated garbled circuit the following input-wire translation tables: for wire

i, append
(

Ench0
i
(W 0

i )
Ench1

i
(W 1

i )

)
. Set the input-wire labels to be the set {Xb

i } and the output-wire

labels to be those set by Gb.

The EvABKE and VeABKE functions are defined naturally from Ev, Ve, and GbABKE.

Clearly, the scheme allows evaluation and verification in the same manner as the underlying
garbling scheme once a label per each wire is obtained. At the same time, any party evaluating a
garbled circuit must make a call to the random oracle per input-wire label in order to learn the
“real” underlying label for the garbled circuit. Thus, the underlying garbling scheme Gb cannot be
decrypted without a random oracle evaluation on an input-wire label of GbABKE, which is exactly
the property we need for the reduction to the collusion experiment.

Theorem 6.1. Assume that the encryption scheme used in Πabke is a secure attribute selective
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encryption scheme. Then Πabke securely computes Fabke in the (Fcom,Fcointoss,Fanon)-hybrid model,
in the random-oracle model.

Proof. We consider an adversary Adv that corrupts any number of parties. While we allow for
arbitrary corruptions among parties, there are only two interesting cases: a (potentially colluding)
corrupted server talking to an honest client, and an honest server talking to a (potentially colluding)
corrupted client. We construct simulators for each of these cases.

Honest client: We construct a simulator Sim for an adversary corrupting servers {Sj}j∈J and
clients {Pi}i∈I as follows:

1. Upon activation by Z, Sim sends (corrupt,Sj) to Sj for j ∈ J and (corrupt,Pi) for i ∈ I.

2. Upon receiving C from Adv, Sim proceeds as follows. If C is not a valid policy circuit, then
Sim sends (policy, sid,⊥) to Fabke and halts as an honest client would, outputting whatever
Adv outputs. Otherwise, Sim sends (policy, sid,C) to Fabke.

3. Upon receiving (policy, sid) from Fabke, Sim proceeds as follows. It constructs a fake keypair
(pk, sk)← GenCert∗(mSK), computes (pk′, sk′)← Unlink(pk, sk), and sends pk′ to Adv.

4. Upon receiving c and GC from Adv, Sim computes
(
X0

1 · · · X0
m

X1
1 · · · X1

m

)
← Dec∗(sk′, c), and

checks that the garbled circuit sent by Adv indeed garbles C. If so, Sim sets cheat := 0 and
otherwise sets cheat := 1. Sim sends (committed, sid, 1, n) to Adv.

5. Upon receiving wire labels {Xb
i } and randomness r from Adv, Sim proceeds as follows. If

cheat = 1 then Sim sends (abort, sid) to Fabke and outputs whatever Adv outputs. Otherwise,
Sim sends (exchange, sid,Sj) to Fabke, receiving either (completed, sid, k) or (completed, sid,⊥).
If Sim receives k then it sends (reveal, sid, 1, Z1) to Adv and otherwise it halts, outputting
whatever Adv outputs.

6. Upon receiving (toss, sid) from Adv, Sim sends (tossed, sid, k) to Adv and halts, outputting
whatever Adv outputs.

We now show that the ideal and hybrid worlds are computationally indistinguishable. We do so by
a series of hybrids.

1. Hybrid1. Sim acts as an honest client would.

2. Hybrid2. Upon receiving C from Adv, Sim checks whether C is a valid policy circuit. If so,
Sim sends (policy, sid,C) to Fabke, and otherwise Sim sends (policy, sid,⊥) and halts.
These two hybrids are perfectly indistinguishable, as the behavior of Sim communicating with
Fabke versus an honest party is exactly the same from the point of view of Z.

3. Hybrid3. Sim constructs a “fake” keypair (pk, sk)← GenCert∗(mSK) and sends pk to Adv.
These two hybrids are computationally indistinguishable by the attribute privacy property of
the ASE scheme. Namely, if there exists an environment Z distinguishing these two hybrids
then we can construct an adversary Adv′ that wins the Exptatt-priv

π,Adv′ (1n,m) experiment as
follows.
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Upon receiving PP and mVK, Adv′ proceeds as follows. Adv′ runs Z, learning all the attribute
vectors of each client. For each party that Z corrupts, Adv′ makes the appropriate call to
GenCert(mSK, ·). Next, Adv′ sends χ, where χ is the attribute vector of the honest client,
to C. Otherwise, Adv′ runs Z as normal and outputs whatever Z outputs.
Note that if C chooses b = 0 then this is exactly Hybrid2, whereas if b = 1 then this is exactly
Hybrid3. Thus, Adv′ succeeds with the same probability that Z distinguishes the two hybrids,
and thus the two hybrids are indistinguishable.

4. Hybrid4. Sim computes (pk′, sk′)← Unlink(pk, sk) and sends pk′ to Adv.
These two hybrids are computationally indistinguishable by the unlinkability property of the
ASE scheme. Namely, if there exists an environment Z distinguishing these two hybrids then
we can construct an adversary Adv′ that wins the Exptlink

π,Adv′(1
n,m) experiment as follows.

Upon receiving PP and mVK, Adv′ proceeds as follows. Adv′ runs Z, learning all the attribute
vectors of each client. For each party that Z corrupts, Adv′ makes the appropriate call to
GenCert(mSK, ·). Next, Adv′ sends χ, where χ is the attribute vector of the honest client,
to C. Otherwise, Adv′ runs Z as normal and outputs whatever Z outputs.
Note that if C chooses b = 0 then this is exactly Hybrid3, whereas if b = 1 then this is exactly
Hybrid4. Thus, Adv′ succeeds with the same probability that Z distinguishes the two hybrids,
and thus the two hybrids are indistinguishable.

5. Hybrid5. Sim uses Dec∗ to fully decrypt the ciphertext and uses the decrypted values to check
whether the garbled circuit is a correct garbling of C. If so, Sim sets cheat := 0 and otherwise
sets cheat := 1. Now, upon receiving labels and randomness from Adv, if cheat = 1 then Sim
sends (abort, sid) to Fabke and otherwise Sim sends (exchange, sid,Sj) to Fabke.
These two hybrids are computationally indistinguishable by the verifiability property of the
garbling scheme.

6. Hybrid6. If Sim receives (completed, sid, k) from Fabke then it sends (reveal, sid, 1, Z1), where
Z1 is the one-bit output-wire label for the garbled circuit sent by Adv.
These two hybrids are perfectly indistinguishable due to the use of Fcom.

7. Hybrid7. Sim sends (tossed, sid, k) to Adv.
These two hybrids are perfectly indistinguishable, due to the use of Fcointoss and the fact that
k is chosen uniformly at random by Fabke.

