
Garbling Scheme for Formulas with Constant
Size of Garbled Gates

Carmen Kempka, Ryo Kikuchi, Susumu Kiyoshima, and Koutarou Suzuki

NTT Secure Platform Laboratories, Tokyo, Japan
{kempka.carmen,kikuchi.ryo,kiyoshima.susumu,suzuki.koutarou}@lab.ntt.co.jp

Abstract. We provide a garbling scheme which creates garbled circuits
of a very small constant size (four bits per gate) for circuits with fan-
out one (formulas). For arbitrary fan-out, we additionally need only two
ciphertexts per additional connection of each gate output wire. We make
use of a trapdoor permutation for which we define a generalized notion
of correlation robustness. We show that our notion is implied by PRIV-
security, a notion for deterministic (searchable) encryption. We prove our
scheme secure in the programmable random oracle model.

Keywords: garbled circuits, constant size of garbled gates, correlation
robustness, PRIV-security

1 Introduction

Yao’s garbled circuit technique [33] is one of the most important techniques
on secure computation. Very roughly speaking, this technique allows a party
(the garbler) to create an encrypted form of a circuit—a “garbled” circuit—and
an encoding of input with which the other party (the evaluator) can evaluate
the circuit on the input but cannot compute anything other than the output.
Compared with other techniques on secure computation (e.g., the technique
by Goldreich et al. [12]), the garbled circuit technique has a big advantage on
efficiency since we can construct constant-round protocols by using it.

Traditionally, the garbled circuit technique was considered to be a theoreti-
cal feasibility result; however, recently many works have demonstrated that the
garbled circuit technique can also be used to construct two-party computation
protocols with practical efficiency. The first implementation of the garbled cir-
cuit technique was shown by Malkhi et al. [28]. Since then, significant efforts
have been devoted toward making the technique more practical.

A major line of research on the garbled circuit technique is the reduction
of the size of garbled circuits. Since the main efficiency bottleneck of garbled-
circuit-based two-party computation protocols is usually network bandwidth,

c⃝ IACR 2015. This article appeared in the proceedings of Asiacrypt 2015, published
by Springer-Verlag, and is available at http://dx.doi.org/10.1007/978-3-662-48797-
6 31.

reducing the size of garbled circuits typically leads to a big improvement of
efficiency in practice.⋆

Reduction of Garbled Circuit Size. Originally, the garbled circuit tech-
nique uses four ciphertexts for each gate to create “garbled truth tables”, and
thus, the size of a garbled circuit is O(k) bits per gate (where k is the security
parameter). In [22], Kolesnikov and Schneider proposed a technique, called free-
XOR technique, with which we can construct a garbled circuit that contains no
ciphertexts for XOR gates. In [29], Naor et al. proposed a technique that reduces
the number of ciphertexts from four to three for each gate. In [30], Pinkas et
al. proposed a technique that reduces the number of ciphertexts to two for each
gate. Recently, Kolesnikov et al. [21] introduced the fleXOR technique, which re-
quires zero, one, or two ciphertexts to garble an XOR gate—thus, garbling XOR
gates is not “free” in general—but is compatible with the garbled row-reduction
technique of [30]. Very recently, Zahur et al. [34] introduced a technique that
is compatible with the free-XOR technique and can garble each AND gate by
using only two ciphertexts; thus, this technique requires two ciphertexts for each
AND gate and no ciphertexts for each XOR gate. We remark that although all
of these techniques do not achieve an asymptotic reduction of the size of garbled
circuits—it remains to be O(k) bits per gates—they offer a significant reduction
of communication cost in practice.

A different approach for reducing the size of garbled circuits is the technique
of Kolesnikov [19], which is an information-theoretic variant of Yao’s garbled
circuit technique. In this technique, a circuit is garbled by using secret sharing
(instead of encryption), and a garbled circuit is evaluated by recovering a share
assigned to the output wire of each gate from shares assigned to the input wires
of that gate. The size of the garbled circuit is zero (since there is no garbled
truth table) and the size of the encoded input grows with the depth of the
circuit; specifically, the size of the shares is quadratic in the depth of the gate
for formulas, and exponential for circuits. For shallow circuits, the technique of
Kolesnikov [19] is more efficient than other techniques.

Our Contribution. In this paper, we propose a garbling technique for formulas
(i.e., circuits with fan-out 1) such that the size of the garbled circuit is four bits
per gate. Unlike the optimization techniques of [22, 29, 21, 34], our technique
achieves asymptotic reduction of the size of the garbled circuits. Also, unlike the
information-theoretic garbled circuit technique of [19], our technique encodes
input in such a way that the size of the encoded input is independent of the
depth of the circuit. (For detailed comparisons, see Section 3.3.)

In our technique, ciphertexts include trapdoor permutations (instead of hash
functions as in most of the previous techniques). To prove the security, we ex-
tend the definition of correlation robustness (which is originally defined for hash

⋆ In the case of security against malicious adversaries, the number of circuits that are
generated in the cut-and-choose technique also has an impact on efficiency [26, 1, 23,
14, 10, 15, 27].

functions [11]) to the case of trapdoor permutations, and assume that the under-
lying trapdoor permutation is correlation robust. We also show that our notion
of correlation robustness is implied by PRIV-security as defined in [7].

Idea of Our Garbling Scheme. The idea of our construction is as follows:
Unlike most existing techniques, our construction garbles circuits backwards,
starting from the output gate. This allows us to reduce communication cost
drastically: We can compute the ciphertexts needed for each gate as a hash of
the gate-ID, so the evaluator can re-compute them by himself and they need
not be included in the garbled circuit. These ciphertexts are then interpreted by
the garbler as the XOR of the output key Ki and an image of a trapdoor one-
way permutation of a function of the input keys, which he inverts to compute
appropriate input keys corresponding to a given output key. Altogether we will
have a system of four equations of the form

c0 = E(f0(K,L))⊕K0
C

c1 = E(f1(K,L′))⊕K0
C

c2 = E(f2(K
′, L))⊕K0

C

c3 = E(f3(K
′, L′))⊕K1

C

in permuted order, where K,K ′, L, L′ are the input keys, K0
C and K1

C the output
keys, and fi are linear functions. The garbler can solve this system of equations to
compute the input keys by inverting the trapdoor permutation E. The evaluator
can only go through the circuit forward, using the one-way permutation to obtain
output keys corresponding to his input. However, lacking the trapdoor, he cannot
go backwards to compute any of the other keys.

One caveat of our backwards garbling technique is that the input keys for
each gate are uniquely determined given the output keys and the ciphertexts
assigned to this gate. Thus, we have no freedom in choosing any keys but the
circuit output keys. Therefore, our garbling scheme only allows fan-out one, i. e.,
formulas. Moreover, to communicate wire choice bits, we cannot use the usual
technique of defining the least significant bit of the keys as choice bit, since we
have no freedom in choosing the input keys or their LSBs. Therefore, we use
a hash function H ′ with one bit output, and publish H ′(Ka,Kb) ⊕ li for input
keys Ka,Kb and corresponding choice bit li of the output key, giving a garbled
circuit with l gates an overall size of 4l bits, plus the number of bits needed
to communicate the key of a keyed hash function and the index of a trapdoor
one-way permutation.

Somewhat surprisingly, we can use the free-XOR technique to garble XOR
gates at no additional cost, by using a “local” difference per XOR-sub-tree rather
than a global difference. In the case of formulas, this will only safe us the 4 bit
per gate for the choice bits. However in the case of general circuits, the freedom
an XOR-gate gives us in choosing input keys can safe us additional ciphertexts
needed for dealing with arbitrary fan-out in some cases.

Since our basic construction only allows fan-out one, a problem occurs when
we garble circuits which use the same input variable multiple times, such as

(a∧ b)∨ (a∧ c). In such cases, we can duplicate the input wire for this variable,
and assign a different input key pair to each occurrence of the variable. In the
semi-honest setting, this does not affect security. In the malicious case, additional
care needs to be taken to ensure that the garbler provides the same input for
each occurrence of a variable. We discuss this in Section 5.3.

