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Abstract

This paper aims to move research in the bounded retrieval model (BRM) from theory to
practice by considering symmetric (rather than public-key) encryption, giving efficient schemes,
and providing security analyses with sharp, concrete bounds. The threat addressed is malware
that aims to exfiltrate a user’s key. Our schemes aim to thwart this by using an enormously
long key, yet paying for this almost exclusively in storage cost, not speed. Our main result is
a general-purpose lemma, the subkey prediction lemma, that gives a very good bound on an
adversary’s ability to guess a (modest length) subkey of a big-key, the subkey consisting of the
bits of the big-key found at random, specified locations, after the adversary has exfiltrated partial
information about the big-key (e.g., half as many bits as the big-key is long). We then use this to
design a new kind of key encapsulation mechanism, and, finally, a symmetric encryption scheme.
Both are in the random-oracle model. We also give a less efficient standard-model scheme that
is based on universal computational extractors (UCE). Finally, we define and achieve hedged
BRM symmetric encryption, which provides authenticity in the absence of leakage.
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1 Introduction

This paper is concerned with the possibility of mass surveillance by APTs. An APT (Advanced
Persistent Threat) is malware that resides on your system and attempts to exfiltrate your key. (This
means that it aims to communicate your key to its home base, probably using your system’s network
connection.) How might one protect against this? One answer is: by strengthening system security
to the point that we eliminate APTs. Unfortunately, this approach seems out of reach. Indeed, the
Snowden revelations show that the NSA (through TAO, their Tailored Access Operations unit) and
others have sophisticated system penetration capabilities that they use to plant APTs. Another
answer is provided by the bounded retrieval model (BRM) [22, 19, 16, 3, 2], namely to make secret
keys so big that their undetected exfiltration is difficult.

So far, BRM research has been largely theoretical and foundational. Our intent is to move it to-
wards being a plausible countermeasure to mass surveillance. This involves the following. First, we
treat symmetric rather than asymmetric encryption. Second, we focus on simple, efficient schemes.
Third, we provide security analyses that are strong and fully concrete (no hidden constants), giving
good numerical bounds on security.

Our main technical contribution is a very good upper bound on the probability of predicting
a subset of random positions in a large key in the presence of leakage. We then give a big-key
encapsulation mechanism, and thence a big-key symmetric encryption scheme, both efficient and
in the random-oracle model (ROM) [11]. Let us now look at all this in more detail.

The BRM. The BRM evolved through a series of works [22, 19, 16, 3, 2]. It is part of the broader
area of Leakage-Resilient Cryptography [1, 24, 33] and is also related to the Bounded Storage
Model [15, 28]. A survey by Alwen, Dodis and Wichs [4] explains that

If an attacker hacks into a remote system (or infects it with some malware) it may ... be
infeasible/impractical for the attacker to download “too much” data (say, more than 10 GBytes).

In such a setting, making the key very big, say 1 TByte, ensures that the adversary obtains limited
information about it. The idea was echoed by Adi Shamir at the RSA 2013 conference in a somewhat
broader context of secrets that are not necessarily keys, and with specific reference to APTs. He
said:

We have to think in a totally different way about how we are going to protect computer systems
assuming there are APTs inside already which cannot be detected. Is everything lost? I claim
that not: there are many things that you can do, because the APT is basically going to have a
very, very narrow pipeline to the outside world. . . . I would like, for example, all the small data
to become big data, just in terms of size. I want that the secret of the Coco-Cola company to
be kept not in a tiny file of one kilobyte, which can be exfiltrated easily by an APT · · · . I want
that file to be a terabyte, which cannot be [easily] exfiltrated.

The problem we aim to solve is how to effectively utilize a key KK whose length k is big in the
presence of an adversary that has some information about KK. In the BRM, the APT is modeled
as a function that takes KK as input and returns a string L of ` < k bits, the leakage, where `
is some parameter; for example, ` = k/10 corresponding to the assumption that the adversary
can’t exfiltrate more than 100 GBytes of information about a 1 TByte key. In the BRM, effective
utilization imposes two requirements, one on security and the other on efficiency. The former is
that security must be maintained in the presence of the leakage. The latter, called locality, is that
the scheme’s algorithms may access only a very small part of the key. Without this, working with
a big-key would be too inefficient.

ADW [3] give BRM schemes for authenticated key-exchange and public-key identification.
ADNSWW [2] give BRM schemes for public-key encryption. (Here KK is the secret decryption

3



0.303
0.228

0.168
0.119

0.402

0.548

0.079 0.046 0.019

Figure 1: Subkey predictability. The x-axis indicates the fraction λ = `/k of the bits adver-
sarially exfiltrated from the big-key. The corresponding point w(λ) on the y-axis then indicates
how many bits of unpredictability are achieved from each random probe (e.g., w(0.5) ≈ 0.168). In
particular, the adversary’s ability to guess the contents of a p-bit probe are about 2−p·w(λ). Results
apply to large k and modest p.

key.) The latter construction is based on identity-based hash proof systems, which are instantiated
via bilinear maps, lattices and quadratic residuosity.

Overview. We treat symmetric encryption in the BRM. We refer to it, synonymously, as big-key
symmetric encryption, to emphasize the use of a large key. The k-bit key KK of a big-key symmetric
encryption scheme SE is shared between sender and receiver. Algorithm SE.Enc maps KK and a
plaintext to a ciphertext, while SE.Dec maps KK and a ciphertext to a plaintext, both making few
accesses to KK.

Our scheme is simple, efficient, and easily described. It is parameterized by the number of
probes p into the k-bit key KK, for example, p = 500. To encrypt message M , pick a random R,
apply the random oracle RO to it to get a sequence of probes p[1], . . . ,p[p] ∈ [1..k] into KK, and let
J = KK[p[1]] . . .KK[p[p]] be the corresponding bits of KK. Next, obtain a short, conventional key K
by applying RO to J . Finally, encrypt M under K with a conventional symmetric encryption
scheme to get a ciphertext C. Return (R,C) as the ciphertext of the big-key scheme.

This scheme is derived via a modular framework with three steps, each involving its own def-
inition, problem and analysis, namely subkey prediction, encapsulation and encryption. We will
discuss them in turn below. Then we describe two extensions of the basic scheme sketched above,
namely, a standard-model variant based on UCE, and the idea of hedged big-key encryption.

Subkey prediction. Our core technical contribution concerns the subkey-prediction problem. We
consider a game parameterized by the length k of the big-key, a number p of random probes into
it, and a bound ` on the leakage. The game selects a k-bit big-key KK at random, and the adversary
is given the result L ∈ {0, 1}` of applying an arbitrary leakage function to KK. This L represents
the exfiltrated information, and, as a special case, could consist of ` bits of KK. Now the game picks
random indices p[1], . . . ,p[p] ∈ [1..k], called probes. These probes are also given to the adversary.
We ask the adversary, given the leakage and probes, to predict, in its entirety, the induced p-bit
subkey J = KK[p[1]]KK[p[2]] · · ·KK[p[p]] found at those spots. We ask: how well can the adversary

do at this? That is, we want to know the adversary’s maximum probability, denoted Advskpk,p,1(`) in
our formalization of Section 3, of guessing J as a function of k, `, and p.
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The analysis turns out to be surprisingly technical. One might think that there is no better
strategy than to leak some ` bits of KK, for example the first `, and then predict J in the obvious way.
(If p[i] ∈ [1..`] then KK[p[i]] is known from the leakage, else guess it.) We give a counter-example
showing that this is not the best strategy, and one can do better using an error-correcting code.
We then show that, roughly, the best strategy for the adversary is to select the leakage function so
that the pre-images of any point under this function are sandwiched between adjacent Hamming
balls. In Section 3 we formalize and prove this and then use it to show that

Advskpk,p,1(`) ≈ 2−p·w(`/k) for w(λ) = − lg(1−H−12 (1− λ)) ,

where H2(x) = −x lg(x) − (1 − x) lg(1 − x) is the binary entropy function and H−12 (1 − λ) is the
smaller of the two possible inverses of 1 − λ under H2. The salient point is that the probability
decreases exponentially in the number of probes p, with the factor in the exponent depending on
the fraction λ = `/k of the bits of the big-key that are leaked. See Fig. 1 for a plot of w(λ) as a
function of λ.

Related settings are analyzed by several lemmas in the literature, notably NZ [29, Lemma 11],
Vadhan [34, Lemma 9] and ADW [3, Lemma A.3]. We are not aware of any direct way of applying
the first two to get bounds on subkey prediction probability. (They do give bounds on what in
Section 3 we call the restricted subkey prediction probability.) They also involve hidden constants
that make it hard to obtain the concrete bounds needed to estimate security in usage. In contrast,
the elegant lemma of ADW [3, Lemma A.3] can be directly applied to bound Advskpk,p,1(`), and it
gives a concrete bound with no hidden constants. However, the bound obtained in this way is much
inferior to ours, as we now illustrate.

In Section 3 we show that [3, Lemma A.3] implies Advskpk,p,1(`) ≤ 2−c for c given by Equation (8),
namely c = p(k−`−5)/(2k lg(2k)+3p). Fig. 2 compares the bounds obtained by our result (column
“New”) with the ones obtained via [3, Lemma A.3] (column “Old”). We see for example that for k

being 1 TB and `/k = 0.1, for 500 probes, we show that Advskpk,p,1(`) ≈ 2−274 while the prior bound

would be only 2−5.1. Other entries show similarly large gaps for other parameter values. Another
way to compare is, for a certain fixed k, `, to ask how many probes are needed to get 256 bits of
security, meaning have Advskpk,p,1(`) ≤ 2−256. According to Fig. 2, for k being 1 TB and `/k = 0.1,
our result says that 468 probes suffice, while the prior result would require us to use 24954 probes.
The difference in efficiency is dramatic, meaning that reliance on the prior bounds would translate
to a significant loss of practical efficiency for big-key symmetric encryption.

Encapsulation. Building on the above, we provide a general tool, XKEY, for using big-keys in
symmetric settings. XKEY takes in a key KK and a random selector R, which is a short string (like
128–256 bits). It returns a derived key K = XKEY(KK,R), which has conventional length (like 128
bits) and can be used in a conventional scheme. We formalize the goal of XKEY, which we call
big-key encapsulation. It asks that the derived key is indistinguishable from a random string of the
same length, even given the selector and leakage on the big-key. This is reminiscent of a classical
key-encapsulation mechanism (KEM) as defined by CS [17], yet it is also very different, since we are
in the presence of leakage and in the symmetric (rather than asymmetric) setting. Additionally, in
the ROM, not only does the adversary have access to the random oracle RO, but, also, the leakage
function can also itself invoke the random oracle. This is crucial, as otherwise it is easy to give an
example of a scheme that is secure in the ROM yet insecure when the random oracle is instantiated.
This element increases the technical difficulty of our security proof.