As Hybrid7 is exactly the same as the simulator in the ideal world, we conclude that the real and
ideal worlds are computationally indistinguishable.

Honest server: We construct a simulator Sim for an adversary corrupting servers {Sj}j∈J and
clients {Pi}i∈I as follows:

1. Upon activation by Z, Sim sends (corrupt,Pi) to Pi for i ∈ I, receiving attribute vectors
{χi}i∈I .

2. Sim receives (policy, sid,Sj ,C) from Fabke, and sends C to Adv.

3. Upon receiving pk′ from Adv, Sim acts as an honest server would, sending c and GC to Adv.
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4. Upon receiving (commit, sid, 1, Z) from Adv, Sim proceeds as follows. If Z equals the one-
bit output-wire label of GC, Sim finds some i ∈ I such that C(χi) = 1; if no such i ex-
ists, Sim outputs fail. Otherwise, it submits (exchange, sid, Sj ,Pi) to Fabke, receiving back
(completed, sid, k).
If Z equals the zero-bit output-wire label of GC, Sim finds some i ∈ I such that C(χi) = 0;
if no such i exists, Sim outputs fail. Otherwise, it submits (exchange, sid,Sj ,Pi) to Fabke,
receiving back (completed, sid,⊥), and halts, outputting whatever Adv outputs.
If Z is not equal to either the one-bit or zero-bit output-wire label, Sim sends (abort, sid) to
Fabke, receiving back (abort, sid), and halts, outputs whatever Adv outputs.

5. Upon receiving (toss, sid) from Adv, Sim sends (tossed, sid, k) to Adv and halts, outputting
whatever Adv outputs.

We now show that the ideal and real worlds are computationally indistinguishable. We do so by a
series of hybrids.

1. Hybrid1. Sim acts as an honest server would.

2. Hybrid2. Sim receives (policy, sid,Sj ,C) from Fabke, and sends C to Adv.

3. Hybrid3. Sim receives (commit, sid, 1, Z) from Adv and proceeds as follows. If Z equals the one-
bit output-wire label of the garbled circuit, then Sim finds some i ∈ I such that C(χi) = 1,
outputting fail if no such i exists.
These two hybrids are computationally indistinguishable. They differ only in that in Hybrid2
the simulator Sim outputs fail if it cannot find an attribute vector χi for i ∈ I such that
C(χi) = 1. The only way this could happen is if Adv was able to obtain an output-wire label
mapping to 1 while not having credentials for an attribute vector χ such that C(χ) = 1.
Note that by the authenticity property of the garbling scheme, Adv must have a set of valid
input-wire labels that evaluate to 1. We can use this fact to construct an adversary Adv′ that
wins the Exptcollude

π,Adv′ (1
n,m) experiment.

Upon receiving PP and mVK, Adv′ runs Z and simulates Fsetup to use PP and mVK. For each
party corrupted by Z, Adv′ makes the appropriate oracle query to GenCert(mSK, ·). Otherwise,
Adv′ acts as an honest server would. Let pkχ be the public key sent by Adv. If Vrfy(mVK, pkχ)
fails then Adv′ aborts. Otherwise, pkχ is a valid public key for attribute χ which Adv′ knows
(as it controls the queries to GenCert(mSK, ·)). Adv′ submits pkχ to C, receiving ciphertext c.
Adv′ then uses the matching secret key (which it learned as output from the GenCert(mSK, ·)
queries) to decrypt c, learning {Xχ[j]

j }j∈[m]. It then creates a garbled circuit GC with random
labels except those extracted from c. Adv′ then sends c and GC to Adv, and then monitors
the calls to the random oracle made by Adv until it receives (commit, sid, 1, ·) from Adv. It
takes all random oracle calls of the form (i‖b‖Xb

i ), extracts Xb
i , and sends the set M of all

X’s to C.
Note that if Adv′ succeeds, then it must be the case that M contains some subset which
corresponds to valid plaintext messages for some attribute vector not known to Z, and thus the
probability of Adv′ succeeding is equal to that of Z distinguishing, completing the reduction.
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4. Hybrid4. If Z equals the zero-bit output-wire label of the garbled circuit, then Sim finds some
i ∈ I such that C(χi) = 0, outputting fail if no such i exists.
These two hybrids are computationally indistinguishable using a similar reduction to the
collusion experiment as detailed in the previous hybrid.

5. Hybrid5. If Z is not equal to either the one-bit or zero-bit output-wire label, Sim sends
(abort, sid) to Fabke.
These two hybrids are perfectly indistinguishable, as the view from the point of view of Z is
equivalent.

6. Hybrid6. Sim sends (tossed, sid, k) to Adv.
These two hybrids are perfectly indistinguishable due to the use of Fcointoss and the fact that
k is chosen uniformly at random.

As Hybrid6 is exactly the same as the simulator in the ideal world, we conclude that the real and
ideal worlds are computationally indistinguishable, completing the proof.

7 ELH Signatures

We introduce the notion of extractable linearly homomorphic (ELH) signatures and show an imple-
mentation using the Boneh-Lynn-Shacham (BLS) [BLS04] signature scheme. ELH signatures play
a central role in our ASE constructions detailed in §8 and §9.

Definition 7.1. (Linearly homomorphic signatures) Let Sig = (Sign,Vrfy) be a signature scheme
over a space of messages consisting of elements of a group G of prime order q, with signatures also
lying in this group. We say that Sig is linearly homomorphic over G if for any two elements g1, g2 ∈ G,
it holds that Sign(g1g2) = Sign(g1)Sign(g2). The scheme is called unforgeable if no probabilistic
polynomial-time algorithm given n pairs (gi,Sign(gi)) for random elements g1, . . . , gn ∈ G and an
additional random independent element g ∈ G, has non-negligible probability to output Sign(g).

Note that being linearly homomorphic implies that given n signed elements g1, . . . , gn ∈ G, one
can compute (without the signing key) the signature of any linear combination (in the exponent) of
g1, . . . , gn; namely, for any x1, . . . , xn ∈ Zq we have that Sign(gx1

1 · · · gxn
n ) = Sign(g1)x1 · · · Sign(gn)xn .

We note that the requirement of the signatures lying in the same group as the message space is
not essential but it simplifies notation by using the same group operation for group elements and
signatures, and is a property of our implementation using BLS signatures. This notion can be seen
as a one-dimensional case of homomorphic signatures for linear spaces [BFKW09, GKKR10, BF11].
Also note that the unforgeability property holds only with respect to random messages (i.e., random
elements in the group).

