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Abstract. Walter & Thomson (CT-RSA ’01) and Schindler (PKC ’02)
have shown that extra-reductions allow to break RSA-CRT even with
message blinding. Indeed, the extra-reduction probability depends on
the type of operation (square, multiply, or multiply with a constant).
Regular exponentiation schemes can be regarded as protections since
the operation sequence does not depend on the secret.
In this article, we show that there exists a strong negative correlation
between extra-reductions of two consecutive operations, provided that
the first feeds the second. This allows to mount successful attacks even
against blinded asymmetrical computations with a regular exponenti-
ation algorithm, such as Square-and-Multiply Always or Montgomery
Ladder. We investigate various attack strategies depending on the con-
text—known or unknown modulus, known or unknown extra-reduction
detection probability, etc.—and implement them on two devices: a single
core ARM Cortex-M4 and a dual core ARM Cortex M0-M4.

Keywords: Side-channel analysis, Montgomery modular multiplication, Extra-
reduction leakage, Message blinding, Regular exponentiation.

1 Introduction

State of the Art of Timing Attacks. Any cryptographic algorithm in an embed-
ded system is vulnerable to side-channel attacks. Timing attacks on the RSA
Straightforward Method (RSA-SFM) were pioneered by Kocher [14]. The attack
consists in building “templates” whose distributions are compared to that of the
response. It is required that the cryptographic parameters be known since the
attack is profiled.
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Schindler [20] extended timing attacks to RSA with Chinese Remainder The-
orem (RSA-CRT) using chosen messages. This attack exploits a conditional
extra-reduction at the end of modular multiplications. Schindler and co-authors
carried out numerous improvements [1,2,21–24] in the case where the exponen-
tiation uses windows or exponent randomization.

Walter and Thompson [25] remarked that even when data is blinded, the
distribution of extra-reductions is different for a square and for a multiply. They
assumed that side-channel measurements such as power or timing during expo-
nentiation are sufficiently clean to detect the presence or absence of an extra-
reduction at each individual operation. Schindler [21] improved this attack by
also distinguishing multiplications by a constant from squarings and multiplica-
tions by non-fixed parameters.

Today’s Solutions. In order to protect the implementation from the above at-
tacks, a first solution consists in exponent randomization on top of message blind-
ing. Such a protection, however, is sensitive to carry leakage [11] and amenable
to other attacks like simple power analysis [9] (SPA). A second solution relies
on regular exponentiation like Square-and-Multiply-Always (SMA, see Alg. 1.1)
or Montgomery Ladder (ML, see Alg. 1.2). Both algorithms consist in a square
and a multiply operation in each iteration i, yielding no leakage to SPA.

Algorithm 1.1 Square and Multiply
Always Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← 1
2: R1 ← m
3: for i = l − 1 downto 0 do
4: R1 ← R1 ×R1 mod p . Si

5: Rki ← R1 ×m mod p . Mi

6: end for
7: return R1

Algorithm 1.2 Montgomery Ladder
Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← m
2: R1 ← R0 ×R0 mod p . FS
3: for i = l − 1 downto 0 do
4: R¬ki ← R0 ×R1 mod p . Mi

5: Rki ← Rki ×Rki mod p . Si

6: end for
7: return R0

Contributions of this Paper. We show that despite message blinding and regular
exponentiation, it is still possible for an attacker to take advantage of extra-
reductions: A new bias is found, namely a strong negative correlation between
the extra-reduction of two consecutive operations. As shown in this paper, the
bias can be easily leveraged to recover which registers are written to (at line 5
of Alg. 1.1 or at lines 4 and 5 of Alg. 1.2) which eventually leads to retrieve the
secret key. The advantages of this method are the following:

– messages are unknown; this captures general situations such as RSA with
OAEP or PSS padding and RSA input blinding [13, Sec. 10];

– RSA parameters can be unknown; hence RSA-CRT is also vulnerable;
– all binary exponentiation algorithms are vulnerable, even the regular ones

like Square and Multiply Always, Montgomery Ladder, etc.;
– our attack can also be applied to Elliptic Curve Cryptography (ECC).
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From a mathematical viewpoint, we also provide a comprehensive framework for
studying the joint probabilities of extra-reductions in a sequence of multiplies
and squares.

Related Works. The “horizontal/vertical” side-channel attacks against blinded
exponentiation described in [8, 12, 28] also use the dependency between the in-
put/output of operands in square and multiply algorithms. Such attacks exploit
the vertical amplitude of the signal during the time duration. Our work is thus
complementary to these ideas since it considers a novel horizontal exploitable
bias.

Outline. The rest of the paper is organized as follows.Section 2 recalls known
biases induced by extra-reductions in modular multiplication algorithms such as
the Montgomery modular multiplication. Our contribution starts at Section 3,
where the theoretical rationale for the strong negative correlation between extra-
reductions of two chained operations is presented. Section 4 shows how this bias
can be turned into a key recovery attack. Experimental validations for synthetic
and practical traces are in Section 5. Section 6 concludes. Informative appen-
dices contain auxiliary information: improvements and our attack and mitigation
techniques are discussed in Sec. A. The proof of the two theorems of the paper
is given in Appendix B; the maximum likelihood distinguisher is described in
Appendix C. The listing of the source code we exploit is given in Appendix D.
The Appendix E focuses on the dependency between operations in Montgomery
Ladder exponentiation algorithm.

2 State of the Art of Extra-Reductions Probabilities

This section reviews known results about extra-reductions and their probability
distributions. The results can be adapted easily to Barrett reduction or multi-
plication followed by reduction using the extended Euclid algorithm.

2.1 Montgomery Modular Multiplication: Definitions and Notations

Given two integers a and b, the classical modular multiplication a × b mod p
computes the multiplication a × b followed by the modular reduction by p.
Montgomery Modular Multiplication (MMM) transforms a and b into special
representations known as their Montgomery forms.

Definition 1 (Montgomery Transformation [16]). For any prime modu-
lus p, the Montgomery form of a ∈ Fp is φ(a) = a×R mod p for some constant
R greater than and co-prime with p.

In order to ease the computation, R is usually chosen as the smallest power of
two greater than p, that is R = 2dlog2(p)e. Using the Montgomery form of inte-
gers, modular multiplications used in modular exponentiation algorithms (recall
Alg. 1.1 & 1.2) can be carried out using the Montgomery Modular Multiplication
(MMM):
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Definition 2 (Montgomery Modular Multiplication [16]). Let φ(a) and
φ(b) two elements of Fp in Montgomery form. The MMM of φ(a) and φ(b) is
φ(a)× φ(b)×R−1 mod p.

Algorithm 2.1 below shows that the MMM can be implemented in two steps:
(i) compute D = φ(a) × φ(b), then (ii) reduce D using Montgomery reduction
which returns φ(c). In Alg. 2.1, the pair (R−1, v) is such that RR−1 − vp = 1.

Algorithm 2.1 Montgomery Reduction (Alg. 14.32 of [15])
Input: D = φ(a)× φ(b)
Output: φ(c) = φ(a)× φ(b)×R−1 mod p
1: m← (D mod R)× v mod R
2: U ← (D +m× p)÷R . Invariant: 0 ≤ U < 2p
3: if U ≥ p then
4: C ← U − p . Extra-reduction
5: else
6: C ← U
7: end if
8: return C

Definition 3 (Extra-Reduction). In Alg. 2.1, when the intermediate value
U is greater than p, a subtraction named eXtra-reduction occurs so as to have a
result C of the Montgomery multiplication between 0 and p − 1. We set X = 1
in the presence of the eXtra-reduction, and X = 0 in its absence.

Most software implementations of modular arithmetic for large numbers
(such as OpenSSL and mbedTLS) use the MMM, where there is a final condi-
tional extra-reduction. In mbedTLS, this extra-reduction is compensated. How-
ever, as shown below in Sec. 5.2, an attacker is still able in practice to detect using
some side-channel which branch has been used (either line 4 or 6 of Alg. 2.1).

2.2 A Bias to Differentiate a Multiply from a Square

Proposition 1 (Probability of Extra-Reduction in a Multiply and a
Square Operation [20, Lemma 1]). Assuming uniform distribution of operands,
the probabilities of an extra-reduction in a multiply XMi and in a square XSi at
iteration i are

P(XMi
= 1) = E(XMi

) =
p

4R
and P(XSi = 1) = E(XSi) =

p

3R
. (1)

We note that extra-reductions are 33% more likely when the operation is a
square than when it is a multiply, irrespective of the ratio p

R ∈] 12 , 1[. This allows
one to break unprotected exponentiation algorithms.
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We compare the theory (Prop. 1) and experimental occurrences of extra-
reductions on one million multiplications and squares, using these moduli1:

1. RSA-1024-p: p =
0xcd083568d2d46c44c40c1fa0101af2155e59c70b08423112af0c1202514bba5 \
210765e29ff13036f56c7495894d80cf8c3baee2839bacbb0b86f6a2965f60db1.