Related Works. The garbled circuit technique was introduced in the seminal
paper of Yao [33]. A formal analysis of the garbled circuit technique (or, more
precisely, the two-party computation protocol based on it) was presented by
Lindell and Pinkas [25]. Bellare et al. [8] introduced an abstraction of the garbled
circuit technique, which they call garbling schemes.

There are a lot of works that studied the size of garbled circuits. Other than
the works we mentioned above [22, 29, 30, 21, 34], Choi et al. [11] and Applebaum
[2] studied what assumptions are needed by the free-XOR technique. Choi et al.
showed that a circular security assumption on the underlying hash function is
sufficient. Applebaum showed that the LPN assumption is sufficient. Also, Boneh
et al. [9] showed that an asymptotic reduction of garbled circuit size is possible
under the learning-with-errors (LWE) assumption.

Other than the technique of [19], there are several information-theoretic vari-
ants of the garbled circuit technique, e.g., [18, 32, 17, 20].

The correlation security of trapdoor permutations has also been studied by
previous work in other contexts. For example, Rosen and Segev [31] introduced
correlated product security of trapdoor permutations and used it to construct a
CCA-secure encryption scheme. Also, Hemenway et al. [13] studied the relation
between the decisional variant of correlated product security and the security
of deterministic encryption schemes. We remark however that these notions of
correlation security are different from the one we consider in this work. Roughly
speaking, in correlated product security [31], correlated inputs are applied to k
functions f1, . . . , fk that are independently chosen from a family of functions,
whereas in our notion of correlation robustness, correlated inputs are applied to
a single function f .

The size of inputs of garbled circuits has been studied in the context of ran-
domized encoding [16, 3, 4]. Applebaum et al. [5] proposed a garbling scheme
with constant online rate, i.e., they improve the online communication complex-
ity for input keys from nk to n + k, where n is the number of inputs and k
is security parameter. In contrast, our proposed scheme improves, only for for-
mulas, communication complexity for garbled circuits from lk to l + k and has
communication complexity nk for input keys, where l is the number of gates, n
is the number of inputs, and k a security parameter. We can combine the scheme
of [5] and our proposed scheme to realize a randomized encoding for formulas
with online communication complexity n+ k for input keys and communication
complexity l + k for garbled circuit.

Outline of This Work. The rest of this paper is organized as follows. We
explain preliminaries and notation in Section 2, where we also recap the formal

definition of garbling schemes, and introduce our notion of correlation robust-
ness. We describe our basic garbling scheme for formulas in the semi-honest
setting in Section 3, and prove its security in Section 4. In Section 5, we discuss
possible extensions like arbitrary fan-out, incorporation of the free-XOR tech-
nique as well as extending our construction to the case of active adversaries. We
discuss the instantiation of our correlation robust trapdoor one-way permutation
with a PRIV-secure deterministic encryption scheme in Section 6.

2 Preliminaries

2.1 Notation

We use the following notations. By x
U← X, we denote that x is randomly selected

from set X according to the uniform distribution. By x← Algo, we denote that
probabilistic algorithm Algo outputs x. By A := B, we denote that A is defined
by B. By [S]x, we denote the x-th bit of bitstring S.

2.2 Garbling Scheme

In this section, we recall the definition of a garbling scheme and the notion of
simulation-based privacy of Bellare et al. [8].

A circuit is described as f = (n,m, l, A,B,G). Here, n ≥ 2 is the number
of circuit input wires, m ≥ 1 is the number of circuit output wires, and l ≥ 1
is the number of gates (and their output wires). Let W = {1, ..., n + l} be
the set of all wires, Winput = {1, ..., n} the set of circuit input wires, Woutput =
{n+l−m+1, ..., n+l} the set of circuit output wires, andWgate = {n+1, ..., n+l}
the set of gates (and their output wires). A : Wgate →W \Woutput is a function
to specify the first input wire A(i) of each gate i. B : Wgate → W \Woutput

is a function to specify the second input wire B(i) of each gate i. We require
A(i) < B(i) < i for all i ∈ Wgate. G : Wgate × {0, 1}2 → {0, 1} is a function to
specify the gate function G(i, ·, ·) of each gate i. We will later in our garbling
scheme assign to each wire i two keysKi,0 andKi,1, representing the truth values
0 and 1 on this wire. To each wire i, we assign a permute bit λi, and to each key
Ki,a representing truth value a ∈ {0, 1}, we assign a choice bit lai = λi ⊕ a.

We define the notion of garbling schemes as follows.

Definition 1 (Garbling Scheme). A garbling scheme for a family of circuits
F = {Fn}n∈N, where n is a polynomial in a security parameter k, consists
of probabilistic polynomial-time algorithms GC = (Garble,Encode,Eval,Decode)
defined as follows.

– Garble takes as input security parameter 1k and circuit f ∈ Fn, and outputs
garbled circuit F , encoding information e, and decoding information d, i.e.,
(F, e, d)← Garble(1k, f).

– Encode takes as input encoding information e and circuit input x ∈ {0, 1}n,
and outputs garbled input X, i.e., X ← Encode(e, x).

– Eval takes as input garbled circuit F and garbled input X, and outputs garbled
output Y , i.e., Y ← Eval(F,X)

– Decode takes as input decoding information d and garbled output Y , and
outputs circuit output y, i.e., y ← Decode(d, Y).

A garbling scheme should have the following correctness property: for all secu-
rity parameters k, circuits f ∈ Fn, and input values x ∈ {0, 1}n, (F, e, d) ←
Garble(1k, f), X ← Encode(e, x), Y ← Eval(F,X), y ← Decode(d, Y), it holds
that y = f(x).

We then define the security notion of garbling schemes called simulation-based
privacy as follows. We adapt the notion of Bellare et al. [8] slightly to allow the
adversary access to a random oracle H. We denote by Φ(f) the information
about circuit f that is allowed to be leaked by the garbling scheme, e.g., size
Φsize(f) = (n,m, l), topology Φtopo(f) = (n,m, l, A,B), or the entire information
Φcirc(f) = (n,m, l, A,B,G) of circuit f = (n,m, l, A,B,G).

Definition 2 (Simulation-based Privacy). For a garbling scheme GC =
(Garble,Encode,Eval,Decode), function f ∈ Fn, input values x ∈ {0, 1}n, simu-
lator Sim, adversary A, and random oracle H, we define the advantage

Advprv.simGC,Sim,Φ,A(k) :=∣∣∣∣Pr [st← AH(1k), (F, e, d)← Garble(1k, f),
X ← Encode(e, x)

: AH(st, F,X, d) = 1

]
− Pr

[
st← AH(1k),
(F,X, d)← Sim(1k, f(x), Φ(f))

: AH(st, F,X, d) = 1

]∣∣∣∣ .
A garbling scheme GC = (Garble,Encode,Eval,Decode) is private, if there exists a
probabilistic polynomial-time simulator Sim, such that for any function f ∈ Fn,
input values x ∈ {0, 1}n, and probabilistic polynomial-time adversary A, the

advantage Advprv.simGC,Sim,Φ,A(k) is negligible.

2.3 Generalized Correlation Robustness

We define a generalized notion of correlation robustness for trapdoor one-way
permutations, in which we extend correlation robustness as defined by Choi
et al. [11]. Choi et al. considered ciphertexts of the formH(K⊕a∆||L⊕b∆||i)⊕m,
where i is a gate-ID, H is a hash function, K and L are input keys, a, b ∈ {0, 1}
and ∆ is a global difference as needed for the free-XOR technique, meaning
Ki,1 = Ki,0 ⊕∆ for each wire i. Given four such ciphertexts and two input keys
KA,α = K⊕α∆ and KB,β = L⊕β∆ for α, β ∈ {0, 1}, the evaluator should only
be able to decrypt one of them. Our ciphertexts have a similar form. However,
we need to extend the definition of Choi et al. in two aspects. We do not have a
global difference ∆. Instead, our definition considers general correlations defined
by arbitrary functions of input keys, rather than correlations given by a global
difference. Since we garble gates backwards, the garbler needs to be able to invert

H. Therefore, instead of a hash function, we use a trapdoor one-way permutation
Eι. Thus, our notion of correlation robustness allows for a trapdoor ι.