We now define the property of extractability. It captures the intuition behind linearly homo-
morphic signatures as allowing limited malleability. That is, anyone can generate signatures on a
value g without possessing the signing key as long as it knows a representation of g as a linear com-
bination (in the exponent) of previously signed elements. Extractability formalizes this knowledge
similarly to existing knowledge extractability notions. In spite of being intuitively appealing we
are not aware of this form of homomorphic signatures being defined in prior work.
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Definition 7.2. (Extractable linearly homomorphic signatures) Let G be a cyclic group of prime
order q and Sig = (Sign,Vrfy) a linearly homomorphic signature scheme over G. Consider algo-
rithms that on input t random elements g1, . . . , gt in G and corresponding signatures Sign(g1), . . . ,
Sign(gt), output a pair (f,Sign(f)) for f ∈ G with non-negligible probability (over the choice of
gis and the algorithm’s random coins). We say that Sig is an extractable linearly homomorphic
(ELH) signature scheme if for every polynomial-time algorithm F as above there exists another
polynomial-time algorithm F ′ for which the following property holds, except for with negligible prob-
ability: Let {gi, Sign(gi)}i∈[t] be an input to F on which F outputs (f, Sign(f)), then on the same
inputs (and internal random coins) F ′ outputs a vector (f, Sign(f), x1, . . . , xn) with xi ∈ Zq such
that f = gx1

1 · · · gxn
n .

Interestingly, extractability in linearly homomorphic signatures implies unforgeability as shown
next.

Lemma 7.3. Let Sig = (Sign,Vrfy) be an ELH signature scheme over a group G where the discrete
logarithm problem is hard. Then Sig is unforgeable.

Proof. Let F be a polynomial-time algorithm against Sig that is given signatures on elements
g1, . . . gn ∈R G and is also given an additional random independent element g ∈ G. Assume F
outputs Sign(g), then by extractability we get values x1, . . . , xn ∈ Zq such that g = gx1

1 · · · gxn
n . By

Lemma 7.4, finding such a representation is infeasible under the hardness of discrete logarithm.

Lemma 7.4. Under the hardness of the discrete log over group G, given g1, . . . gn, g ∈R G \ {1}, it
is infeasible to find x1, . . . , xn ∈ Zq such that g = gx1

1 · · · gxn
n . Similarly, finding two representations

Πn
i=1g

xi
i = Πn

i=1g
yi
i such that there exists an i for which xi 6= yi is also infeasible.

Proof. Given two random generators g, h ∈ G, we find the discrete log of h with respect to g by
setting gi = h for random i, 1 ≤ i ≤ n, and choosing the other gi’s as known random powers of
g. Given values x1, . . . , xn ∈ Zq such that g = gx1

1 · · · gxn
n and xi 6= 0, one derives x such that

h = gx.

7.1 Implementation of ELH Signatures

We now demonstrate an implementation of an ELH signature scheme using the Boneh-Lynn-
Shacham (BLS) [BLS04] signature scheme, which we first recall.

Boneh-Lynn-Shacham (BLS) signature scheme. The scheme assumes groups (G1, G2, GT )
of prime order q with a bilinear pairing e : G1 × G2 → GT where the co-CDH assumption holds
(i.e., given g ∈ G1, h, h

x ∈ G2, finding gx is infeasible). The public/private keypair is (hx, x), where
x ∈R Zq, and h ∈R G2. A signature on message m is computed as H(m)x where H is a hash
function mapping messages to random elements in G1. Verification of a signature σ on message m
under public key y = hx is performed by checking the following equality: e(σ, h) = e(H(m), y).

BLS∗ signature scheme. We define the BLS∗ scheme to be the same as BLS but the message
space is the group G1 itself and no hash function is applied to the messages (this is sufficient for
our application that only requires unforgeability on random group elements).

The following lemma shows that BLS∗ leads to an implementation of ELH signatures under the
t-KEA assumption [BCCT12, BCC+14].
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Lemma 7.5. Under the t-KEA assumption over group G1, BLS∗ is an unforgeable extractable
linearly homomorphic signature scheme.

Proof. The scheme is obviously linearly homomorphic over G1. We show it is extractable under
the t-KEA assumption over group G1. Denote the BLS∗ signing operation by Sign and let F
be an algorithm that on input t random elements g1, . . . , gt in G1 and corresponding signatures
Sig(gi), i = 1, . . . , t, outputs a pair (g,Sign(g)) for g ∈ G1 with non-negligible probability. Since
Sign(g) = gx, we have that F , on input g1, . . . , gt, g

x
1 , . . . , g

x
t , outputs a pair (g, gx) with non-

negligible probability. Hence, by t-KEA there exists an extractor F ′ that on the same input (and
coin tosses) of F outputs a vector (g, gx, x1, . . . , xn) such that g = gx1

1 · · · gxn
n , except for negligible

probability. This is exactly the defining condition for ELH extractability. Unforgeability (over G1)
follows from the extractability property (cf. Lemma 7.3).

8 ASE Using IBE

We now construct an attribute selective encryption scheme from identity based encryption (IBE)
and extractable linearly homomorphic (ELH) signatures. The security of the protocol is based on
the security of the underlying IBE and ELH signature schemes. In addition, we require that the
master public key of the IBE scheme be from a group so that it can be rerandomized and that
the ELH signature scheme works over the same group. ASE can be constructed from IBE in a
generic way if it satisfies these two additional requirements. Both the Boneh-Franklin [BF01] and
Boneh-Boyen [BB04] IBE schemes can be used and they yield different efficiency and computational
requirements from the parties. However, this presentation will not be generic but rather at points
we will be specific to the Boneh-Franklin IBE scheme.

We recall the security definition for IBE schemes as well as the Boneh-Franklin scheme in
Appendix A.

We first give a high level overview of how we use the IBE scheme in our construction. Recall
that in an IBE scheme a central authority chooses a master secret key and publishes the correlated
master public key. The master public key is used as part of the encryption key for all clients. Each
client has an identity which is known to all and in addition each client receives a private secret key
that is computed using the master secret key and its identity. A message is encrypted using the
master public key and the identity of the client for whom the message is intended. The client uses
its secret key to decrypt.

The first switch that we make in our scheme is that the “identities” are associated with the
attributes. Thus, if a client has an attribute then it receives the secret key relating to that attribute.
However, that clearly is not sufficient as collusions can take place. A client receiving the secret
key for attribute j1 can collude with another client who has the secret key for j2, enabling them to
decrypt an unauthorized set of messages. Thus, we introduce our second switch which is that the
center creates a “personalized” public master key for each client (by choosing a different master
secret key) and modifies the secret keys of the client to relate to the personalized public key. Now
this additional change prevents the clients from colluding as their secret keys relate to different
master public keys. While this is the basic intuition, there are additional details that need to be
added to satisfy all the requirements, which we describe below.

