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Abstract

We give the first demonstration of the cryptographic hardness of the Goldreich-Goldwasser-Micali
(GGM) function family when the secret key is exposed. We prove that for any constant ε > 0, the
GGM family is a 1/n2+ε-weakly one-way family of functions, when the lengths of secret key, inputs, and
outputs are equal. Namely, any efficient algorithm fails to invert GGM with probability at least 1/n2+ε,
even when given the secret key.

Additionally, we state natural conditions under which the GGM family is strongly one-way.

1 Introduction

Pseudorandom functions (PRFs) are fundamental objects in general and in cryptography in particular. A
pseudorandom function ensemble is a collection of (efficient) functions F = {fs}s∈{0,1}∗ indexed by a secret
key s ∈ {0, 1}∗ with the dual properties that (1) given the secret key s, fs is efficiently computable and
(2) without knowledge of the secret key, no probabilistic polynomial-time algorithm can distinguish between
oracle access to a random function from the ensemble and access to a random oracle. The security property
of PRFs depends on the absolute secrecy of the key, and no security is guaranteed when the secret key is
revealed. Pseudorandom functions have found wide use: in cryptography to construct private-key encryption
and digital signatures [Gol04], in computational learning theory for proving negative results [Val84], and in
computational complexity to demonstrate the inherent limits of using natural proofs to prove circuit lower-
bounds [RR97].

The first construction of pseudorandom function families starting from any one-way functions came in
1986 by Goldreich, Goldwasser, and Micali [GGM86]. Assuming only that a function is hard to invert,
the construction amplifies the secrecy of a short random secret key into an exponentially-long, randomly-
accessible sequence of pseudorandom values. For about 10 years, this was the only known method to construct
provably secure PRFs, even taking into account algebraic or structural properties of specific number-theoretic
assumptions. Almost 30 years later, it remains the only generic approach to construct PRFs from any one-
way function.

Almost three decades after its conception, we are continuing to discover surprising power specific to
the GGM pseudorandom function family. The basic ideas of this construction were used in constructions of
broadcast encryption schemes in the early 90s [FN94]. Additionally, these same ideas were to construct func-
tion secret sharing schemes for point functions, leading to 2-server computationally-secure PIR schemes with
poly-logarithmic communication [BGI15]. The first quantum-secure PRF was demonstrated by showing that
the (classical) GGM ensemble (instantiated with a quantum-secure pseudorandom generator) is secure even
against quantum adversaries [Zha12]. In [BW13, BGI14, KPTZ13], the notion of constrained pseudorandom
functions was introduced. The “constrained keys” for these PRFs allow a user to evaluate the function on
special subsets of the domain while retaining pseudorandomness elsewhere. The GGM ensemble (and modi-
fications thereof) is a constrained PRF for the family of prefix-constraints (including point-puncturing), and
GGM yields the simplest known construction of constrained PRFs. This family of constraints is powerful
enough to enable many known applications of these families for program obfuscation [SW14].

In this work, we give the first demonstration that the GGM family enjoys some measure of security even
when the secret key is revealed to an attacker. In this setting, pseudorandom functions do not necessarily
guarantee any security. For example, the Luby-Rackoff family of pseudorandom permutations [LR88] are
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efficiently invertible given knowledge of the secret key. This suggests that we must examine specific con-
structions of pseudorandom functions to see if security is retained when the secret key is revealed. In this
work, we ask the following question:

What security, if any, does the GGM ensemble provide when the secret key is known?

A version of this question was posed and addressed by Goldreich1 in 2002 [Gol02]. Goldreich casts the ques-
tion from the angle of correlation intractability. Informally, a function ensemble {fs}s∈{0,1}∗ is correlation
intractable if – even given the function description s – it is computationally infeasible to find an input x
such that x and fs(x) satisfy some “sparse” relation. Correlation intractability was formalized in [CGH04],
which proved that no such family exists for |x| ≥ |s|.

In [Gol02], Goldreich proves that the GGM ensemble is not correlation intractable, even for |x| < |s|, in
a very strong sense. Goldreich constructs a pseudorandom generator G(0) which, when used to instantiate
the GGM ensemble, allows an adversary with knowledge of the secret key s to efficiently find preimages
x ∈ f−1s (0n). This allows the inversion of fs for a specific image 0n, but not necessarily for random images.