Before we define correlation robustness, we recall the syntax of trapdoor
one-way permutations.

Definition 3 (Family of Trapdoor one-way Permutations). A family of
trapdoor one-way permutations E = {Eι : Dι → Dι}ι∈I for finite index set I is
defined by a tuple of ppt algorithms E = (GenE , SampE ,EvalE , InvE) such that:

– GenE(1
k) is a probabilistic algorithm that outputs a pair (ι, tι) of index ι ∈ I

and trapdoor tι.
– SampE(1

k, ι) is a probabilistic algorithm that outputs a uniformly random
element x ∈ Dι.

– EvalE(1
k, ι, x) is a deterministic algorithm that outputs y = Eι(x) (assuming

that ι is output by GenE and it holds that x ∈ Dι).
– InvE(ι, tι, y) is a deterministic algorithm that outputs an element x ∈ Dι

such that y = Eι(x) (assuming that (ι, tι) is output by GenE and it holds
that y ∈ Dι).

In abuse of notation, we write x
U← Dι to denote x ← SampE(1

k, ι), y = Eι(x)
to denote y = EvalE(1

k, ι, x), and x = E−1
ι (tι, y) to denote x = InvE(ι, tι, y).

We define generalized correlation robustness of trapdoor one-way permuta-
tions as follows.

Definition 4 (Generalized Correlation Robustness). Let f0, f1, f2, f3 be
any two-input functions. For a family of trapdoor one-way permutations E =
{Eι : Dι → Dι}ι∈I and a probabilistic polynomial-time adversary A, let us
consider the following probabilistic experiment ExpcorrE,fa,fb,fc,A(k) for a < b < c ∈
{0, 1, 2, 3}.

Experiment ExpcorrE,fa,fb,fc,A(k):

1. β
U← {0, 1}.

2. (K,L)← A(1k).
3. (ι, tι)← GenE(1

k) and K ′ U← Dι, L
′ U← Dι.

4. If β = 0, Za := Eι(fa(K,L′)), Zb := Eι(fb(K
′, L)), Zc := Eι(fc(K

′, L′)),

otherwise, Za
U← Dι, Zb

U← Dι, Zc
U← Dι.

5. β′ ← A(ι, Za, Zb, Zc).
6. Output 1 if and only if β = β′.

Let AdvcorrE,f0,f1,f2,f3,A(k) := maxa<b<c∈{0,1,2,3}{Pr
[
ExpcorrE,fa,fb,fc,A(k) = 1

]
−1/2}.

Then, a family of trapdoor one-way permutations E is correlation robust w.r.t.
f0, f1, f2, f3, if for any probabilistic polynomial-time adversary A, the advantage
AdvcorrE,f0,f1,f2,f3,A(k) is negligible.

In the proposed garbling scheme, we use the following invertible linear func-
tion f = (f0, f1, f2, f3), with

f0 : (x, y) 7→ x+ 2y,
f1, f2, f3 : (x, y) 7→ x+ y.

3 Garbling Scheme for Formulas

We describe our basic garbling scheme for circuits with fan-out one. An exten-
sion to general circuits is given in Section 5.1. Our garbling scheme is designed
for the semi-honest case, but can be extended to the malicious case using stan-
dard techniques. A brief discussion about this can be found in Section 5.3. As
mentioned in the introduction, we can use each input wire only once. Multiple
occurrences of a variable are handled by duplicating the corresponding input
wire and assigning a new key pair for each occurrence of the variable, i. e. we
treat multiple occurrences of the same input variable as different variables. This
only affects security in the malicious case (see Section 5.3).

3.1 Garbling

We describe our garbling scheme informally. A formal description of our garbling
algorithm and encoding function is given in Figure 1 and 2, and the evaluation
algorithm is given in Figure 3. Our decoding function is defined as

Decode : (Y, d) 7→ d⊕ Y.

Let q be a prime number such that (2k−q)/2k is negligible, e.g, we can use a
Mersenne prime q = 2k− 1 for appropriate k. k and q are public. We can regard
a random element a ∈ {0, 1}k as an element a ∈ Fq ⊂ {0, 1}k with negligible
error probability. Let H : {0, 1}∗ → {0, 1}k be a keyed hash function, modeled
as a programmable random oracle. Let H ′ : {0, 1}∗ → {0, 1} be a hash function
which outputs one bit, modeled as a (non-programmable) random oracle. Let
Eι : {0, 1}k → {0, 1}k be a trapdoor one-way permutation on {0, 1}k which is
correlation robust with respect to functions (f0, f1, f2, f3) on {0, 1}k, with

f0 : (x, y) 7→ x+ 2y ∈ Fq,

f1, f2, f3 : (x, y) 7→ x+ y ∈ Fq.

Let l denote the number of gates in circuit f ; since the number of input wires
is n, the circuit output wire is wire l + n. We assume that the evaluator knows
the circuit topology.

During the garbling process, we assign a permute bit λi to each wire i, a key
Ki,0 with choice bit li,0 = λi, and a key Ki,1 with choice bit li,1 = 1 − λi. Ki,0

corresponds to truth value 0, and Ki,1 to truth value 1 on this wire. To garble
a circuit, the garbler first chooses a key R for the hash function H uniformly at
random, and includes it in the garbled circuit. Then, he chooses a pair of output
keys Kl+n,0 and Kl+n,1 for the circuit output wire l+n uniformly at random. He
assigns to the circuit output wire the permute bit λl+n := 0, and sets the output
key choice bits ll+n,0 := 0 and ll+n,1 := 1. Then, starting from gate l + n, the
garbler iteratively computes the remaining keys by computing the input keys of
each gate i depending on its output key pair. Since for the input wires A(i) and
B(i) of gate i we have A(i) < B(i) < i for all i, we can simply iterate over i

backwards and be sure that output keys are defined before their corresponding
input keys. Before the input keys of a gate i are computed, a uniformly random
permute bit λA(i) and, respectively, λB(i) is chosen for its two input wires, which
defines the input key choice bits l0A(i) = λA(i) and l1A(i) = 1 − λA(i) for wire

A(i), and analog for B(i). To compute the input keys for each gate, the garbler
computes four ciphertexts c0, c1, c2, c3 by computing cx := H(R, i||x) for x =
0, 1, 2, 3. The choice bits of the (yet undefined) input keys map each possible
input combination (a, b) ∈ {0, 1}2 to a ciphertext c2la

A(i)
+lb

B(i)
. This way, the

evaluator can infer which ciphertext to use when processing gate i, without
knowing the actual truth values on the input wires.

Using his trapdoor tι, for each of the four possible inputs (a, b) ∈ {0, 1}2, the
garbler computes P2laA+lbB

:= E−1
ι (tι, c2laA+lbB

⊕Ki,G(a,b)), and solves the equation
system

P0 = KA,λA
+ 2KB,λB

P1 = KA,λA
+ KB,1−λB

P2 = KA,1−λA
+ KB,λB

P3 = KA,1−λA
+ KB,1−λB

to compute the input keys KA(i),0, KA(i),1, KB(i),0 and KB(i),1. To enable the
evaluator to compute the choice bit of output key Ki,G(a,b), for all four pos-
sible inputs (a, b) ∈ {0, 1}2, the garbler includes in the garbled circuit i the

bit b2laA+lbB
:= H ′(KA,a||KB,b) ⊕ l

Gi(a,b)
i . Since H ′ is a random oracle, each bit

H ′(KA,a||KB,b) is random, and therefore, each bit b2laA+lbB
is also random and

independent of l
Gi(a,b)
i , so the four published bits give no information about

the permute bits or the choice bits. These four bits are sorted according to the
choice bits of the input keys, so the evaluator knows which one to use. The choice
bits assigned to the circuit input keys are directly provided with these keys by
extending them by one bit.

We set the permute bit of the circuit output wire to 0, so the choice bits of
its keys correspond to the actual truth value on this wire. Apart from the keys
for the circuit input wires and their choice bits, the only values communicated to
the evaluator are the key R for the hash function H, the index ι of the trapdoor
one-way function, and the four bits b2laA+lbB

for each gate. Altogether, our garbled

circuit has size 4l + |R|+ |ι|.