Given KK and R, our XKEY algorithm applies the random oracle RO to R to specify probes
p[1], . . . ,p[p] ∈ [1..k] into the big-key KK. It lets J = KK[p[1]]KK[p[2]] · · ·KK[p[p]] be the corre-
sponding subkey. By subkey unpredictability, J is unpredictable, but it is not guaranteed to be
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p New Old

250 137 3.3

500 274 6.6

1000 548 13

234 128 3.1

468 256 6.2

9642 5284 128

19284 10567 256

1 GB, 10% leak
(k=8 · 109, `=0.1k)

p New Old

250 42 1.8

500 84 3.7

1000 168 7.4

762 128 5.6

1523 256 11

17536 2919 128

34711 5837 256

1 GB, 50% leak
(k=8 · 109, `=0.5k)

p New Old

250 137 2.6

500 274 5.1

1000 548 10

234 128 2.4

468 256 4.8

12477 6837 128

24954 13674 256

1 TB, 10% leak
(k=8 ·1012, `=0.5k)

p New Old

250 42 1.4

500 84 2.8

1000 168 5.7

762 128 4.3

1523 256 8.7

22458 3777 128

44916 7553 256

1 TB, 50% leak
(k=8 ·1012, `=0.5k)

Figure 2: Numerical examples, comparisons with ADW [3, Lemma A.3]. The “New” and

“Old” columns show approximate values of x for which Advskpk,p,1(`) ≤ 2−x using our results and
those of ADW [3, Lemma A.3], respectively. The first two tables use a key size k of 1 GB; the
rest, 1 TB. In each case, we consider leakage restricted to 10% or 50% of the key length. The first
column gives the number of probes p. In each table, the first three rows represent natural probe
counts p ∈ {250, 500, 1000} while the remaining four rows are determined by asking how many
probes would be needed to get either 128-bit or 256-bit security according to each of the bounds.

indistinguishable from random. XKEY further applies RO to R‖J to obtain the derived key K.
Theorem 12 says that this derived key is indistinguishable from random even to an adversary that
sees multiple encapsulations and gets leakage about KK. The theorem gives a concrete bound on the
adversary advantage. The proof has two steps, first addressing the ability of the leakage function
to use the random oracle by a coin-fixing argument, and then reducing to subkey prediction via a
game sequence.

Big-key encryption. In Section 5, we define and achieve big-key symmetric encryption. Our
definition ensures indistinguishability in the presence of leakage on the big-key, the leakage again
allowed to depend on the random oracle. To encrypt a message M under KK, we pick R at random,
obtain a session key K = XKEY(KK,R), and output as ciphertext a pair (R,C) where C is an
encryption of M under K with a base, conventional symmetric encryption scheme, for example an
AES mode of operation. Theorem 13 shows that this achieves our definition of big-key encryption
privacy assuming that XKEY achieves our definition of encapsulation security and the base scheme
meets a standard privacy definition for symmetric encryption. The scheme is very efficient. Relative
to the base scheme, the added communications cost is small (transmission of R) and the added
computation cost is also small (one XKEY operation).

Standard-model scheme. A variant of our scheme, still quite efficient, can be proven secure in
the standard model. We can focus on encapsulation, since our reduction of encryption to the latter
does not use a random oracle. We consider a variant XKEY2 of XKEY where the selector R = (I,p)
is a key I for a UCE (Universal Computation Extractor) H [8] together with a sequence of probes
p[1], . . . ,p[p] ∈ [1..k] into KK. Given KK and this selector, XKEY2 lets J = KK[p[1]] . . .KK[p[p]] be the
corresponding bits of KK and obtains subkey K by applying H(I, ·) to J . Efficiency is the same as for
our ROM scheme, but the ciphertext of the encryption scheme is longer because the selector, which
is included in the ciphertext, is longer. Theorem 14 proves security assuming H is UCE[Ssup]-secure,
namely UCE-secure for statistically unpredictable sources. This version of UCE, from [8, 14], has
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been viable and has been used in many applications. We use our subkey unpredictability bound in
a crucial way, to prove statistical unpredictability of the source constructed in the reduction.

Authenticity and hedged big-key encryption. Our big-key encryption schemes provide
privacy. What about authenticity—meaning big-key authenticated encryption (AE)? ADW [3]
remark that secure signatures are not possible in the BRM. The same attack applies to rule out
big-key AE. Namely, the leakage function can simply compute and leak a valid ciphertext. We
take the view that authenticity is important in normal usage but the target of mass surveillance is
violating privacy, not authenticity. Accordingly, we suggest hedged big-key encryption. Encryption
would continue to provide, in the presence of leakage, the guarantees of our above-discussed schemes.
Additionally, in the absence of leakage, the same scheme should provide AE, meeting a standard
and strong formalizations of the latter [9]. Throughout all this, the scheme must remain true to the
local efficiency requirement of the BRM. In Section 7 we give a simple way to turn a privacy-only
big-key scheme into a hedged one while preserving locality.

Discussion. We clarify some assumptions and limitations of the BRM and our work. In the
BRM, leakage (exfiltration) on the big-key is assumed to occur once, at the beginning. The leakage
function cannot depend on ciphertexts. This is true in most models of leakage-resilient cryptogra-
phy, but leakage after encryption has been considered [25] and it would be interesting to extend
this to big-key symmetric encryption. We assume encryption code is trusted. Algorithm substi-
tution attacks [10] consider the case of untrusted encryption code. Whether any defense against
ASAs is possible in the big-key setting remains open. Finally we assume the availability of trusted
randomness in the encryption process.

Our schemes view the big-key as a string over {0, 1}, so each probe draws one bit of the big-key.
More generally, we could view the big-key as a vector over {0, 1}b where b is some block or word
length, for example b = 8 or b = 32. Each probe would then result in a b-bit string. This could
increase efficiency and ease of implementation of the scheme. Our current subkey prediction lemma
addresses only the b = 1 case. One can apply [3, Lemma A.3] to get a bound for larger b, but
we would expect that an extension of our subkey prediction Lemma would yield better bounds.
Obtaining such an extension is an interesting open question.

Related work. In Maurer’s bounded storage model [28], parties have access to a public source of
randomness that transmits a sequence X1, X2, . . . of high min-entropy strings. Parties are limited
in storage and the goal is information theoretic security. Symmetric encryption in this setting is
studied in [28, 6, 5, 27, 23, 34]. However, in this information-theoretic setting one can derive only
one session key from each output of the source and the ability to encrypt multiple messages relies
on the expectation of receiving a continuous stream of strings from the source. In contrast, in the
BRM setting, the big-key is static, and, in the presence of leakage on it, we want to encrypt an
arbitrary number of messages without changing the key.

Di Crescenzo, Lipton and Walfish (DLW) [19] and Dziembowski [22] independently introduced
the bounded retrieval model (BRM), where the adversary has a bounded amount of information on
the data stored by the users. See the excellent survey of Alwen, Dodis, and Wichs [4] for history
and results in this setting. Here we touch on only a few examples. DLW [19] design password
protocols for the setting where the “password file” stored by the server is huge but the amount
of information the adversary can get about it is limited, yet the server is efficient. Dziembowski
[22] considers malicious code that can exfiltrate only a limited portion of a long key before it
is sanitized. Dziembowski’s aim is to achieve entity authentication and session-key distribution.
Like us, the author works in the ROM. His symmetric key-derivation scheme, and its analysis, are
similar to ours. Following up on this work, CDDLLW [16] provide a general paradigm for achieving
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intrusion-resilient authenticated key exchange (AKE), as well as a solution in the standard (as
opposed to RO) model. Alwen, Dodis and Wichs [3] design authenticated key agreement protocols
in the public-key setting where the secret key is huge but the public key is small and security
must be maintained in the presence of bounded leakage on the secret key. ADNSWW [2] construct
public-key encryption schemes in this model.

Predating the BRM, Kelsey and Schneier consider an authentication scheme in which a user
with a large-memory token authenticates itself by providing XORs of randomly specified subsets
of its bits [26]. An adversary who manages to exfiltrate only some of the bits of the device will be
unable to subsequently impersonate the token. Dagon, Lee, and Lipton consider the problem of
securely storing a ciphertext encrypted in a weak password on a device that’s subject to adversarial
attack [18]. They create a long ciphertext for a short plaintext where partial knowledge knowledge
of the ciphertext will frustrate dictionary attacks.

Lu [27] and Vadhan [34] construct locally computable extractors. These yield big-key encap-
sulation schemes, but with the limitation that one can only obtain a small, bounded number of
encapsulated keys from one big-key. (Encapsulated keys are statistically close to random, so after a
few derivations, the entropy of the big-key is exhausted.) This is not sufficient for big-key symmetric
encryption, where, with the big-key in place, we want to encrypt an arbitrary number of messages.
XKEY in this light yields a locally computable computational extractor in the ROM. (The compu-
tational element is that the number of queries to the random oracle is limited. In asymptotic terms,
it is a polynomial.) It uses the random oracle as a hardcore function following [11] to be able to
encapsulate an unbounded number of keys under a single big-key. Our UCE-based encapsulation
scheme XKEY2 similarly yields a standard-model locally-computable computational extractor. One
might also view XKEY and XKEY2 as reusable locally-computable extractors following [22, 16, 2].
Reusability of extractors also aims to address deriving multiple subkeys and arose in [13, 30, 20].

A condenser [31, 32, 21] is a min-entropy extractor. Our subkey prediction Lemma can be
viewed as building a BRM (or locally computable) condenser for a random source. The algorithm
is to simply return the subkey J given by random probes into the big-key.

One could obtain a big-key symmetric encryption scheme by adapting the asymmetric BRM
scheme of ADNSWW [2]. Our schemes are much more efficient.

2 Notation

Notation. For integers a ≤ b we let [a..b] = {a, . . . , b}. If x is a vector then |x| denotes its length
and x[i] denotes its i-th coordinate. (For example if x = (10, 00, 1) then |x| = 3 and x[2] = 00.) We
let ε denote the empty vector, which has length 0. If 0 ≤ i ≤ |x| then we let x[1..i] = (x[1], . . . ,x[i]),
this being ε when i = 0. We let Sn denote the set of all length n vectors over the set S and we let
S∗ denote the set of all finite-length vectors over the set S. Strings are treated as the special case of
vectors over {0, 1}. Thus, if x is a string then |x| is its length, x[i] is its i-th bit, x[1..i] = x[1]...x[i],
ε is the empty string, {0, 1}n is the set of n-bit strings and {0, 1}∗ the set of all strings. If KK is
a k-bit string and p is a p-vector over [1..k] then we let KK[p] = KK[p[1]]KK[p[2]] · · ·KK[p[p]] denote
the length-p string consisting of the bits of K in the positions indicated by p. For example, if
K = 01010101 and p = (1, 8, 2, 2) then KK[p] = 0111.

If X is a finite set, we let x ←← X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, · · · ; r) denote running A with random coins r
on inputs x1, · · · and assigning the output to y. We let y ←← A(x1, · · · ) be the result of picking r at
random and letting y ← A(x1, · · · ; r). We let [A(x1, · · · )] denote the set of all possible outputs of
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Game Gskp
k,p,q(A, Lk)

KK ←← {0, 1}k ; L← Lk(KK)

for i← 1, . . . , q do pi ←← [1..k]p

J ← A(L,p1, . . . ,pq)

return
(
J ∈ {KK[p1], . . . ,KK[pq]}

)

Game Gskp1
k,p (A,K)

KK ←← K
p←← [1..k]p

J ← A(p)

return (J = KK[p])

Figure 3: Subkey-prediction game (left) and restricted subkey-prediction game (right).

A when invoked with inputs x1, · · · . We denote by Func[a, b] the set of all functions f from {0, 1}a
to {0, 1}b.

We use the code-based game-playing framework [12] (see Fig. 3 for an example). By Pr[G] we
denote the probability that game G returns true. Uninitialized boolean variables, sets and integers
are assume initialized to false, the empty set and 0, respectively.