1.1 Our contributions

In this work, we prove that the length-preserving2 GGM ensemble is a weakly one-way family of functions.
This means that any efficient algorithm A, when given a random secret key s and fs(x) for a random input
x, must fail to invert with non-negligible probability.

Moreover, we prove that if either a random function in FG is “regular” in the sense that each image has
a polynomially-bounded number of pre-images, or is “nearly surjective” in a sense made precise below, then
the length-preserving GGM ensemble is strongly one-way. Formally:

Theorem 1. Let FG = {fs}s∈{0,1}∗ be the length-preserving GGM function ensemble with pseudorandom

generator G, where fs : {0, 1}|s| → {0, 1}|s|. Then for every constant ε > 0, FG is a 1/n2+ε–weakly one-way
collection of functions. That is, for every probabilistic polynomial-time algorithm A, for every constant ε > 0,
and all sufficiently large n ∈ N,

Pr
s←Un
x←Un

[A(s, fs(x)) ∈ f−1s (fs(x))] < 1− 1

n2+ε
(1)

where Un is the uniform distribution over {0, 1}n.

Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G. FG is a strongly one-way
collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large n ∈ N

E
s←Un

[
|Img(fs)|

2n

]
≥ 1− negl(n) (2)

(b) There exists a polynomial B such that for all sufficiently large n ∈ N and for all s, y ∈ {0, 1}n∣∣f−1s (y)
∣∣ ≤ B(n) (3)

Remark 1. The conditions of Theorem 2 are very strong conditions. Whether a pseudorandom generator G
exists which makes the induced GGM ensemble satisfy either condition is an interesting and open question.
The possibility of such a generator is open even for the stronger requirement that for every secret key s, fs
is a permutation.

Remark 2. The length-preserving restriction can be somewhat relaxed to the case when |x| = |s|±O(log |s|),
affecting the weakly one-way parameter. A partial result holds when |x| > |s| + ω(log |s|), and nothing is
currently known if |x| < |s| − ω(log |s|). See the full version for further discussion.

1And posed much earlier by Micali and by Barak: see Acknowledgments of [Gol02].
2We consider the secret keys, inputs, and outputs to be of the same lengths. See Remark 2.
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1.2 Overview of proof

Let’s go into the land of wishful thinking and imagine that for each secret key s ∈ {0, 1}n, every string
y ∈ {0, 1}n occurs exactly once in the image of fs; that is, suppose that the GGM ensemble FG is a family of
permutations. In this case we can prove that the GGM family is strongly one-way (in fact, this is a special
case of Theorem 2).

The assumption that FG is a permutation implies the following two facts.3

� Fact 1 : For each secret key s ∈ {0, 1}n, the distributions fs(Un) and Un are identical.

� Fact 2 : For each string y ∈ {0, 1}n, there are exactly two pairs (b, x) ∈ {0, 1} × {0, 1}n such that
Gb(x) = y, where G is the PRG underlying the GGM family, and G0(x) and G1(x) are the first and
second halves of G(x) respectively.

We may now prove that the GGM ensemble is strongly one-way in two steps:

� Step 1 : Switch the adversary’s input to uniformly random.

� Step 2 : Construct a distinguisher for the PRG.

Step 1. For a PPT algorithm A, let 1/α(n) be A’s probability of successfully inverting y with secret key
s; namely:

Pr
s←Un

y←fs(Un)

[A(s, y) ∈ f−1s (y)] =
1

α(n)

By Fact 1, A has exactly the same success probability if y is sampled uniformly from {0, 1}n:

Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y)] =
1

α(n)

Step 2. We now construct a PPT algorithm D that has advantage 1/2α(n) − negl(n) in distinguishing
outputs from the PRG G from random strings (i.e., U2n and G(Un)). By the security of G, this implies that
1/α(n) = negl(n), completing the proof. The distinguisher D is defined as follows:

Algorithm 1: The PRG distinguisher D
Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s← Un and a bit b← U ;
Compute x← A(s, yb);
Let x̃ = x⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1 ; // Guess ‘‘PRG’’

else
Output 0 ; // Guess ‘‘random’’

end

Notice that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If (y0, y1) was sampled uniformly
from U2n, then this happens with probability at most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] ≤ 1/2n−1.