3.2 Evaluation

Evaluation (see Figure 3) is then straightforward: after obtaining the garbled
circuit F and the input keys K1, . . . ,Kn, the evaluator processes the circuit
forward. For each gate i, he computes the ciphertext c2lA+lB := H(R, i||2lA+lB).
Then he computes Ki := Eι(KA + 2KB) ⊕ c2lA+lB , if 2lA + lB = 0, and Ki :=
Eι(KA +KB)⊕ c2lA+lB , otherwise.

To obtain the choice bit li of the output key Ki, the evaluator computes
li := H ′(KA(i)||KB(i)))⊕b2lA+lB . The evaluator proceeds until he finally obtains
the choice bit ll+n of the circuit output key Kl+n, which equals the output f(x).

Garbling algorithm Garble(1k, f)

Input: Security parameter k, Circuit f = (n,m, l, A,B,G) computing a for-
mula

Output: Garbled circuit F , encoding e, decoding d
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : {0, 1}k → {0, 1}k with trapdoor
tι.
Choose a key R ∈ {0, 1}k for hash function H uniformly at random
Initialize empty arrays L[], e[] with |L| = l and |e| = n.
Choose circuit output keys Kl+n,0,Kl+n,1 ∈ {0, 1}k uniformly at ran-
dom.
Set permute bit λl+n := 0 and choice bits l0l+n := 0, l1l+n := 1.

2. Garbling the gates:
For i := l + n to n+ 1 do (count i downwards):
(a) Set A := A(i) and B := B(i)
(b) Choose permute bits λA, λB ∈ {0, 1} for wires A and B at ran-

dom.
For all (a, b) ∈ {0, 1}2, set input key choice bits
laA := λA ⊕ a, lbB := λB ⊕ b ∈ {0, 1}.

(c) Deriving the input keys:
– Compute cx := H(R, i||x) ∈ {0, 1}k for x = 0, 1, 2, 3.
– For all (a, b) ∈ {0, 1}2, use trapdoor tι to compute

P2la
A
+lb

B
:= E−1

ι (tι, c2la
A
+lb

B
⊕Ki,G(a,b)) ∈ {0, 1}k

– Solve the equation system in Fq ⊂ {0, 1}k

P0 = KA,λA + 2KB,λB ∈ Fq

P1 = KA,λA + KB,1−λB ∈ Fq

P2 = KA,1−λA + KB,λB ∈ Fq

P3 = KA,1−λA + KB,1−λB ∈ Fq

to obtain the input keys KA,0, KA,1, KB,0, KB,1 ∈ Fq. Abort
if Pi ̸∈ Fq for some i. This occurs with negligible probability.
If A is a circuit input wire, set e[A] := (K0

A||l0A,K1
A||l1A).

If B is a circuit input wire, set e[B] := (K0
B ||l0B ,K1

B ||l1B).
(d) Indicate choice bits:

For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b)⊕ l

Gi(a,b)
i ∈ {0, 1}.

(e) Set L[i] := (b0, b1, b2, b3)
3. Output F := (R,L, ι), e and d := λl+n.

Fig. 1. The proposed garbling algorithm.

3.3 Efficiency Comparison with Previous Schemes

Comparison with the Half-Gates Construction. We compare our garbling
scheme with the best known result (the half-gate construction) proposed by
Zahur et al. [34] on efficiency. It is difficult to compare them directly, since ours
uses a public-key primitive, while the half-gate construction uses a symmetric-

Encoding algorithm Encode(e, x)

Inputs: Garbled input keys e, input x
Algorithm: Parse x to x = x1 . . . xn

For i = 1 to n do:
Parse e[i] = (e0, e1)
X[i] := exi

Return X

Fig. 2. The function Encode.

Evaluation algorithm Eval(F,X)

Inputs: Garbled circuit F , garbled input X
Algorithm: 1. Parse F to F = (R,L)

2. For j = 1 to n do
Kj ||lj := X[j]

3. Compute gate output keys and choice bits:
For i := n+ 1 to l + n do

Set A := A(i) and B := B(i).
Compute c2lA+lB := H(R, i||2lA + lB) ∈ {0, 1}k.
If x = 0, set Ki := Eι(KA + 2KB)⊕ cx ∈ {0, 1}k,
else set Ki := Eι(KA +KB)⊕ cx ∈ {0, 1}k.
Parse L[i] to (b0, b1, b2, b3).
Set choice bit li := H ′(KA||KB)⊕ bx ∈ {0, 1}.

4. Return Y := ll+n.

Fig. 3. The evaluation algorithm.

key one. Therefore, we evaluate the cost in an abstract way and later discuss the
concrete efficiency in the circuit size.

Let LE be the length of the domain of E, LI the length of ι, TEval the com-
putation cost of EvalE , TInv the computation cost of InvE , and |R| the length of
a hash key. Also let LH be the length of the range of the correlation robust hash
function used in [34], TH the computation cost of hashing, and lAND the number
of AND gates. Table 1 shows the communication and computation cost of the
two garbling schemes⋆⋆.

Regarding communication cost, the size of the garbled circuit is a constant
multiple of l in our garbling scheme. Therefore, communication cost is asymptot-
ically small when a formula is large. Regarding computation cost, our garbling
scheme requires executions of EvalE and InvE , which are computationally expen-
sive compared to the computation of a hash function.

We additionally evaluate the circuit size for concrete example parameters.
We assume that the trapdoor one-way permutation is instantiated by an RSA-
based primitive such as RSA-DOAEP [6], the correlation robust hash function

⋆⋆ We estimate the cost of our basic scheme here although our garbling scheme can be
combined with the free-XOR technique as discussed in Subsection 5.2.

communication cost computation cost
circuit input garbling evaluation

Ours 4l + |R|+ LI n · LE 4TInv · l TEval · l
[34] LH · lAND n · LH 2TH · lAND TH · lAND

Table 1. Comparison with the half-gates scheme [34].

is instantiated by fixed-key AES, and lAND = 0.14l, since this is the case of the
most significant difference among the examples in [34]. AES is regarded with
128-bit security, so we set LE = 4096, LI = 8192, |R| = 128 and LH = 128. In
this case, the circuit size in our garbling scheme is smaller than the one of the
half-gates scheme if l ≥ 709.

Regarding total communication cost, however, our scheme cannot beat the
half-gate construction in its current state. We consider our scheme a proof of
concept of a new way of circuit construction. Finding more efficient instantiations
for the trapdoor permutation or getting rid of the public key primitive altogether
are interesting open problems.

Comparison with Information-theoretic Garbing Scheme of [19]. We
compare the efficiency of our scheme with that of the information-theoretic gar-
bling scheme of [19], which garbles formulas more efficiently than other tech-
niques. For simplicity, we consider the case of garbling a “balanced” formula
such that all the gates connecting to the input wires have the same depth.

Regarding the communication cost, the scheme of [19] garbles a balanced
formula with depth d in a way that the size of the garbled circuit is zero and
the size of the encoded input is approximately 2d+1 · d2 (each of the 2d+1 wires
has a share with size approximately d2), and our scheme garbles such a formula
in a way that the size of the garbled circuit is 4l + |R| + LI = 4 · 2d + |R| + LI

and the size of the encoded input is n · LE = 2d+1 · LE. Hence, in total, the
communication cost of the scheme of [19] is 2d+1 · d2 whereas that of ours is
2d+1(LE + 2) + |R| + LI ≈ 2d+1 · LE (see Table 2), and thus our scheme has
smaller communication cost when d >

√
LE.

communication cost
circuit input total

Ours 4 · 2d + |R|+ LI 2
d+1 · LE 2d+1(LE + 2) + |R|+ LI

[19] 0 2d+1 · d2 2d+1 · d2

Table 2. Comparison with information-theoretic garbling scheme of [19].

Regarding the computation cost, we note that since the scheme of [19] re-
quires no cryptographic primitive whereas ours uses a public-key primitive, the

computation cost of our scheme is likely to be much bigger than that of the
scheme of [19].

4 Security of the Proposed Scheme

The proposed garbling scheme is simulation-based private in the (programmable)
random oracle model if the trapdoor permutation E is correlation robust.