To present our scheme, we first recall the general construction of IBE and define its terminology.
An IBE scheme is comprised of four parts: setup, key generation, encryption, and decryption.
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• SetupIBE(1n): Takes as input the security parameter. We split the setup into two parts: Part 1
outputs the public parameters PPIBE, and Part 2 outputs the master public key mpkIBE and
the master secret key mskIBE. The public parameters are common to all key pairs, and are
implicitly given to all algorithms below.
• KeyGenIBE(mskIBE, ID): Takes as input the master secret key and the identity ID of the client,

and outputs the client’s secret key skIBE.
• EncIBE(mpkIBE,m, ID): Takes as input the master public key, the plaintext message m, and

the identity of a client, and outputs the ciphertext c.
• DecIBE(c, skIBE): Takes as input the ciphertext and the client’s secret key and outputs the

message.
Here we informally state that encrypting with IBE is a secure encryption.
We are now ready to present our construction. Our IBE-ASE scheme is defined as follows.
• Setup(1n,m):

1. Run Part 1 of SetupIBE, receiving PPIBE.
2. Choose 2m random strings, gj,0, gj,1, for j ∈ [m], where gj,0 corresponds to not having

attribute j, and gj,1 corresponds to having the attribute. These will be the “identities”
of the system.

3. Run a key generation protocol for an ELH signature scheme, receiving and setting mVK
to the public verification key and mSK to the secret signing key.

4. Output PP := (PPIBE, {gj,0, gj,1}j∈[m]), mVK, and mSK.
• GenCert(mSK, χ):

1. Run Part 2 of SetupIBE, creating mskIBE and mpkIBE. Set pkχ := (mpkIBE, σ = Sign(mpkIBE)).
In what follows we sometimes abuse notation and refer to pkχ only as the public key
and sometimes as both the public key and its signature.

2. For each attribute j ∈ [m], call KeyGenIBE on input mskIBE and identity gj,χ[j]. This
returns a secret key skj .

3. Set the client’s secret key to skχ := (sk1, . . . , skm).
Note that now we can discard the master secret key mskIBE. We use the signature to com-
pensate for the fact that mpkIBE is not one of the public parameters of the system.
• Vrfy(mVK, pkχ): Output a bit attesting to the validity of the public key pkχ by checking the

signature σ.
• Enc(pkχ, {xj,0, xj,1}j∈[m]):

1. Verify that Vrfy(mVK, pkχ) = 1. If not then abort.
2. For j ∈ [m], compute cj,0 ← EncIBE(pkχ, xj,0, gj0) and cj,1 ← EncIBE(pkχ, xj,1, gj1).
3. Output c := c1,0, c1,1, . . . , cm,0, cm,1.

• Dec(skχ, c): Output xj := DecIBE(cj,χ[j], skχ[j]) for all j ∈ [m].
• Unlink(pkχ, skχ): In our implementation using the Boneh-Franklin IBE scheme, the public

key pkχ has the form gz for some value z. We implement the unlink operation by raising pkχ
to a random exponent s. All other values are also raised to s, including the ELH signature
and every component of the secret key.
• Project(pkχ, skχ, S): The project function in the IBE case is trivial; all that needs to be done

is to remove from the secret key the elements whose index is not in the set S. The public key
remains the same.
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• GenCert∗(mSK): Exactly as in GenCert, except now the secret key sk contains secret keys skj,b
for all j ∈ [m] and b ∈ {0, 1}.
This can be trivially achieved in two manners: first, by giving additional secret keys exactly
in the format as given in GenCert or even simpler by just giving x to the client.
• Dec∗(sk, c): Same as Dec, except here the full set of 2m plaintexts are returned. This is

completely straightforward, as the secret key now includes decryption keys for all messages.

Theorem 8.1. The above scheme is a secure ASE scheme when instantiated with the Boneh-
Franklin IBE and an ELH signature scheme. The ELH signature scheme needs to work over the
same group G, as defined in Boneh-Franklin.

Proof. We prove each property in turn.
Collusion Resistance. Given an adversary Adv that can win in Exptcollude

π,Adv , we can construct an
adversary B that breaks the underlying IBE scheme.
First, B chooses an index i ∈ [q] where q is the number of queries χ that Adv can ask, and an
index ` ∈ [m]. B will succeed if Adv creates a collusion with client i on attribute `.
B starts constructing the view for Adv as follows: it receives (PPIBE = (G,G1, g,H),mpkIBE =
gx) from C, the challenger of the IBE system. It generates key pair (mVK,mSK) for the ELH
signature scheme, and chooses “identities” of the attributes g1,0, g1,1, . . . , gm,0, gm,1 and sends
(PPIBE,mVK, {gj,b}j∈[m],b∈{0,1}) to Adv. It sets pki, the public key response for query i that
Adv will ask, to be mskIBE, i.e., pki = mpkIBE = gx. We also call this element gxi .
For all queries χi′ for i′ 6= i, B runs GenCert(mSK, χi′) and provides Adv with the pki′ = gxi′

and ski′ .
For the ith query χ, it already set the public above and B will query the IBE challenger, C,
as follows. For each χ[j], j ∈ [1..m] it sends as “id” the value gj,χ[j] and receives the secret
IBE key for that identity, skIBE[j]. It creates the response to the query χ setting the secret
key ski = skIBE[1], . . . , skIBE[m].
Now Adv send to B its challenge, a public key pk and the signature on this key. From pk, its
certificate and due to the ELH signatures B derives r1, . . . , rq such that pk = pkr1

1 · · · · · pk
rq
q .

If ri = 0 B announces failure as the ith key was not included in pk and thus it will not be
able to drive a break for the IBE. This happens with probability 1/q.
Otherwise, B prepares its response to Adv in the following way. It chooses messages xj,0, xj1
for j ∈ [m] and calls Enc(pk, {xj,0, xj,1}j∈[m]) and receives c1,0, c1,1, . . . , cm,0, cm,1. Recall that
B chose attribute ` as the location to use for breaking the IBE scheme and let b = χ[`]. Thus,
to complete the creation of the challenge B turns to C and provides the identity g`,1−b and
two messages m0 and m1. It receives a cipher text c of either m0 or m1 denote it by M .
Given that this is a Boneh-Franklin IBE c is of the format: (gr,M · e(gxi , H(g`,1−b))r).
It creates the cipher for position c`,1−b by modifying the first element in the encryption c to
be (gr)1/ri = gr/ri the second element remains the same. It substitutes this pair instead of
what it computed above.
Adv completes the attack and returns a set of plaintexts as the decryptions of the ciphertexts
provided by B. The probability of failure in this part if 1/2m that Adv did not decrypt the
message in location `, 1− b.
If all plantexts are known to B from the set xj,0, xj1 for j ∈ [m] it declares failure.
Otherwise, for the value, D, that is not from the set it computes D · e(gr, H(g`,1−b))R/ri to
receive M . It checks whether M = m0 or m1. If there are multiple unrecognized values for
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some reason, then this computation can be repeated for all of them.
The reason that the above computation yields the correct value is that: y = Σq

i=1xiri. This
value is only known implicitly as B does not know xi. However, it does know the value
R = Σj 6=ıxjrj . Adv computed the decryption of the message based on the public key pk = gy

whose correlated secret key is (H(g`,1−b))y, thus we have

D = M · e(gxi , H(g`,1−b))r

e((H(g`,1−b))y, gr/ri)

= M · e(g,H(g`,1−b))rxi

e(g,H(g`,1−b))(xiri+R)r/ri

= M · e(g,H(g`,1−b))rxi

e(g,H(g`,1−b))(xiri)r/rie(g,H(g`,1−b))Rr/ri

= M

e(g,H(g`,1−b))Rr/ri
= M

e(gr, H(g`,1−b))R/ri
.

