
Antikernel: A Decentralized Secure
Hardware-Software Operating System

Architecture

Andrew Zonenberg1 and Bülent Yener2

1 IOActive Inc., Seattle WA 98105, USA,
andrew.zonenberg@ioactive.com

2 Rensselaer Polytechnic Institute, Troy NY 12180, USA,
yener@cs.rpi.edu

Abstract. The “kernel” model has been part of operating system ar-
chitecture for decades, but upon closer inspection it clearly violates the
principle of least required privilege. The kernel is a single entity which
provides many services (memory management, interfacing to drivers,
context switching, IPC) having no real relation to each other, and has
the ability to observe or tamper with all state of the system. This work
presents Antikernel, a novel operating system architecture consisting of
both hardware and software components and designed to be fundamen-
tally more secure than the state of the art. To make formal verification
easier, and improve parallelism, the Antikernel system is highly modular
and consists of many independent hardware state machines (one or more
of which may be a general-purpose CPU running application or systems
software) connected by a packet-switched network-on-chip (NoC). We
create and verify an FPGA-based prototype of the system.

Keywords: network on chip · system on chip · security · operating sys-
tems · hardware accelerators

1 Introduction

The Antikernel architecture is intended to be more, yet less, than simply a “ker-
nel in hardware”. By breaking up functionality and decentralizing as much as
possible we aim to create a platform that allows applications to pick and choose
the OS features they wish to use, thus reducing their attack surface dramati-
cally compared to a conventional OS (and potentially experiencing significant
performance gains, as in an exokernel).3

Antikernel is a decentralized architecture with no system calls; all OS func-
tionality is accessed through message passing directly to the relevant service.
To create a process, the user sends a message to the CPU core he wishes to
run it on. To allocate memory, he sends a message to the RAM controller. Each

3 This paper is based on author 1’s doctoral dissertation research [1].



of these nodes is self-contained and manages its own state internally (although
nodes are free to, and many will, request services from other nodes).

There is no “all-powerful” software; all functionality normally implemented
by a kernel is handled by unprivileged software or hardware. Even the hard-
ware is limited in capability; for example the flash controller has no access to
RAM owned by the CPU. By formally verifying the isolation and interprocess
communication, we can achieve a level of security which exceeds even that of a
conventional separation kernel: even arbitrary code execution on a CPU grants
no privileges beyond those normally available to userspace software. Escalation
to “ring 0” or “kernel mode” is made impossible due to the complete lack of
such privileges; unprivileged userspace runs directly on “bare metal”.

Thus Antikernel architecture unifies two previously orthogonal fields - hard-
ware accelerators and operating system (OS) security - in order to create a new
OS architecture which can enforce OS security policy at a much lower level than
previously possible. In contrast to the classical OS model, our system blurs or
eliminates many of the typical boundaries between software, hardware, kernels,
and drivers. Most uniquely, there is no single piece of software or hardware in
our architecture which corresponds to the kernel in a classical OS. The operat-
ing system is instead an emergent entity arising out of the collective behavior
of a series of distinct hardware modules connected via message passing, which
together provide all of the services normally provided by a kernel and drivers.
Each hardware device includes state machines which implement low-level re-
source management and security for that particular device, and provides an API
via message passing directly to userspace. Applications software may either access
this API directly (as in an exokernel [2]) or through server software providing
additional abstractions (as in a microkernel).

By decentralizing to this extent, and creating natural chokepoints for dataflow
between functional subsystems (as in a separation kernel [3], [4]), we significantly
reduce the portion of the system which is potentially compromised in the event
of a vulnerability in any one part, and render API-hooking rootkits impossible
(since there is no syscall table to tamper with). In order to avoid difficult-to-
analyze side channels between multiple modules accessing shared memory, we
require that all communication between modules take place via message passing
(as in a multikernel [5]). This modular structure allows piecewise formal verifi-
cation of the system since the dataflow between all components is constrained
to a single well-defined interface.

Unlike virtualization-based separation platforms (such as Qubes [6]), our
architecture does not require massive processing and memory overhead for each
security domain, and is thus well suited to running many security domains on
an embedded system with limited resources. Our architecture also scales to a
large number of mutually untrusting security domains, unlike platforms such as
ARM TrustZone ([7]) which provide one-way protection of a single domain.

We have tested the feasibility of the architecture by creating a proof-of-
concept implementation targeting a Xilinx FPGA, and report experimental re-
sults including formal correctness proofs for several key components. The pro-

2



totype is open source [8] to encourage verification of our results and further
research.

2 Related Work

There are many examples in the literature of operating system components being
moved into hardware4 however the majority of these systems are focused on
performance and do not touch on the security implications of their designs at
all.

Fundamentally, any hard-wired OS component has an intrinsic local secu-
rity benefit over an equivalent software version - it is physically impossible for
software to tamper with it. This brings an unfortunate corollary - it cannot be
patched if a design error, possibly with security implications, is discovered. Ex-
tremely careful testing and validation of both the design and implementation is
thus required. Furthermore, hardware OSes may not provide any global benefits
to security: If the hardware component does not perform adequate validation or
authentication on commands passed to it from software, compromised or mali-
cious software can simply coerce the hardware into doing its bidding. Next we
briefly review some of the related work in this domain.

2.1 Security Agnostic Hardware Accelerations

Several researchers implemented hardware accelerators for various RTOS func-
tions: [9] proposes a distributed OS built into a network-on-chip, or NoC; [10]
proposes a basic RTOS which contains a simple hardware microkernel imple-
menting a scheduler, semaphores, and timers; [11] describes a microkernel-based
OS using a 2D mesh NoC. Each node is a CPU with a microkernel on it, run-
ning user processes and/or servers. [12] proposes a “hardware OS kernel”, or
HOSK, which is connected to a conventional (unmodified) RISC processor and
functions as an accelerator. [13] describes BORPH, an operating system for a
reconfigurable platform containing one or more CPUs and one or more recon-
figurable components such as FPGAs. It introduces the concept of a “hardware
process”, which is functionally equivalent to a conventional OS process.