3While these are indeed facts in the land of wishful thinking, they are not generally true. In this overview we wish to
highlight only the usefulness of these facts, and believe that their proofs (though elementary), do not further this goal.
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Now we use Fact 2 from above. There are only 2 possible x’s that A could have output in agreement
with fs(x); if (y0, y1) was sampled from G(Un) and fs(x) = yb (which happens with probability 1/α(n)),
then with probability at least 1/2: fs(x̃) = y1−b. Therefore,

Pr[D(G(Un)) = 1] ≥ 1/2α(n),

completing the proof of this special case.

Leaving the land of wishful thinking, the proof that the GGM ensemble is weakly one-way follows exactly
the same two steps as the special case proved above, but the facts we used are not true in general. We
carry out Step 1 in the Input Switching Proposition: we more carefully analyze the relationship between
the distributions fs(Un) and Un, losing a factor of 1− 1/n2+ε in the adversary’s probability of successfully
inverting. We carry out Step 2 in the Distinguishing Lemma: we analyze the success probability of the
distinguisher (the same one as above) by more carefully reasoning about the number of preimages for some
value y.

1.2.1 Organization

Section 2 contains standard definitions and the notation used throughout this work. Section 3 contains the
proof of Theorem 1, leaving the proof of a crucial lemma to Section 4. Theorem 2 is proved in Section 5,
and Section 6 concludes.

2 Preliminaries

2.1 Notation

For two strings a and b we denote by a‖b their concatenation. For a bit string x ∈ {0, 1}n, we denote by
x[i] its i-th bit, and by x[i : j] (for i < j) the sequence x[i]‖x[i + 1]‖ · · · ‖x[j]. We abbreviate ‘probabilistic
polynomial time’ as ‘PPT’.

For a probability distribution D, we use Supp(D) to denote the support of D. We write x← D to mean
that x is a sample from the distribution D. By Un, we denote the uniform distribution over {0, 1}n, and omit
the subscript when n = 1. For a probabilistic algorithm A, we let A(x) denote a sample from the probability
distribution induced over the outputs of A on input x, though we occasionally abuse notation and let A(x)
denote the distribution itself. For a function f : X → Y and a distribution D over X, we denote by f(D)
the distribution (f(x))x←D over Y .

Definition 1 (Computationally Indistinguishable). Two ensembles {Xn}n∈N, {Yn}n∈N are computation-
ally indistinguishable if for every probabilistic polynomial-time algorithm A, every polynomial p(·), and all
sufficiently large n ∈ N

|Pr [A (Xn) = 1]− Pr [A (Yn) = 1]| ≤ 1

p(n)

We write Xn ≈c Yn to denote that {Xn}n∈N and {Yn}n∈N are computationally indistinguishable.

Definition 2 (Multiset). A multi-set M over a set S is a function M : S → N. For each s ∈ S, we call M(s)
the multiplicity of s. We say s ∈M if M(s) ≥ 1, and denote the size of M by |M | =

∑
SM(s). For two multi-

sets M and M ′ over S, we define their intersection M∩M ′ to be the multiset (M∩M ′)(s) = min[M(s),M ′(s)]
containing each element with the smaller of the two multiplicities.

2.2 Standard cryptographic notions, and the GGM ensemble

Definition 3 (One-way collection of functions; adapted from [Gol04]). A collection of functions {fs :
{0, 1}|s| → {0, 1}∗}s∈{0,1}∗ is called strongly (weakly) one-way if there exists a probabilistic polynomial-time
algorithm Eval such that the following two conditions hold:
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� Efficiently computable: On input s ∈ {0, 1}∗, and x ∈ {0, 1}|s|, algorithm Eval always outputs fs(x).

� Strongly one-way : For every polynomial w(·), for every probabilistic polynomial-time algorithm A and
all sufficiently large n,

Pr
s←Un
x←Un

[
A(s, fs(x)) ∈ f−1s (fs(x))

]
<

1

w(n)
(4)

� Weakly one-way : There exists a polynomial w(·) such that for every probabilistic polynomial-time
algorithm A and all sufficiently large n,

Pr
s←Un
x←Un

[
A(s, fs(x)) ∈ f−1s (fs(x))

]
< 1− 1

w(n)
(5)

In this case, the collection is said to be 1/w(n)-weakly one-way.