We know gr, R, r1 and thus can compute the dominator in the above expression as e(g1dc1)R/r1 =
e(g1d, g)r·R/r1 .
The probability of success of this process is 1/2mq.

Attribute Privacy. As the public key pkχ generated by GenCert is the original master public key
of the IBE scheme it is completely independent of χ and thus attribute privacy easily follows.

Unlinkability. For two key pairs gx,Sign(gx) and gy, Sign(gy) and a challenge gr,Sign(gr) it is
information theoretically impossible to know whether it is gx raised to r1 or gy raised to r2
as there exist r1, r2 such that r = x · r1 = y · r2. And this applies to the signatures as well.

Projectability. It is easy to see that projection of a public key for attribute vector χ into a subset
of attributes χ′ is distributed identically to an output of GenCert for attribute vector χ′.

Committing Encryption. This follows immediately from the fact that the Boneh-Franklin is a
committing encryption.

This completes the proof.

9 ASE using ELH Signatures

We present an instantiation of an attribute-selective encryption (ASE) scheme (cf. §5) based on
extractable linearly homomorphic (ELH) signatures (cf. §7). The key generation and certification
mechanism uses the homomorphic property of the signatures while their extractability properties
are used to prove security. ASE encryption is based on simple ElGamal encryption with the per-
attribute encryption keys certified via homomorphic signatures which, in turn, allow for key and
signature randomization to support unlinkability. In order to enable projections of public keys that
only include a subset of attributes, signatures are applied to the individual per-attribute ElGamal
encryption keys. This raises the difficulty of how to bind the different per-attribute signatures
together against collusion (mix-and-match) attacks. This is solved by mixing a per-public-key
(randomizable) identifier u into all the per-attribute signatures. The resultant scheme is “minimal”
in the sense that the removal of any element in the scheme leads to an explicit attack.

The ELH-ASE scheme is defined as follows.
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• Setup(1n,m): Let Sig = (Sign,Vrfy) be an ELH signature scheme over a group G of order
q. Setup uses Sig to sign several elements in each client’s public key (defined below). Each
element type (g, h, u) has a dedicated signature key and there is also a per-attribute signature
key to sign elements of the form uej . For readability, we denote the above four types of
signatures by Signg,Signh,Signu and Signj for j ∈ [m].
The set of public verification keys for the above signatures form the master verification key
mVK and the corresponding secret signing keys form the master secret key mSK.
We refer to the party running the Setup function as the CA.
• GenCert(mSK, χ): A public key pkχ associated with an attribute vector χ = (χ1, . . . χm) is

generated as follows:

1. Choose random elements g, h, u ∈ G \ {1} and compute signatures Signg(g), Signh(h),
and Signu(u).

2. Choose r1, . . . , rm ∈R Z∗q and set ej = grj if χ[j] = 0 and ej = hrj if χ[j] = 1; compute
signatures Signj(uej) for j ∈ [m].

Set the public key pkχ to (g, h, u, {ej}j∈[m],Signg(g),Signh(h), Signu(u), {Signj(uej)}j∈[m]) and
the secret key skχ to {rj}j∈[m].

• Vrfy(mVK, pkχ): Check that g, h, u ∈ G \ {1} and use mVK to check all signatures.
• Enc(pkχ, {xj,0, xj,1}j∈[m]): For j ∈ [m], choose sj , tj ∈R Zq and set cj,0 :=

(
gsj , e

sj

j · xj,0
)

and

cj,1 :=
(
htj , e

tj
j · xj,1

)
. The ciphertext is the sequence {(cj,0, cj,1)}j∈[m].

(Note: We assume for simplicity that the random values xj,b, that correspond to input wire
labels Xb

j in protocol Πabke of Fig. 6.1 are random elements in G (these values are later hashed
into strings hbj as part of the garbling scheme GABKE).)
• Dec(skχ, {(cj,0, cj,1)}j∈[m]): For j ∈ [m], set (C1, C2) to the pair cj,χj and compute xj,χj :=
C2/C1

rj .
• Unlink(pkχ, skχ): Choose a random value r ∈ Zq and raise every element of pk to the power

of r; output:

pk′χ := (gr, hr, ur, {erj}j∈[m], (Signg(g))r, (Signh(h))r,
(Signu(u))r, {(Signj(uej))r}j∈[m])

and sk′χ := {r · rj}j∈[m].
• Project(pkχ, skχ, S): Output a new public key by omitting any component ej for j /∈ S, and

set the corresponding secret key to {rj}j∈S .
• GenCert∗(mSK): Generation of the pair (pkχ, skχ) is the same as for GenCert except that h is

set to gτ for known τ ∈R Zq and ej is set to grj for all j ∈ [m] (as in the case χ = 0m). The
secret key sk is comprised of the set {rj}j∈[m] and the value τ . This enables Dec∗ as follows.
• Dec∗(sk, {cj,0, cj,1}j∈[m]): For j ∈ [m], set (C1, C2) to the pair cj,0 and compute xj,0 :=
C2/C1

rj . Then, for j ∈ [m], set (C1, C2) to the pair cj,1 and compute xj,1 := C2/C1
τ ·rj .

Theorem 9.1. If Sig is an extractable linearly homomorphic signature scheme over a DDH group
G then under the DDH and KEA assumptions over G, the ELH-ASE scheme has the properties of
collusion resistance, attribute privacy, unlinkability, projectability and committing encryption.

Proof. We prove each property in turn.
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Collusion Resistance. See Lemma 9.4.
Attribute Privacy. Experiment Exptatt-priv

π,Adv requires that the application of GenCert on any at-
tribute vector χ of length m be indistinguishable from the output of GenCert∗. It is readily
seen that public keys produced by GenCert are identically distributed regardless of the input
attribute χ (the latter only influences the ej basis but these elements are distributed uni-
formly over G regardless of the basis, hence for any χ). The output of GenCert∗ has this exact
same distribution too (e.g., it is identically distributed as GenCert(mSK, χ = 0m)).