While these approaches provide significant performance benefits compared
to a software-only implementation, there are no authentication or protection
capabilities built into them, thus they provide no security benefits.

2.2 Security-Focused Designs

[14] presents an FPGA-based implementation of a separation kernel. It describes
a distributed OS based on a “time-triggered network on chip” (TTNoC) connect-

4 This paper uses the term “hardware OS” to refer to a series of state machines
implemented in silicon which provide operating system services to a computer. Some
other authors use the same term to refer to a very different concept: a component
of an operating system (which is typically implemented in software) responsible for
managing partitions of an FPGA or other reconfigurable computing device.

3



ing a series of IP cores, each considered a separate partition within the system.
While the TTNoC provides complete and deterministic isolation between hosts
(i.e., no traffic sent by any other host can ever impact the ability of another to
communicate and thus there are no timing / resource exhaustion side channels)
it suffers from the lack of burst capabilities and does not scale well to systems
involving a large number of hosts (in a system with N nodes each one can only
use 1/N of the available bandwidth).

[15] describes a “zero-kernel operating system” or ZKOS. The general guiding
principles of “no all-powerful component”, “hardware-software codesign”, and
“safe design” are very similar to our work, as well as the conclusion that privi-
lege rings are an archaic and far too coarse-grained concept. The main difference
is that their system relies on “streams” (point-to-point one-way communications
links) and “gates” (similar to a syscall vector, allows one security domain to call
into another) for IPC and does not support arbitrary point-to-point communi-
cation. Furthermore, while threading and message passing are implemented in
hardware, the ZKOS architecture appears to be primarily software based with
minimal hardware support and does not support hardware processes/drivers. Fi-
nally, BiiN [16] was the result of a joint Intel-Siemens project to develop a fault-
tolerant computer, which could be configured in several fault-tolerant modes
including paired lock-step CPUs. A capability-based security system is used to
control access to particular objects in memory or disk. The system architecture
advocates heavy compartmentalization with each program divided up as much
as possible, and using protected memory between compartments (although the
goal was reliability against hardware faults through means such as error correct-
ing codes and lock-stepped CPUs, not security against tampering). No mention
of formal verification could be found in any published documentation.

3 Antikernel Network Architecture

At the highest logical level, an Antikernel-based system consists of a series of
nodes (userspace processes or hardware peripherals) organized in a quadtree5

and connected by a packet-switched NoC with 16-bit addressing.6 Hardware
and software components are indistinguishable to developers and are addressed
using the same message passing interface.

Each bottom-level leaf node is assigned a /16 subnet (a single address) and
corresponds to a single hardware module. The next level nodes are routers for /14

5 The choice of a quadtree was made purely for convenience of prototyping. Other im-
plementations of the Antikernel architecture could use an octree, 2D grid, add direct
sibling-to-sibling links to reduce load on the root, or use more esoteric topologies
depending on system requirements.

6 For the remainder of this paper, NoC routing addresses are written in IPv6-style
hexadecimal CIDR notation. For example the subnet consisting of all possible ad-
dresses is denoted 0000/0, 8002/16 is a single host, etc. The architecture can be
scaled to larger address sizes in the future if needed, however it is unlikely that more
than 65536 unique IP cores will be present in any SoC in the near future and smaller
addresses require less FPGA resources.

4



subnets, followed by routers for /12 subnets, and so on. Routers are instantiated
as needed to cover active subnets only; if there are only four nodes in the system
the network will consist of a single top-level router with four children rather than
an eight-level tree. Nodes may also be allocated a subnet larger than a /16 if
they require multiple addresses: perhaps a CPU with support for four hardware
threads, with each thread as its own security domain, would use a /14 sized
subnet so that the remainder of the system can distinguish between the threads.

“The network” is actually two parallel networks specialized for different pur-
poses, as shown in Fig. 1. The RPC network transports fixed-size datagrams con-
sisting of one header word and three data words, and is optimized for low-latency
control-plane traffic. The DMA network transports variable size datagrams, and
is optimized for high-throughput data-plane traffic. Each node uses the same
address on both networks to ensure consistency, although individual nodes are
free to only use one network and disable their associated port on the other (for
example, node “n8002/16”). Entire routers for one network or the other may
be optimized out by the code generator if they have no children (for example,
there is no RPC router for the subnet 8004/14 as all nodes in that subnet are
DMA-only).

Fig. 1. Example routing topology showing RPC and DMA

A full link for either network contains two independent unidirectional links,
each consisting of a 32-bit data bus7 and several status flags. Since the prototype
is FPGA-based all network links are system-synchronous, however they could
fairly easily be converted to source-synchronous for a globally-asynchronous/locally
synchronous (GALS) ASIC clocking structure.

Packets for both networks begin with a single-word layer-2 routing header
containing the 16-bit source and destination node addresses, followed by protocol-
specific layer-3 headers.8 Each network guarantees strict FIFO ordering, as well
as reliable delivery, for any two endpoints.

7 Links could potentially scale to 64, 128, or larger multiples of 32 bits if higher
bandwidth is needed, however our prototype does not implement this.

8 There is no layer-2 header field to distinguish RPC and DMA traffic; since the net-
works are physically distinct the protocol can be trivially determined from context.
Alternate implementations of the architecture could potentially merge both proto-
cols into a single network with an additional header to specify the protocol.

5



3.1 Remote Procedure Call (RPC)

An RPC message consists of the standard layer-2 routing header followed by an
ID indicating the operation to be performed (“call”), a type field (“op”), and
the message payload.

Any RPC transaction involves two nodes. The node which initiates the trans-
action is designated the master; the other is designated the slave. These roles
are not fixed and any node may choose to act as a master or slave at any time.