We emphasize that in weakly one-way definition the polynomial w(n) bounds the success probability
of every efficient adversary. Additionally, weakly one-way collections can be easily amplified to achieve
(strongly) one-way collections [Gol04].

We will use the following notation.

Definition 4 (Inverting Advantage). For an adversary A and distribution D over (s, y) ∈ {0, 1}n×{0, 1}n,
we define the inverting advantage of A on distribution D as

AdvA(D) = Pr
(s,y)←D

[
A(s, y) ∈ f−1s (y)

]
(6)

Definition 5 (Pseudo-random generator). An efficiently computable function G : {0, 1}n → {0, 1}2n is a
(length-doubling) pseudorandom generator (PRG), if G(Un) is computationally indistinguishable from U2n.
Namely for any PPT D ∣∣∣∣Pr[D(G(Un)) = 1]− Pr[D(U2n) = 1]

∣∣∣∣ = negl(n)

Definition 6 (GGM function ensemble [GGM86]). Let G be a deterministic algorithm that expands inputs
of length n into string of length 2n. We denote by G0(s) the |s|-bit-long prefix of G(s), and by G1(s) the
|s|-bit-long suffix of G(s) (i.e., G(s) = G0(s)‖G1(s). For every s ∈ {0, 1}n (called the secret key), we define
a function fGs : {0, 1}n → {0, 1}n such that for every x ∈ {0, 1}n,

fGs (x[1], . . . , x[n]) = Gx[n](· · · (Gx[2](Gx[1](s)) · · · ) (7)

For any n ∈ N, we define Fn to be a random variable over {fGs }s∈{0,1}n . We call FG = {Fn}n∈N the GGM
function ensemble instantiated with generator G.

We will typically write fs instead of fGs .

The construction is easily generalized to the case when |x| 6= n. Though we define the GGM function
ensemble as the case when |x| = n, it will be useful to consider the more general case.

2.3 Statistical distance

For two probability distributions D and D′ over some universe X, we recall two equivalent definitions of
their statistical distance SD(D,D′):

SD(D,D′) :=
1

2

∑
x∈X
|D(x)−D′(x)| = max

S⊆X

∑
x∈S

D(x)−D′(x)

For a collection of distributions {D(p)} with some parameter p, and a distribution P over the parameter p,
we write

(p,D(p))P
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to denote the distribution over pairs (p, x) induced by sampling p ← P and subsequently x ← D(p).4 It
follows from the definition of statistical distance (see appendix) that for distributions P , D(P ), and D′(P ):

SD
((
p,D(p)

)
P
,
(
p,D′(p)

)
P

)
= E
p←P

[
SD
(
D(p), D′(p)

)]
(8)

The quantity |Img(f)| is related to the statistical distance between the uniform distribution Un and the
distribution f(Un). For any f : {0, 1}n → {0, 1}n,

SD(f(Un), Un) = 1− |Img(f)|
2n

(9)

This identity can be easily shown by expanding the definition of statistical distance, or by considering the
histograms of the two distributions and a simple counting argument. See the appendix for a proof.

2.4 Rényi divergences

Similar to statistical distance, the Rényi divergence is a useful tool for relating the probability of some event
under two distributions. Whereas the statistical distance yields an additive relation between the probabilities
in two distributions, the Rényi divergence yields a multiplicative relation. The following is adapted from
Section 2.3 of [BLL+15].

For any two discrete probability distributions P and Q such that Supp(P ) ⊆ Supp(Q), we define the
power of the Rényi divergence (of order 2) by

R (P‖Q) =

 ∑
x∈Supp(Q)

P (x)2

Q(x)

 . (10)

An important fact about Rényi divergence is that for an abitrary event E ⊆ Supp(Q)

Q(E) ≥ P (E)2

R (P‖Q)
. (11)

3 The weak one-wayness of GGM

We now outline the proof of Theorem 1: that the GGM function ensemble is 1/n2+ε-weakly one-way.

Theorem 1. Let FG = {fs}s∈{0,1}∗ be the length-preserving GGM function ensemble with pseudorandom

generator G, where fs : {0, 1}|s| → {0, 1}|s|. Then for every constant ε > 0, FG is a 1/n2+ε–weakly one-way
collection of functions.