2. RSA-1024-q: p =
0xca0eeea5e710e8e9811a6b846399420e3ae4a4c16647e426ddf8bbbcb11cd3f \
35ce2e4b6bcad07ae2c0ec2ecbfcc601b207cdd77b5673e16382b1130bf465261.

3. RSA-1024-n: p = RSA-1024-p× RSA-1024-q (not a prime, but results apply).
4. P-256 [17]: p =

0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff.
5. brainpoolP256r1 [7]: p =

0xa9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377.

Cryptographic parameters P(XMi = 1) P(XSi = 1)

p R Ratio p/R theory experiment theory experiment
RSA-1024-p 2512 0.800907 0.200227 0.200241 0.266969 0.266893
RSA-1024-q 2512 0.789290 0.197323 0.198207 0.263097 0.263774
RSA-1024-n 21024 0.632147 0.158036 0.157875 0.210715 0.209865

P-256 2256 1.000000 0.250000 0.250049 0.333333 0.333523
brainpoolP256r1 2256 0.663991 0.165998 0.165846 0.221330 0.221134

Table 1. Extra-reduction probability for multiplications (Mi) and squares (Si)

As shown in Tab. 1, experimental probabilities are very close to the theory.
Theoretical results rely on some assumptions (cleanly stated in Appendix B.1),
which justifies that this validation is useful.

3 A Bias to Test the Dependency of Operations

3.1 Principle of Correlated Extra-Reductions

In regular exponentiation algorithms, differentiating a multiply from a square
does not allow SPA to distinguish the value of the exponent bits. Indeed, at
every iteration i (l − 1 ≥ i > 0 where i is decremented after each iteration),

1 Notice that the moduli do not need to be prime numbers. Consider the case of
RSA implemented without CRT (see e.g., RSA-1024-n). It is particularly relevant
to our scenario. Indeed, when the factorization n = pq is unknown, the exponent
randomization d← d+ rϕ(n), where r is a small (e.g., 64 bit) uniformly distributed
random number [13, section 10, page 9], is impossible since ϕ(n) = (p− 1)(q − 1) =
n+1− p− q cannot be computed without the knowledge of the two prime factors p
and q. Thus, regular exponentiation is a very suitable protection, since more efficient
than alternative approaches, such as signature verification or exponent splitting.
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multiply and square operations are carried out unconditionally. However, the
input value of each operation depends on the current exponent bit value ki.
Figure 1 illustrates the dependence or independence between the input/output
values of multiplication Mi and the input value of the following square Si−1 as
a function of the bit value ki during the SMA algorithm (Alg. 1.1). Intuitively,

Sl−1 Ml−1 Sl−2 Ml−2 Sl−3 Ml−3 Sl−4 Ml−4

Output of Ml−1 = Input of Sl−2

Output of Ml−2 6= Input of Sl−3

Output of Ml−3 = Input of Sl−4

kl−1 = 1 kl−2 = 0 kl−3 = 1 kl−4 = 1

Fig. 1. Comparison between the output value of multiplication with the input of the fol-
lowing square in the Square-and-Multiply-Always exponentiation algorithm (Alg. 1.1).

when the output of Mi is equal to the input of Si−1, we can expect that the
extra-reductions in both operations are strongly correlated.

For the ML algorithm (Alg. 1.2), an illustration is provided in Fig. 11 from
App. E. The Mi and Si−1 operations depends directly on the two consecutive
key bit values ki and ki−1. If the bit value ki−1 and its previous bit value ki are
different then the output of multiplication Mi and the input of square Si−1 are
equal and yield strongly correlated extra-reductions; in the opposite case they
yield uncorrelated extra-reductions.

Definition 4 (Guess Notation). Let Gi be the “guess’ Boolean random vari-
able defined to be True (T) if the output of an operation at iteration i is equal
to the input of the next operation at iteration i− 1, and False (F) otherwise.

Also let XMi be a random variable corresponding to the eXtra-reduction of the
MMM multiplication at iteration i and XSi−1 be a random variable corresponding
to the eXtra-reduction during the MMM square at iteration (i− 1).

Then P(XMi
, XSi−1

|Gi = T ) is their joint probability when the output value of
the multiplication is equal to the input value of the square, and P(XMi , XSi−1 |Gi =
F ) is their joint probability when the output value of the multiplication is not
equal to the input value of the square.

The guess value Gi is linked to the key value depending on the regular expo-
nentiation algorithm. For SMA and for a bit ki, an attacker is able to estimate
the probabilities P̂(XMi

, XSi−1
). This probability can be used to find the bit ki

as illustrated in Fig. 1 and explained in Section 4 below. For ML, Gi depends on
two consecutive key bits as explained also in Section 4.
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We have estimated the joint probabilities P(XMi , XSi−1 |Gi) using 1.000.000
random values for both SMA and ML algorithms and the example RSA-1024-p
defined in Sec. 2.2.The values of the obtained probabilities are shown in Tab. 2.

(xMi , xSi−1) (0,0) (1,0) (0,1) (1,1)
P(xMi , xSi−1 |Gi = T ) 0.541575 0.191615 0.258276 0.008532

P(xMi , xSi−1 |Gi = F ) for SMA 0.612756 0.120158 0.186803 0.080281
P(xMi , xSi−1 |Gi = F ) for ML 0.586105 0.147246 0.213521 0.053128

Table 2. Example of probabilities of eXtra-reduction XMi of multiply operation and
XSi−1 of square operation knowing the Boolean value Gi for RSA-1024-p. The first line
(correct guess) is applicable for both SMA and ML.

It is important to notice that for each (xMi
, xSi−1

) ∈ {0, 1}2, the condi-
tional joint probabilities are distinct: P(XMi

= xMi
, XSi−1

= xSi−1
|Gi = F ) 6=

P(XMi = xMi , XSi−1 = xSi−1 |Gi = T ). Also for Gi = F in ML, it can be observed
that P(XMi , XSi−1 |Gi) = p

4R×
p
3R = P(XMi)×P(XSi−1), which is consistent with

the fact the two operations XMi
and XSi−1

should be independent since they
are completely unrelated.

It should be emphasized that the leakage identified in Tab. 2 is fairly large,
since the Pearson correlations ρ of the two randoms variables are2:

ρ(XMi
, XSi−1

|Gi = T ) ≈ −0.2535, (2)
ρ(XMi

, XSi−1
|Gi = F ) ≈ +0.1510 in SMA, (3)

ρ(XMi
, XSi−1

|Gi = F ) ≈ −0.0017 in ML. (4)

To the best of our knowledge, such correlations have not been observed previ-
ously. A few observations are in order:

– when a square follows a multiply, and if there has been an extra-reduction
in the multiplication, the result should be short, hence there is less chance
for an extra-reduction to occur in the following square. This accounts for the
negative correlation ρ(XMi

, XSi−1
|Gi = T );

– from Fig. 1 iteration i = l − 2 where ki = 0, we can see that one input
of the multiplication Mi equals the input of the following squaring Si−1.
Since a square and a multiplication share a common operand, provided it is
sufficiently large, both operations are likely to have an extra-reduction at the
same time, which accounts for the positive correlation ρ(XMi , XSi−1 |Gi = F )
for SMA;

– when a square and a multiply handle independent data, the extra-reductions
are clearly also independent of each other, which explains the small value of
ρ(XMi

, XSi−1
|Gi = F ) for ML.

2
ρ(XMi

,XSi−1
) =

Cov(XMi ,XSi−1
)

σXMi
σXSi−1

=
P(XMi=1,XSi−1

=1)−(P(XMi=1)×P(XSi−1
=1))√

P(XMi=1)(1−P(XMi=1))
√

P(XSi−1
=1)(1−P(XSi−1

=1))
.
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As explained next, when extra-reductions can be detected reliably3, the data-flow
can be analyzed accurately thereby defeating regular exponentiation protections.

3.2 Methodology to Analyze the Bias

In order to estimate the probability P(XMi
, XSi−1

|Gi), we first determine the
distribution of the output value after one MMM (following the method described
by Sato et al. [19]) and then compute the joint probability for each case.

Let A, B be two independent random variables uniformly distributed in [0, p[
(represented in Montgomery form); let C be equal to the MMM product of A
and B and U corresponds to the MMM product of A and B before eXtra-
reduction (if any). Variables C and U coincide with that of Alg. 2.1. As a matter
of fact, an attacker cannot observe values, only extra-reductions which occur
during Montgomery reduction (at line 4 of Alg. 2.1). We use notations P for
probabilities and f for probability density functions (p.d.f.’s).