Theorem 1 (Simulation-based Privacy). The proposed garbling scheme de-
scribed in Section 3 satisfies simulation-based privacy of Definition 2 if we as-
sume that E satisfies correlation robustness as defined in Definition 4, H is
a programmable random oracle and H ′ is a non-programmable random oracle.
More precisely, for any adversary A there exists an adversary B such that

Advprv.simGC,Sim,Φ,A(k) ≤ l ·AdvcorrE,f0,f1,f2,f3,B(k) + qH · 2−k,

where l is the number of gates and qH is the number of queries A makes to H.

Proof. We consider the following hybrid gamesHreal,H0,H1, ..., Hl, Hsim, where
Hreal is identical to the real experiment (β = 0), andHsim is identical to the sim-
ulated experiment (β = 1) of Definition 2. The simulator Sim(1k, f(x), Φtopo(f))
of Definition 2 is provided in Figure 6.

Game Hreal: This game is identical to the real experiment of Definition 2. The
garbled circuit (F, e, d) is generated by the garbling algorithm Garble(1k, f)
of the real garbling scheme, as given in Figure 1, and garbled input X is gen-
erated by the encoding algorithm Encode(e, x) (Figure 2) of the real scheme.

Game H0: In this game, the garbled circuit is generated forward, from input
gates to output gate, which is in contrast to the real scheme. The garbled
circuit is generated by algorithm Sim0(1

k, f) as described in Figure 4, and
garbled input X is generated by encoding algorithm Encode(e, x) (Figure 2)
of the real scheme. We note that in step 2-(c), we need to program the
random oracle H to keep consistency.

Game Hs: With the Games Hs, we move from Game H0 to the full simulation
with a gate-wise replacement. We incrementally replace variables not touched
in an evaluation with input x with random values gate by gate, such that
finally, in the full simulation, the “unused” variables of each gate are replaced
by randomness. For s = 1, ..., l, in each Game Hs, the garbled circuit is
generated by algorithm Sims(1

k, x, f), given in Figure 5, and garbled input
X is generated by the encoding algorithm Encode(e, x) (Figure 2) of the real
scheme. We say that key Ki,β is active if and only if the bit obtained on wire
i is β when circuit f is evaluated with input x. Only in these intermediate
gamesHs, we give the simulator knowledge of input x and circuit f , so he can
label each key Ki,β as active or inactive. We say that value Eι(KA,a+KB,b)
is active if and only if both KA,a and KB,b are active. We replace inactive
values with random values in step 2-(c) of algorithm Sims(1

k, x, f) for gates

Simulator Sim0(1
k, f)

Input: Security parameter k, circuit f = (n,m, l, A,B,G) computing a for-
mula.

Output: Garbled circuit F , encoding e, decoding d.
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : Fq → Fq with trapdoor tι.
Choose a key R for hash function H uniformly at random
Initialize empty arrays L[], e[] with |L| = l and |e| = n.
For i := 1 to n do:
(a) Choose circuit input keys Ki,0,Ki,1 ∈ Fq uniformly at random.
(b) Choose permute bit λi ∈ {0, 1} uniformly at random and set

choice bits l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) Set e[i] := (K0

i ||l0i ,K1
i ||l1i).

2. Garbling the gates:
For i := n+ 1 to n+ l do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) Choose permute bit λi for output wire i uniformly at random.

Set output key choice bit l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) ’Deriving’ the output keys:

– For all (a, b) ∈ {0, 1}2, compute
Y2la

A
+lb

B
:= Eι(KA,a + 2KB,b), if 2l

a
A + lbB = 0 or

Y2la
A
+lb

B
:= Eι(KA,a +KB,b), otherwise.

– Choose output keys Ki,0, Ki,1 uniformly random
– Program random oracle such that

c2la
A
+lb

B
:= Ki,G(a,b) ⊕ Y2la

A
+lb

B

(d) Indicate choice bits:
For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b)⊕ l

Gi(a,b)
i .

(e) Set L[i] := (b0, b1, b2, b3)

3. Output F := (R,L, ι), e and d := λn+l.

Fig. 4. The algorithm Sim0 for game H0.

i = n + 1, ..., n + s; gates i = n + s + 1, ..., n + l are generated as in game
H0. We also replace the inactive output key by the active output key in this
step.

Game Hsim: This game is identical to the simulated experiment in Definition 2.
The garbled circuit and garbled input (F,X, d) are generated by algorithm
Sim(1k, f(x), Φtopo(f)), given in Figure 6, without knowledge of x.

The difference between the advantage of adversary A in Hreal and his ad-
vantage in H0 is bound by qH ·2−k as follows, where qH is the number of queries
that A makes to H. Since Eι is a bijective map and f = (f0, f1, f2, f3) is an
invertible linear map, the system of four linear equations

c2laA+lbB
= Ki,G(a,b) ⊕ Eι(f2laA+lbB

(KA,a,KB,b)), (a, b) ∈ {0, 1}2

Simulator Sims(1
k, x, f)

Input: Security parameter k, circuit input x, circuit f = (n,m, l, A,B,G)
computing a formula.

Output: Garbled circuit F , encoding e, decoding d.
Algorithm: 1. Initialize:

Same as Sim0.
2. Garbling the gates:

For i := n+ 1 to n+ s do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) Choose permute bit λi for output wire i uniformly at random.

Set output key choice bit l0i := λi ⊕ 0, l1i := λi ⊕ 1.
(c) Deriving the output keys:

– For all (a, b) ∈ {0, 1}2,
if KA,a, KB,b are active keys, compute
Y2la

A
+lb

B
:= Eι(KA,a + 2KB,b), if 2l

a
A + lbB = 0 or

Y2la
A
+lb

B
:= Eι(KA,a +KB,b) if 2l

a
A + lbB ̸= 0,

otherwise choose Y2la
A
+lb

B
∈ Fq uniformly at random.

– Choose output keys Ki,0,Ki,1 uniformly random.
– Let (a∗, b∗) ∈ {0, 1}2 be the values such thatKA,a∗ andKB,b∗

are active keys. Then, for all (a, b) ∈ {0, 1}2, program random
oracle such that c2la

A
+lb

B
:= Ki,G(a∗,b∗) ⊕ Y2la

A
+lb

B
.

(d) Indicate choice bits:
For all (a, b) ∈ {0, 1}2, compute

b2la
A
+lb

B
:= H ′(KA,a||KB,b)⊕ l

Gi(a,b)
i .

(e) Set L[i] := (b0, b1, b2, b3)

3. Garbling the gates:
For i := n+ s+ 1 to n+ l do (count i upwards):
Same as Sim0.

4. Output F := (R,L, ι), e and d := λn+l.

Fig. 5. The algorithm Sims for game Hs.

is uniquely solvable with the input keys KA,0, KA,1, KB,0 and KB,1 as variables.
Therefore, it maps uniformly random output keysKi,0,Ki,1 to uniformly random
input keys KA,0, KA,1, KB,0, KB,1 in Hreal. In H0, both the input keys KA,0,
KA,1,KB,0,KB,1 and the output keysKi,0,Ki,1 are chosen uniformly at random.
However, the relation between the values c2laA+lbB

, Ki,G(a,b) and (KA,a,KB,b),

which is given by these four equations, is preserved for all (a, b) ∈ {0, 1}2 by
programming the random oracle H to output consistent values for c0, c1, c2 and
c3. So, all keys are uniformly random in both Hreal and H0, and the distributions
of the garbled circuits created in Hreal and H0 are indistinguishable to the
adversary, except for the case where the adversary asks H(R, i||x) for some
x ∈ {0, 1, 2, 3} before the simulator garbles gate i, where he defines this value.
However, the hash key R is given to the adversary only after garbling the whole
circuit. Before that, A can guess R with probability 2−k in each query to H.

Simulator Sim(1k, f(x), Φtopo(f))

Input: Security parameter k, output value f(x), topology of circuit
Φtopo(f) = (n,m, l, A,B) of formula f .