The proof proceeds by contradiction, assuming that there exists a PPT A which inverts on input (s, y)
with > 1− 1/n2+ε probability, where s is a uniform secret key and y is sampled as a uniform image of fs.

At a high level there are two steps. The first step (captured by the Input Switching Proposition below)
is to show that the adversary successfully inverts with some non-negligible probability, even when y is
sampled uniformly from {0, 1}n, instead of as a uniform image from fs. The second step (captured by
the Distinguishing Lemma below) will then use the adversary to construct a distinguisher for the PRG
underlying the GGM ensemble. The proof of Input Switching Proposition) depends on the Combinatorial
Lemma proved in Section 4. Together, these suffice to prove Theorem 1.

4For example, the distribution (x,Bernoulli(x))Uniform[0,1] is the distribution over (x, b) by drawing the parameter x uniformly
from [0, 1], and subsequently taking a sample b from the Bernoulli distribution with parameter x.
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3.1 Step 1: The Input Switching Proposition

As discussed in the overview, our goal is to show that for any adversary that inverts with probability
> 1 − 1/n2+ε on input distribution (s, y) ← (s, fs(Un))s←Un

will invert with non-negligible probability on
input distribution (s, y)← (Un, Un). For convenience, we name these distributions:

� Dowf : This is A’s input distribution in the weakly one-way function security game in Definition 3.
Namely,

Dowf = (s, fs(Un))s←Un

� Drand: This is our target distribution (needed for Step 2), in which s and y are drawn uniformly at
random. Namely,

Drand = (Un, Un)

Proposition 1 (Input Switching Proposition). For every constant ε > 0 and sufficiently large n ∈ N

AdvA(Dowf) > 1− 1/n2+ε =⇒ AdvA(Drand) > 1/poly(n) (12)

Proof of Input Switching Proposition. It suffices to show that for every constant ε > 0 and sufficiently large
n ∈ N

|AdvA(Dowf)− AdvA(Drand)| < 1− 1/n2+ε − 1/poly(n) (13)

If SD(Dowf , Drand) < 1 − 1/n2, then the (13) follows immediately (even for an unbounded adversary).5 If
instead SD(Dowf , Drand) ≥ 1− 1/n2, we must proceed differently.6

Consider the following distribution over (s, y):

� Dmix: This is the distribution in which y is sampled as a uniform image from fs′ and s, s′ are independent
secret keys.

Dmix = (s, fs′(Un))s,s′←Un×Un

In order to understand the relationship between AdvA(Dowf) and AdvA(Dmix) we define our final distributions,
parameterized by an integer k ∈ [0, n− 1]. These distributions are related to Dowf and Dmix, but instead of
sampling (s, s′) from Un × Un, they are sampled from (G(fr(Uk)))r←Un

. For k = 0, let fr(Uk) = r.

� Dk
0 : Like Dowf but the secret key is s = G0(ŝ) where ŝ← (fr(Uk))r←Un

. Namely,

Dk
0 = (s, fs(Un)) r←Un; ŝ←fr(Uk)

s=G0(ŝ)

� Dk
1 : Like Dmix, but the secret keys are s = G0(ŝ) and s′ = G1(ŝ) where ŝ← (fr(Uk))r←Un . Namely,

Dk
1 = (s, fs′(Un)) r←Un; ŝ←fr(Uk)

(s,s′)=(G0(ŝ),G1(ŝ))

Claim 1. For every k ∈ [0, n− 1],

(a) Dowf ≈c Dk
0 , (b) Dk

1 ≈c Dmix, (c) Dmix ≈c Drand

Proof of Claim 1. By essentially the same techniques as in [GGM86], the pseudorandomness of the PRG
implies that for any k ≤ n, the distribution fUn(Uk) is computationally indistinguishable from Un; (c) follows
immediately. By the same observation, Dk

0 ≈c D0
0 and Dk

1 ≈c D0
1. Finally, by the pseudorandomness of the

PRG, Dowf ≈c D0
0 and D0

1 ≈ Dmix. This completes the proofs of (a) and (b). �

5Whether this indeed holds depends on the PRG used to instantiate the GGM ensemble. We do not know if such a PRG
exists.