3 The Subkey Prediction Lemma

Suppose an adversary computes 1 TByte of information L about a random 2 TByte key KK. After-
ward, we challenge the adversary to identify the 128-bit substring K whose bits are those found at
some 128 random locations of KK. We tell the adversary those locations. How well can the adversary
do at this game? This section introduces what we call the subkey prediction game to formalize this
question and answer it.

The subkey-prediction game. Let k, `, p, q ≥ 1 be integers with k ≥ `. We call these values the
key length, the leakage length, the probe length, and the iteration count. Let Lk: {0, 1}k → {0, 1}`
be a function, the leakage function. We associate to these values and an adversary A the subkey
prediction game Gskp

k,p,q(A, Lk) depicted in the left panel of Fig. 3. (Ignore the other game for now.)
The game picks a random key KK (the big-key) of length k and computes leakage L ← Lk(KK). It
then picks q random probes p1, . . . ,pq, each consisting of p random indexes into the key KK. The
adversary A must guess one of the strings KK[pi] given leakage L and probe locations p1, . . . ,pq.
Any one will do. It outputs a guess J and the game returns true if and only if J is one of the values
KK[pi]. The adversary needn’t identify which subkey it has guessed. Now define

Advskpk,p,q(A, Lk) = Pr[Gskp
k,p,q(A, Lk)]

Advskpk,p,q(Lk) = max
A

Advskpk,p,q(A, Lk)

Advskpk,p,q(`) = max
Lk∈Func[k,`]

Advskpk,p,q(Lk)

The first is the probability that the game returns true, that is, the probability that A wins the
game. For the second definition the maximum is over all adversaries A, regardless of running time.
For the third definition the maximum is over all leakage functions Lk: {0, 1}k → {0, 1}` that return
` bits. This last advantage function measures the best possible prediction probability when the
leakage is restricted to ` bits and the adversary is arbitrary. We are interested in upper bounding
this last advantage as a function of k, `, p, q.

The idea here is that an adversary has some information about KK, but it is limited to Lk(KK),
which is ` bits. This leaves k − ` bits of average min-entropy in KK. We are trying to extract it in
a particular and efficient way, by taking a random subset of positions of KK. We are asking “only”
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for unpredictability, and will then apply a random oracle to get random-looking bits.

From many queries to one. One simple observation is that we can reduce the case of q probes
to the case of a single probe via the union bound:

Lemma 1 Let k, `, p, q be integers with k ≥ `. Then

Advskpk,p,q(`) ≤ q · Adv
skp
k,p,1(`)

Proof of Lemma 1: Given adversary A we let A1 be the adversary defined as follows. On input
L,p it picks g ←← [1..q] and pj ←← [1..k]p for j ∈ [1..q] \ {g}. It lets pg ← p and returns J ←←
A(L,p1, . . .pq). By a union bound we have Advskpk,p,q(A, Lk) ≤ q · Advskpk,p,1(A1, Lk) and the lemma
follows.

We retain the q-probe definition because this is what we will use in applications, but Lemma 1
allows us to focus on the q = 1 case for the remainder of this section.

Connection to Hamming balls. Given k, `, let us ask which leakage function Lk: {0, 1}k →
{0, 1}` maximizes the advantage. At first glance it’s hard to imagine there’s a strategy better than
the greedy one of leaking the first ` bits of KK. Specifically let Lk`: {0, 1}k → {0, 1}` be defined
by Lk`(KK) = KK[1] · · ·KK[`], the function that returns the first ` bits of its input. Then a natural

conjecture is that Advskpk,p,1(`) = Advskpk,p,1(Lk`), meaning that the subkey prediction advantage is
maximized by Lk`. Indeed this was our first guess.

This conjecture, however, is false. We now give a counter-example that shows this. Besides
indicating the subtleties in the problem, it makes a connection with error-correcting codes and
Hamming balls that will underly our eventual results and bound. Here is the counter-example. Let
k = 7 and ` = 4. Let p = 1. Then

Advskpk,1,1(Lk`) = (4/7)(1) + (3/7)(1/2) = 11/14 .

Now consider the following alternative Lk: {0, 1}7 → {0, 1}4 for which we will show that Advskpk,1,1(Lk) =

7/8 > 11/14. Let W1, . . . ,W16 ∈ {0, 1}7 be the codewords of the Hamming (7,4) code. (See
Wikipedia article “Hamming(7,4)” for the definition.) This code has message length ` = 4
and codeword length k = 7, so that it describes an (injective) encoding function E: {0, 1}4 →
{W1, . . . ,W16} ⊆ {0, 1}7. It has minimum distance 3 and corrects one error. Let Bi be the set of
all 7-bit strings whose Hamming distance from Wi is ≤ 1. Then |Bi| = 8 and the sets B1, . . . , B16

are a partition of {0, 1}7. The decoding function D: {0, 1}7 → {0, 1}4, given KK, finds the unique
i such that KK ∈ Bi. It then returns message L = E−1(Wi). The leakage function Lk is simply D;
namely, given the big-key KK, it returns its decoding D(KK). Now the adversary A receives (L, p1)
where p1 ∈ [1..7] is the random probe into KK chosen by the game and L = Lk(KK) = D(KK), and
it wants to predict KK[p1]. Adversary A lets W = E(L) and returns W [p1] as its guess. Then

Advskpk,1,1(A, Lk) = 7/8 because if W = Wi then 7 of the 8 strings in Bi have Wi[p1] as their p1-th
bit. So

Advskpk,1,1(Lk) ≥ 7/8 > 11/14 = Advskpk,1,1(Lk`) .

Subkey-prediction bound. We now give our upper bound on Advskpk,p,1(`) as a function of k, `, p.

Let wH(x) denote the Hamming weight of string x. Let Bk(r) = { x ∈ {0, 1}k : wH(x) ≤ r } be the
Hamming ball of radius r with center 0k and let Bk(r) = |Bk(r)| be its size. Then

Bk(r) =
r∑
i=0

(
k

i

)
. (1)
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Now define the radius rdk(N) as the largest integer r such that Bk(r) ≤ N , and let

Gk,p(N)

=
1

N

rdk(N)∑
i=0

(
k

i

)(
1− i

k

)p
+
N −Bk(rdk(N))

N

(
1− 1 + rdk(N)

k

)p
(2)

≤ 1

N

min(1+rdk(N),k)∑
i=0

(
k

i

)(
1− i

k

)p
. (3)

The following says this function provides an upper bound on the subkey prediction probability:

Theorem 2 (Subkey-prediction bound) Let k, `, p be integers, k ≥ `. Then

Advskpk,p,1(`) ≤ Gk,p(2
k−`) (4)

Before we prove Theorem 2, let’s try to understand the growth rate of the bound for parameters
of interest.

Estimates. The Gk,p(N) formula itself is somewhat intractable. To use Theorem 2 it is easier to
work with the following approximation that we used in Section 1. The approximation is very good.
For λ ∈ [0, 1] we let

w(λ) = − lg(1−H−12 (1− λ))

where lg is the logarithm to base two, H2 is the binary entropy function defined for x ∈ [0, 1]
by H2(x) = −x ln(x) − (1 − x) ln(1 − x) and H−12 (1 − λ) returns the smaller of the two values x
satisfying H2(x) = 1− λ. Then for ` ≤ k we have

Gk,p(2
k−`) ≈ 2−p·w(`/k) . (5)

We now justify this. Let us define

G∗k,p,r(N) =
1

N

r∑
i=0

(
k

i

)(
1− i

k

)p
. (6)

The following lemma gives both a lower bound and an upper bound on G∗k,p,r(N) that are within a
factor two of each other, showing that the estimate of the lemma is tight to within a small constant.

Lemma 3 Let N, k, r, p ≥ 1 be integers with r ≤ k. Let θ = r/k and γ = 2
(
k
r

)
/N . Suppose: (1)

p ≤ 0.27 · k and (2) θ ≤ 0.22. Let α = − lg(1− θ) > 0. Then
γ

2
· 2−α·p ≤ G∗k,p,r(N) ≤ γ · 2−α·p

Letting r∗ = rdk(2
k−`), from Equation (3) we have Gk,p(2

k−`) ≈ G∗k,p,r∗(2
k−`), which by Lemma 3

is ≈ 2−α·p where α = − lg(1− r∗/k). So to justify Equation (5) we need to show that α ≈ w(`/k).
For this we use the well-known estimate 2k−` ≈ Bk(r

∗) ≈ 2k·H2(r∗/k) to get 1− `/k ≈ H2(r
∗/k) or

r∗/k ≈ H−12 (1− `/k). Thus − lg(1− r∗/k) ≈ − lg(1−H−12 (1− `/k)) = w(`/k) as desired.

Proof of Lemma 3: The lower bound is trivially obtained by lower-bounding the sum of Equa-
tion (6) by its last term:

G∗k,p,r(N) ≥ 1

N

(
k

r

)(
1− r

k

)p
=
γ

2
(1− θ)p =

γ

2
· 2−α·p .

11



This gives some intuition about the upper bound, namely that we will show that the last term of
the sum dominates, the sum of the rest being at most equal to the last. We now proceed to the
proof of the upper bound. For 1 ≤ i ≤ r we have(

k
i−1
)(

k
i

) =
i

k − i+ 1
≤ r

k − r
=

θ

1− θ
≤ 0.29 .

Also (
1− i−1

k

)p(
1− i

k

)p =

(
1 +

1

k − i

)p
≤
(

1 +
1

k − r

)p
≤ ep/(k−r) = ep/(k(1−θ)) ≤ e1/2 .

For 0 ≤ i ≤ r let

Ri =

(
k
i

) (
1− i

k

)p(
k
r

) (
1− r

k

)p .
Then

Ri ≤ (0.29 · e1/2)r−i ≤ 2−(r−i) .

So

G∗k,p,r(N) =
1

N

(
k

r

)(
1− r

k

)p r∑
i=0

Ri ≤
1

N

(
k

r

)(
1− r

k

)p r∑
i=0

2−(r−i)

≤ 2

N

(
k

r

)(
1− r

k

)p
= γ · (1− θ)p

as claimed.

Restricted subkey-prediction. Our proof of Theorem 2 will rely on an analysis of the restricted
subkey-prediction game Gskp1

k,p (A,K) shown in the right panel of Fig. 3. The game is associated

to integers k, p, adversary A and a set K ⊆ {0, 1}k. Our results concerning this game are also of
independent interest because we obtain bounds that are tight. In this game, the big-key KK is drawn
from K rather than from {0, 1}k, and there is no leakage. Also, there is only one probe. The rest
is the same as in the subkey prediction game. Intuitively, one can think of K as being Lk−1(L) for
some particular L received by A in game Gskp, so that the new game, Gskp1, effectively represents
the view of A in the prior game at the point it receives leakage L. Now define

Advskp1k,p (A,K) = Pr[Gskp1
k,p (A,K)]

Advskp1k,p (K) = max
A

Advskp1k,p (A,K)

Advskp1k,p (N) = max
K⊆{0,1}k, |K|=N

Advskp1k,p (K)

The first advantage is the probability that A wins the game. In the second, the maximum is over
all adversaries A, regardless of running time. In the third, the maximum is over all sets K ⊆ {0, 1}k
that have size |K| = N .