Interrupts The simplest kind of RPC transaction is an interrupt9: a unidi-
rectional notification from master to slave. RPC interrupts are typically sent
to inform the slave that some long-running operation (such as a backgrounded
DMA write to slow flash memory) has completed at the master, or that an exter-
nal event took place (such as an Ethernet frame arriving, or a button pressed).
The call field of an interrupt packet is set to a value chosen by the master de-
scribing the specific type of event; the data fields may or may not be significant
depending on the specific master’s application-layer protocol.

Function Calls The second major kind of RPC transaction is a function call: a
request by the master that the slave take some action, followed by a result from
the slave. This result may be either a success/fail return value indicating that
the remote procedure call completed, or a retry request indicating that the slave
is too busy to accept new requests and that the call should be repeated later.

The call field of a function call packet is set to a slave-dependent value
describing one of 256 functions the master wishes the slave to perform. The
meaning of the data fields is dependent on the slave’s application-layer protocol.

A return packet (including a retry) must have the same call value as the
incoming function call request to allow matching of requests to responses. The
meaning of the data fields is dependent on the slave’s application-layer protocol.

Although not implemented by any current slaves, the RPC call protocol
allows out-of-order (OoO) transaction processing (handling multiple requests in
the most efficient order, rather than that in which they were received).

Flow Control / Routing The RPC protocol will function over links with
arbitrary latency (and thus register stages may be added at any point on a long
link to improve timing), however a round-trip delay of more than one packet time
will reduce throughput since the transmitter must block until an ACK arrives
from the next-hop router before it can send the next packet. We plan to solve
this issue with credit-based flow control in a future revision.

The RPC router is a full crossbar which allows any of the five ports to send
to any other, with multiple packets in flight simultaneously. Each exit queue

9 Note that the term “interrupt” was chosen because these messages convey roughly
the same information that IRQs do in classical computer architecture. While the slave
node is free to interrupt its processing and act on the incoming message immediately,
it may also choose to buffer the incoming message and handle it later.

6



maintains a round-robin counter which increments mod 5 each time a packet is
sent. In the event that two ports wish to send out the same port simultaneously,
the port identified by the counter is given max priority; otherwise the lowest
numbered source port wishing to send wins. This ensures baseline quality of
service (each port is guaranteed 20% of the available bandwidth) while still
permitting bursting (a port can use up to 100% of available bandwidth if all
others are idle).

3.2 Direct Memory Access (DMA)

Packet Structure and Semantics A DMA packet consists of the standard
layer-2 routing header followed by a type field, data length, and a 32-bit address
indicating the target of the DMA operation. This is then followed by message
content (up to 512 32-bit words in our current prototype) for “read data” and
“write data” packets. The “read request” packet has no data field.

All write operations must be to an integral number of 32-bit words; byte
masking is not supported (although it could potentially be added in the fu-
ture by using some of the reserved bits in the DMA header). If byte-level write
granularity is required this is typically implemented with a read-modify-write.

Since the DMA address field is 32 bits, a maximum of 4 GB may be addressed
within a single device (/16 subnet). Nodes requiring > 4 GB of address space
may be assigned to larger subnets; for example a SD card controller might use
a /14 subnet (4 routing addresses) to permit use of cards up to 16 GB (4x 4
GB). When sending pointers between nodes it is necessary to send both the 16-
bit routing address and the 32-bit pointer. The resulting 48-bit physical address
uniquely identifies a single byte of data within the system.

Memory Read/Write A memory read transaction consists of one packet from
master to slave, with the type field set to “read request”, the address set to the
location of the data being requested, and the length set to the number of words
being read. If the request is permitted by the slave’s security policy, it responds
with a packet of type “read data”. Address and length are set as in the requested
packet, and the data field contains the data being returned. If the request is not
permitted by policy, the slave returns an error code so that the master knows
no response is forthcoming.

A memory write consists of one packet from master to slave, with the type
field set to “write data” and length/address set appropriately. If the request is
permitted by the slave’s security policy, it responds with a “write complete”
RPC interrupt. This allows the master to implement memory-fencing semantics
for interprocess communication: to avoid potential race conditions, one cannot
send the pointer to another node (or change access controls on it) until the in-
flight write has completed. If the request is not permitted, the slave returns an
RPC error interrupt so that the master knows the underlying physical memory
has not been modified.

7



Flow control and routing The current DMA flow control scheme expects
a fixed single-cycle latency between routers with lock-step acknowledgement10.
The DMA router uses the same arbiter and crossbar modules as the RPC router,
although the buffers are somewhat larger.

4 Memory Management

One of the most critical services an operating system must provide is allowing
applications to allocate, free, and manipulate RAM. In the minimalistic environ-
ment of an exokernel there is no need for an OS to provide sub-page allocation
granularity, so we require nodes to allocate full pages of memory and manage
sub-page regions (such as for C’s malloc() function) in a userspace heap. If a
block larger than a page is required, the node must allocate multiple single pages
and map them sequentially to its internal address space.

Antikernel’s memory management enforces a “one page, one owner” model.
Shared memory is intentionally not supported, however data may be transferred
from one node to another in a zero-copy fashion by changing ownership of the
page(s) containing the data to the new user.

The Antikernel memory management API is extremely simple, in keeping
with the exokernel design philosophy. It consists of four RPC calls for manipu-
lating pages (“get free page count”, “allocate page”, “free page”, and “change
ownership of page”) as well as DMA reads and writes. A “write complete” RPC
interrupt is provided to allow nodes to implement memory fencing semantics
before chown()ing a page.

The data structures required to implement this API are extremely simple,
and thus easy to formally verify: a FIFO queue of free pages and an array
mapping page IDs to owner IDs. When the memory subsystem initializes, the
FIFO is filled with the IDs of all pages not used for the internal metadata and
the ownership array records all pages as owned by the memory manager.