6If there exists a PRG, then there exists a PRG such that SD(Dowf , Drand) = 1 − Es←Un [|Img(fs)|/2n] ≥ 1 − 1/n2. For

example, if the PRG only uses the first n/2 bits of its input, then |Img(fs)| < 2n/2+1.
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Claim 1 and the following lemma allow us to complete the proof of the Input Switching Proposition.

Lemma 1 (Combinatorial Lemma). Let Dowf , D
k
0 , Dk

1 , Dmix and Drand be defined as above. For every
constant ε′ > 0 and every n ∈ N,

� either there exists k∗ ∈ [0, n− 1] such that

SD
(
Dk∗

0 , Dk∗

1

)
≤ 1− 1

n2+ε′
(L.1)

� or

SD (Dowf , Drand) <
2

nε′/2
(L.2)

Proof of Combinatorial Lemma. See Section 4. �

We now prove (13) and thereby complete the proof of the Input Switching Proposition. Fix a constant
ε > 0 and n ∈ N. Apply the Combinatorial Lemma with ε′ = ε/2. In the case that (L.2) is true,

|AdvA(Dowf)− AdvA(Drand)| ≤ SD(Dowf , Drand) <
2

nε/4

In the case that (L.1) is true, we use the Triangle Inequality. Let k∗ ∈ [0, n− 1] be as guaranteed by (L.1):

|AdvA(Dowf)−AdvA(Drand)|
≤
∣∣AdvA(Dowf)− AdvA(Dk∗

0 )
∣∣+
∣∣AdvA(Dk∗

0 )− AdvA(Dk∗

1 )
∣∣

+
∣∣AdvA(Dk∗

1 )− AdvA(Dmix)
∣∣+
∣∣AdvA(Dmix)− AdvA(Drand)

∣∣
≤ negl(n) +

(
1− 1

n2+ε′/2

)
+ negl(n) + negl(n)

≤ 1− 1

n2+ε/4
+ negl(n)

�

3.2 Step 2: The Distinguishing Lemma

As discussed in the overview, in this step we show that any efficient algorithm A that can invert fs on
uniformly random values y ∈ {0, 1}n with probability ≥ 1/α(n) can be used to distinguish the uniform dis-
tribution from uniform images of the PRG G underlying the GGM ensemble with probability ≥ 1/poly(α(n)).
Formally, we prove the following lemma:

Lemma 2 (Distinguishing Lemma). Let G be a PRG and FG the corresponding GGM ensemble. For all
PPT algorithms A and polynomials α(n), there exists a PPT distinguisher D which for all n ∈ N:

AdvA(Un × Un) ≥ 1

α(n)

=⇒
∣∣Pr [D (G (Un)) = 1]− Pr [D (U2n) = 1]

∣∣ ≥ ( 1

4α(n)

)5

− negl(n)

Proof of Distinguishing Lemma. Let A be a PPT algorithm such that for some polynomial α(n)

AdvA(Un × Un) ≥ 1

α(n)
(14)

The distinguisher D is defined as follows:
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Algorithm 1: The PRG distinguisher D
Input: (y0, y1) // a sample from either G(Un) or U2n

Sample a secret key s← Un and a bit b← U ;
Compute x← A(s, yb);
Let x̃ = x⊕ 0n−11 // x̃ differs from x only at the last bit;
if fs(x) = yb and fs(x̃) = y1−b then

Output 1 ; // Guess ‘‘PRG’’

else
Output 0 ; // Guess ‘‘random’’

end

Next we show that the distinguisher D outputs 1 given input sampled uniformly with only negligible prob-
ability, but outputs 1 with some non-negligible probability given input sampled from G(Un). This violates
the security of the PRG, contradicting assumption (14).

Observe that if D outputs 1, then either (y0, y1) or (y1, y0) is in Img(G). If (y0, y1) was sampled uniformly
from U2n, then this happens with probability at most 2n+1/22n. Therefore,

Pr[D(U2n) = 1] = negl(n) (15)

We prove that

Pr[D(G(Un)) = 1] ≥
(

1

4α(n)

)5

(16)

At a very high level, the intuition is that for most (y0, y1) ∈ Img(G), there are not too many y′1 for which
either (y0, y

′
1) ∈ Img(G) or (y′1, y0) ∈ Img(G) (similarly for y′0 and y1). After arguing that A must invert

even on such “thin” y’s, the chance that y′1−b = y1−b is significant. We now formalize this high level intuition.