Fig. 2 shows histograms for C and U obtained from one million simulations;
the binning consists of 100 bins of the interval [0, 2p[. It can be observed that

– the p.d.f. of C is uniform on [0, p[;
– the p.d.f. of U is a piecewise continuous function composed of a strictly

increasing part, a constant part and a strictly decreasing part;
– the two conditional p.d.f.’s of C knowing XMi

∈ {0, 1} (resp. XSi ∈ {0, 1})
are not uniform;

– for c ∈ [0, p[, one has f(C = c) = f(U = c) + f(U = c + p) by definition
of U ;

– the maximum value of U is p+ p2/R, which is strictly smaller than 2p.

Recall that we use the Montgomery reduction described in Alg. 2.1, where
the reduction modulo p is carried out after every multiplication. This is also
the case in [20, 21], but not in [24, 25] where the multiplicands lie in [0, R[. To
complement those works, we now derive a closed-form expression of the output
distribution of the Montgomery multiplication product and square (not found
in [20,21]).

3.3 Mathematical Derivations

This subsection provides a mathematical justification of the biases observed in
Tab. 2. In particular, it shows that such biases hold for all values of p and
R = 2dlog2(p)e. Our closed-form expressions are derived as limits in distribution
when p→ +∞ that we shall write as approximations.

3 In particular, the global timing of the algorithm is insufficient for the attack to
succeed, because the attacker must be able to relate the extra-reductions to a target
operation.
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Multiplication Square

0

p
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0 p
2
/R p R p+p

2
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f(C)
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f(U=u)

Theory for mult (Thm. 1)
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2
/R p R p+p

2
/R 2p
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f(U=u)

Theory for square (Thm. 1)

XS=0 XS=1

Fig. 2. Distribution of the output value of Montgomery multiplication (left) and square
(right) for RSA-1024-p.

Theorem 1 (P.d.f. of MMM Before Extra-Reduction). Asymptotically
when modulus p is large, the result of a Montgomery multiplication before the
final extra-reduction (at line 2 of Alg. 2.1) have piecewise p.d.f. given by

fU (u) =



Ru
p3

(
1− ln(Rup2 )

)
if 0 ≤ u ≤ p2

R ;

1
p if p

2

R ≤ u ≤ p;
1
p −

R(u−p)
p3

(
1− ln(R(u−p)

p2 )
)

if p ≤ u ≤ p+ p2

R ;

0 otherwise.

(5)

The corresponding p.d.f. for the square is also in four pieces with the same inter-
vals for u, and differs only from the multiplication in that it is equal to

√
Ru/p2

when 0 ≤ u ≤ p2

R , and 1/p−
√
R(u− p)/p2 when p ≤ u ≤ p+ p2

R .

Proof. See proof in Appendix B.2. ut

The theoretical values of Theorem 1 nicely superimpose with experimentally
estimated p.d.f.’s as shown in Fig. 2.

Theorem 2 (Joint Probability of Extra-Reduction in Multiplication
Followed by a Square). The following joint probabilities do not depend on the
iteration index i, where l − 1 ≥ i > 0.

When Gi = T :

P(xMi
, xSi−1

) xSi−1
= 0 xSi−1

= 1

xMi
= 0 1− 7

12
p
R + 1

48

(
p
R

)4 p
3R − 1

48

(
p
R

)4
xMi

= 1 p
4R − 1

48

(
p
R

)4 1
48

(
p
R

)4
When Gi = F in SMA:
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P(xMi
, xSi−1

) xSi−1
= 0 xSi−1

= 1

xMi
= 0 1− 7

12
p
R + 1

8

(
p
R

)2 p
3R − 1

8

(
p
R

)2
xMi

= 1 p
4R − 1

8

(
p
R

)2 1
8

(
p
R

)2
When Gi = F in ML:

P(xMi
, xSi−1

) xSi−1
= 0 xSi−1

= 1

xMi
= 0 1− 7

12
p
R + 1

12

(
p
R

)2 p
3R − 1

12

(
p
R

)2
xMi

= 1 p
4R − 1

12

(
p
R

)2 1
12

(
p
R

)2
Proof. See proof in Appendix B.3. ut

It can be easily checked that Theorem 2 accurately matches experimental
probability estimations given in Tab. 2.

Corollary 1. The corresponding correlation coefficients are

ρ(XMi
, XSi−1

|Gi = T ) =
p4

48R4 − p2

12R2√
p
4R

(
1− p

4R

)
p
3R

(
1− p

3R

) ,
ρ(XMi , XSi−1 |Gi = F ) =

p2

24R2√
p
4R

(
1− p

4R

)
p
3R

(
1− p

3R

) in SMA,

ρ(XMi , XSi−1 |Gi = F ) = 0 in ML.

Proof. Apply Pearson’s correlation definition on the results of Theorem 2. ut

When the guess is correct, ρ(XMi
, XSi−1

|Gi = T ) is negative and increasingly
negative as p/R increases, where

− 3
16

√
5
7 ≈ −0.158 ≤ ρ(XMi

, XSi−1
|Gi = T ) ≤ − 3

4
√
6
≈ −0.306.

When the guess is incorrect, either the correlation is null (in the case of ML), or
it is positive and increasing with p/R, where for 1/2 ≤ p/R ≤ 1,

1
2
√
5×7 ≈ 0.085 ≤ ρ(XMi , XSi−1 |Gi = F ) ≤ 1

2
√
6
≈ 0.204.

The variations of the correlation coefficients between XMi and XSi−1 in the three
scenarios of Corollary 1 are plotted in Fig. 3.

Fig. 3 shows that the correlation difference between guesses True/False is
greater for the SMA algorithm than for the ML algorithm. Thus our attack on
SMA should outperform that on ML. Also notice that the larger the ratio p/R,
the larger the correlation difference; hence, we expect P-256 to be easier to break
than brainpoolP256r1 with our attack.
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Fig. 3. Pearson’s correlation between XMi and XSi−1 .

4 Exploiting the Bias Using our Attack

The difference between the two Pearson correlations according to the guess
value Gi (Corollary 1) allows us to test whether some data produced by an
operation is fed into the next operation. The bit value ki can be estimated us-
ing the Pearson correlation ρ as a distinguisher, a threshold T depending of
the knowledge of the attacker and a decision function denoted by FALG which
depends of the regular exponentiation algorithm and the used distinguisher.

Attacker’s Method. An attacker calls Q times the cryptographic operation with
a static key k and measures the corresponding side-channel trace. For each trace
q ∈ {1, . . . , Q}, (l−1) pairs of extra-reductions (xqMi

, xqSi−1
)l−1≥i>0 are captured.

The complete acquisition campaign is denoted (xMi
, xSi−1

), and is a matrix of
size Q × (l − 1) pairs of bits. Notice that neither the input nor the output
of the cryptographic algorithm is required. For all i ∈ {l − 1, . . . , 1} and q ∈
{1, . . . , Q}, xqMi

is equal to 1 (resp. 0) if the eXtra-reduction is present (resp.
missing) during the multiplication Mi for query q. Similarly, xqSi−1

is equal to 1

(resp. 0) if the eXtra-reduction is present (resp. missing) during the square Si−1
for query q. For each pair of random variable (xMi

, xSi−1
) ∈ {0, 1}2, the attacker

first computes the estimated probability P̂(XMi
= xMi

, XSi−1
= xSi−1

), using:

P̂(xMi , xSi−1) =
1

Q

Q∑
q=1

1(xqMi
=xMi )∧(x

q
Si−1

=xSi−1
). (6)
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The attacker then computes the Pearson correlation4 ρ̂(XMi , XSi−1) using the
estimated probability P̂(XMi

, XSi−1
). Finally, she estimates the exponent bit ki

with her knowledge corresponding to threshold T and decision function FALG .

Attacker’s Knowledge. In public key cryptography, the attacker wants to recover
the private exponent in RSA or the private scalar in ECC. In our attacks, we
assume these secret values are static, as for instance in RSA-CRT decryption or
static Diffie-Hellman key agreement protocol.