Requesting the free page count simply returns the size of the free list FIFO.
Allocating a page fails if the free list is empty. If not, the first page address on
the FIFO is popped and returned to the caller; the ownership records are also
updated to record the caller as the new owner of the page. Freeing a page is
essentially the allocation procedure run in reverse. After checking that the caller
is the owner of the page, it is zeroized to prevent any data leakage between nodes,
then pushed onto the free list and the ownership records updated to record the
memory manager as the new owner of the page. Changing page ownership does
not touch the free list at all; after verifying that the caller is the owner of the
page the ownership records are simply updated with the new owner.

DMA reads and writes perform ownership checks and, if successful, return or
update the contents of the requested range. The current memory controller API
requires that all DMA transactions be aligned to 128-bit (4 word) boundaries,
be a multiple of 4 words in size, and not cross page boundaries.

10 We plan to extend this in the future in order to support variable latency for long-
range cross-chip links, as was done for RPC.

8



The current prototype codebase contains two compatible implementations of
the Antikernel memory management API: BlockRamAllocator (backed by on-
die block RAM, parameterizable size) and NetworkedDDR2Controller (backed
by DDR2, currently fixed at 128MB capacity with a 16-bit bus). A parameterizable-
depth allocator backed by DDR3 or QDR-II+ is planned, but has not yet been
implemented.

Since Antikernel’s architecture is inherently NUMA, multiple memory con-
trollers may be instantiated without causing problems as long as full 48-bit
pointers are used to avoid ambiguity.

5 SARATOGA Processor and Threading

The prototype CPU for Antikernel (named SARATOGA) is a high-performance
dual-issue in-order barrel processor using a modified version of the the MIPS-
1 instruction set with an 8-stage pipeline11 and a parameterizable number of
hardware threads.12 This produces the net effect of 8 virtual CPUs at 1/8 the
core clock rate, time-sharing the same two execution units.

The CPU can easily reach around 180 MHz on a Xilinx Artix-7 FPGA (-2
speed), and can be pushed to 200 with careful floorplanning of the L1 caches and
register file. Area is 5700 flipflops, 6400 LUTs, 2570 slices, and 44 RAMs for the
CPU itself. The reference system is 12800 flipflops, 15100 LUTs, 5900 slices, and
77 RAMs.13 This includes the standard Antikernel infrastructure (name server,
JTAG debug bridge, system info core), as well as a packet sniffer observing the
CPU’s RPC uplink to aid in system bring-up.

In addition to allocating one NoC address per hardware thread, the CPU
has a dedicated management address used for out-of-band control functionality.
This allows applications to request services from the CPU (for example starting
a new process, quitting, or modifying their page table). The first address of the
CPU’s subnet is used as the OoB management address. This ensures that any
node which queries the name server for the hostname of the processor will get the
management address. The high half of the subnet is used for thread addresses;
all other addresses in the low half of the subnet are unused and incoming packets
are dropped.

5.1 Thread Scheduler

The processor begins in the idle state; the run queue (a circular linked list)
is empty, with no threads running. A free-list of thread IDs is initialized to
contain every valid thread ID, and a bitmap of thread IDs is initialized to the
“unallocated” state. When a “create new process” message is received by the

11 The pipeline has two stages of instruction fetch, two of decode/register fetch, and
four of execution.

12 Any power of two ≥ 8 is legal; the default for synthesis is 32.
13 These numbers are for the default configuration with 32 threads, 2-way cache asso-

ciativity, 16 lines of 8 words per cache bank.

9



CPU on its management address the free list is popped, the bitmap is updated
to reflect that this thread ID is allocated, and the thread ID is now available
for use (but is not yet scheduled). A simple hardware state machine loads the
statically linked ELF executable at the provided physical address, initializes the
thread, and requests that the scheduler append it to the run queue.

During execution, the CPU reads the current thread from the linked list and
schedules it for execution if possible, then goes on to the next thread in the
linked list the following cycle. If the thread is already in the pipeline (which may
be true if less than 8 threads are currently runnable) then it waits for one cycle
and tries again. If the thread is not in the run queue at all (which may be true if
the thread was just canceled, or if no threads are currently runnable), then the
CPU goes to the next thread and tries again the next cycle.

To delete a thread, it is removed from the linked list and pushed into the
free list, and the bitmaps are updated to reflect its state as free. The linked-list
pointers for the deleted thread are not changed; this ensures that if the CPU
is about to execute the thread being deleted it will correctly read the “next”
pointer and continue to a runnable thread the next clock cycle. (There are no
use-after-free problems possible due to the multi-cycle latency of the allocate
and free routines; by the time the freshly deleted thread can be reallocated the
CPU is guaranteed to have continued to a runnable thread.)

The architecture allows for a thread to very quickly remove itself from the
run queue without terminating (although the thread management API does not
currently provide a means for doing this). This will allow threads blocking on IO
or an L1 cache miss to be placed in a “sleep” state from which they can quickly
awake, but which does not waste CPU time.

5.2 Execution Units

SARATOGA has two execution units connected to separate ports on the register
file. Both are copies of the same Verilog module however some functionality is
left unconnected (and thus optimized out) in execution unit 1. Each execution
unit takes in two values from the register file during EXEC0, and outputs one
value to the register file during EXEC3.

During EXEC0, unit 0 may dispatch an RPC send or receive, or a memory
transaction. Results from RPC receives (if data is available), as well as memory
operations (in case of an L1 cache hit) are available during EXEC2. All ALU
operations other than integer division complete by EXEC1.

5.3 L1 Cache

The L1 cache for SARATOGA is split into independent I- and D-side banks,
and is fully parameterizable for levels of associativity, words per line, and lines
per thread. The default configuration is 2-way set associative and 16 lines of 8
32-bit words, for a total size of 1KB instruction and 1KB data cache per thread
(plus tag bits) and 32KB overall. The cache is virtually addressed and there is
no coherency between the I- and D-side caches.