Unlinkability. To show that the public key randomization procedure (Unlink) of ELH-ASE is
secure (i.e., unlinkable) with respect to experiment Exptlink

π,Adv, note first that public keys
generated by GenCert consist of m+ 3 random independent group generators plus the corre-
sponding ELH signatures on them. The application of the Unlink operation to such a public
key, raises all these values to the same random power r. By the DDH assumption, the result
is indistinguishable from raising these elements to independent random powers. Hence the re-
sultant randomized elements are indistinguishable from random uniform generators in G, each
with a correct signature (that is adjusted through randomization thanks to the homomorphic
property) and therefore indistinguishable from an output of GenCert.

Projectability. It is readily verified that the projection of a public key for attribute vector χ
into a subset of attributes χ′ is distributed identically to an output of GenCert for attribute
vector χ′.

Committing Encryption. The ASE Enc procedure is committing as the ciphertexts commit to
the encryption randomness sj and tj via the injective mapping gsj , htj .

This completes the proof.

Proof of collusion resistance. The reminder of the section contains the proof of collusion
resistance for the ELH-ASE scheme. It follows from the following three lemmas.

Lemma 9.2. Under the DDH assumption on group G, given Enc(pkχ, {xj,0, xj,1}j∈[m]) it is infea-
sible to decrypt two values xj,0, xj,1 for the same j.

Proof. We prove the claim even for the party that possesses the secret key skχ corresponding to
the public key pkχ := (g, h, u, {ej}j∈[m],Signg(g), Signh(h),Signu(u), {Signj(uej)}j∈[m]) under which
the encryption is applied. Assume χ[j] = 0 (the case χ[j] = 1 is analogous) and let rj denote the
j-th component of skχ. In this case we have ej = grj . Thus, the encryption of the value xj,1 is of
the form (hk, xj,1 · (grj )k). Now, the tuple (h, grj , hk, (grj )k) is a DDH tuple for which the client
knows the random generators h, grj as well as the value hk for random (and unknown to the client)
k. Hence by DDH, (grj )k is indistinguishable from a random group element, thus learning xj,1 is
infeasible.

Lemma 9.3. Given a successful run of the attacker in experiment Exptcollude
π,Adv , one extracts the

secret key sk corresponding to the attacker’s chosen public key pk.

Proof. Thanks to Lemma 9.2 we know that the attacker cannot succeed in option (b)(2) of exper-
iment Exptcollude

π,Adv , hence we assume that Adv wins in option (b)(1).
We first consider the following case. Let pk be a public key provided by the CA (run-

ning Setup) for attribute vector χ, namely, pk := (g, h, u, {ej}j∈[m], Signg(g),Signh(h), Signu(u),
{Signj(uej)}j∈[m]) where ej = grj if χ[j] = 0 and ej = hrj if χ[j] = 1. Assume χ[j] = 0 and
consider an encryption (C1, C2) = (gs, esj · x) of a random group element x where s ∈R Zq and

25



x ∈R G are chosen by the encryptor (the randomness of the plaintext x is specified by Exptcollude
π,Adv .3

Let D be an algorithm that on inputs pk and (C1, C2) outputs x. We claim that under the KEA
assumption there exists an algorithm D′ that outputs rj in addition to x.

Indeed, consider the relevant information D has for decryption. It has values g, gs and ej = grj ,
and it also has the element esj ·x which by the randomness of x perfectly hides esj . Yet, D is able to
compute esj (since it finds x). The KEA assumption (i.e., t-KEA of Definition 3.4 for t = 1) states
that for any algorithm D that on input (g, gs) outputs a pair (f, fs) there is an algorithm D′ that
outputs r such that f = gr. In our case we have f = ej hence the output from D′ is r = rj .

We note that the above use of KEA requires g, gs to be chosen uniformly in G and s to be
unknown to D. This is indeed the case here since g is chosen by the CA hence random and s is
chosen by the encryptor. Furthermore, note that even if pk includes a value g′ not directly chosen
by the CA, the fact that the ELH signature Signg(g′) verifies, implies that g′ was generated as a
known linear combination of CA-chosen g values. This suffices for the above argument (based on
the randomness of g) to work with any g′ that is part of a valid pk. We conclude that if an attacker
presents a valid pk and can decrypt m values xj,bj

from an ASE ciphertext Enc(pkχ, {xj,0, xj,1}j∈[m])
(where all xj,b ∈R G) then we extract all the secret key values {rj}j∈[m].

We now can apply these considerations to the actual collude experiment Exptcollude
π,Adv . In this

experiment we get from the attacker a set M′ that includes m plaintexts xj,bj
but we are not

told to which ciphertexts they correspond (and the set M′ may contain other values as well).
Thus, in order to obtain the values esj (or etj) from which to extract rj , we need to couple each of
the 2m ciphertexts in Enc(pkχ, ~x) with each of the m′ possible plaintexts in M′, and output the
corresponding candidate value of esj or etj . In each case that we pair the correct values, we get the
correct esj (or etj) and also extract the corresponding rj (and we can test that this is the correct
coupling).

In all, we have that given a successful run of the collude attacker (that generates valid pk and
a set M′ as required), we obtain all the secret key values {rj}j∈[m].

Lemma 9.4. Let G be a DDH group that satisfies the KEA assumption. Then, any polynomial-
time attacker against the ELH-ASE scheme over G has negligible probability to win the collusion
experiment Exptcollude

π,Adv .

Proof. Let Adv be an attacker running the collusion experiment Exptcollude
π,Adv against the ELH-ASE

scheme and assume it wins the experiment with non-negligible probability. This means that Adv
presents a valid public key pkχ for a vector χ such that no public key was issued by the CA
for χ or for any χ′ of which χ is a projection, and (by Lemma 9.2) Adv wins the option (b)(1)
of the experiment. Hence by Lemma 9.3 one can invoke an extractor to obtain the secret key
sk = {rj}j∈[m] corresponding to pkχ. We will reach a contradiction by showing that the presented
public key was either output by the CA (or a projection of such pk) or it is invalid.

Denote by pk1, . . . , pkn the public keys issued by the CA using the Setup function where pki is is-
sued for an attribute vector χi and its contents are denoted by pki := (gi, hi, ui, {eij}j∈[m], Signg(gi),
Signh(hi), Signu(ui), {Signj(uieij)}j∈[m]).