– In RSA-SFM and ECC, the attacker knows the parameters p and R de-
fined in Sec. 2.1. In RSA-SFM, p is equal to the public modulus nRSA.
In ECC, p equals the characteristic of the finite field over which the el-
liptic curve is defined. The attacker can compute the Pearson correlations
ρ(XMi

, XSi−1
|Gi = T ) and ρ(XMi

, XSi−1
|Gi = F ) using corollary 1. The

threshold for the successful attack is defined by:

T =
ρ(XMi , XSi−1 |Gi = T ) + ρ(XMi , XSi−1 |Gi = F )

2
. (7)

– In RSA-CRT, the attacker does not know the parameters p and R defined
in Sec. 2.1, because the prime factors pRSA and qRSA are secret parameters.
Hence the determination of the probabilities by theory or simulation are
impossible5. However, using the Q measurements (xMi

, xSi−1
), the attacker

is able to determine the mean estimated probability ÊiP̂(xMi
, xSi−1

) for all
((xMi

, xSi−1
) ∈ {0, 1}2 by6:

ÊiP̂(xMi
, xSi−1

) =

∑l−1
i=1 P̂(xMi , xSi−1)

l − 1
. (8)

The attacker then computes the mean estimated Pearson correlations using
the mean estimated probability (8), and the threshold for the successful
attack is defined by:

T =
ÊiP̂(XMi = 1, XSi−1 = 1)− ÊiP̂(XMi = 1)× ÊiP̂(XSi−1 = 1)√
ÊiP̂(XMi

= 1)ÊiP̂(XMi
= 0)

√
ÊiP̂(XSi−1

= 1)ÊiP̂(XSi−1
= 0)

. (9)

In fact, the threshold value T computed in (7) or (9) does not depend on i. The
indication of index i was kept as a reminder that the multiplication Mi is done
in the iteration which precedes that of the square Si−1.

4
ρ̂(XMi

,XSi−1
) =

ˆCov(XMi ,XSi−1
)

σ̂XMi
σ̂XSi−1

=
P̂(XMi=1,XSi−1

=1)−(P̂(XMi=1)×P̂(XSi−1
=1))√

P̂(XMi=1)(1−P̂(XMi=1))

√
P̂(XSi−1

=1)(1−P̂(XSi−1
=1))

.

5 To be exact, as underlined by Werner Schindler in [21, Sec. 10, page 277], the ratio
p/R can be estimated using the empirical probability for an extra reduction in a
squaring, which is equal to p/3R (recall Proposition 1).

6 Notice that in some cases, e.g. if the key bits happen not to be balanced,
ÊiP̂(xMi , xSi−1) can be estimated in a less biased way usingmaxl−1

i=1{P̂(xMi , xSi−1)}−
minl−1

i=1{P̂(xMi , xSi−1)}.
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Decision Function. The decision function depending of the regular algorithm
and the used distinguisher ρ is denoted as FALG . We detail this function for the
SMA (Alg. 1.1) and ML (Alg. 1.2) algorithms.

– In the SMA algorithm, the scalar bit ki decides whether the output of Mi

is the input of Si−1 or not (see Fig. 1). If the bit value ki equals 1, then the
square Si−1 depends on Mi (Gi = T ), otherwise the output value of Mi is
different from the input value of Si−1 (Gi = F ). Using the Sec. 3, we see that
ρ(XMi

, XSi−1
|Gi = T ) < ρ(XMi

, XSi−1
|Gi = F ), so the decision function

FSMA is defined by:

k̂i = FSMA(ρ, T ) =
{
0 if ρ̂(XMi , XSi−1) ≥ T ,
1 otherwise.

(10)

– For the Montgomery Ladder (ML) algorithm, theMi and Si−1 operations do
not depend directly on the key bit value ki. The dependence comes from the
bit value ki−1 and the previous bit value ki. If the two bits value ki−1 and
ki are different then the output of multiplication Mi and the input of square
Si−1 are equal (Gi = T ), otherwise these output/input are different (Gi = F ).
Using Sec. 3, we see that ρ(XMi

, XSi−1
|Gi = T ) < ρ(XMi

, XSi−1
|Gi = F ), so

the decision function FML using the previously estimated bit k̂i−1 is defined
for each i (l − 1 > i ≥ 1) by:

k̂i = FML(k̂i−1, ρ, T ) =
{
k̂i−1 if ρ̂(XMi , XSi−1) ≥ T ,
¬k̂i−1 otherwise.

(11)

Regarding the second most significant bit kl−1 of the exponent, either both
values kl−1 = 0 and kl−1 = 1 are tested to recover the full secret key, or
our attack can be applied between the first square FS (defined at line 2 of
Alg. 1.2) and the square Sl−1 (line 5 of Alg. 1.2).

Summary of the Attack. To estimate the exponent k by k̂, we define two attacks:

– The attack named “ρ-attack-Hard”, knowing the values of P(XMi
, XSi−1

|Gi =
T ) and P(XMi , XSi−1 |Gi = F ), using the threshold T computed by (7).

– The attack named “ρ-attack-Soft”, when the theoretical value P(XMi
, XSi−1

|Gi)
is unknown. It uses the estimated probability P̂(XMi , XSi−1) to compute the
threshold T by (9).

Algorithm 4.1 describes the attack to recover a full key. Lines 1-12 correspond
to the computation of the estimated probabilities for each bit ki defined by (6).
Line 13 is the computation of the threshold: if the attack is ρ-attack-Hard the
attacker uses (7), otherwise the attack is ρ-attack-Soft and she uses (9). The
lines 14-16 compute the full estimated key using the decision function FALG ,
defined by the equations (10) or (11).
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Algorithm 4.1 ρ-attack
Input: (xMi , xSi−1), a set of Q pairs of (l − 1) bits

Output: An estimation k̂ ∈ {0, 1}l−1 of the secret exponent
1: for i = l − 1 downto 1 do
2: for (xMi , xSi−1) ∈ {0, 1}2 do
3: P̂(xMi , xSi−1)← 0
4: end for
5: for q = 1 to Q do
6: P̂(XMi = xqMi

, XSi−1 = xqSi−1
)← P̂(XMi = xqMi

, XSi−1 = xqSi−1
) + 1

7: end for
8: for (xMi , xSi−1) ∈ {0, 1}2 do
9: P̂(xMi , xSi−1)← P̂(xMi , xSi−1) / Q . Normalization
10: end for
11: Compute ρ̂(XMi , XSi−1) using P̂(XMi , XSi−1)
12: end for
13: Compute T depending on the attacker’s knowledge
14: for i = l − 1 downto 1 do
15: k̂i ← FALG

(
ρ̂(XMi , XSi−1), T

)
. Threshold

16: end for
17: return k̂

5 Experimental Results

In the first part of this section, we detail a simulated attack which exploits the
bias (explained in Corollary 1) to determine the number of queries necessary for
the success of the attack. Then, we detail the side-channel part (local timing anal-
ysis using power consumption and electromagnetic analysis to distinguish func-
tional vs dummy subtractions) in order to detect whether an eXtra-reduction is
performed (X = 1) or not (X = 0) during the Montgomery reduction (Alg. 2.1).

5.1 Simulations

Let RSA-1024-p defined at Sec.2.2the modulus p used in the SMA algorithm
(Alg. 1.1). We generated one thousand random queries and saved for all MMM
the information whether an extra-reduction is done or not. The length of static
key k is 512 bits. As detailed in the ρ-attack (Alg. 4.1) we computed the
estimated probabilities P̂(XMi

, XSi−1
) and the estimated Pearson correlation

ρ̂(XMi , XSi−1) to retrieve each ki. The estimated threshold T computed by (9)
in our simulation is equal to −0.06076, which is an excellent approximation of
the theoretical threshold (7). To retrieve each bit if the exponent, we used the
decision function FSMA described for ρ-attack in SMA by (10).

Fig. 4 shows the estimated Pearson correlation values ρ̂(XMi
, XSi−1

) for the
first iterations. It can be easily seen that the estimated key value by this sequence
corresponds to 0x1000111110101110111010011. . .= 0x11f5dd3. . . Our ρ-attack
retrieves the 511 bits of the exponent using 1000 randoms queries with success
rate 100%.
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Fig. 4. Estimated Pearson correlations using 1000 randoms queries for RSA-1024-p for
the first 20 iterations.

Success Rate Curves. We implemented ρ-attack-Hard and ρ-attack-Soft in
the ideal case, i.e., without noise. The success rate to recover one bit of the
exponent is represented in Fig. 5, for both SMA and ML cases. Interestingly,
ρ-attack-Hard and ρ-attack-Soft yield the same success rate, which happens to
be (very close to) the optimal value. This optimal value is that obtained with
the maximum likelihood distinguisher discussed in Appendix C.

Fig. 5. Evolution of the success rate for the ρ-attack-Soft and the ρ-attack-Hard as
a function of the number Q of queries (upper bound is the maximum likelihood), for
RSA-1024-p.

The reason for the hard and soft attacks to have similar success probability is
that the online estimation of the threshold is very good. Indeed, in the example
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of Fig. 5, the threshold T (Eq. (9)) is estimated based on 512Q traces, which
is huge (one needs only to estimate 4 probabilities to get the estimation of T ).
So, in the rest of this section, we make no difference between the hard and soft
versions of the attacks from a success rate point of view.