10



The current cache is quite small per thread, which is likely to lead to a high
miss rate, but this is somewhat made up for by the ability of multithreading to
hide latency - if all 32 threads are active, a 31-cycle miss latency can be tolerated
with a penalty of only one skipped instruction. We have not yet implemented
performance counters for measuring cache performance; after this is added there
are likely to be numerous optimizations to the cache structure.

5.4 MMU

In order to speed prototyping a very simple MMU was created, consisting of a
software-controlled TLB with no external page tables. It supports a parameter-
izable number (the default is 32) of 2KB pages of virtual memory per thread,
mapped consecutively starting at virtual address 0x40000000. Each thread has
a fully independent virtual address space, meaning that the total amount of vir-
tual memory addressable by all threads combined in the default configuration
is 32*32 pages, or 2 MB. This has been sufficient for initial prototyping; a full
MMU with a TLB and external page tables in RAM is planned for the future.
Since software accesses the MMU using an abstracted API via the CPU man-
agement port, it is possible to make arbitrary changes to the internal MMU and
TLB structure without breaking software compatibility.

Each page table entry consists of a valid bit, R/W/X permission flags, a 16-
bit node ID, and a 21-bit upper address within that node (low bits are implicit
zero). This allows the full 48 bits of physical address space to be used.

5.5 RPC Network Interface

In order to send an RPC message, the high half of the a0 register is loaded with
the “send” opcode; the low half of a0, as well as a1, a2, and a3, store the RPC
message. This is identical to the standard C calling convention for MIPS, which
makes implementation of the syscall() library function trivial. (The high half
of a0 is used as the opcode since this would normally be the source address of
the packet, but this is added by hardware). A syscall instruction then actually
sends the message.

Receiving an RPC message is essentially the same process in reverse. The
high half of a0 is loaded with the “receive” opcode and a syscall instruction
is executed. When a message is ready, it is written to v1, v0, k0, and k1. This
places the success/fail code and the first half-word of the return data in v0,
typically used for integer results in the MIPS C calling convention.

Since a new application starting up on a SARATOGA core does not nec-
essarily know the management address of its host CPU, we provide a means
for doing so through the syscall instruction. At any time, an application may
perform a syscall with the high half of a0 set to “get management address”
to set the v0 register to the current CPU’s management address. All other CPU
management operations are accessed via RPCs to the management address.

11



5.6 ELF Loader with Code Signature Checking

To create a new process, a node sends a “create process” call to the CPU’s OoB
management port, specifying the physical address of the executable to run. The
management system begins by allocating a new thread context, returning failure
if all are currently in use.

If a thread ID was successfully obtained, the ELF loader then issues a DMA
read for sizeof(Elf32 Ehdr) bytes to the supplied physical address, expecting
to find a well formed ELF executable header. If the header is invalid (wrong
magic numbers, incorrect version, or not a big-endian MIPS executable file) an
error is returned.

If the header is well formed, the loader then looks at the e entry field to find
the address of the program’s entry point. This is fed into a FIFO of data to be
processed by the signature engine.14 It is important to hash headers, as well as
the contents of all executable pages, in order to ensure that a signed application
cannot be modified to start at a different address within the code, potentially
performing undesired actions.

The loader then checks the e phoff field to find the address of the program
header table, which stores the addresses of all segments in the program’s memory
image. It loops over the program header table and checks the p type field for
each entry. If the type is PT LOAD (meaning the segment is part of the loadable
memory image) then the loader reads the contents of the segment and feeds
them into the hashing engine and stores the virtual and physical addresses in
a buffer for future mapping. If the type is 0x70000005 (an unused value in the
processor-defined region of the ELF program header type specification) then the
segment is read into a buffer holding the expected signature. After all loadable
segments have been hashed, the signature is compared to the expected value. If
they do not match an error is returned and the allocated thread context is freed.

If the signature is valid, the list of address mappings is then fed to the
MMU. Note that the ELF loader is the only part of the processor which has
permission to set the PAGE EXECUTE permission on a memory page; permis-
sions for pages mapped by software through the OoB interface are ANDed with
PAGE READ WRITE before being applied. This means that it is impossible by design
for any unsigned code to ever execute as long as the physical memory backing
the executable cannot be modified externally (for example, by modifying the
contents of an external flash chip while the program is executing). With appro-
priate choices of access controls for on-chip memory, and use of encryption to
prevent tampering with off-chip memory, this risk can be mitigated. After the
initial memory mappings are created the program counter for the newly created
thread is set to the entry point address from the ELF header and the thread is
added to the run queue.

14 We used HMAC-SHA256 in the prototype due to FPGA capacity limitations, as
well as difficulty finding a suitable open source public key signature core. An actual
ASIC implementation would presumably use RSA or ECC signatures.

12



5.7 Remote Attestation

SARATOGA supports a simple form of remote attestation. When an application
is loaded by the ELF loader, the signature is stored in a buffer associated with
the thread ID. At any time in the future, any NoC node may ask the CPU (via
RPC to the management interface) to return the signature associated with a
given thread context.

6 Security Analysis

6.1 Threat Model

Antikernel’s primary goal is to enforce compartmentalization between user-space
processes, and between user-space and the operating system. The focus is on
damage control, rather than preventing initial penetration. The attacker is as-
sumed to be remote so physical attacks are not considered. Existing antitemper
techniques can, of course, be used along with the Antikernel architecture to pro-
duce a system with some degree of robustness against physical tampering; but
it is important to note that no physical security is perfect and an attacker with
unrestricted physical access to the system is likely to be able to penetrate any
security given sufficient time and budget.

Antikernel is designed to ensure that following are not possible given that
an attacker has gained unprivileged code execution within the context of a user-
space application or service: (i) download a backdoor payload and configure it
to run after system restart, (ii) modify executable code in memory or persistent
storage, intercept/spoof/modify system calls or IPC of another process, (iii) read
or write private state of another process, or (iv) gain access to handles belonging
to another process by any means.