Output: Garbled circuit F , garbled input X, decoding d.
Algorithm: 1. Initialize:

Choose a trapdoor permutation Eι : Fq → Fq with trapdoor tι.
Choose a key R for hash function H uniformly at random
Initialize empty arrays L[], X[] with |L| = l and |X| = n.
Set permute bit λn+l := 0
For i := 1 to n do:
(a) Choose Ki ∈ Fq uniformly at random.
(b) Choose li ∈ {0, 1} uniformly at random.
(c) Set X[i] := Ki||li.

2. Garbling the gates:
For i := n+ 1 to n+ l do (count i upwards):

(a) Set A := A(i) and B := B(i).
(b) If i = n+ l, set li := f(x).

Otherwise, choose li ∈ {0, 1} uniformly at random.
(c) ’Deriving’ the output key of gate i:

– If 2lA + lB = 0 compute Y2lA+lB := Eι(KA + 2KB).
Otherwise, compute Y2lA+lB := Eι(KA +KB).
Choose Yx uniformly random, for x = 0, 1, 2, 3, x ̸= 2lA + lB .

– Choose Ki uniformly at random.
– Program random oracle such that

cx := Ki ⊕ Yx for all x ∈ {0, 1, 2, 3}.
(d) Indicate choice bits:

– Set b2lA+lB := H ′(KA||KB)⊕ li.
– For each x ∈ {0, 1, 2, 3} \ {2lA + lB}, choose bx ∈ {0, 1} uni-

formly at random.
(e) Set L[i] := (b0, b1, b2, b3)

3. Output F := (R,L, ι), X and d := λn+l.

Fig. 6. The algorithm Sim to create the simulated garbled circuit.

Thus, from the union bound, the probability that A makes “a bad query” to H
is bound by qH · 2−k.

The advantage of adversary A in distinguishing Hs and Hs+1 for s = 0, ..., l−
1 is bound by the advantage AdvcorrE,f0,f1,f2,f3,B(k) of the following adversary B of
the correlation robustness game as follows. Let A and B denote the input wires of
gate n+s+1. For simplicity, we assume that KA,0 and KB,1 are the active input
keys of gate n+ s+1; the three other cases are analogous. Remember that gates
are labeled after their output wires; since the first n wires are circuit input wires,
in Game Hs+1, Gate n+ s+1 is the next to be replaced by a “simulated” gate.
At the beginning of the correlation robustness game, the adversary B selects
KA,0 and KB,1 uniformly at random, and outputs K := KA,0 and L := KB,1 as

the target keys of the correlation robustness experiment. Then, B receives index
ι of E and challenge Z1, Z2, Z3 of the correlation robustness experiment.

To provide adversary A with a “challenge circuit”, adversary B simulates
gates n + 1 to n + s as in Step 2 of algorithm Sims(1

k, x, f), while setting the
active keys of wire A and B to KA,0 and KB,1, respectively. Since they were
chosen uniformly at random, this does not contradict the construction in Game
Hs or Hs+1.

The adversary B then creates Gate n+ s+ 1 as follows:

1. Compute active value Y2l0A+l1B
:= Eι(f2l0A+l1B

(K,L)), and set the inactive
values to the random values from the challenge as follows: Y2l0A+(1−l1B) := Z1,
Y2(1−l0A)+l1B

:= Z2 and Y2(1−l0A)+(1−l1B) := Z3.
2. Choose Kn+s+1,0 and Kn+s+1,1 uniformly at random. Program random or-

acle such that c2laA+lbB
:= Kn+s+1,G(a,b) ⊕ Y2laA+lbB

for all (a, b) ∈ {0, 1}2.

All remaining gates (Gate n+ s+ 2 to Gate n+ l), if there are any, are created
as in algorithm Sims(1

k, x, f). Adversary B gives the created garbled circuit to
A, and outputs whatever A outputs.

If Z1, Z2 and Z3 are correctly formed, i.e., Z1 = Eι(f2l0A+(1−l1B)(KA,0,KB,1)),

Z2 = Eι(f2(1−l0A)+l1B
(KA,1,KB,0)), and Z3 = Eι(f2(1−l0A)+(1−l1B)(KA,1,KB,1)),

the simulated garbled circuit is generated as in Hs. If Z1, Z2 and Z3 are uni-
formly random, c2l0A+l1B

is Kn+s+1,G(a,b) ⊕ Eι(f2l0A+l1B
(K,L)), and c2l0A+(1−l1B),

c2(1−l0A)+l1B
and c2(1−l0A)+(1−l1B) are uniformly random; thus, they are distributed

identically to those in Hs+1. Thus, Adversary B is successful in the correlation
robustness game whenever Adversary A is successful in distinguishing Hs and
Hs+1. Therefore, the advantage of adversary A in distinguishing Hs and Hs+1

is bound by advantage AdvcorrE,f0,f1,f2,f3,B(k) of the correlation robustness exper-
iment.

The distributions of the simulated garbled circuits in Hl and Hsim are in-
distinguishable as follows. In Hsim, the simulator “loses knowledge” of input
x, i.e, he does not know which values are active, and therefore, which inputs
should result in the active key. He does not need this knowledge anymore,
since the inactive output keys have been replaced by the active ones in the
previous games. The bits bx for x = 0, 1, 2, 3 in Hsim are chosen uniformly
at random. Since H ′ is a random oracle, this is indistinguishable from setting

b2laA+lbB
:= H ′(KA,a||KB,b)⊕ l

Gi(a,b)
i .

Thus, by summing up the differences between the games, we haveAdvprv.simGC,Sim,Φ,A(k)

≤ l ·AdvcorrE,f0,f1,f2,f3,A(k) + qH · 2−k. ⊓⊔

5 Extensions

In this section, we generalize our garbling scheme to allow circuits with arbitrary
fan-out. Then we show how to combine our garbling scheme with the free-XOR
technique to further reduce communication cost. We also discuss the malicious
case.

5.1 Arbitrary Fan-Out

Our scheme can handle arbitrary fan-out with a slight modification, which comes
at the cost of going back to linear size of the garbled circuit in the worst case.
Note that if a circuit has more than one circuit output wire, the decoding function
needs to be adjusted in the obvious way. The reason our basic scheme can only be
used for formulas is that our garbling algorithm leaves no degree of freedom when
computing the input keys of a gate. This implies a conflict when a wire is the
input wire of two different gates i and j: W.l.o.g., consider the case of a shared
wire s := B(i) = A(j) and i < j. When garbling gate i, the garbler computes
corresponding input keys Ks,0 and Ks,1 for the shared wire s. However, when
garbling gate j, he obtains different input keys K ′

s,0 ̸= Ks,0 and K ′
s,1 ̸= Ks,1 for

the same wire. We can solve this conflict by providing two ciphertexts for this
wire by encrypting K ′

s,0 with key Ks,0, and K ′
s,1 with Ks,1. Then we can use Ks,0

and Ks,1 for gate i, and K ′
s,0 and K ′

s,1 for gate j. We sort the two ciphertexts
according to the permute bit λs of wire s. Since λs applies to both key pairs,
K ′

s,b and Ks,b have the same choice bit for b = 0, 1. This way, whenever a wire is
input for a second gate, the evaluator can compute the “second version” of his
obtained key by decrypting the corresponding ciphertext. Our garbled circuit
now has the size

4l + |R|+ |ι|+
dmax∑
d=1

(2(d− 1) · k · ld),

where ld is the number of gates with fan-out d, and dmax is the maximal number
of output wires of a single gate.

In the case that a gate has two conflicting input wires, this gate might need
four ciphertexts, making our scheme seemingly inefficient. However, depending
on the number of circuit input and circuit output wires, we still have an average
of considerably less than four ciphertexts per gate. Consider a circuit with k
gates. According to the model we use, each gate has two input wires and one
output wire. So altogether we have 2k input wires, of which n are circuit input
wires (i.e., cannot origin from other gates), and k output wires, of which m are
circuit output wires (i.e., those m wires cannot induce a conflict). So we have
k−m wires which need to “go somewhere”, and 2k−n places where they can go.
Since the two ciphertexts are only needed for each additional connection of an
output wire, each wire can connect to one input slot “for free”. So in the worst
case, we end up with (2k−n)−(k−m) = k+m−n conflicts, meaning 2(k−n+m)
ciphertexts. In the case of m ≤ n, we have at most two ciphertexts per gate in
the worst case. If m > n, we might have more than two ciphertexts per gate
in the case of an unfortunate layout, but still less than four since m < k. So in
the case of arbitrary fan-out, whether or not our scheme provides an efficiency
gain compared to other optimizations like the half-gate or fleXOR constructions,
strongly depends on the circuit layout. As we can see in the following section,
our basic scheme is compatible to the free-XOR technique. This compatibility
translates to the case of arbitrary fan-out with similar conflict issues arising from
conflicting wire offsets as well as conflicting keys. However, in some cases where

XOR gates are involved in a conflict, only one ciphertext is needed to solve it.
This is elaborated in more detail in Section 5.2.