The ρ-attacks are very close to the Maximum Likelihood attack for a similar
reason. Estimating the difference between two random variables of very little
dimensionality (recall that (XMi

, XSi−1
) lives in {0, 1}2) can be done almost

equivalently in the proportional scale [27] (Pearson correlation) as in the context
of information theoretic attacks (maximum likelihood attack) App. C.

We may also notice that as the distinguisher margin [26] is larger for SMA
than for ML (recall Fig. 3), the former attack requires less traces to reach a given
success rate.

In practical cases, detecting an extra-reduction using only one acquisition can
lead to errors. The probability to have an error is denoted by Pnoise. We show in
Fig. 6 that the attack continues to be successful (albeit with more traces) over
a large range of Pnoise values. Evidently when Pnoise = 50% the attack becomes
infeasible.

(a) Pnoise = 10% (b) Pnoise = 20% (c) Pnoise = 30% (d) Pnoise = 40%

Fig. 6. Evolution of the success rate for the ρ-attack in function of queries Q using
p = RSA-1024-p for four increasing noise values.

5.2 Experimental Detection of Extra-Reductions

Two Montgomery reduction implementations will be analyzed in this section.
We raise the following questions.

1. How to exploit the local timing to distinguish the eXtra-reduction using
power consumption measurements, on OpenSSL v1.0.1k-3 (7)?

7 Latest stable version at the time of submission.
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2. How to exploit the difference between a real and a dummy final subtraction
using electromagnetic (EM) emanations, on mbedTLS v 2.2.0 (8)?

1a) Experiment Setup in Power. The target is a dual core LPC43S37 micro-
controller fabricated in CMOS 90 nm Ultra Low Leakage process soldered on
an LPCXpresso4337 board, and running at its maximum frequency (208 MHz).
The side-channel traces were obtained measuring the instantaneous power con-
sumption with a PICOSCOPE 6402C featuring 256 MB of memory, 500 MHz
bandwidth and 5 GS/s sampling rate. We executed the private function of RSA
in OpenSSL with the private primes parameters defined by RSA-1024-p and
RSA-1024-q defined in Sec. 2.2.The private modular exponentiation is RSA-CRT
with a regular algorithm.

1b) OpenSSL Experiment. In OpenSSL (see Listing 1.1 in Appendix D), the
final subtraction is made when U is greater than p like described in Alg. 2.1.
A simple power analysis using the delay (referred to as “SPA-Timing”) between
two MMM operations found whether the extra-reduction is present (X = 1)
or not (X = 0). On the Cortex M4 core, the delay between the Mi and Si−1
when XMi = 1 is 41.4952 µs, whereas the delay when XMi = 0 is 41.1875 µs.
For the square operation Si−1, the delay is 41.5637 µs when XSi−1 = 1 and it
is 41.2471 µs when XSi−1

= 0. All in one, the observable timing differences are
respectively 308 ns and 317 ns. When OpenSSL is offloaded on the Cortex M0
core of the LPC43S37, the timing difference is respectively 399 ns and 411 ns.
The success rate of this detection attack is 100%, hence Pnoise = 0.

2a) Experiment Setup in EM. The target device is an STM32F4 micro-controller,
which contains an ARM Cortex-M4 processor running at its maximum frequency
(168 MHz). For the acquisition, we used a Tektronix oscilloscope and a Langer
near field probe. The sampling frequency is 1 GSa/s with 50 MHz hardware
input low-pass filter enabled. The position of the probe was determined to max-
imize the signal related to the activity of the hardware 32 × 32 processor. We
executed the private function of RSA in mbedTLS, with the private primes pa-
rameters defined by RSA-1024-p and RSA-1024-q in 2.2.The private modular
exponentiation is RSA-CRT with a regular algorithm.

2b) mbedTLS Experiment. In order to achieve constant-time MMM, mbedTLS
library implements a countermeasure using a dummy subtraction (see Listing 1.2
in Appendix D). In order to test the efficiency of the countermeasure, the du-
ration of the real and dummy subtraction were compared as shown in Fig. 7.
The durations are the same. Therefore, the SPA-Timing attack is not practical
anymore.

In a view to differentiate the two patterns, we use a horizontal side-channel
analysis [3], namely Pearson correlation (max-corr) [4] or the sum of the ab-
solute differences (min-abs-diff). We build two reference patterns of the real

8 Latest version at the time of submission.
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Real subtraction (XMi = 1) Dummy subtraction (XMi = 0)
(line 1501 of Listing 1.2) (line 1504 of Listing 1.2)
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Fig. 7. Electromagnetic acquisition focus on one real subtraction (left) and pattern of
one dummy subtraction (right) between two consecutive MMM operations.

subtraction RP (X = 1) and dummy subtraction RP (X = 0), and compare these
patterns with one acquisition.

For this experiment, we use 500 acquisitions to build template RP (X = 1)
and again 500 acquisitions to make RP (X = 0). The detection attack using one
acquisition Ax where the extra-reduction X = x is considered successful:

– when ρ(Ax, RP (X = x)) > ρ(Ax, RP (X = ¬x)) for max-corr, and
– when E(|Ax −RP (X = x)|) < E(|Ax −RP (X = x)|) for min-abs-diff.

The success rate of the extra-reduction detection using 30000 acquisitions is
82.50% for max-corr and 83.47% for min-abs-diff, hence Pnoise < 20%.

5.3 Conclusions on Experiments

By combining the detection of extra-reductions using side-channel analysis (Sec-
tion 5.2) and the theoretical attack to decide whether or not there is a depen-
dency between various MMMs (Section 4), we deduce the number of queries Q
needed to recover the secret exponent k. Table 3 summaries the results.

6 Conclusion

This paper has presented a new theoretical and practical attack against asym-
metrical computation with regular exponentiation using extra-reductions as a
side-channel. The working factor is the existence of a strong bias between the
extra-reductions during the Montgomery Modular Multiplication of two consecu-
tive operations. This new bias can be exploited in each regular binary algorithm,
because each iteration consists in a square and a multiply whose inputs depend
on the outputs of an operation from the previous iteration.
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Type of attack side-channel for detection SPA-Timing max-corr min-abs-diff

Detection probability for one query 100% 82.50% 83.47%
= 1− Pnoise

Number of queries (SMA) ≈ 200 ≈ 10000 ≈ 10000
Number of queries (ML) ≈ 400 ≈ 20000 ≈ 20000

Table 3. Summary of the number of queries (see Fig. 6(b)) to retrieve all key bits of a
secret exponent, as a function of side-channel detection method and regular exponen-
tiation algorithm.

The new attacks have been detailed on RSA but are also applicable to ECC
with appropriate customizations for various ECC implementations. As an ex-
ample [5] for addition madd-2004-hmv, the Z-coordinate in output of addition is
computed by a multiplication Z3 = Z1×T1 and for doubling dbl-2007-bl, the
Z-coordinate in input of doubling is a square ZZ = Z1× Z1.
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A Discussion

A.1 Attack using consecutive square operations

The attack works too considering the input/output dependencies between the
eXtra-reduction of two consecutive square. To find the bit value ki of the key, we
compute the theoretical probabilities P(XSi , XSi−1

|Gi = F ) and P(XSi , XSi−1
|Gi =

T ), and make the same kind of attack like described in Sec. 4. In Fig. 1, we can
see when there is a dependency between the output of Si and the input of Si−1
according to the bit value ki during the modular exponentiation SMA. We can
clearly see that the bit estimation k̂i in all the attack algorithms is the opposite
of the estimation described by (10). Indeed, when the bit value is 0, the input
of square Si+1 is equal to the output of the square Si (Gi = T ), and when the
bit value is 1, the input of square Si−1 is different from the output of the square
Si (Gi = F ). We have the same relation between ρ(XSi , XSi−1

|Gi = T ) and
ρ(XSi , XSi−1 |Gi = F ). So, the new decision function FSMA is defined by:

k̂i = FSMA(ρ, T ) =
{
0 if ρ(XSi , XSi−1) ≤ T ,
1 otherwise.

(12)

The main advantage of using only the squares is that the time to retrieve
the eXtra-reduction is divided by two. When the length of the exponent is 1024
bits, we need to detect only 1024 eXtra-reductions during the square operations.
Note that the best strategy is to use both methods to increase the success rate,
and reduce the number of required queries.

Remark: For the ML algorithm, we can choose the two consecutive squares Si
and Si−1. If the two bits value ki and ki−1 are equal, then the Output/Input of
two squares are equals (Gi = T ), else these operations are independent (Gi = F ).