Hereafter, we denote the public key presented by the attacker in Exptcollude
π,Adv by pk0 and the corre-

sponding attribute vector by χ0, namely, pk0 := (g0, h0, u0, {e0j}j∈[m], Signg(g0),Signh(h0),Signu(u0),
{Signj(u0e0j)}j∈[m]) and assume pk0 to pass verification. Thus, since all the signatures under Signg,

3 For non-random encrypted values one can hash the ElGamal pad (e.g., es
j) under a random oracle and obtain

the same extractability result as in this theorem.
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Signh,Signu, and Signj for j ∈ [m], are valid, then by the extractability property of the ELH signa-
ture scheme, one can extract from pk0 values xi, yi, zi, sij such that:

g0 =
n∏
i=1

gxi
i h0 =

n∏
i=1

hyi
i u0 =

n∏
i=1

uzi
i

and

u0e0j =
n∏
i=1

(uieij)sij (1)

where e0j has the form g0
r0j or h0

r0j depending on whether χ0[j] is 0 or 1, respectively. We assume
for concreteness that the base is g0; the other case is analogous. In either case, by Lemma 9.3 we
can extract the values {r0j}j∈[m].

Thus we can write
u0e0j = u0g

r0j
0 =

n∏
i=1

uzi
i

n∏
i=1

g
xir0j

i . (2)

Combining equations (1) and (2) we get
n∏
i=1

u
sij

i

n∏
i=1

e
sij

ij =
n∏
i=1

uzi
i

n∏
i=1

g
xir0j

i

and thanks to Lemma 7.4 we get that it must be that the exponents on the ui values are the same
in the two sides of the equation, namely, sij = zi for i ∈ [n] and for all js. Removing the ui factors
from the equation and replacing sij with zi we get

n∏
i=1

ezi
ij =

n∏
i=1

g
xir0j

i .

Let Sj = {χi[j] 6= χ0[j]}i∈[n] and let S̄j denote its complement. We can then write the last equation
as ∏

i∈S̄j

g
rijzi

i

∏
i∈Sj

h
rijzi

i =
n∏
i=1

g
xir0j

i .

Due to Lemma 7.4 we get that for i ∈ Sj the exponents zi must be 0.
We now claim that for every i there must be a j for which i ∈ Sj and therefore zi = 0 for all

i ∈ [n]. This implies that u0 = 1 in contradiction to the assumption that pk0 was a valid public
key. To see that for every i there must be a j for which i ∈ Sj , or equivalently that χi[j] 6= χ0[j],
note that if there was an i such that for all j, χi[j] = χ0[j], then we would have that χ0 is same as
a previously certified attribute vector, and hence pk0 would not be a successful forgery.

10 Performance

As the bottleneck in terms of computation is the pairings and exponentiations (versus garbling and
evaluating the policy), we now give a concrete count of the number of pairings and exponentiations
required for each of the two ASE schemes presented in §8 and §9.
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• IBE-based scheme (§8). For concreteness we calculate the cost using the Boneh-Franklin IBE
scheme [BF01].

– The client computes two exponentiations to randomize both its “master public key” and
its associated signature.

– The server computes two pairings to verify the signature of the client’s “master public
key”. To encrypt 2m messages, the server computes 2m pairings and 2m exponentiations.

– The client computes m pairings and exponentiations to decrypt m messages.

• ELH signature-based scheme (§9).

– The client computes a total of 6 + 2m exponentiations to randomize both the basis and
its associated signature (6) and the public keys and their associated signatures (2m).
These operations can all be done offline.

– The server computes 3 +m signature verifications, which requires 6 + 2m pairings (this
can be sped up by batch verification of signatures; see below). To encrypt the 2m
messages it computes 4m exponentiations.

– The client computes m exponentiations to decrypt m messages.

We note several important points regarding the performance of the ELH signature-based scheme.
First, the scheme requires the client to only compute exponentiations as opposed to pairings. This
could be meaningful in a setting where the client is a small computing device. Second, the server
can batch multiple signature verifications from different clients. The CA’s signature keys for g, h, u
and the attributes are the same for all clients. Using techniques of Ferrara et al. [FGHP09] for
batching pairing-based signatures can help us achieve better amortized run-times.

Implementation and results. We implemented the scheme described in Figure 6.1 using the
ELH signature-based ASE scheme (cf. §9) utilizing all the optimizations mentioned above. We
instantiate the coin-tossing and commitment functionalities using SHA-1, and use the privacy-free
garbling technique of Zahur et al. [ZRE15]. The code as well as all the scripts for generating our
experimental results are available at https://github.com/amaloz/abke.

All experiments were conducted on an Intel Core i5-4210H CPU running at 2.90 GHz. We use
the RELIC library [AG] for pairings, using the BN-P256 curve, and libgarble [Mal] as our garbled
circuit library. On our benchmark machine, pairings take roughly 1.88 ms and exponentiations in
G1 take roughly 160 µs (76 µs when using preprocessing). All experiments were run over localhost;
however, to emulate a WAN environment we used the tc command in Linux to set the latency to
33 ms (the average latency in the United States [lat]) and the bandwidth to 200 Mbps. For each
measurement, we ran 10 iterations of 10 runs, taking the mean of the medians from each run.

Figures 10.1 and 10.2 show the results of our experiments. We varied the number of attributes m
between 10, 50, and 200, and varied the size of the policy (comprised of only AND gates) between
1,000, 10,000, and 100,000. Figure 10.1 depicts the computation time of the server and client,
whereas Figure 10.2 depicts the communication time. We also list the number of bits sent by the
server and client in Figure 10.2. As we can see, the computation time is fairly consistent for a
fixed m, but grows as m increases. This validates our claim that the pairings and exponentiations
account for most of the overhead as opposed to the garbling and evaluating of the policy. The
computation time varies from 67 ms for the server and 11 ms for the client for a 1,000 gate policy
with 10 attributes, to 957 ms for the server and 176 ms for the client for a 100,000 gate policy with
200 attributes.
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Figure 10.1: Computation time of the server and client for various numbers of attributes and sizes of
the policy. The bottom x-axis gives the number of gates in the policy, the top x-axis gives the number of
attributes, and the y-axis gives the computation time in seconds.

Looking at the case of a 100,000 gate policy with 200 attributes (see also Table 10.1), we see
that most of the overhead on the server side comes from verifying the public key sent by the client
(857 ms), due to the 2m pairings needed. The next largest operation is encryption, which accounts
for 82 ms. Meanwhile, garbling the policy takes only 5 ms. Regarding the client, the costliest
operation is checking that the encryption sent by the server is correct, which requires re-encrypting
the m unopened wire-labels (42 ms), followed by randomizing its public key (78 ms). Decryption
is relatively cheap, requiring 28 ms. Meanwhile, evaluating the garbled circuit takes 3 ms, again
demonstrating that the garbled circuit is not the bottleneck (at least with regards to computation).