Main lemmas and proof of theorem. Theorem 2 is obtained via two main lemmas. Here we
state them and show how they yield the theorem. We will then prove the lemmas. The first main

12



lemma reduces the task of upper bounding the subkey prediction probability Advskpk,p,1(`) to the task

of bounding the special subkey prediction probability Advskp1k,p (N) for N = 2k−`:

Lemma 4 Let k, `, p ≥ 1 be integers with k ≥ `. Then

Advskpk,p,1(`) ≤ Advskp1k,p (2k−`) (7)

The proof of this lemma, given below, involves a definition of concavity for discrete functions and
a lemma saying where such functions attain their maximum. Then a particular function Fk,p we
define is shown to meet this definition of concavity, and Lemma 4 results. The second main lemma
characterizes the special subkey prediction probability:

Lemma 5 Suppose 1 ≤ N ≤ 2k and p ≥ 1. Then

Advskp1k,p (N) = Gk,p(N)

We note that Lemma 5 is an equality, not a bound. We are able to say exactly what is the special
subkey prediction probability for a given value of N . Lemma 5 is obtained by showing that for a
given N , the maximum of Advskp1k,p (K) over sets K of size N , occurs for a set that is monotone and
sandwiched in between two adjacent Hamming balls. Monotone means that if a string is in the set,
so is any string obtained by flipping one bits to zero bits on the original string. For monotone sets,
it is quite easy to estimate the optimal advantage. All this put together will lead to Lemma 5.

The proof of Theorem 2 is immediate from these two lemmas, which we still need to prove. But
first, with the above, we are in a position to compare with prior work.

Comparison with prior work. Lemmas related to subkey and restricted subkey prediction
have been given by NZ [29, Lemma 11], Vadhan [34, Lemma 9] and ADW [3, Lemma A.3]. Briefly,
the first two don’t give bounds on subkey prediction. They do give bounds on restricted subkey
prediction but they are hard to use due to hidden constants, and these bound are inferior to
Lemma 4 since the latter is tight. The elegant lemma of ADW [3, Lemma A.3], however, not only
applies directly to subkey prediction but also gives a concrete bound with no hidden constants. The
difference here, as quantified in Section 1, is that the bound is much inferior to that of Theorem 2,
translating to a significant loss of practical efficiency for big-key symmetric encryption.

NZ [29, Lemma 11] considers drawing a string KK from {0, 1}k according to a distribution D
with min-entropy δ. Like us, for a random probe p ∈ [1..k]p, they then consider KK[p]. The lemma
specifies ε, δ′ such that for all but an ε fraction of the p’s, the distribution KK[p] is within statistical
distance ε of a δ′ source. Unlike our work there is no leakage. Their setting does not capture
subkey prediction but it does capture restricted subkey prediction game, which corresponds to
the distribution D that puts a uniform probability on K and 0 probability on points outside it.
However, the formulas in [29, Lemma 11] make ε very large for the parameters of interest to us,
and also have un-specified constants. In contrast Lemma 5 gives a tight bound with no unspecified
constants. The same remains true with Vadhan [34, Lemma 9]. (Here the hidden constant is an
exponent in the statistical distance.) The values of the constants can in principle, of course, be
obtained from the proofs, but since our bound of Lemma 4 for restricted subkey prediction is tight,
we would not see an improvement. (And the indication from what follows, where concrete bounds
are given, is that the bounds would be substantially worse than ours anyway.)

ADW [3, Lemma A.3] can, however, be directly applied to get a bound on Advskpk,p,1(`). Referring
to their lemma, let random variable X represent the big-key KK, and let experiment E1 represent
the leakage. Their t corresponds to our p. (We think the N in their lemma is a typo. It should

be t.) Then H̃∞(X) = k − `. The lemma then implies that Advskpk,p,1(`) ≤ 2−c as long as k − ` ≥
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2ck lg(2k)/p+ 3c+ 5. This translates to

c ≤ p(k − `− 5)

2k lg(2k) + 3p
. (8)

This is the formula used for Fig. 2.
We note that ADW [3, Lemma A.3] considers a more general setting than subkey prediction.

We are saying that in this special setting, we can get much better bounds. In the big-key context,
an important case where their bound applies but ours does not is when we work over blocks rather
than bits. Here KK is a k-vector over {0, 1}b for some block length parameter b, so that each probe
draws a b-bit block. This setting is more convenient for implementations of big-key symmetric
encryption. Giving better bounds for this setting is an interesting open question.

Proof of Lemma 5. Recall that wH(x) denotes the Hamming weight of string x. For equal-
length strings x, y ∈ {0, 1}∗, write x � y if x[i] ≤ y[i] —that is, if x[i] = 1 then y[i] = 1— for every
i ∈ [1..|x|]. Write x ≺ y if x � y and x 6= y. Then � is a partial order on {0, 1}k, satisfying the
required conditions, namely it is reflexive, anti-symmetric and transitive. If U ⊆ {0, 1}∗ is a finite
set then we let wH(U) =

∑
u∈U wH(u) be the Hamming weight of U . Call a subset K ⊆ {0, 1}k

monotone if for all x, y ∈ {0, 1}k we have that if x ≺ y and y ∈ K then x ∈ K. The following
lemma says that the maximum restricted subkey prediction advantage occurs for a set K that is
monotone. The proof is postponed.

Lemma 6 Suppose 1 ≤ N ≤ 2k and p ≥ 1. Then there is a monotone K ⊆ {0, 1}k such that
|K| = N and

Advskp1k,p (N) = Advskp1k,p (K)

Now define the function gk,p, taking input a set K ⊆ {0, 1}k, via

gk,p(K) =
1

|K|
∑
x∈K

(
1− wH(x)

k

)p
. (9)

A nice property of monotone sets is that we can easily compute the maximal advantage on them,
via the function just defined:

Lemma 7 Suppose 1 ≤ N ≤ 2k and p ≥ 1. Suppose K ⊆ {0, 1}k is a monotone set of size N .
Then

Advskp1k,p (K) = gk,p(K)

Proof of Lemma 7: Since K is monotone, the best strategy for the adversary given p is to
simply return K = 0k as the guess. Letting A denote the adversary that does this, we now want
to evaluate Advskp1k,p (A,K). This is just the probability that if x is chosen at random from K and
p[1], . . . ,p[p] are chosen at random from [1..k] then x[p[j]] = 0 for all j ∈ [1..p]. This probability
is gk,p(K).

We will now further characterize the sets which attain the maximum. We say that K ⊆ {0, 1}k
is sandwiched between Hamming balls if there is an r such that Bk(r) ⊆ K ⊂ Bk(r + 1). Note in
this case it must be that r = rdk(N) where N is the size of K. The proof of the following, which
exploits Lemma 6, is postponed.

Lemma 8 Suppose 1 ≤ N ≤ 2k and p ≥ 1. Let r = rdk(N). Then there is a monotone, size N set
K such that Bk(r) ⊆ K ⊂ Bk(r + 1) and

Advskp1k,p (N) = Advskp1k,p (K)

14



We are now in a position to prove our second main lemma. Proof of Lemma 5: Let r = rdk(N).

By Lemma 8 there is a monotone, size N set K such that Bk(r) ⊆ K ⊂ Bk(r+ 1) and Advskp1k,p (N) =

Advskp1k,p (K). But

Advskp1k,p (K) = gk,p(K) = Gk,p(N)

where the first equality is by Lemma 7 and the second is because Bk(r) ⊆ K ⊂ Bk(r + 1).

It remains to prove the two lemmas whose proofs were postponed above.

Proof of Lemma 6: Let

T = { K ⊆ {0, 1}k : |K| = N and Advskp1k,p (K) = Advskp1k,p (N) } . (10)

Let K ∈ T be such that wH(K) = minK′∈T wH(K′). We claim that K is monotone. Suppose towards
a contradiction that it is not. Then there exist x, y ∈ K such that x ≺ y and y ∈ K but x 6∈ K.
We can pick x1, . . . , xm ∈ {0, 1}k such that x = x1 ≺ x2 ≺ · · · ≺ xm = y and xi, xi+1 differ in
only a single coordinate for all 1 ≤ i ≤ m − 1, meaning wH(xi⊕xi+1) = 1. There must be some
1 ≤ i ≤ m− 1 such that xi+1 ∈ K but xi 6∈ K. Thus we may assume the original x, y differ in only
a single coordinate. Without loss of generality they differ in the first coordinate. Since x ≺ y this
means x = 0‖w and y = 1‖w for some w ∈ {0, 1}k−1. Let

A0 = { z ∈ {0, 1}k−1 : 0‖z ∈ T or 1‖z ∈ K }

A1 = { z ∈ {0, 1}k−1 : 0‖z ∈ T and 1‖z ∈ K } ⊆ A0

B = A0 \A1

K′ = { 0‖z : z ∈ A1 } ∪ { 1‖z : z ∈ A1 } ∪ { 0‖z : z ∈ B } ⊆ {0, 1}k . (11)

For z ∈ B there is exactly one bit b ∈ {0, 1} such that b‖z ∈ K. Denote this bit b by g(z). Now
note that w ∈ B since x = 0‖w 6∈ K but y = 1‖w ∈ K, and hence 0‖w ∈ K′ and g(w) = 1. Using
this we have

wH(K′) =
∑
u∈K′

wH(u)

=
∑
z∈A1

wH(0‖z) +
∑
z∈A1

wH(1‖z) +
∑
z∈B

wH(0‖z) , (12)

where Equation (12) follows from Equation (11). Continuing, the above equals

= wH(0‖w) +
∑
z∈A1

wH(0‖z) +
∑
z∈A1

wH(1‖z) +
∑

z∈B\{w}

wH(0‖z) (13)

< wH(1‖w) +
∑
z∈A1

wH(0‖z) +
∑
z∈A1

wH(1‖z) +
∑

z∈B\{w}

wH(0‖z) (14)

≤ wH(1‖w) +
∑
z∈A1

wH(0‖z) +
∑
z∈A1

wH(1‖z) +
∑

z∈B\{w}

wH(g(z)‖z) (15)

=
∑
u∈K

wH(u) = wH(K) . (16)

Equation (13) follows because w ∈ B. Equation (14) follows because wH(1‖w) > wH(0‖w) and
Equation (15) because wH(0‖z) ≤ wH(g(z)‖z). Equation (16) follows because K = { 0‖z : z ∈ A1 }
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∪ { 1‖z : z ∈ A1 } ∪ { g(z)‖z : z ∈ B } and w ∈ B.

Our final claim is that K′ ∈ T , where T was defined in Equation (10). But we just showed that
wH(K′) < wH(K), so we have contradicted our assumption that wH(K) = minK′∈T wH(K′), which
proves the lemma. We now justify this final claim.

The proof that K′ ∈ T has two parts. First, we claim that |K′| = |K|, which means that |K′| is
also N . To prove this we give a bijection f : K′ → K. The map f is defined as follows. For z ∈ A1

let f(0‖z) = 0‖z and f(1‖z) = 1‖z and for z ∈ B let f(0‖z) = g(z)‖z. The second claim is that

Advskp1k,p (K′) ≥ Advskp1k,p (T ). Equation (10) implies that Advskp1k,p (K) = Advskp1k,p (N) so it must be that

Advskp1k,p (K′) = Advskp1k,p (N) as well so this will show K′ ∈ T .