A.2 Other exponentiation implementations

This work limits the attack to binary regular algorithms, but some other algo-
rithms can also be attacked by exploiting correlations between eXtra-reductions.

Multiply-always. The Multiply-Always algorithm applies when the square imple-
mentation is the same as the multiply operation. In ECC, it is equivalent to the
Add-Always algorithm, when the doubling and adding operations are unified.
These kinds of algorithms can be attacked by the classical Square-and-Multiply
proposed by Schindler in [20] or his improvements [1, 2, 23] using the result of
Prop. 1.
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Window algorithm. The window exponentiation algorithm is used to provide
efficient computation. The timing attacks proposed by Schindler in [21] allows
to find the exponent during the window algorithm, also with the help of extra-
reductions.

A.3 Efficient countermeasures

To avoid our attack, one of the following countermeasures described here is
sufficient.

Use Exponent Blinding. For RSA (resp. ECC), a classic countermeasures is
the exponent blinding (resp. scalar blinding). This countermeasure is efficient
to avoid the attack, because to compute the estimated probabilities for the Q
queries, the exponent bit must be fixed. Although Berzati and al. in [6] show
that the exponent blinding is partially ineffective on some bits depending on the
chosen modulo, the bias seems not easily exploitable.

Use another Montgomery Reduction. In [18, Alg. 2], Örs and al. describe an
MMM algorithm without final subtraction. Thus, there are no eXtra-reductions
to exploit in our attack.

B Proof of theorems 1 and 2

B.1 Technical lemmas

Before proving theorems, we need the following technical lemmas 1, 2, 3, 4 and 5.
Let A and B two independent discrete random variables uniformly dis-

tributed on {0, . . . , p − 1}. In the sequel, we are interested in asymptotic con-
vergence in distribution when p → +∞. In general, it is known that a series of
discrete random variables Xp converges in distribution to X (continuous ran-
dom variable, having a density function), if and only if there is a convergence of
cumulative density functions (c.d.f.):

P(Xp ≤ x)→ P(X ≤ x) when p→ +∞.

This is why we will work on c.d.f. Besides, it is well known that if A is uniformly
distributed on [0, p − 1], then A/p converges in distribution to U([0, 1]) when
p→ +∞. Indeed, for all x ∈]0, 1[,

P
(A
p
≤ x

)
=

∑
0≤a<px

1

p
=
bpxc
p
→ x =

∫ x

0

du.

Now, it is incorrect to write that for 0 ≤ a < p, the limit of P(A ≤ a) is a
p (since

p→∞). However, we will use this abuse of notation in the sequel.
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Lemma 1. Let A,B two random variables uniformly distributed over [0, p[. Let
x, y two values in [0, p2[. Then, in the limit p→ +∞, we have:

f(x) =
1

p2
ln
p2

x
where f is the density function of AB, (13)

f(y) =
1

2p
√
y

where f is the density function of A2, (14)

f(x, y) =
1

2p2y
1
[0,
√
y

p ]

( x
p2
)

where f is the density function of (AB,A2). (15)

Proof. Case of the product. As A and B are independent, (A,B) has a uni-
form law on {0, . . . , p − 1}2. Hence the convergence in distribution of the pair
(A/p,B/p) to a uniform law on [0, 1]2. Thus, for all x ∈]0, 1[,

P
(AB
p2
≤ x

)
→
∫∫

[0,1]2
1uv<x dudv when p→ +∞.

The convergence is illustrated in Fig. 8 as the proportion of points below the
hyperbola curve represented in red.
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Fig. 8. Illustration of {(a, b) ∈ {0, p− 1}2 | ab < p2x} for prime p = 19 and x = 0.3

As uv < x ⇐⇒ v < x/u and x/u < 1 ⇐⇒ u > x, we have∫∫
[0,1]2

1uv<x du dv =

∫ 1

0

min(
x

u
, 1) du =

∫ x

0

du+

∫ 1

x

x
du
u

= x(1− lnx).

Thus, the limit distribution of AB/p2 has for density the derivative:

f(x) = ln
1

x
.

As AB = p2(AB/p2), a variable change yields (13).
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Case of the square. For all y ∈]0, 1[,

P
(A2

p2
< y
)
= P

(A
p
<
√
y
)
→ √y when p→ +∞.

The limit distribution has for density the derivative:

f(y) =
1

2
√
y
,

hence (14) by change of variable A2 = p2(A2/p2).
Case of the pair multiplication and square. We have, for all x, y ∈]0, 1[:

P
(AB
p2

< x
∣∣∣ A2

p2
= y
)
= P

(B
p
<

x√
y

∣∣∣ A2

p2
= y
)
= P

(B
p
<

x√
y

)
→ min(

x√
y
, 1)

because A and B are independent and because B is uniform. The conditional
distribution of (AB/p2 | A2/p2 = y) has in the limit the (uniform) density:

f(x) =
1√
y
1[0,
√
y](x)

and so, the joint probability (AB/p2, A2/p2) in (x, y) ∈ [0, 1]2 has the following
limit

P
(
AB/p2 = x,A2/p2 = y

)
→ 1√

y
1[0,
√
y](x)

1

2
√
y
=

1

2y
1[0,
√
y](x) (by (14)).

Again, a variable change yields (15).
ut

Lemma 2. Let A a random variable defined on [0, p], with density f . Then the
probability density function of A2 in z ∈ [0, p2] is equal to f(

√
z) 1

2
√
z
.

Proof. Use (14) in lemma 1 in a variable change. ut
Lemma 3. Let u an integer such that 0 ≤ u < p. The set Cu = {z, 0 ≤ z <
p2, s.t. z + (zv mod R)p = Ru} is equal to Cu = {(Ru mod p) + ip, where 0 ≤
i ≤ min

(
p, bRup c

)
}.

Proof. Let z such that z + (zv mod R)p = Ru. Clearly, we have (z mod p) =
(Ru mod p), hence Cu ⊆ {((Ru mod p)+ip, where i ∈ N}. But given the bounds
on z, we have 0 ≤ i < p. Let us precise which values of i make (Ru mod p) + ip
belong to Cu.

We have (Ru mod p) + ip + (((Ru mod p)v + ipv) mod R)p = Ru, hence,
as Ru − (Ru mod p) = bRup c, i + (((Ru mod p)v − i) mod R) = bRup c. In this
expression, (Ru mod p) = Ru − bRup cp. Let us denote 1 + vp = `R, where 0 <
` < p. We have

(((Ru mod p)v − i) mod R) = (Ruv − bRu
p
c(`R− 1)− i mod R)
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= (bRu
p
c − i mod R)

=

{
bRup c − i if 0 ≤ i ≤ bRup c,
R+ bRup c − i if i > bRup c.

Consequently, the condition is met if and only if 0 ≤ i ≤ bRup c. Hence the proof
of the lemma, as i is upper bounded both by p and bRup c. ut

Lemma 4 (Approximation of finite summations). Let I a large number
(comparable to p). When I → +∞, we have,

I∑
i=0

iα → 1

1 + α
I1+α for α ∈ R \ {−1}, (16)

I∑
i=1

1/i→ ln(I), (17)

I∑
i=0

ln(i)→ I ln(I)− I. (18)

Proof. When I → +∞,
∑I
i=0 i

α →
∫ I
0
xα dx = 1

1+αI
1+α. Similarly,

∑I
i=1 1/i→∫ I

1
1/x dx = ln(I). Eventually, by Stirling formula, we have that ln I! = I ln I −

I +O(ln I)→ I ln I − I. ut

Lemma 5 (Miscellaneous approximations). When p→ +∞, we have⌊
Ru

p

⌋
→ Ru

p
for 0 ≤ u ≤ p, (19)

(Ru mod p) + ip

p
→ i for i� 1. (20)

Proof. The first equation arises from limp→+∞bpc/p→ 1−, whereas the second
one holds all the more for large values of i, since (Ru mod p) < p � ip when
i� 1. ut

B.2 Proof of Theorem 1

Proof (of Theorem 1). As explained in Sec. B.1, P(U = u) tends to a density
f(U = u) when p → +∞. Case 0 ≤ u ≤ p: let U be the result of MMM before
final reduction (definition at line 2 of Alg. 2.1). We have, in the limit p→ +∞:

P(U = u) =

p−1∑
a=0

p−1∑
b=0

P(A = a,B = b) 1ab+(abv mod R)p=Ru
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=
1

p2

p2∑
z=1

ln

(
p2

z

)
1z+(zv mod R)p=Ru

(denote z = ab and
apply (13) of lemma 1)

=
1

p2

min(p,bRup c)∑
i=1

ln

(
p2

(Ru mod p) + ip

)
(by lemma 3)

≈ 1

p2

min(p,Rup )∑
i=1

ln
p

i
(by lemma 5)

=
min

(
p, Rup

)
p2

(
ln(p)− ln(min

(
p,
Ru

p

)
) + 1

)
(by (18) in lemma 4)

=

uR
p3

(
1− ln uR

p2

)
if p ≤ Ru

p , i.e., u ≥
p2

R ,

1
p if p > Ru

p , i.e., u <
p2

R .