We consider an abstract RTL-level model of the system with ideal digital
signals in which it is not possible for the state of one register or input pin to
observe or modify the state of another except if they are connected through
combinatorial logic in the RTL netlist.15

6.2 Methodology and Goals

We have performed fairly extensive verification on the current prototype system
using a mix of simulation, hardware-in-loop (HiL) testing on our test cluster, and
formal methods. All tests are fully automated and re-run before every commit.
The general verification methodology begins by creating at least one HiL test

15 In practice it is sometimes possible for this property to be violated (for example
by DRAM read disturbance, as described in [17], [18]). Such attacks exploit subtle
layout-vs-schematic (LVS) mismatches which are not picked up by automated tools.
While detecting these bugs is certainly an important task, it requires a level of solid-
state physics better suited to a journal of electrical engineering so we leave it as an
open research problem and focus on the computer science problem: ensuring safety
of the pre-layout netlist.

13



for each module or subsystem being verified, supplemented by simulation tests
in some cases to speed the design cycle. The focus of this level of verification is
catching obvious bugs that occur when the module is used as intended. 100% of
the modules in the project receive at least this level of verification.

In addition, the most critical subsystems are provably verified against a for-
mal model of the desired behavior. The choice of modules to verify is determined
by several factors including their importance to the security model (the worse
the impact of a bug, the more important provable correctness is) and their
complexity (simpler modules are easier to prove correct).16 The Verilog source
for formal/simulation testbenches, as well as the C++ test cases and top-level
modules for HiL testing, is included under the “tests” directory of the source
distribution.

6.3 Assumptions

All of the low-level proofs of correctness were performed on post-synthesis RTL
netlists using yosys ([19]). We assume correctness of the temporal induction
proof system in yosys and the SAT solver.17 In other words, we assume that if
the post-synthesis netlist is inconsistent and one or more of the assertions in the
netlist are violated, that the solver will correctly detect the error and declare
the proof to not hold.

These proofs are only valid down to the RTL level for the current prototype.
The actual synthesis and place-and-route (PAR) of the prototype systems were
performed using Xilinx’s proprietary tools; correctness of these tools and the
FPGA silicon is assumed.18

It is assumed that the RPC network consists of a series of RPCv2Router

objects connected in a quadtree, with nodes under the routers. All of these
nodes must connect to the RPC network with either an RPCv2Router-

Transceiver or an RPCv2Transceiver object, configured as a leaf node (with
the exception of the multithreaded CPUs such as SARATOGA, which are treated
as multiple nodes under one router for the scope of the network-level proofs).

The DMA network is assumed to consist of a series of DMARouter objects
connected in a quadtree, and nodes under the routers. Each node must connect
to the DMA network with a DMATransceiver or DMARouterTransceiver object,
configured as a leaf node. As with the RPC network, multithreaded CPUs are a
special case and handled separately.

16 While full verification of the entire implementation is of course desirable, and a goal
we are working toward, it would require many man-years of additional effort. Ad-
ditionally, several components of the design are still being optimized and improved,
making a correctnesss proof of the current code a waste of time.

17 MiniSAT by default, although different solvers can be configured at run time.
18 Since the FPGA microarchitecture is undocumented, equivalence checking on the

actual FPGA bitstream would not be possible without extensive reverse engineering
of the silicon. While an interesting problem, and one that researchers including
author 1 are actively working on [20], it is beyond the scope of this paper.

14



Furthermore, it is assumed that if any node connects to both networks it
uses the same address on each, and that there is no information flow between
nodes outside of the NoC (for example, by wires that do not pass through a NoC
router, or off-die paths on the printed circuit board).

All of the test SoCs created as part of this paper were generated by our
nocgen tool, which is intended to enforce these requirements for the top-level
module, however its correctness has not yet been proven. Verifying that any
particular generated source file (and the instantiated modules) meet these re-
quirements is relatively easy to do by inspection. In the future we intend to create
a DRC tool which uses yosys to parse the actual RTL source for a particular
SoC and verifies that all of the on-chip topology requirements are met.

6.4 Networks

All four combinations of RPC and DMA transceivers (node or router at each
end) for a layer-2 link were formally verified using yosys.19

Each test case instantiates one transmitter and one receiver of the appro-
priate types, as well as testbench code. yosys is then run on each testbench to
synthesize to RTLIL intermediate representation, followed by invoking the SAT
solver to prove the assertions in the testbenches. If the solver declares that all
assertions pass, the proof is considered to hold.

While the testbenches are all slightly different due to the differences in in-
terface between router/client transceivers and RPC/DMA network protocols,
their basic operation is the same. When the test starts, all outputs are in the
idle state and remain so in the absence of external stimuli. When a transmit is
requested, the test logic stores the signals at the transceiver’s inputs and asserts
that the same data exits the receiver a fixed time later. The test also verifies
that attempts to transmit while the receiver is busy block until the receiver is
free (thus preventing dropped packets) and that the transceiver fully resets to
its original state after sending a packet.

It is also necessary to prove that packets are correctly forwarded to the
desired layer-3 destination by routers. We can map the quadtree directly to
routing addresses by allocating two bits of the address to each level of the tree.
Each router simply checks if the high bits match its subnet, forwards out the
downstream port identified by the next two bits if so, and otherwise forwards
out the upstream port. It is easy to see by inspection that this algorithm will
always lead to a correct tree traversal.

19 It is important to note that due to the large maximum packet size (512 words) it
was not possible to run the DMA network proofs to a steady state, thus the proof
is not complete. The current proof is artificially limited to examining state for the
first 64 cycles and shows that no assertions are violated during this time. Running
the solver on each proof takes about ten minutes on a single CPU core and uses
between three and ten gigabytes of RAM; given a sufficiently large amount of CPU
time and RAM there is no reason why the proof cannot be extended until a steady
state is reached.