Now we show that Advskp1k,p (K′) ≥ Advskp1k,p (K). Let A be a predictor adversary such that Advskp1k,p (A,K)

= Advskp1k,p (K). Without loss of generality, adversary A is deterministic and also if J = A((s1, . . . , sp))
then si = sj implies J [si] = J [sj ] for all 1 ≤ i, j ≤ p. (Because if si = sj and J [si] 6= J [sj ] then A

loses the game.) We now define

Adversary A′((s1, . . . , sp))

J ′ ← A((s1, . . . , sp))
for i← 1, . . . , p do

if si = 1 then J ′[i]← 0
return J ′

We claim that Advskp1k,p (A′,K′) ≥ Advskp1k,p (A,K). Let P (·) denote the probability function in game

Gskp1
k,p (A,K) and P ′(·) the probability function in game Gskp1

k,p (A′,K′). The following events are

defined in both games, where z ∈ {0, 1}k−1:

win : The game returns true

one : 1 ∈ {s1, . . . , sp}
sz : (KK[2..k] = z) and one and (J ′[i] = KK[si] for all i such that si 6= 1)

We claim that P (win | one) ≤ P ′(win | one). If so we have

Advskp1k,p (A,K) = P (win)

= P (win | one) · P (one) + P (win | ¬one) · P (¬one)

= P (win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

≤ P ′(win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

= P ′(win) = Advskp1k,p (A′,K′) .

So now we need to show that P (win | one) ≤ P ′(win | one). We have

P (win | one) =
∑

z∈{0,1}k−1

P (win | sz) · P (sz)

=
∑
z∈A1

P (win | sz) · P (sz) +
∑
z∈B

P (win | sz) · P (sz)

=
∑
z∈A1

P (win | sz) · P ′(sz) +
∑
z∈B

P (win | sz) · P ′(sz) (17)
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≤
∑
z∈A1

P ′(win | sz) · P ′(sz) +
∑
z∈B

P ′(win | sz) · P ′(sz) (18)

=
∑

z∈{0,1}k−1

P ′(win | sz) · P ′(sz)

= P ′(win | one) .

Equation (17) is true because P (sz) = P ′(sz) for all z ∈ {0, 1}k−1. Equation (18) is true because if
z ∈ A1 then P (win | sz) = 1/2 and also P ′(win | sz) = 1/2 while if z ∈ B then P ′(win | sz) = 1.

Proof of Lemma 8: By Lemma 6 we can find a monotone, size N set K ⊆ {0, 1}k such that

Advskp1k,p (N) = Advskp1k,p (K). Since r = rdk(N) we have Bk(r) ≤ N < Bk(r + 1).

We claim that Bk(r) ⊆ K. Suppose to the contrary that Bk(r) 6⊆ K. Let x′ be a point in Bk(r) \ K
of minimal Hamming weight. (No point in Bk(r) \ K has Hamming weight strictly smaller than
wH(x′).) Let x be a point in K \ Bk(r) of maximal Hamming weight. (No point in K \ Bk(r) has
Hamming weight strictly more than wH(x).) Let K′ be obtained by removing x from K and then
adding x′, meaning K′ = (K \ {x}) ∪ {x′}. Because x′ was minimal in Hamming weight and x
was maximal in Hamming weight, the set K′ continues to be monotone, and it has size N . Also
gk,p(K) < gk,p(K′) because wH(x) > wH(x′). Now using Lemma 7 we have

Advskp1k,p (K) = gk,s(K) < gk,p(K′) = Advskp1k,p (K′) .

This contradicts the assumption that Advskp1k,p (N) = Advskp1k,p (K). This means it must be that
Bk(r) ⊆ K.

Now suppose K 6⊆ Bk(r + 1). Let x′ be a point in Bk(r + 1) \ K. (Such a point exists because
we know that N < Bk(r + 1).) It must be that wH(x′) = r + 1 since Bk(r) ⊆ K. Let x be a
point in K \ Bk(r + 1) of maximal Hamming weight. (No point in K \ Bk(r + 1) has Hamming
weight strictly more than wH(x).) Let K′ be obtained by removing x from K and then adding x′,
meaning K′ = (K \ {x}) ∪ {x′}. The set K′ continues to be monotone, and it has size N . Also

gk,p(K) ≤ gk,p(K′) because wH(x) ≥ wH(x′). Now using Lemma 7 we have Advskp1k,p (K) = gk,s(K) ≤
gk,p(K′) = Advskp1k,p (K′). Continuing in this way, we can ensure that K ⊆ Bk(r + 1) and is still
monotone. The strictness of the containment, namely that K ⊂ Bk(r + 1), is by definition of
r = rdk(N).

Proof of Lemma 4. We now prove the first main lemma. We begin with a general result about
the maximization of discrete concave functions.

The standard definition of concavity of functions applies to continuous functions. Here we
provide a definition for functions defined on a discrete domain that allows us to prove a lemma we
will use later. Proceeding, suppose F : ZM → R. We say that F is concave if F (a + 1) − F (a) ≤
F (b + 1) − F (b) for all a, b ∈ ZM−1 satisfying a ≥ b. Now suppose t,m ≥ 1 are integers with
1 ≤ m ≤ t. Then we let

S(M,m, t) = { (x1, . . . , xm) ∈ ZmM : x1 + · · ·+ xm = t } .

Define Fm: ZmM → R by Fm(x1, . . . , xm) = F (x1) + · · · + F (xm). The proof of the following is
postponed.
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Lemma 9 Suppose F : ZM → R is concave. Suppose 1 ≤ m ≤ t are integers such that m divides t
and t/m ∈ ZM . Then

max
(x1,...,xm)∈S(M,m,t)

Fm(x1, . . . , xm) = m · F (t/m)

That is, the maximum of Fm over S(M,m, t) is attained when all inputs have the same value
t/m ∈ ZM , and is thus equal to m ·F (t/m). To apply this in our setting, we introduce the function
Fk,p: Z2k+1 → R defined by

Fk,p(N) =
N

2k
· Advskp1k,p (N) . (19)

Rewriting the claim of Lemma 4 in terms of the function Fk,p, our aim is to show that Advskpk,p,1(`) ≤
2` · Fk,p(2k−`). The following says that the function Fk,p meets our definition of concavity. The
proof is postponed.

Lemma 10 Let k, p ≥ 1 be integers. Then the function Fk,p is concave.

We now show how to obtain our first main lemma.

Proof of Lemma 4: Let M = 2k + 1, m = 2` and t = 2k. Now we have

Advskpk,p,1(`) = max
Lk

(∑
L

|Lk−1(L)|
2k

·max
A

Pr[Gskp
k,p,1(A, Lk) | Lk(KK) = L ]

)

= max
Lk

(∑
L

|Lk−1(L)|
2k

· Advskp1k,p (Lk−1(L))

)

≤ max
(N1,...,Nm)∈S(M,m,t)

m∑
i=1

Fk,p(Ni)

= max
(N1,...,Nm)∈S(M,m,t)

Fmk,p(N1, . . . , Nm)

= m · Fk,p(2k−`) (20)

= m · 2k−`

2k
· Advskp1k,p (2k−`) = Advskp1k,p (2k−`) . (21)

Equation (20) is justified as follows. Lemma 10 says that Fk,p is concave. So we can apply Lemma 9,
and here t/m = 2k−`. Equation (21) is by Equation (19) and because m = 2`.

We now give the proofs of the postponed lemmas.

Proof of Lemma 9: Let (y1, . . . , ym) ∈ S(M,m, t) be such that

max
(x1,...,xm)∈S(M,m,t)

Fm(x1, . . . , xm) = Fm(y1, . . . , ym) .

Suppose there exist 1 ≤ i, j ≤ m such that yi ≥ yj + 2. Let y′i = yi − 1 and y′j = yj + 1. Also let
y′l = yl for l 6∈ {i, j}. Note that (y′1, . . . , y

′
m) ∈ S(M,m, t). Since yi−1 ≥ yj we can apply concavity

with a = yi − 1 and b = yj to get F (yi)− F (yi − 1) ≤ F (yj + 1)− F (yj). Using this we have

Fm(y′1, . . . , y
′
m) = Fm(y1, . . . , ym) + F (y′i)− F (yi) + F (y′j)− F (yj)

= Fm(y1, . . . , ym) + F (yi − 1)− F (yi) + F (yj + 1)− F (yj)
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= Fm(y1, . . . , ym) + (F (yj + 1)− F (yj))− (F (yi)− F (yi − 1))

≥ Fm(y1, . . . , ym) .

By this process we know that a maximum (y1, . . . , ym) of Fm over S(M,m, t) is achieved with
y1, . . . , ym satisfying |yi− yj | ≤ 1 for all 1 ≤ i, j ≤ m. Now we claim that in fact it is achieved with
y1 = · · · = ym. Since y1 + · · ·+ ym = t, this means yi = t/m for all i ∈ [1..m], proving the lemma.
We now justify the claim. Since |yi − yj | ≤ 1 for all i, j, there is an a such that yi ∈ {a, a + 1}
for all i. Let n = |{ i : yi = a }| be the number of indexes i for which yi = a. We want to show
that n ∈ {0,m}. Since y1 + · · · + ym = t we have na + (m − n)(a + 1) = t. We re-arrange to get
n = m(a+1)− t. By assumption 1 ≤ m ≤ t are integers such that m divides t, so t/m is an integer.
Now we have n = m(a+ 1)− t = m(a+ 1)−m(t/m) = m(a+ 1− t/m). We know that 0 ≤ n ≤ m
so the only possibilities are n = 0 or n = m.

Proof of Lemma 10: The function Fk,p: Z2k+1 → R was defined in Equation (19) as Fk,p(N) =

N · 2−k · Advskp1k,p (N). Suppose N0, N1 ∈ Z2k satisfy N0 ≥ N1. We want to show that Fk,p(N0 +

1) − Fk,p(N0) ≤ Fk,p(N1 + 1) − Fk,p(N1). For (i, j) ∈ {0, 1}2, Lemma 8 says there is a monotone

Ki,j ⊆ {0, 1}k such that Bk(ri,j) ⊆ Ki,j ⊂ Bk(ri,j + 1) and Advskp1k,p (Ni + j) = Advskp1k,p (Ki,j), where
ri,j = rdk(Ni + j). Then by Lemma 7

2kFk,p(Ni + j) = (Ni + j) · gk,p(Ki,j) =
∑
x∈Ki,j

(
1− wH(x)

k

)p
For i ∈ {0, 1} let ∆i = 2kFk,p(Ni + 1)− 2kFk,p(Ni) and ri = ri,0. Then for i ∈ {0, 1}

∆i =

(
1− ri + 1

k

)p
. (22)

This is because Bk(ri,j) ⊆ Ki,j ⊂ Bk(ri,j + 1) and Ki,1 has one more point than Ki,0 and this point
has Hamming weight ri + 1. But we know that N0 ≥ N1 so r0 ≥ r1. By Equation (22) we have
∆0 ≤ ∆1 as desired.

4 Encapsulating a Key

In this section we introduce big-key encapsulation. A scheme for this aim lets a user encapsulate
a random, conventional-length key K using a big-key KK. We speak of “encapsulation” instead of
“encryption” because the user never selects a value K to encrypt: rather, a random R is chosen
and this value, together with the big-key KK, determines a derived key K = KEY(KK,R). A user
can transmit R to a party that knows KK and in this way name an induced key K. While the aim
is similar to a KEM (key encapsulation mechanism) [17], there are also many differences, which we
will later discuss.