Case p < u < 2p: By the definition of U and C, for each c ∈ [0, p[ we have

P(C = c) = P(U = c) + P(U = c+ p).

C = ABR−1 mod p, so C is a random variable uniformly distributed over [0, p[.
Then, p < u < 2p, we have, by the definition of C (at line 4 or 6 of Alg. 2.1):

P(U = u) = P(C = u− p)− P(U = u− p) = 1/p− P(U = u− p).

In the case where A = B, the demonstration is similar. For 0 ≤ u ≤ p, we
have:

P(U = u) =

p2∑
z=0

1

2p
√
z
1z+(zv mod R)p=Ru

(denote z = a2 and
apply (14) of lemma 1)

=
1

2p

min(p,bRup c)∑
i=1

((Ru mod p) + ip)
−1/2 (by lemma 3)

≈ 1

2p

min(p,Rup )∑
i=1

(ip)
−1/2 (by lemma 5)

=
1

p3/2

√
min

(
p,
Ru

p

)
(by (16) for α = −1/2 in lemma 4)

=

{√
uR
p2 if p ≤ Ru

p , i.e., u ≥
p2

R ,
1
p if p > Ru

p , i.e., u <
p2

R .

ut
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B.3 Proof of Theorem 2

Here is the proof of Theorem 2:

Proof (of Theorem 2). Let A a random variable resulting from an MMM with
an extra-reduction, and denote by f its density function. Then we have f(a) =
1/p− aR/p3(1− ln(aR/p2)) if 0 ≤ a ≤ p2/R, and 0 if p2/R ≤ a ≤ p. We denote
by U the value of A2 before final reduction.

First case, where 0 < u < p (Lemma 3 applies): We have:

P(U = u) =

p2∑
z=0

f(z)
1

2p
√
z
1z+(zv mod R)p=Ru (use lemma 2)

=

I∑
i=1

f(
√

(Ru mod p) + ip)
1

2
√
(Ru mod p) + ip

(by lemma 3)

≈
I∑
i=1

f(
√
ip)

1

2
√
ip
, (by approximation (20) of lemma 5) (21)

where the upper bound I is min(p, Rup ,
1
p

(
p2

R

)2
). As 1

p

(
p2

R

)2
= p(p/R)2 < p, we

have:

I =

{
p3

R2 if Rup > p3

R2 , i.e., u > p4

R3 = p(p/R)3 (but with constraint p > u),
Ru
p otherwise.

We can rewrite (21) (where the dependency in u is via I) as

P(U = u) =
1

2
√
p

I∑
i=1

1√
i

(
1

p
−
√
i
R

p5/2
(1− ln(

R

p3/2
)− 1

2
ln(i))

)

=
1

2p3/2

I∑
i=1

1√
i
− R

2p3

I∑
i=1

(
1− ln(

R

p3/2
)− 1

2
ln(i)

)

=

√
I

p3/2
− IR

2p3

(
1− ln(

R

p3/2
)

)
+

R

4p3

I∑
i=1

ln(i)
(Using (16) of lemma 4
for α = 1/2)

=

√
I

p3/2
− IR

2p3

(
1− ln(

R

p3/2
)

)
+
RI

4p3
(ln(I)− 1) (Using (18) of lemma 4)

=

√
I

p3/2
+
IR

4p3

(
−2 + 2 ln(

R

p3/2
) + ln(I)− 1

)
=

√
I

p3/2
+
IR

4p3

(
ln(

R2I

p3
)− 3

)

So, when p > u > p(p/R)3, we have:

P(U = u) =
1

R
+

1

4R
(−3) = 1

4R
.
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And when u < p(p/R)3, we have:

P(U = u) =

√
Ru

p2
+
R2u

4p4

(
ln(

R3u

p4
)− 3

)
.

Second case, where p < u < 2p): Like in Theorem 1, we have P(U = u) = 1
p −

P(U = u− p).
Now, we have that (first case situation only):

P(XMi
= 1, XSi−1

= 0 | Gi = T )

=

∫ p

0

P(U = u) du

=

∫ p4/R3

0

√
Ru

p2
+
R2u

4p4

(
ln(

R3u

p4
− 3

)
du+

p

4R
(1− p3

R3
)

=
p4

R4

∫ 1

0

√
u′ du′ +

p4

4R4

∫ 1

0

u′(lnu′ − 3) du′ +
p

4R
(1− p3

R3
) (u′ = uR3/p4)

=
p4

R4

[
2

3
u′

3/2
]1
0

+
p4

4R4

[
1

2
u′

2
ln(u′)− 1

4
u′

2
]1
0

− 3p4

4R4

[
u′

2

2

]1
0

+
p

4R
(1− p3

R3
)

=
p

4R
+
p4

R4

(
2

3
− 1

16
− 3

8
− 1

4

)
=

p

4R
− p4

48R4
.

Other entries of the table of Theorem 2 corresponding to Gi = T can be
deduced from the partial probabilities given in Proposition 1 namely

P(XMi=0, XSi−1 =0|Gi = T ) + P(XMi=1, XSi−1= 0|Gi = T ) = P(XSi−1 =0) = 1− p

3R
,

P(XMi=0, XSi−1 =1|Gi = T ) + P(XMi=1, XSi−1= 1|Gi = T ) = P(XSi−1 =1) =
p

3R
,

P(XMi=0, XSi−1 =0|Gi = T ) + P(XMi=0, XSi−1= 1|Gi = T ) = P(XMi=0) = 1− p

4R
,

P(XMi=1, XSi−1 =0|Gi = T ) + P(XMi=1, XSi−1= 1|Gi = T ) = P(XMi=1) =
p

4R
.

Regarding the case Gi = F for SMA, we shall compute the probability density
that a multiplication before extra-reduction is equal to u1 and that a square
is equal to u2, whereby one operand of the multiplication is the input of the
square and the second operand is uniformly distributed over [0, p]. Let us assume
0 ≤ u1, u2 < p. This density is equal to:

f(U1 = u1, U2 = u2)

=

p∑
x=0

p∑
y=0

f(AB = x,A2 = y) 1x+(xv mod R)p=u1R 1y+(yv mod R)p=u2R

=

p∑
x=0

p∑
y=0

1

2p2y
1
[0,
√
y

p ]

(
x

p2

)
1x+(xv mod R)p=u1R 1y+(yv mod R)p=u2R

(by (15) of
lemma 1)
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=

min(bRu1/pc,p)∑
i1=0

min(bRu2/pc,p)∑
i2=0

1[
0,

√
(Ru2 mod p)+i2p

p

] ( (Ru1 mod p)+i1p
p2

)
2p2((Ru2 mod p) + i2p)

(by lemma 3)

≈ 1

2p3

min(bRu2/pc,p)∑
i2=0

1

i2

min(bRu1/pc,p)∑
i1=0

1
[0,
√
i2/p]

(
i1
p

)
(by (20) in lemma 5, twice)

=
1

2p3

min(bRu2/pc,p)∑
i2=0

min

(√
p

i2
,
min (Ru1/p, p)

i2

)
(by (19) in lemma 5, twice).

(22)

The figure 9 illustrates that the general formula (22) takes five different
expressions depending on the regions where (u1, u2) live.

0

p
2
/R

p

0 p
2
/R p

u
2

u1

(0,0)
U

(0,0)
D

(0,1)

(1,0)

(1,1)

Fig. 9. Study of values p(U1 = u1, U2 = u2 | Gi = F ) for the case SMA

They are detailed below:

– (0, 0)D: when u1 ≤ p2/R, u2 ≤ p2/R, and u2 ≤ R
p2u

2
1:

f(U1 = u1, U2 = u2) =

√
Ru2
p3

.

– (0, 0)U : when u1 ≤ p2/R, u2 ≤ p2/R, and u2 > R
p2u

2
1:

f(U1 = u1, U2 = u2) =
u1R

p4
+
u1R

2p4
ln
p2u2
u21R

.

– (1, 0): when p2/R ≤ u1 < p and u2 ≤ p2/R:

f(U1 = u1, U2 = u2) =

√
Ru2
p3

(same expression as in
neighboring region (0, 0)D).
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– (0, 1): when u1 ≤ p2/R and p2/R ≤ u2 < p:

f(U1 = u1, U2 = u2) =
u1R

p

(
1− u1R

p2

)
.