5.2 Incorporating Free-XOR

Going back to the world of formulas, our garbling scheme is compatible with
a slightly adapted version of the free-XOR technique introduced in [22]. The
free-XOR technique allows us to garble XOR gates “for free”, by choosing each
key pair with a constant offset ∆, such that output keys can be obtained by
XORing corresponding input keys. To be compatible with our garbling scheme,
XOR gates, too, have to be garbled backwards, but induce no communication
cost.

For each gate i, let Ki,0 and Ki,1 be the already given output keys for gate i.
(If i is a circuit output wire, choose the two keys at random.) If i is a non-XOR
gate, the garbler does exactly what he does in our basic scheme. If i is an XOR
gate, the garbler sets ∆ := Ki,0 ⊕Ki,1. Then for the input wires A(i) and B(i),
the garbler chooses random keysKA(i),0 andKB(i),0 such thatKA(i),0⊕KB(i),0 =
Ki,0 and sets KA(i),1 := KA(i),0 ⊕∆ and KB(i),1 := KB(i),0 ⊕∆. The permute
bits λA(i) and λB(i) of the input wires are set such that λA(i) ⊕ λB(i) = λi. This
way, the evaluator can obtain the choice bit of the output key by applying the
XOR function to the choice bits of the input keys. Using this technique, our
XOR gates are free: they induce no communication cost. This works as long as
the circuit is cycle-free, which is required by the property A(i) < B(i) < i for
each gate.

When incorporating free-XOR, we need our trapdoor permutation Eι to ad-
ditionally achieve a circular security property similar to the one introduced by
Choi et al. [11]. Our incorporation of free-XOR seems similar to the combina-
tion of the fleXOR technique with two-row-reduction in [21]. However, we have
different dependencies: In the fleXOR technique, the offset ∆ is determined by
the input keys of a gate, such that if there is a sub-tree in the circuit consisting
only of XOR gates, there might be different offsets ∆i within this sub-tree. In
our scheme, ∆ is determined by the output key, so there is only one ∆ within
each sub-tree. Since input keys depend on output keys, we can define the input
keys of an XOR sub-tree to have the same offset ∆.

Free-XOR and Arbitrary Fan-Out. Incorporating the free-XOR technique
allows us some freedom in choosing the input keys of XOR gates. This can reduce
the number of ciphertexts needed when dealing with conflicting wires in some
cases. Consider gates i and j with shared input wire B(i) = A(j) (other shared
wires are analogous). There are essentially three types of conflicting wires:

– Case 1: The keys of the input wires of both gates i and j cannot be chosen
freely:
This occurs for example when one of the gates has more than one conflict-
ing input wire, or when both i and j are non-XOR gates. In this case, we

solve the conflict exactly as described in Section 5.1, by encrypting the keys
determined by garbling gate j with those determined for gate i. Solving this
conflict induces a communication cost of two ciphertexts, as before.

– Case 2: i and j are both XOR gates with no additional conflict:
The problem here is that for the input wires of i and j we might have
to use different values ∆i and ∆j . In this case, let λB be the permute
bit of wire B(i) (i.e., KB(i),λB

is the key with choice bit zero) and choose
KB(i),λB

= KA(j),λB
at random (the other input wires of i and j then have

to be chosen accordingly such that the correct output key is obtained). Then
set KB(i),1−λB

:= KB(i),λB
⊕∆i and KA(j),1−λB

:= KA(j),λB
⊕∆j , and in-

clude the ciphertext EncKB(i),1−λB
(KA(j),1−λB

) in the garbled circuit. No
additional ciphertext is needed, so this conflict can be solved with only one
ciphertext.

– Case 3: i is an non-XOR gate or an XOR gate with additional conflicts,
and j is an XOR gate with no additional conflict:
This can be solved similar to Case 2: let λB be the permute bit of wire B(i).
Set KA(j),λB

:= KB(i),λB
. Set KA(j),1−λB

:= KA(j),λB
⊕ ∆j and include

the ciphertext EncKB(i),1−λB
(KA(j),1−λB

) in the garbled circuit. Like Case
2, this conflict can be solved with only one ciphertext.

As we can see, if an XOR gate is involved in the conflict, and this is the
only conflict of this XOR gate, we need to include only one ciphertext for the
conflicting wire.

5.3 Security against Malicious Adversaries

Our scheme extents to the malicious case by using the cut-and-choose-based
techniques described by Lindell and Pinkas [24].

One additional issue we need to address is that our scheme requires us to
duplicate input wires if the same input variable is used multiple times. In the
malicious case, we need to prove that consistent input keys are sent for each wire
representing the same variable.

The case of a malicious evaluator is simply handled by sending all input keys
for one variable in a single OT. The case of a malicious garbler can be solved by
adapting the consistency check of the garbler’s input used by Lindell and Pinkas
(see Fig. 2 in [24]) in a straightforward manner, by grouping the input wires
representing the same variable.

6 Instantiation with PRIV-secure Deterministic
Encryption

In this section, we show that we can instantiate our trapdoor one-way permu-
tation Eι with a deterministic encryption function which achieves the notion of
PRIV-security, introduced by Bellare et al. in [6]. Though not limited to deter-
ministic encryption, PRIV-security has been introduced as the strongest security

Experiment ExpPRIV
A (k)

Input: Security parameter k
st← At(1

k)
b̃←R {0, 1}
(x0,x1)← Am(1k, b̃, st)
(pk, sk)←R K(1k)
c := E(pk,xb̃)
b′ ← Ag(1

k, pk, c, st)
Return(b′ = b̃)

Fig. 7. The experiment ExpPRIV .

notion one can achieve for deterministic encryption. It was proven equivalent to
various other notions of deterministic encryption by Bellare et al. in [7].

In this section, we show that PRIV-security implies correlation robustness
with respect to addition, as needed in our garbling scheme. At the end of this
section, we discuss a concrete instantiation.

We briefly recall the PRIV-notion here. Though we use the term PRIV, we
actually use one of its equivalents called IND in [7]. Let E(pk,m) denote a
deterministic encryption function with key space K(1k), domain space Dom(E)
and image space Im(E). Let x←R S denote the assignment of a random element
in set S to variable x. As a shortcut, we write E(pk,x) for componentwise
encryption of a vector x. PRIV-security is defined via the experiment ExpPRIV

A
(see Figure 7). It uses an adversary algorithm A = (At, Am, Ag), which is split
into three adversaries At, Am and Ag. The first one, At, chooses a string st which
is readable (but not writable) by the other two adversaries. It does not exist in
the original PRIV-definition of [6], and only used to show equivalence in [7],
where st is then required to be the empty string in the actual security definition,
while the most fit st is assumed hard-wired into the other two adversaries Am

and Ag. We use At and st for our reduction to correlation robustness in a similar
way. The adversary Am chooses vectors x0 and x1 of plaintexts knowing choice
bit b̃, but without knowledge of the public encryption key pk. The vector xb̃ is

then encrypted componentwise. The third adversary, Ag, then tries to guess b̃,
getting the public key pk, the ciphertext E(pk,xb̃) as well as st as input.