Definitions. A big-key encapsulation algorithm is a deterministic algorithm KEY that, given
strings KK ∈ {0, 1}k and R ∈ {0, 1}r, returns a string K = KEY(KK,R) ∈ {0, 1}κ. We call KK, R, and
K the big-key, selector, and derived key, respectively. Their lengths, being part of the signature
of KEY, are numbers associated to it. Since we will be working in the RO model, we allow the
encapsulation algorithm to depend on an oracle RO. We write such a function as a superscript,
K = KEYRO(KK,R), if we want to emphasize its presence.

The security requirement for an encapsulation algorithm captures the idea that a derived key
K should be indistinguishable from a uniform random string even when accompanied by R and
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Game Gkey
KEY(A)

b←← {0, 1}
KK ←← {0, 1}k
(LK, σ)←← ARO( )

L← LKRO(KK)

b′ ←← ADerive,RO(L, σ)

return (b′ = b)

Derive( )

R←← {0, 1}r
if (b = 0) then K ←← {0, 1}κ
else K ← KEYRO(KK,R)

return (R,K)

RO(x, l)

if not T [x, l] then

T [x, l]←← {0, 1}l
return T [x, l]

Figure 4: Game for defining the security of a big-key key encapsulation algorithm KEY: {0, 1}k ×
{0, 1}r → {0, 1}κ
.

some bounded amount of leakage from the big-key KK. This is formalized via the game Gkey
KEY(A)

on the left of Fig. 4. The game is associated to encapsulation algorithm KEY and adversary A.
The game is in the ROM, oracle RO taking (x, l) and returning a random l-bit string. Not only
do algorithms and the adversary have access to RO, but, importantly, so does the leakage function
LKRO: {0, 1}k → {0, 1}κ, now called an oracle leakage function to emphasize this.

In its first stage, the adversary specifies the leakage function it wants. It then makes a sequence
of Derive calls, each providing an (R,K) pair that is either real—the derived key was determined
by running KEY with a random selector—or random—the derived key is uniformly random. Which
of these possibilities occurs depends on a bit b chosen at the beginning of the game. The adversary
must guess that bit. We let AdvkeyKEY(A) = 2 Pr[Gkey

KEY(A)]− 1 be its advantage in doing so.

Discussion. A big-key encapsulation algorithm is in some ways similar to a conventional key
encapsulation mechanism [17]. But there are many differences. First, we are in the symmetric
setting instead of the asymmetric setting. Second, we are considering security under leakage, so
the leakage function, chosen by the adversary, comes into the picture. Finally, we have chosen a
syntax under which we do not have a separate decapsulation algorithm, preferring to surface the
coins R across the encapsulation algorithm’s interface.

One may ask why we let the adversary encapsulate an arbitrary number of conventional keys,
using its Derive oracle q times; wouldn’t a hybrid argument show that providing a single derived
key is equivalent, up to a factor of q? In fact, such a hybrid argument fails because the single-
query adversary has no means to simulate the real derived keys. For this reason, it is important to
consider multiple keys.

We explain the importance of giving the leakage function access to RO. Otherwise, the scheme
KEYRO(KK,R) = RO(KK,κ) is secure. Yet, in practice, when RO is instantiated with a concrete
hash function H: {0, 1}∗ → {0, 1}κ, this scheme is certainly not secure because the leakage function
can return H(KK). (We note that in this example the scheme does not make efficient use of KK as
we want, but this is an orthogonal issue to security.) Once the leakage function has access to RO,
it too can return RO(KK,κ), preventing this and other similar schemes from being deemed secure.

Encapsulation scheme XKEY. Let k, κ, r ≥ 1 be integers, and, for convenience, assume k is
a power of two. Given the results of Section 3, a natural big-key encapsulation algorithm is as
follows. On input the big-key KK ∈ {0, 1}k, algorithm KEY picks random probes p ∈ [1..k]p and
computes the induced subkey J = KK[p]. While this subkey is unpredictable, up to the bounds we
have seen, it is not indistinguishable from random bits, so cannot, by itself, function as the derived
key K. So, instead, the algorithm would let the derived key be K ← RO(J, κ) where κ is the
desired length for the derived key.
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Algorithm XKEYRO
k,κ,p,r(KK,R)

for i← 1, . . . , p do p[i]← RO(〈R, i, 0〉, lg(k))

J ← KK[p] ; K ← RO(〈R, J, 1〉, κ) ; Return K

Figure 5: Encapsulation algorithm XKEY. Given a length-k big-key KK and a length-r selector R,
the algorithm returns a length-κ subkey K. The value p, a security parameter, specifies the number
of probes into the big-key.

While the above might sound reasonable, there are two problems with the scheme—one with
regard to security and the other with regard to efficiency. We explain these and then present a
scheme that resolves them.

The security problem is that, we can only show security for the scheme just described if the
leakage function does not have access to the oracle RO. But we have argued that it must have such
access, and in that case the proof breaks down and it is not clear if the scheme is secure. A simple
remedy is to have the scheme pick a random string and include it in the scope of the RO used to
determine the subkey. The proof can then exploit the fact that leakage function can’t depend on
this (not yet chosen) value.

This still leaves the efficiency issue, which is that the probe p is quite long, a total of p lg(k) bits.
The number of components p of p is fairly large and grows with the fraction of bits potentially
leaked; it will typically be 100–1000. If KK is 1 TByte then k ≈ 243 and we’re using up a few
kilobytes to communicate the selector p, which is unpleasant.

Since we’re working in the ROM, an easy solution is to obtain p by applying RO to a short
seed. Conveniently, the same random choices needed for this remedy can be used for the security
problem as well. The resulting encapsulation algorithm XKEYk,κ,p,r: {0, 1}k × {0, 1}r → {0, 1}κ is
shown in Fig. 5 and described below.

The XKEY encapsulation algorithm picks or is provided a random selector R of length r. It
picks the ith probe into KK not directly at random, but by applying the random oracle RO to a
string encoding R, i, and 0. In defining p[i] we interpret a lg(k)-bit string as an integer in [1..k]
in the natural way. The encapsulation algorithm then lets the subkey J be the positions of KK
indicated by the probes. The derived key K is obtained by applying the RO to a string encoding
J , R, and 0. The third component in each encoding 〈·, ·, ·〉 is for domain separation.

Theorem 12 will establish security of XKEY, providing concrete bounds. Those bounds indicate
that r = |R| can be chosen to be quite small, like 128–256. Since only this value is transmitted
when XKEY is used, bandwidth overhead in small and independent of p.

Enhanced subkey-prediction game. Towards the proof of Theorem 12 it is convenient to
consider an enhanced version of the subkey-prediction problem. The security goal reflects two
changes over our earlier subkey-prediction game Gskp. First, the leakage function is not fixed
but dynamically chosen by an adversary. Second, that choice may depend on the RO, which the
leakage function itself may depend on. These issues, particularly the second, lead to design choices
embedded in XKEY and make proofs more challenging. We must now revisit sample predictability,
formulate it in the extended setting just discussed, and then show that security in this new setting
is implied by security in the basic one. Afterwards, we will be in a position to prove security for
XKEY.

As in the basic sample predictability problem, let k, `, p, q ≥ 1 be integers with ` ≤ k. Consider
game Gskp2

k,p,q(B) defined in Fig. 6. In its first stage, the adversary returns an oracle leakage function
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Game Gskp2
k,p,q(B)

(LK, σ)←← BRO

KK ←← {0, 1}k ; L← LKRO(KK)

for i← 1, . . . , q do pi ←← [1..k]p

K ←← BRO(L,p1, . . . ,pq, σ)

return
(
K ∈ {KK[p1], . . . ,KK[pp]}

)

RO(x, l)

if not T [x, l] then T [x, l]←← {0, 1}l

return T [x, l]

Figure 6: Game defining the “enhanced” subkey-prediction game, Gskp2. The game differs from
Gskp by allowing the adversary to select LK, both the latter and the adversary having access to a
random oracle.

Lk. We say that B leaks (or exfiltrates) ` bits if LK: {0, 1}k → {0, 1}`. Adversary B also returns
state σ representing information that could be known to LK and will be passed to the adversary’s
second stage. The game picks the big-key KK, computes the leakage as LKRO(KK) and picks probe
vectors p1, . . . ,pq. These implicitly determine subkeys K1, . . . ,Kq where Ki = KK[pi]. In its second
stage, the adversary B gets the leakage L and probe vectors as before, but now additionally gets
σ. Its task is to guess one of the subkeys, and the game returns true if it does this correctly. We
let Advskp2k,p,q(B) = Pr[Gskp2

k,p,q(B)] be its advantage.

Lemma 11 Let `, k, p, q ≥ 1 be integers with ` ≤ k. Let B be an adversary leaking ` bits. Then

Advskp2k,p,q(B) ≤ Advskpk,p,q(`) (23)

The proof uses a fairly standard “coin-fixing” argument in which a predictor adversary uses the
“best” choice of random oracle and coins for B. The details follow. Proof of Lemma 11: Let

H denote the set of all functions H such that H(·, l): {0, 1}∗ → {0, 1}l for all l ∈ N. A random
oracle is a function drawn at random from H. Regard B, `, k, p, q as fixed and define the function
g: H× {0, 1}∗ → [0, 1] as g(H,ω) = Pr[G(H,ω)] where game G(H,ω) is on the left below:

Game G(H,ω)

(LK, σ)← BH(ω) ; KK ←← {0, 1}k
L← LKH(KK)
for j ← 1, . . . , q do
pj [1], . . . ,pj [p]←← [1..k]
Jj ← KK[pj ]

J ′ ← BH(L,p1, . . . ,pq, σ;ω)
return (J ′ ∈ {J1, . . . , Jq})

Adversary P(L,p1, . . . ,pq)

J ′ ← BH∗(L,p1, . . . ,pq, σ
∗;ω∗)

return J ′

In this game, the coins of B are fixed to ω and its random oracle is fixed to H. The probability is
only over the choices made in the game. Let (H∗, ω∗) ∈ H×{0, 1}∗ be such that g(H∗, ω∗) ≥ g(H,ω)
for all (H,ω) ∈ H × {0, 1}∗, and let (LK, σ∗) ← BH∗(ω∗). Let Lk = LKH

∗
. This is a basic (not

oracle) leakage function, Lk: {0, 1}k → {0, 1}`. Define predictor adversary P as on the right above.
Then

Advskp2k,p,q(B) = E(H,ω)←←H×{0,1}∗ [g(H,ω)]

≤ g(H∗, ω∗)
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Game G0 , G1

KK ←← {0, 1}k

for j ← 1, . . . , q do

R[j]←← {0, 1}r; pj [1], . . . ,pj [p]←← [1..k]; KK[j]←← {0, 1}κ ; Jj ← KK[pj ]

For i = 1, . . . , j − 1 do

If (R[j] = R[i]) then (pj , Jj)← (pi, Ji) ; bad← true ; KK[j]← KK[i]

(LK, σ)←← ARO; L← LKRO(KK) ; c′ ←← ADerive,RO(L, σ) ; Return (c′ = 1)

Game G2 , G3 , G4 , G5

KK ←← {0, 1}k

for j ← 1, . . . , q do

R[j]←← {0, 1}r; pj [1], . . . ,pj [p]←← [1..k]; KK[j]←← {0, 1}κ ; Jj ← KK[pj ]

For i = 1, . . . , j − 1 do

If (R[j] = R[i]) then (pj , Jj)← (pi, Ji)

stage← 1; (LK, σ)←← ARO; L← LKRO(KK)

stage← 2 ; j ← 0; c′ ←← ADerive,RO(L, σ) ; Return (c′ = 1)

Derive()

j ← j + 1; return (R[j],KK[j])

Figure 7: Games for proof of Theorem 12. See Fig. 8 for the RO procedures.