We define the function G∗ : {0, 1} × {0, 1}n → {0, 1}n

G∗(b, y) = Gb(y)

Definition 7 (θ-thin, θ-fat). An element y ∈ Img(G∗) is called θ-thin under G if |G−1∗ (y)| ≤ θ. Otherwise,
it is called θ-fat. Define the sets

Thinθ := {y ∈ Img(G∗) : y is θ-thin}
Fatθ := {y ∈ Img(G∗) : y is θ-fat}

Note that Thinθ t Fatθ = Img(G∗)

We define an ensemble of distributions {Zn}, where each Zn is the following distribution over (s, y0, y1, b) ∈
{0, 1}n × {0, 1}n × {0, 1}n × {0, 1}:

Zn = (Un, G0(r), G1(r), U)r←Un . (17)

Additionally, for every x ∈ {0, 1}n, we define x̃ to be x with its last bit flipped, namely

x̃ = x⊕ 0n−11.

9



We begin by expanding Pr[D(G(Un)) = 1].

Pr[D(G(Un)) = 1]

= Pr
(s,y0,y1,b)←Zn

[fs(x) = yb ∧ fs(x̃) = y1−b | x← A(s, yb)]

≥ Pr
(s,y0,y1,b)←Zn

[yb ∈ Thinθ] (18)

· Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣∣∣∣ x← A(s, yb)
yb ∈ Thinθ

]
(19)

· Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣∣∣∣ x← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
(20)

To show that Pr[D(G(Un)) = 1] is non-negligible, it’s enough to show that (18), (19), and (20) are each
non-negligible.

The first term (18) can be lower-bounded by

Pr
(s,y0,y1,b)←Zn

[y ∈ Thinθ] ≥
1

2α(n)
− 1

θ
(21)

To see why, first recall that by hypothesis AdvA(Un × Un) ≥ 1
α(n) . If y 6∈ Img(fs), then of course A(s, y)

cannot output a preimage of y. Therefore 2n/α(n) ≤ |Img(fs)| ≤ |Img(G∗)|. On the other hand, because
each θ-fat y must have at least θ preimages, and the domain of G∗ is of size 2n+1, there cannot be too many
θ-fat y’s:

|Fatθ| ≤
2n+1

θ
(22)

Recalling that Img(G∗) = Thinθ t Fatθ:

Pr
y←GU (Un)

[y ∈ Thin] =
|{(b, x) : Gb(x) ∈ Thinθ}|

2n+1

≥ |Thinθ|
2n+1

=
1

2α(n)
− 1

θ

The second term (19) can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x) = yb

∣∣∣∣ x← A(s, yb)
yb ∈ Thinθ

]
≥
(

1

4α(n)

)3

(23)

We now provide some intuition for the proof of the above, which is included in the appendix in full. In the
course of that argument, we will set θ = 4α(n).

Definition 8 (q-good). For any q ∈ [0, 1], an element y ∈ {0, 1}n is called q-good with respect to θ if it is
both θ-thin and A finds some preimage of y for a uniformly random secret key s with probability at least q.
Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1s (y)] > q
}

The marginal distribution of yb where (s, y0, y1, b)← Zn is GU (Un). To make the notation more explicit, we
use the latter notation for the intuition below. In this notation, (23) can be written

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1s (y)

∣∣ y ∈ Thinθ
]
≥
(

1

4α(n)

)3

10



The proof of the above inequality boils down to two parts. First, we show that, by the definition of θ-thin:

Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] ≥ θ · Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

Second, we must lower-bound the latter quantity. At a high level, this second step follows from the fact that
most of the y ∈ {0, 1}n are θ-thin. By assumption, A inverts with decent probability when y ← Un, and
therefore must invert with some not-too-much-smaller probability when conditioning on the event y ∈ Thinθ.

The third term (20) can be lower-bounded by:

Pr
(s,y0,y1,b)←Zn

[
fs(x̃) = y1−b

∣∣∣∣ x← A(s, yb)
yb ∈ Thinθ ∧ fs(x) = yb

]
≥ 1

θ
(24)

To see why, suppose that indeed yb ∈ Thinθ and fs(x) = yb. Because yb is θ-thin, there are at most θ-possible
values of y′1−b := fs(x̃), where x̃ = x⊕ 0n−11. The true y1−b is hidden from the adversary’s view, and takes
each of the possible values with probability at least 1/θ. Thus the probability that y1−b = y′1−b is as above.