Definition 5 (PRIV-security). An encryption function E is PRIV-secure, if
the advantage AdvPRIVA (k) := Pr[ExpPRIVA (k) = 1] − 1

2 is negligible in k for all
security parameters k and all adversaries A = (At, Am, Ag), under the following
requirements:

1. |x0| = |x1|
2. x0[i] = x0[j] iff x1[i] = x1[j]
3. High min-entropy: Pr[xβ [i] = x : x← Am(1k, b̃, st)] is negligible in k for all

β ∈ {0, 1}, all 1 ≤ i ≤ |x|, all x ∈ Dom(E), and all st ∈ {0, 1}∗.
4. st is the empty string.

The first requirement prevents the adversary from trivially distinguishing
the two ciphertexts by their length, while the second requirement addresses the
fact that a deterministic encryption maps equal plaintexts to equal ciphertexts,
and prevents the adversary from distinguishing ciphertexts using their equality
pattern.

PRIV-security is sufficient to achieve our notion of correlation robustness
with respect to the linear function we use in our garbling scheme. Therefore,
we can instantiate our trapdoor permutation with a PRIV-secure deterministic
encryption function. We prove this with the following theorem:

Theorem 2 (PRIV-security implies generalized correlation robustness).
Let E be a PRIV-secure deterministic encryption function with key space K =
PK × SK, plaintext space P and ciphertext space C. Let f = (f0, f1, f2, f3)
be an invertible linear function, consisting of the four functions f0, f1, f2, f3 :
Dom(E)→ Dom(E).

Then the trapdoor permutation Eι : P → C; m 7→ E(ι,m) is correlation
robust with respect to (f0, f1, f2, f3) for all ι ∈ PK.

Proof. We show that for each Acorr who breaks correlation robustness with
non-negligible advantage p, there exists a PRIV-Adversary A who breaks PRIV-
security with advantage 1

2p.
We first construct an adversary with non-empty state st. Let us consider an

adversary Acorr, who can break correlation robustness of Eι with non-negligible
advantage p. The adversary A = (At, Am, Ag) uses A

corr to break PRIV-security
as follows: First, adversary At asks Acorr to output a tuple (K,L), and sets
st := (K,L). Then, Am chooses K ′, L′, R1, R2 and R3 uniformly at random.
In the correlation robustness experiment, there are four ways for the challenger
to pick a, b, c out of {0, 1, 2, 3} with a < b < c. Adversary Am chooses such
(a, b, c) uniformly at random, and sets x0 := (fa(K,L′), fb(K

′, L), fc(K
′, L′)).

He sets x1 := (R1, R2, R3). Since K ′ and L′ are chosen uniformly at random,
the plaintexts chosen by Am all have negligible probability of occurring, and
therefore the desired min-entropy. The plaintext vector elements K+L′, K ′+L
and K ′ + L′ of x0 are all mutually different with overwhelming probability, so
x0 and x1 have the same equality pattern.

Ag then obtains a public key pk and a ciphertext c = (c1, c2, c3).

If b̃ = 0, c has the form of a challenge in ExpcorrE,f0,f1,f2,f3,A(k) if β = 0 in this

experiment, while in the case b̃ = 1, c has the form of a challenge for β = 1.
Therefore, Ag can feed the adversary Acorr with an appropriate challenge by
handing him (pk, c). Adversary Ag then outputs whatever Acorr outputs.

Now we need to modify A such that st is the empty string. Without loss
of generality, we can divide the random coins of Acorr into (r1, r2), such that
r1 is the randomness used to choose (K,L). Then for each choice of r1, there
is an adversary Acorr

r1 which has r1 hard-wired and always chooses a specific
(Kr1 , Lr1). From an average argument, if Acorr breaks correlation-robustness
with advantage p, then there is random coin rp for which the adversary Acorr

rp
with hard-wired rp breaks correlation-robustness with advantage p.

Consider the PRIV-Adversary Arp = (A
rp
t , A

rp
m , A

rp
g) which has his random

coins hard-wired, such that (1) At always chooses st to be the empty string,
(2) Am always chooses K = Krp and L = Lrp , randomly chooses a, b, c ∈
{1, 2, 3, 4} with a < b < c, and sets x0 := (fa(K,L′), fb(K

′, L), fc(K
′, L′)), and

(3) Adversary A
rp
g internally executes Acorr

rp and outputs whatever Acorr
rp outputs.

Since A
rp
m has K and L hard wired, A

rp
g is the only adversary who communicates

with Acorr
rp .

If Acorr
rp breaks correlation robustness with advantage p, then Arp breaks

PRIV-security with advantage at least 1
4p. ⊓⊔

We can instantiate our correlation robust trapdoor permutationE : {0, 1}k →
{0, 1}k with a PRIV-secure deterministic encryption scheme . In [6], Bellare et al.
introduce a PRIV-secure length-preserving scheme RSA-DOAEP, which works
on bitstrings. This scheme can be used to instantiate our correlation robust
trapdoor permutation.

7 Acknowledgements

We thank the anonymous reviewers for helpful comments.

References

1. abhi shelat and C. Shen. Two-output secure computation with malicious adver-
saries. In EUROCRYPT, pages 386–405, 2011.

2. B. Applebaum. Garbling XOR gates ”for free” in the standard model. In TCC,
pages 162–181, 2013.

3. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In FOCS
2004, pages 166–175, 2004.

4. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. In Computational Complexity 15(2), pages
115–162, 2006.

5. B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In CRYPTO (2)
2013, pages 166–184, 2013.

6. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In Proceedings of the 27th Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO’07, pages 535–552, Berlin, Heidelberg, 2007.
Springer-Verlag.

7. M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. Cryptology
ePrint Archive, Report 2008/267, 2008. http://eprint.iacr.org/.

8. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. Cryp-
tology ePrint Archive, Report 2012/265, 2012. http://eprint.iacr.org/.

9. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

10. L. T. A. N. Brandão. Secure two-party computation with reusable bit-
commitments, via a cut-and-choose with forge-and-lose technique - (extended ab-
stract). In ASIACRYPT, pages 441–463, 2013.

11. S. G. Choi, J. Katz, R. Kumaresan, and H. Zhou. On the security of the ”Free-
XOR” technique. In TCC, pages 39–53, 2012.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

13. B. Hemenway, S. Lu, and R. Ostrovsky. Correlated product security from any
one-way function. In PKC, pages 558–575, 2012.

14. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In CRYPTO, pages 18–35, 2013.

15. Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff. Amor-
tizing garbled circuits. In CRYPTO, pages 458–475, 2014.

16. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In FOCS, pages 294–304, 2000.

17. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP, pages 244–256, 2002.

18. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

19. V. Kolesnikov. Gate evaluation secret sharing and secure one-round two-party
computation. In Advances in Cryptology - ASIACRYPT 2005, 11th International
Conference on the Theory and Application of Cryptology and Information Security,
Chennai, India, December 4-8, 2005, Proceedings, pages 136–155, 2005.

20. V. Kolesnikov and R. Kumaresan. Improved secure two-party computation via
information-theoretic garbled circuits. In SCN, pages 205–221, 2012.

21. V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR: Flexible garbling for xor
gates that beats free-xor. In J. Garay and R. Gennaro, editors, Advances in Cryp-
tology CRYPTO 2014, volume 8617 of Lecture Notes in Computer Science, pages
440–457. Springer Berlin Heidelberg, 2014.

22. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In ICALP, pages 486–498, 2008.

23. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In CRYPTO, pages 1–17, 2013.

24. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In M. Naor, editor, Advances in Cryptology
- EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages
52–78. Springer Berlin Heidelberg, 2007.

25. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

26. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. In TCC, pages 329–346, 2011.

27. Y. Lindell and B. Riva. Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In CRYPTO, pages 476–494, 2014.

28. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party compu-
tation system. In USENIX Security Symposium, pages 287–302, 2004.

29. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In EC, pages 129–139, 1999.

30. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation
is practical. In M. Matsui, editor, Advances in Cryptology ASIACRYPT 2009,

volume 5912 of Lecture Notes in Computer Science, pages 250–267. Springer Berlin
Heidelberg, 2009.

31. A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In
TCC, pages 419–436, 2009.

32. T. Sander, A. L. Young, and M. Yung. Non-interactive cryptocomputing for nc1.
In FOCS, pages 554–567, 1999.

33. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

34. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing data
transfer in garbled circuits using half gates. In EUROCRYPT, 2015.