Looking at the communication time (cf. Figure 10.2), we see that as both the number of at-
tributes and number of gates grows so does the running time. We stress that this growth impacts
previous ABE formula-based solutions to a much greater degree. Importantly, for all but extremely
large policies of millions of gates, communication will typically not be a bottleneck of our system.
Most of the server’s communication time is spent sending the garbled circuit, whereas most of the
client’s time is spent receiving the garbled circuit and the ciphertext, this latter case due to the
client blocking while the server verifies the (randomized) public key. We note that our network
bandwidth of 200 Mbps is pessimistic, and running our protocol on Amazon EC2 or other networks
with 1 Gbps bandwidth will all but eliminate the communication overhead of sending/receiving the
garbled circuit (e.g., when running over localhost, the communication time is essentially the time
spent blocking waiting for the other party to complete some computation).

Note that with regards to computation, most of the expensive operations (such as randomizing
and verifying the public key) can be either done offline or batched. Thus, we also calculated an
optimized computation time; see Figure 10.3. In these experiments, we ignore the cost of the client
randomizing its public key and the server garbling its policy, as both of these can be done in
an offline stage. To account for the batching optimization, we implemented and benchmarked the
batching techniques of Ferrara et al. [FGHP09], see Table 10.2. We see a roughly 5.4× improvement
when batch verifying ten messages. Thus, in our experiments we model a server operating over ten
clients at a time by dividing the public key verification time by 5.4. We see upwards of a 4.4× and
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Figure 10.2: Communication time of the server and client for various numbers of attributes and sizes of the
policy circuit. The bottom x-axis gives the number of gates in the policy, the top x-axis gives the number
of attributes, the left y-axis gives the computation time (in seconds), and the right y-axis gives the number
of bits sent (in Mb).

103 104 105 103 104 105 103 104 105

Number of AND Gates

0.00

0.05

0.10

0.15

0.20

0.25

C
om

p
u
ta
ti
on

T
im

e
(s
)

Server Time

Client Time

10 50 200
Number of Attributes

Figure 10.3: Optimized computation time (i.e., pushing the cost of randomizing the public key and garbling
the policy to an offline stage, along with batching of the key verification) of the server and client for various
numbers of attributes and sizes of the policy. The bottom x-axis gives the number of gates in the policy, the
top x-axis gives the number of attributes, and the y-axis gives the computation time in seconds.

2× improvement in running time for the server and client, respectively. This makes sense in light
of the fact that randomizing and verifying the public key are the two most expensive operations.

A policy cost example. In light of the above results, we provide a rough calculation of the
cost of a realistic policy, where the client succeeds if its geolocation (xU , yU ) is within distance d
of the server’s location (xS , yS). The client’s geolocation credential may be issued with a certified
timestamp, which may simultaneously be checked by a policy. Such a policy would require a circuit
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Step S S [opt] P P [opt]

2 (Gb) 5 ms — — —
3 (Unlink) — — 78 ms —
4 (Vrfy) 857 ms 159 ms — —
4 (Enc) 82 ms 82 ms — —
5 (Dec) — — 28 ms 28 ms
5 (Ev) — — 3 ms 3 ms
6 (commit) — — <1 ms <1 ms
7 (Enc) — — 42 ms 42 ms
7 (Ve) — — 8 ms 8 ms
8 (cointoss) <1 ms <1 ms <1 ms <1 ms

Total 944 ms 241 ms 159 ms 81 ms

Table 10.1: Breakdown of server (S) and client (P) computation times for the various steps of Πabke for
a 100,000 gate policy with 200 attributes. [opt] denotes the optimized computation time (i.e., pushing
computation to an offline stage and batching verification). See Figure 6.1 for a description of each step.
The total cost is slightly less than that reported elsewhere due to rounding errors and not accounting for
initialize/cleanup steps.

Operation Cycles

BLS∗ sign 522,767
BLS∗ verify 12,316,919

BLS∗ batch verify 22,635,625

Table 10.2: Benchmarking BLS∗ signing and verification, along with the batch verification approach of
Ferrara et al. [FGHP09] for ten messages.

computing (xU − xS)2 + (yU − yS)2<?d
2 and a (much smaller) circuit verifying that the timestamp

is in an acceptable time interval. Using a 64-bit input and the CBMC circuit compiler [HFKV12], we
can compile this function as a circuit containing approximately 20,000 gates. Thus, as demonstrated
by our performance results, the cost of the corresponding garbled circuit would be unnoticeable
relative to the public key operations required by the server and client. In contrast, an ABE-based
solution would require converting the policy circuit into a (very large) formula, and performing
pairings proportional to its size, which is not practical in most settings.
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A IBE Security and the Boneh-Franklin Scheme

We only require that the IBE is secure under chosen-plaintext attacks. Security for IBE under CPA
is formalized as a regular encryption experiment, with the addition that the adversary is allowed
to ask for key pairs associated with any identity it wishes. Furthermore, the adversary outputs a
pair of (equal-length) messages as well as an identity, and one of the messages is encrypted and
returned to the adversary. The adversary wins if it guesses which message was encrypted and it
did not ask for the key pair of the given identity. Formally, we define the following experiment:

Experiment ExptCPA-IBE
π,Adv (1n):

1. (mpkIBE,mskIBE)← Setup(1n)
2. (m0,m1, ID)← AdvKeyGenIBE(mskIBE,·)(mpkIBE)
3. Choose random b← {0, 1} and compute c← EncIBE(mpkIBE,mb, ID)
4. b′ ← AdvKeyGenIBE(mskIBE,·)(c)
5. The output of the experiment is 1 (and Adv wins) if and only if b′ = b.

Definition A.1. An identity-based encryption scheme π is CPA-secure if for every probabilistic-
polynomial time adversary Adv there exists a negligible function µ such that for every n:

Pr
[
ExptCPA-IBE

π,Adv (1n) = 1
]
≤ 1

2 + µ(n).

We say that π is group-based if the public parameters PPIBE include the definition of a group G
of order q with generator g, the master secret key is a random value mskIBE ∈ Zq and the master
public key is the group element mpkIBE = gmskIBE ∈ G. We say that a group-based IBE is CPA-secure
for random identities if

Pr
[
ExptRAND-IBE

π,Adv (1n) = 1
]
≤ 1

2 + µ(n).

Boneh-Franklin IBE scheme [BF01]. The IBE scheme includes the selection of:

1. The public groups G with generator g and G1 both of order q.
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2. A random private master-key mskIBE = x ∈ Z∗q .
3. A public key mpkIBE = gx.
4. A hash function H.

The secret key creation for the user with identity ID is as follows: skIBE = (H(ID))x. For
encryption, given message m, the ciphertext c is obtained as follows:

1. Choose random r ∈ Z∗q .
2. c = (gr,m · e(gx, (H(ID))r)).

For decryption, given ciphertext c = (u, v) we have m = v/e(skIBE, u).
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