– (1, 1): when p2/R ≤ u1 < p and p2/R ≤ u2 < p:

f(U1 = u1, U2 = u2) =
1

p2
.

We have that, when Gi = F in SMA,

P(XMi = 0, XSi−1 = 0) =

∫∫
[0,p]2

f(U1 = u1, U2 = u2) du1 du2

= 1− 7

12

p

R
+

1

8

( p
R

)2
.

Again, partial probabilities given in Proposition 1 allow to derive the three other
probabilities of the table of Theorem 2 corresponding to Gi = F in SMA.

Eventually, when Gi = F in ML, we have independent multiplication and
square, hence the factorization P(XMi

= 0, XSi−1
= 1) = P(XMi

= 0)P(XSi−1
=

1). ut

C Comparison of attacks in various adversarial contexts

In this appendix, we first model the attack setup and then derive the optimal
attack (Maximum Likelihood) in terms of success probability. This attack can be
performed in practice only provided that the noise distribution and the modulus
p are known. Being optimal, it allows to bound the success rate of other attacks
suited to other less favorable scenarios, like the hard and soft correlation attacks.
For the sake of clarity, we focus on SMA regular exponentiation, but adaptation
to the ML is straightforward. In SMA, the guess function Gi is directly ki.

C.1 Leakage model

The attacker gets access to side-channel information about each bit ki (l − 1 ≥
i > 0) of the exponent k through the noised distribution of the pair of extra-
reductions (XMi

, XSi−1
). The noise consists in two binary random variables

(NMi
, NSi−1

). Additionally, the random variables NMi
and NSi−1

are assumed
independent and identically distributed (i.i.d.), as is usually the case of measure-
ment noise of different operations in a side-channel trace. Namely, we denote by
Pnoise the probability

Pnoise = P(NMi = 1) = P(NSi−1 = 1) for all i.

Thus, as depicted in Fig. 10, the attacker garners an i.i.d. sequence (yMi
, ySi−1

) =

(yqMi
, yqSi−1

)q=1,...,Q, where for each query q and exponent index i, yqMi
= xqMi

⊕
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nqMi
and yqSi−1

= xqSi−1
⊕ nqSi−1

. This means that XMi and YMi are respectively
the input and the output of a binary symmetric channel (BSC) of parameter
Pnoise. Similarly, XSi−1 and YSi−1 are also input and output of an independent
identical BSC parallel to the first one.

ki Law P(XMi , XSi−1 |Gi = ki) (xMi , xSi−1) BSC(Pnoise) (yMi , ySi−1)

i.i.d. i.i.d.

Fig. 10. Observable leakage corresponding to exponent bit ki

C.2 Maximum likelihood attack

An attack consists in estimating k̂i based on the observation of a series (yMi , ySi−1).

Let us denote as P(k̂i = ki) the probability of success in recovering ki. The at-
tacker wants to maximize it. We have

P(k̂i = ki) =
∑

yMi ,ySi−1

P(yMi
, ySi−1

)P(k̂i = ki|yMi
, ySi−1

).

The term P(k̂i = ki|yMi
, ySi−1

) is thus to be maximized, which is called the MAP
(Maximum A Posteriori).

We also have

P(k̂i = ki|yMi
, ySi−1

) =
P(ki)P(yMi , ySi−1 |ki)

P(yMi
, ySi−1

)
,

where the denominator does not depend on the key. If the key bit ki is uni-
formly distributed, then one shall maximize P(yMi , ySi−1 |ki), which is called the
Maximum Likelihood.

So, we have:

k̂i = argmax
ki∈{0,1}

P(yMi , ySi−1 |ki),

where, since we have a Markov chain (recall Fig. 10),

P(yMi , ySi−1 |ki) =
∑

xMi ,xSi−1

P(yMi , ySi−1 |xMi , xSi−1 , ki)

=
∑

xMi ,xSi−1

P(yMi , ySi−1 |xMi , xSi−1).
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As the BSC is a parallel composition of two independent BSC (which is called a
channel extension, as defined in [10, p. 193]), we have P(yMi

, ySi−1
|xMi

, xSi−1
) =

P(yMi
|xMi

)P(ySi−1
|xSi−1

), where

P(yMi
|xMi

) = (1− Pnoise)
n−dH(xMi ,yMi )P

dH(xMi ,yMi )

noise ∝
(

Pnoise

1− Pnoise

)dH(xMi ,yMi )

.

Hence

k̂i = argmax
ki

∑
xMi ,xSi−1

(
Pnoise

1− Pnoise

)dH(xMi ,yMi )+dH(xSi−1
,ySi−1

)

P(xMi
, xSi−1

|ki)

(23)

= argmax
ki

Eki

((
Pnoise

1− Pnoise

)dH(XMi ,yMi )+dH(XSi−1
,ySi−1

)
)
. (24)

Equation (24) is a rewriting of (23), where the expectation Eki is taken over
distribution P(XSi , XMi−1

|Gi = ki) (given in Theorem 2).
Let us define λ = Pnoise

1−Pnoise
. By developing the expression (24) over the Q

observations, we derive the explicit maximum likelihood distinguisher:

k̂i = argmax
ki∈{0,1}

Q∏
q=1

Eki
(
λ
δXq
Mi
6=yq
Mi

+δXq
Si−1

6=yq
Si−1

)

= argmax
ki∈{0,1}

Q∑
q=1

ln
(
λ2P(XMi = ¬yqMi

, XSi−1 = ¬yqSi−1
|Gi = ki)

+ λP(XMi = ¬yqMi
, XSi−1 = yqSi−1

|Gi = ki)

+ λP(XMi = yqMi
, XSi−1 = ¬yqSi−1

|Gi = ki)

+ P(XMi
= yqMi

, XSi−1
= yqSi−1

|Gi = ki)
)
. (25)

C.3 Summary

There are four kinds of attacker, depending whether p/R is known and depending
whether Pnoise is known. Notice that we can expect an attacker to profile Pnoise
using a public exponent. The suitable attacks are summarized in Tab. 4.

D Analysis of extra-reduction in OpenSSL and mbedTLS
source code

The extra-reduction is explicit in the source code of OpenSSL, as shown in
Listing 1.1.
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P(XMi , XSi−1)
known unknown

RSA-SFM, ECC RSA-CRT

Pnoise

unknown ρ-attack-Hard (Alg. 4.1 with (7))

ρ-attack-Soft (Alg. 4.1 with (9))
online (ρ-attack-Soft)
known Maximum likelihood (25)
offline (ρ-attack-Hard)

(ρ-attack-Soft)

Table 4. Most suitable attack for each scenario

Listing 1.1. Extra-reduction in OpenSSL code. File crypto/bn/bn_mont.c, function
BN_from_montgomery

309 i f (BN_ucmp( ret , &(mont−>N)) >= 0)
310 {
311 i f ( ! BN_usub( ret , ret ,&(mont−>N) ) ) goto e r r ;
312 }

The big number library of mbedTLS implements a protection against timing
attacks. A subtraction is also carried out: it is either functional or dummy, as
shown in Listing 1.2.

Listing 1.2. Extra-reduction in mbedTLS code. File library/bignum.c, function
mpi_montmul

1500 i f ( mpi_cmp_abs( A, N ) >= 0 )
1501 mpi_sub_hlp ( n , N−>p , A−>p ) ;
1502 else
1503 /∗ prevent t iming a t t a c k s ∗/
1504 mpi_sub_hlp ( n , A−>p , T−>p ) ;

E Dependency between the operations of two consecutive
iterations in Montgomery Ladder exponentiation

For the Montgomery Ladder (ML) algorithm, the Mi and Si−1 operations do
not depend directly on the key bit value ki. As we can see on the Fig. 11, the
dependence comes from the bit value ki and the previous bit value ki−1. If the
two bits value ki−1 and ki are different then the output of multiplicationMi and
the input of square Si−1 are equal (Gi = T ), otherwise these output/input are
different (Gi = F ).
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R0 ← R2
0;R1 ← R0R1; R0 ← R2

0; R1 ← R0R1;

R1 ← R2
1;R1 ← R0R1; R0 ← R2

0; R0 ← R0R1;

R1 ← R2
1;R0 ← R0R1; R1 ← R2

1; R0 ← R0R1;

R0 ← R2
0;R0 ← R0R1; R1 ← R2

1; R1 ← R0R1;

0 0

10

1 0

11

Sequence of operations over iterations i & i− 1:ki ki−1

Fig. 11. Dependency between the consecutive operation and the consecutive key bit
value in the Montgomery Ladder exponentiation algorithm (Alg. 1.2)
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