= Advskpk,p,q(P, Lk) ≤ Advskpk,p,q(`)

which yields Equation (23).

Theorem 12 Let k, κ, p, r ≥ 1 be integers with k a power of two. Let KEY = XKEYk,κ,p,r be the
big-key encapsulation scheme associated to them as per Fig. 5. Let A be an adversary making at
most q queries to its Derive oracle and leaking ` bits. Assume the number of RO queries made
by A in its first stage, plus the number made by the oracle leakage function LK that it outputs in
this stage, is at most q1, and the number of RO queries made by A in its second stage is at most
q2. Then

AdvkeyKEY(A) ≤ q2 · Advskpk,p,q(`) +
q · (2q1 + q − 1)

2r+1
(24)

We note that the bound of Equation (24) does not depend on the length κ of the output keys.

Proof of Theorem 12: Consider the games of Fig. 7. Their RO procedures are in Fig. 8. Game
G0 includes the boxed code and is equivalent to case of game Gkey

KEY(A) in which b = 1. Game G5

excludes the boxed code and mimics the b = 0 case of game Gkey
KEY(A), except that the probability

the former returns true is the probability the latter returns false. Let pi = Pr[Gi] for 0 ≤ i ≤ 5.
Then

AdvkeyKEY(A)

= Pr[Gkey
KEY(A) | b = 1 ]−

(
1− Pr[Gkey

KEY(A) | b = 0 ]
)

= Pr[G0]− Pr[G5]

= (p0 − p1) + (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5)
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= (p0 − p1) + (p2 − p3) + (p4 − p5) (25)

≤ Pr[G1 sets bad] + Pr[G3 sets bad] + Pr[G5 sets bad] . (26)

Equation (25) used the fact that p1 = p2 and p3 = p4. Equation (26) used the Fundamental Lemma
of Game Playing [12]. Now

Pr[G1 sets bad] ≤ q(q − 1)

2r+1
. (27)

Also

Pr[G3 sets bad] ≤ q · q1
2r

. (28)

The first estimate of the above bound may be that each RO query can set the first instance of
bad with probability pq/2r and the second with probability q/2r for a bound of q1(p + 1)q/2r.
But these different events are mutually exclusive due to the queries including the index i and the
domain separation bit, whence Equation (28). Now we will present an adversary A such that

Pr[G5 sets bad] ≤ q2 · Advskp2k,p,q(B) . (29)

The theorem follows from Lemma 11. Adversary B is shown in Fig. 9. In the first stage, B simulates
A’s RO directly via its own RO, keeping track of values in table T , which is passed to the next
stage. In the second it does the same, makes sure to map selectors to probes as per game G5, and
also it saves subkey guesses in the set S. Equation (29) follows because |S| ≤ q2.

5 Big-Key Symmetric Encryption

Here we define and achieve big-key symmetric encryption.

Definitions. A symmetric encryption scheme SE specifies a key length SE.kl ∈ N, an encryption
algorithm SE.Enc that given a key K and message M returns a ciphertext, and a deterministic
decryption algorithm SE.Dec such that for all K,M we have SE.Dec(K,SE.Enc(K,M)) = M with
probability one, where the probability is over the coins of SE.Enc. Privacy is formalized by left
or right indistinguishability [7] via game INDSE(A) on the right of Fig. 10 associated to SE and
adversary A. We let AdvindSE (A) = 2 Pr[INDSE(A)] − 1 be the advantage of A in violating privacy
of SE.

Syntactically, a big-key symmetric encryption scheme SE continues to be a symmetric encryption
scheme as above, specifying SE.kl,SE.Enc and SE.Dec. Two things make it special. First, privacy
is measured under leakage on the key. Second, the encryption and decryption algorithms have the
“locality” efficiency attribute, which means that in any one execution they access only a small part
of the key. Privacy is formalized via game LINDSE(A) on the left of Fig. 10 associated to SE
and adversary A. In its first stage, the adversary, given access to RO, specifies an oracle leakage
function LK: {0, 1}SE.kl → {0, 1}` together with state information σ. We refer to ` as the number
of bits leaked by A. In its second stage, A gets the leakage L← LKRO(KK), the state σ, and access
to the challenge encryption oracle Enc, while continuing to have access to RO. To win it must
guess the challenge bit b. We let AdvlindSE (A) = 2 Pr[LINDSE(A)] − 1 be the advantage of A in
violating privacy of SE under leakage. Locality will not be formalized but rather visible in specific
constructs. Giving the leakage function access to RO is important for same reason as we discussed
in Section 4 for key encapsulation, namely that, otherwise, there are trivial ROM schemes that are
secure but when the RO is instantiated the resulting scheme is clearly not secure.

24



RO(x, l) // Games G0 , G1

if not T [x, l] then

T [x, l]←← {0, 1}l

for j ← 1, . . . , q do

for i← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then T [x, l]← pj [i]

if (x = (R[j], Jj , 1) and l = r) then T [x, l]← KK[j]

return T [x, l]

RO(x, l) // Games G2 , G3

if not T [x, l] then

T [x, l]←← {0, 1}l

if (stage = 1) then

for j ← 1, . . . , q do

for i← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then bad← true ; T [x, l]← pj [i]

if (x = (R[j], Jj , 1) and l = r) then bad← true ; T [x, l]← KK[j]

if (stage = 2) then

for j ← 1, . . . , q do

for i← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k))) then T [x, l]← pj [i]

if (x = (R[j], Jj , 1) and l = r) then T [x, l]← KK[j]

return T [x, l]

RO(x, l) // Games G4 , G5

if not T [x, l] then

T [x, l]←← {0, 1}l

if (stage = 2) then

for j ← 1, . . . , q do

for i← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then T [x, l]← pj [i]

if (x = (R[j], Jj , 1) and l = r) then bad← true ; T [x, l]← KK[j]

return T [x, l]

Figure 8: RO procedures for games for proof of Theorem 12.

Big-key encryption scheme. Let SE be a symmetric encryption scheme. Let KEY be a key-
encapsulation algorithm with big-key length k, randomness length r and derived key length κ =
SE.kl (keys output by KEY are suitable for use with SE). We associate to SE,KEY the big-key
symmetric encryption scheme SE = BKSE[SE,KEY] defined as follows. The key length is SE.kl = k
(the key for SE is the same as that for KEY) and the encryption and decryption algorithms are as
follows:
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Adversary BRO

(LK, σ)←← ARO

return (LK, (σ, T ))

ROSIM(x, l)

If not T[x,l] then
T [x, l]← RO(x, l)

Return T [x, l]

Adversary BRO(L,p1, . . . ,pq, (σ, T ))

for j ← 1, . . . , q do
R[j]←← {0, 1}r ; KK[j]←← {0, 1}κ
for i = 1, . . . , j − 1 do

If (R[j] = R[i]) then pj ← pi
S ← ∅ ; j ← 0 ; c′ ←← ADerive,ROSIM(L, σ)
J ′ ←← S ; return J ′

Derive()

j ← j + 1 ; return (R[j],KK[j])

ROSIM(x, l)

If not T [x, l] then
T [x, l]← RO(x, l)
for j ← 1, . . . , q do

for i← 1, . . . , p do
if (x = (R[j], i, 0) and l = lg(k)) then
T [x, l]← pj [i]

(R, J, b)← x
If b = 1 then S ← S ∪ {J}
return T [x, l]

Figure 9: Adversary B for proof of Theorem 12.

Algorithm SE.EncRO(KK,M)

R←← {0, 1}r; K ←← KEYRO(KK,R)

C ←← SE.Enc(K,M) ; C ← (R,C)

Return C

Algorithm SE.DecRO(KK,C)

(R,C)← C

K ← KEYRO(KK,R)
M ← SE.Dec(K,C)
Return M

Encryption applies the key encapsulation algorithm to the big-key to get a derived key K. The
message is encrypted under SE using key K. The locality of this scheme is exactly that of KEY
since accesses to the key are done only by KEY. The big-key aspect is similarly inherited from KEY.
The following says that our big-key scheme achieves privacy under leakage on the key assuming
standard privacy of the base scheme SE and the lror-security of KEY.

Theorem 13 Let SE be a symmetric encryption scheme. Let KEY be a key encapsulation algo-
rithm with big-key length k, randomness length r and derived key length κ = SE.kl. Let SE =
BKSE[SE,KEY] be the big-key symmetric encryption scheme associated to them as above. Let A be
an adversary making at most q queries to its Enc oracle and leaking ` bits. Then the proof below
specifies an adversary A1 and an adversary A2 such that

AdvlindSE (A) ≤ AdvkeyKEY(A2) + q · AdvindSE (A1) . (30)

Adversary A1 makes only one query to its Enc oracle and its running time is about that of A.
Adversary A2 makes q queries to its Derive oracle and has running time about that of A. Its first
stage is the same as that of A, so it also leaks ` bits. In its second stage it makes the same number
of RO queries as A does in its second stage.

Since A1 makes only one query to its Enc oracle, a one-time encryption scheme suffices to instantiate
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Game LINDSE(A)

(LK, σ)←← ARO; KK ←← {0, 1}SE.kl

L← LkRO(KK); b←← {0, 1}
c′ ← AEnc,RO(L, σ)

Return (c′ = b)

Enc(M0,M1)

C ←← SE.EncRO(KK,Mb)

Return C

RO(x, l)

If not T [x, l] then T [x, l]←← {0, 1}l

Return T [x, l]

Game INDSE(A)

S ←← {0, 1}SE.kl

b←← {0, 1}
c′ ← AEnc

Return (c′ = b)

Enc(M0,M1)

C ←← SE.Enc(S,Mb)

Return C

Game MINDSE(A)

b←← {0, 1}
c′ ← AEnc

Return (c′ = b)

Enc(M0,M1)

S ←← {0, 1}SE.kl

C ←← SE.Enc(S,Mb)

Return C ′

Game G0 , G1

(LK, σ)←← ARO

KK ←← {0, 1}SE.kl ; L← LkRO(KK)

b←← {0, 1} ; c′ ← AEnc,RO(L, σ)

Return (c′ = b)

Enc(M0,M1)

R←← {0, 1}r ; K ←← KEYRO(KK,R)

K ←← {0, 1}κ

C ←← SE.Enc(K,M); C ← (R,C)

Return C

RO(x, l)

If not T [x, l] then T [x, l]←← {0, 1}l

Return T [x, l]

Figure 10: Game defining privacy of symmetric encryption scheme SE under leakage, game defining
standard privacy of symmetric encryption scheme SE, game defining multi-key standard privacy of
the latter, and games for proof of Theorem 13.