15



Since correct routing at the hop level combined with a valid quadtree topology
implies correct routing at the network level, and the previous proofs show that
link-layer forwarding is correct, the proof for correct end-to-end forwarding thus
reduces to showing that the router correctly implements the routing algorithm,
which is shown by another of our proofs (for the RPC network only). 20

6.5 Name Server

Even if the layer-3 links between nodes are secure and packet misrouting is
impossible, if a rogue node can trick a target node into sending its traffic to the
wrong address, by causing the name server to report incorrect data, then MITM
attacks can still occur.

Avoiding this requires proving two properties: First, the name server must
always return the correct entry (if one exists) from its table when queried, or
an error if none exists. Second, the name server must only insert names into the
table, or remove them, if authorized by system security policy.

The top-level NOCNameServer module consists of several RAM blocks, an
RPC transceiver, an HMAC-SHA256 engine, a “target matching” system (which
compares outputs of the RAMs against a value being searched for), a mutex, and
the main control state machine.

We assume correctness of the RAM and prove correctness of the transceiver
separately. The mutex, target matching logic, and HMAC cores have undergone
conventional validation but do not have correctness proofs as of this writing.
Several correctness properties have been proven on the control state machine, as
described below.

We currently have a partial liveness proof on the name server, which shows
that two of the RPC calls will always terminate in constant time and return
the name server to the idle condition. It also shows that these two calls will
always behave as specified by the formal model, and will never modify any other
state. A liveness proof for the remaining opcodes in progress however it was not
complete as of this writing.

We have verified correct operation of the name server’s registration and
lookup functionality via conventional verification techniques, including auto-
mated unit testing, but have not yet completed a formal correctness proof.

Names for hardware nodes that are “baked” into the name table at logic
synthesis time require no further authentication since the source code of the SoC

20 Aside from the transceivers, the majority of the DMA network router is identical
to that of RPC, instantiating the same modules with the same configuration. The
only changes were adding an additional SRAM buffer and multiplexer for each port
since the DMA transceiver has separate memory channels for headers and packet
bodies, as opposed to the single channel for RPC. We believe that these changes are
sufficiently non-intrusive that the probability of them containing a security-critical
bug is very low. Although a full part-wise verification of the router (as was done for
RPC) is certainly possible, and should be performed before an Antikernel system is
actually deployed in a critical application, we believe that doing so at this stage of
development would be an inefficient use of research time.

16



is trusted implicitly (and an attacker has no way to modify these addresses short
of an invasive silicon attack). Names being registered by a random NoC node
at run time, however, are not inherently trusted. In order to prevent malicious
name registrations, the name server requires a cryptographic signature to be
presented and validated before the name can be registered.

6.6 RAM controller

There are two implementations of the RAM controller API, BlockRAMAllocator
and NetworkedDDR2Controller. Both are covered by an extensive conventional
(non-formal) verification suite in the current codebase. In order to ensure inter-
operability, the same compiled test binary is run on bitstreams containing both
RAM controller implementations and is verified to work properly with both.

7 Conclusions and Future Work

The overall goal of this research was to determine whether moving operating
system functionality into hardware is a practical means for improving operating
system security. We define a high-level architecture, Antikernel, for an operating
system which freely mixes hardware and software components as equal peers
connected by a packet-switched network. The architecture takes the ideal of
“least required privilege” to the extreme by having each node in the network
be a fully encapsulated system which manages its own security policy, and only
allows access to its internal state through a well-defined API.

The architecture draws inspiration from numerous existing operating system
architectures, such as the microkernel (minimal privileged functionality with
most services in userspace), the exokernel (drivers as very thin wrappers around
hardware providing nothing but security and sharing), and the separation kernel
(enforcing strong isolation between processes except through a defined interface).

Additionally, the modular structure of an Antikernel system is highly amenable
to piecewise formal verification. If we define security of the entire system as the
condition where all security properties of each node are upheld, we can then
prove security by proving security of the interconnect, as well as proving that
every node’s security policy is internally consistent (in other words, policy cannot
be violated by sending arbitrary messages to the NoC interface or any external
communications interfaces).

We hope that this work will serve to inspire future research at the intersection
of computer architecture and security, and lead to more convergent full-stack
design of critical systems. Blurring the lines between hardware and software
appears to be a promising architectural model and one warranting further study.
By releasing all of our source code we hope to encourage future work building
on our design. We intend to continue actively developing the project.

While the current prototype does show that hardware-based operating sys-
tems are practical and can be highly secure, it is far from usable in real-world
applications. Many features which are necessary in a real-world operating system

17



could not be implemented due to limited manpower so effort was focused on the
most critical core features such as memory and process management.

The current prototype relies on the initialization code starting all software
applications in the same order (and thus receiving the same thread ID since
these are allocated in FIFO order every boot). A more stable system for binding
processes to IDs is, of course, desirable.

As of this writing, neither of the memory controller implementations have
been formally verified. No part of the CPU (other than the NoC transceivers) has
been formally verified to date. While SARATOGA’s architecture was designed
to minimize the risk of accidental data leakage between thread contexts, until full
verification is completed we cannot rule out the possibility that such a bug exists.
Eventually we would like to verify that the CPUs themselves correctly implement
the semantics of our reduced MIPS-1 instruction set. If we then compiled our
application code with a formally verified C compiler (such as CompCert C [21],
[22]) we could have full equivalency proofs from C down to RTL.21 This could
then be combined with verification of the C source code, resulting in fully verified
correct execution from application software all the way down to RTL.

Finally, our prototype is intended to be a proof of concept for hardware-based
compartmentalization at the OS level. As a result, we do not incorporate any of
the numerous defensive techniques in the literature for guarding against physical
tampering, hardware faults, or software-based exploits targeting userland. Cur-
rently, implementation of many useful subsystems (such as the networking stack
and filesystem) are missing major features or entirely absent. Although many
of the core components (such as the NoC) have been formally verified, many
higher-level components and peripherals have received basic functional testing
only and the full system should be considered research-grade. Further work could
explore integrating existing software-based mitigations with Antikernel.