SE. For the proof of Theorem 13 it is useful to first consider the security of encrypting q messages,
each under a different key of this one time scheme. We capture this via game MINDSE(A) of
Fig. 10 associated to adversary A and scheme SE, and we let Advmind

SE (A) = 2 Pr[MINDSE(A)]− 1
be A’s advantage in this game. As expected, a hybrid argument will show that security will degrade
by at most a factor of q, meaning Advmind

SE (A) ≤ q · AdvindSE (A1) for an adversary A1 of comparable
time making only one oracle query. The claim and proof are standard, but for completeness are
detailed in Appendix A.

Proof of Theorem 13: Consider games G1,G0 of Fig. 10. Game G0 includes the boxed code
and game G1 does not. Game G1 provides exactly the environment of game LINDSE(A) while
game G0 picks the key S for the one-time scheme SE at random. We have

AdvlindSE (A) = 2 Pr[G1]− 1
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Adversary ARO
2

(LK, σ)←← ARO

Return (LK, σ)

Adversary A
Derive,RO
2 (L, σ)

b←← {0, 1} ; c′ ← AEnc,RO(L, σ)
If (c′ = b) then return 1 else return 0

Enc(M0,M1)

(R,K)←← Derive()

C ←← SE.Enc(K,Mb) ; C ← (R,C)

Return C

Adversary AEnc
3

(LK, σ)←← ARO

KK ←← {0, 1}k ; L← LkRO(KK)
c′ ← AEncSim,RO(L, σ)
Return c′

EncSim(M0,M1)

R←← {0, 1}r
C ←← Enc(M0,M1) ; C ← (R,C)

Return C

RO(x, l)

If not T [x, l] then T [x, l]←← {0, 1}l
Return T [x, l]

Figure 11: Adversary constructions for proof of Theorem 13.

= 2 · (Pr[G1]− Pr[G0] + Pr[G0])− 1

= 2 · (Pr[G1]− Pr[G0]) + 2 Pr[G0]− 1 . (31)

We will design adversaries A2 and A3 such that

Pr[G1]− Pr[G0] = AdvkeyKEY(A2) (32)

2 Pr[G0]− 1 = Advmind
SE (A3) . (33)

Apply Lemma 15 to A3 to get the adversary A1 specified there. Now Equations (33) and (36) imply

2 Pr[G0]− 1 ≤ q · AdvindSE (A1) . (34)

Combining Equations (31), (32) and (34) yields Equation (30). We provide the constructions of
the adversaries in Fig. 11. Adversary A2 runs A. It simulates the RO of A with its own RO. The
first stage of A2 is the same as that of A. In the second stage, it responds to Enc queries of A

by calling its Derive oracle to get (R,K), using the latter to encrypt the message. Adversary A3

also runs A. Answers to RO queries are provided by direct simulation via the shown subroutine.
Adversary A3 picks the big-key KK itself, so that it can compute the leakage. It responds to Enc
queries of A via the shown EncSim subroutine which.

6 Standard-Model Big-Key Encryption

In this section we give a standard-model variant of our scheme whose security relies on UCE. The
scheme is as efficient as our ROM one, but ciphertexts are longer.

Definitions. We recall the UCE framework following [8]. Let H: {0, 1}H.kl×{0, 1}H.il → {0, 1}H.ol
be a family of functions taking an H.kl-bit key I and H.il-bit input x to a H.ol-bit output H(I, x).
Game Guce of Fig. 12 is associated to H, an adversary S called the source, an adversary D called
the distinguisher, and a number q of keys. (We are using the multi-key version of UCE from [8].)
Here S does not get the keys. It produces leakage M that is passed to D, who does get the keys. We
let AdvuceH,q(S,D) = 2 Pr[Guce

H,q(S,D)]− 1. We can only expect this to be small for sources restricted
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Game Guce
H,q(S,D)

b←← {0, 1}
For i = 1, . . . , q do Ii ←← {0, 1}H.kl

M ←← SHASH ; b′ ←← D(I1, . . . , Iq,M)

Return (b′ = b)

HASH(x, j)

If not T [x, j] then

If b = 0 then T [x, j]←← {0, 1}H.ol

Else T [x, j]← H(Ij , x)

Return T [x, j]

Game Gsp
S (P)

Q← ∅ ; M ←← SHASH ; x←← P(M)

Return (x ∈ Q)

HASH(x, j)

If not T [x, j] then T [x, j]←← {0, 1}H.ol

Q← Q ∪ {x} ; Return T [x, j]

Figure 12: Games Guce and Gsp to define UCE security.

Algorithm XKEY2k,κ,p,r(KK,R)

(I,p)← R ; J ← KK[p] ; K ← H(I, J) ; Return K

Figure 13: Encapsulation algorithm XKEY2. Given a length-k big-key KK and a length-r selec-
tor R = (I,p), the algorithm returns a length-κ subkey K.

in some way. We require statistical unpredictability [8, 14] of the source’s oracle queries. If P is

an adversary called the predictor, let AdvpredS (P) = Pr[Gsp
S (P)] where the game is again in Fig. 12,

and let AdvpredS = maxP Adv
pred
S (P). The predictor here is unbounded (corresponding to statistical

unpredictability) so the maximum is over all predictors. The assumption, informally, is that if

AdvpredS is small then so is AdvuceH,q(S,D) for all efficient S,D. An important element of results is

thus to be able to bound AdvpredS for the S constructed by the reduction.

XKEY2. The encapsulation algorithm is specified in Fig. 13. If κ is the desired length of the
derived key, k the length of the big-key KK (assumed a power of two for simplicity) and p the
number of probes then it uses a family of functions H with H.ol = κ and H.il = p. The selector
is of length r = H.kl + p · lg(k) and specifies a key I for H as well as the probe sequence p. The
derived key K is then computed as shown. The following theorem says that the scheme works,
meaning achieves our notion of encapsulation security. This involves two claims. First is that
the key encapsulation advantage can be bounded by the uce advantage of a source-distinguisher
pair. But this by itself is not enough. To ensure this uce advantage is small, we also show that the
predictability of the source can be bounded. Here we appeal to our bound on sub-key predictability,
so that once again the latter emerges as crucial.

Theorem 14 Let k, κ, p ≥ 1 be integers and H a family of functions with H.ol = κ and H.il = p.
Let r = H.kl + p · lg(k). Let KEY = XKEY2k,κ,p,r be the big-key key-derivation scheme associated
to them as per Fig. 13. Let A be an adversary making at most q queries to its Derive oracle and
leaking ` bits. The proof specifies a source adversary S and a distinguisher adversary D such that

AdvkeyKEY(A) ≤ AdvuceH,q(S,D) and AdvpredS ≤ Advskpk,p,q(`) . (35)

Adversary S makes q queries to its HASH oracle (one per key) and the running times of S and D
add up to essentially that of A.
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Proof of Theorem 14: Adversaries S,D are as follows:

Adversary SHASH

KK ←← {0, 1}k ; (LK, σ)←← A( )
L←← LK(KK)
For i = 1, . . . , q do

pi ←← [1..k]p ; Ji ← KK[pi]
Ki ← HASH(Ji, i)

M ← (L, σ,p1, . . . ,pq,K1, . . . ,Kq)
Return M

Adversary D(I1, . . . , Iq,M)

(L, σ,p1, . . . ,pq,K1, . . . ,Kq)←M
i← 0 ; c′ ←← ADerive(L, σ)
Return c′

Derive()

i← i+ 1 ; return ((Ii,pi),Ki)

Adversary S itself picks the big-key KK and runs A to get the leakage function, producing its own
leakage M as shown. Adversary D continues the execution of A, being in a position to answer
Derive queries because it has I1, . . . , Iq. If P is any predictor adversary, the leakage M it gets in
its game specifies the output L of the leakage function on the big-key, the probe sequences, and
independent random strings K1, . . . ,Kq, and an oracle query of the source is a subkey, so guessing

it is exactly guessing a subkey. It follows that AdvpredS (P) ≤ Advskpk,p,q(`). We omit the details.

Big-key encryption. We can turn XKEY2 into a big-key encryption scheme via the general
transform of Section 5. This transform does not introduce a random oracle. (If the big-key key
encapsulation mechanism used one, it will inherit it, but will not introduce an additional use.) Thus
the result of applying the transform to XKEY2 is a standard-model big-key encryption scheme. It
satisfies locality because XKEY2 does. Theorem 13 reduces its security to that of XKEY2, and thus
we can conclude by applying Theorem 14. We omit the details.

7 Authenticity and Hedged Big-Key Encryption

In real-world settings we are likely to want authenticated encryption (AE) rather than privacy-only
encryption. We should thus ask whether, we can have big-key AE rather than the privacy-only
formulation we have now. As discussed in Section 1, this is not possible due to the following attack:
the adversary simply leaks a valid ciphertext. This is a small amount of leakage, yet violates
authenticity.

To overcome this difficulty we suggest to use what we call hedged big-key encryption. This
provides privacy in the big-key setting we have already defined and achieved; additionally, in the
absence of leakage, it provides authenticity. We suggest that this is a good goal because, in the
mass-surveillance / APT context, it is privacy that is the main concern, not authenticity; but in
the absence of an APT, our concerns would be the usual ones, which include authenticity. Hedged
big-key encryption provides both, so that security does not degrade by moving to big keys.

There is a simple and generic way to turn a privacy-only big-key encryption scheme into a
hedged big-key encryption scheme. Reserve a small (128-bit, say) portion K of the big-key KK as a
key for a conventional PRF or MAC. Then use encrypt-then-mac [9]. Namely, big-key encrypt the
message under the remaining (big) portion of KK to get a ciphertext C, and return (C, T ) as the
ciphertext for the hedged big-key scheme, where T is the result of applying a PRF, keyed by K,
to C. In the absence of leakage, we have authenticated encryption by applying results of [9]. In
the presence of leakage, we must assume the small key K is leaked in its entirety, but the big-key
privacy-only component will still provide the same privacy as before. Here we use the fact that in
the privacy proof of [9], the adversary can be given the PRF (MAC) key.
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A Many Queries to One

We refer to game MINDSE(A) of Fig. 10 associated to adversary A and scheme SE. Recall that
Advmind

SE (A) = 2 Pr[MINDSE(A)]−1 is A’s advantage in this game. As expected, a hybrid argument
will show that security will degrade by at most a factor of q, meaning Advmind

SE (A) ≤ q ·AdvindSE (A1)
for an adversary A1 of comparable time making only one oracle query. This is stated in the following
lemma. The proof is standard, but in our concrete security setting it is important that adversary
constructions are explicitly specified. Accordingly we want to specify A1, and do so in the proof.

Lemma 15 Let A an adversary making at most q queries to its Enc oracle. Then the proof below
specifies an adversary A1 such that

Advmind
SE (A) ≤ q · AdvindSE (A1) . (36)

Adversary A1 makes only one query to its Enc oracle and its running time is about that of A.

Proof of Lemma 15: This is a standard hybrid argument. For the sake of the concreteness of
the reduction, we specify the adversary concretely below:

Adversary AEnc
1

j ← 0 ; g ←← [1..q]
c′ ←← AEncSim

Return c′

EncSim(M0,M1)

j ← j + 1 ; KK[j]←← {0, 1}SE.kl
If (j < g) then C ′ ←← SE.Enc(KK[j],M0)
If j = g then C ′ ←← Enc(M0,M1)
If (j > g) then C ′ ←← SE.Enc(KK[j],M1)
Return C ′

This adversary simulates A’s oracle directly on queries i 6= g and calls its own Enc oracle to answer
the g-th query, where g is a random guess. We omit the proof of Equation (36).
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