The prototype prioritizes ease of verification and implementation over per-
formance: for example, the SARATOGA CPU uses a simple barrel scheduler
which has poor single-threaded performance, lacks support for out-of-order exe-
cution, and has very unoptimized logic for handling L1 cache misses. Although
these factors combine to cause a significant (order of magnitude) performance
reduction compared to a legacy system running the same ISA, these are due to
implementation choices rather than any inherent limitations of the architecture.
We conjecture that a more optimized Antikernel implementation could match or
even exceed the performance of existing OS/hardware combinations due to the
streamlined, exokernel-esque design.

Additionally, although backward compatibility with existing operating sys-
tems was explicitly not a design goal, we have done a small amount of work on
a POSIX compatibility layer. This is unlikely to ever reach “recompile and run”
compatibility with legacy software due to inherent architecture differences, but
we hope that it will help minimize porting effort.

21 The current CompCert compiler does not support the MIPS instruction set - only
x86, ARM, and PowerPC. We plan to explore adding formally verified MIPS code
generation to this or another verified C compiler in the future.

18



References

1. A. D. Zonenberg, “Antikernel: A decentralized secure hardware-software operating
system architecture,” Ph.D. dissertation, Rensselaer Polytechnic Institute, 2015.

2. D. R. Engler et al., “Exokernel: an operating system architecture for application-
level resource management,” SIGOPS Oper. Syst. Rev., vol. 29, no. 5, pp. 251–266,
Dec. 1995.

3. J. M. Rushby, “Design and verification of secure systems,” in Proc. 8th ACM Symp.
Operating Sys. Principles, 1981, pp. 12–21.

4. W. Martin, P. White, F. S. Taylor, and A. Goldberg, “Formal construction of the
mathematically analyzed separation kernel,” in Automated Software Eng., 2000.
Proc. ASE 2000. 15th IEEE Int. Conf., 2000, pp. 133–141.

5. A. Baumann et al., “The multikernel: A new os architecture for scalable multicore
systems,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Principles, New York,
NY, USA, 2009, pp. 29–44.

6. J. Rutkowska and R. Wojtczuk. (2010, Jan.) Qubes OS Architecture. [Online].
Available: http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf

7. ARM Ltd. (2014) TrustZone Technology. [Online]. Available:
http://www.arm.com/products/processors/technologies/trustzone.php (Accessed
2015-04-09).

8. A. Zonenberg. (2016, Mar. 18) Antikernel source repository. [Online]. Available:
http://redmine.drawersteak.com/projects/achd-soc/repository (Accessed 2016-03-
18).

9. M. Engel and O. Spinczyk, “A radical approach to network-on-chip operating sys-
tems,” in System Sciences, 2009. HICSS ’09. 42nd Hawaii Int. Conf., Jan. 2009,
pp. 1–10.

10. S. Nordstrom et al., “Application specific real-time microkernel in hardware,” in
Real Time Conference, 2005. 14th IEEE-NPSS, Jun. 2005, p. 4.

11. W. Hu, J. Ma, B. Wu, L. Ju, and T. Chan, “Distributed on-chip operating system
for network on chip,” in Computer and Information Technology (CIT), 2010 IEEE
10th Int. Conference on, Jul. 1 2010, pp. 2760–2767.

12. S. Park et al., “A hardware operating system kernel for multi-processor systems,”
IEICE Electron. Express, vol. 5, no. 9, pp. 296–302, 2008.

13. H. Kwok-Hay So et al., “A unified hardware/software runtime environment for
fpga-based reconfigurable computers using borph,” in CODES+ISSS ’06: Proc.
4th Int. Conf. Hardware/Software Codesign Syst. Synthesis, 2006, pp. 259–264.

14. A. Wasicek et al., “A system-on-a-chip platform for mixed-criticality applications,”
in Object/Component/Service-Oriented Real-Time Distributed Comput. (ISORC),
2010 13th IEEE Int. Symp., May 2010, pp. 210–216.

15. A. Thomas et al. (2013, Jan 10) Towards a Zero-Kernel Operating System.
[Online]. Available: http://www.infsec.cs.uni-saarland.de/ hritcu/publication-
s/zkos draft jan10 2013.pdf (Accessed 2015-04-09).

16. BiiN Corporation. (1988, Jul) BiiN Systems Overview.
Portland, OR. [Online]. Available: http://bitsavers.informatik.uni-
stuttgart.de/pdf/biin/BiiN Systems Overview.pdf (Accessed 2015-04-09).

17. Y. Kim et al , “Flipping bits in memory without accessing them: An experimen-
tal study of dram disturbance errors,” in Comput. Architecture (ISCA), 2014
ACM/IEEE 41st Int. Symp., Jun 2014, pp. 361–372.

19



18. C. Evans. (2015, Mar. 9) Project Zero: Exploiting the
DRAM rowhammer bug to gain kernel privileges. [On-
line]. Available: http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html (Accessed 2015-04-09).

19. C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
20. A. Zonenberg. (2015, Jul. 22) From Silicon to Compiler: Reverse-Engineering the

Xilinx XC2C32A. [Online]. Available: https://recon.cx/2015/slides/recon2015-18-
andrew-zonenberg-From-Silicon-to-Compiler.pdf (Accessed 2016-03-02).

21. S. Blazy et al., “Formal verification of a C compiler front-end,” in FM 2006: Int.
Symp. Formal Methods, vol. 4085, 2006, pp. 460–475.

22. S. Boldo et al., “A formally-verified C compiler supporting floating-point arith-
metic,” in ARITH, 21st IEEE Int. Symp. Comput. Arithmetic. IEEE Computer
Society Press, 2013, pp. 107–115.

20