Finally, letting θ = 4α(n) as required to lower-bound the second term and putting it all together implies
that

Pr [D(G(Un)) = 1] >

(
1

2α(n)
− 1

θ

)
·
(

1

4α(n)

)3

· 1

θ
(25)

≥
(

1

4α(n)

)5

(26)

This completes the proof of Lemma 2. �

4 The Combinatorial Lemma

In the proof of the Input Switching Proposition we defined the following distributions over (s, y) ∈ {0, 1}n×
{0, 1}n, for k ∈ [0, n− 1]. If k = 0, we define fr(Uk) = r.

Dowf = (s, fs(Un))s←Un

Dk
0 =

(
G0(ŝ), fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dk
1 =

(
G0(ŝ), fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

Dmix = (s, fs′(Un))s,s′←Un×Un

Drand = (Un, Un)

We define two additional distributions:

D̂k
0 =

(
ŝ, fG0(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

D̂k
1 =

(
ŝ, fG1(ŝ)(Un)

)
r←Un; ŝ←fr(Uk)

We now prove the Combinatorial Lemma stated (and used) in the proof of the Input Switching Proposition.

Lemma 1 (Combinatorial Lemma). Let Dowf , D
k
0 , Dk

1 , Dmix and Drand be defined as above. For every
constant ε′ > 0 and every n ∈ N,

� either there exists k∗ ∈ [0, n− 1] such that

SD
(
Dk∗

0 , Dk∗

0

)
≤ 1− 1

n2+ε′
(L.1)

11



� or

SD (Dowf , Drand) <
2

nε′/2
(L.2)

Remark 3. We will prove something slightly stronger, namely that either (L.1*) or (L.2) holds, where
(L.1*) is:

SD
(
D̂k∗

0 , D̂k∗

1

)
≤ 1− 1

n2+ε′
(L.1*)

To see why (L.1*) implies (L.1), observe that for every k, given a sample from D̂k
0 (resp. D̂k

1 ) it is easy
to generate a sample from Dk

0 (resp. Dk
1 ). Thus an (unbounded) distinguisher for the former pair of

distributions implies an (unbounded) distinguisher with at least the same advantage for the latter pair.7

Remark 4. By (8) and (9), SD(Dowf , Drand) = 1−Es←Un
[Img(fs)/2

n]. Using (L.1*) and this interpretation
of (L.2), the lemma informally states that either:

� There is a level k∗ such that for a random node ŝ on the k∗th level, the subtrees induced by the left
child G0(ŝ) and the right child G1(ŝ) are not too dissimilar.

� The image of fs is in expectation, a very large subset of the co-domain.

Finally, it is worth noting that the proof of this lemma is purely combinatorial and nowhere makes use
of computational assumptions. As such, it holds for and GGM-like ensemble instantiated with arbitrary
length-doubling function G.

Proof of Combinatorial Lemma. Fix n ∈ N and a secret key s ∈ {0, 1}n. Recall that for a multi-set M , M(x)
is the multiplicity of the element x in M .

For every k ∈ [0, n− 1] and v ∈ {0, 1}k (letting {0, 1}0 = {ε}, where ε is the empty string), we define two
multi-sets over {0, 1}n (‘L’ for ‘leaves’) which together contain all the leaves contained in the subtree with
prefix v of the GGM tree rooted at s.

Lsv,0 = {fs(x) : x = v‖0‖t}t∈{0,1}n−k−1

Lsv,1 = {fs(x) : x = v‖1‖t}t∈{0,1}n−k−1
(27)

Define Isv := Lsv,0 ∩ Lsv,1 to be their intersection.

For each v ∈ {0, 1}k, we define a set Bsv of “bad” inputs x to the function fs. For each y ∈ Isv , there are
at least Isv(y)-many distinct x0 (respectively, x1) such that fs(x0) = y and x0 = v‖0‖t begins with the prefix
v‖0 (respectively, v‖1). Assign arbitrarily Isv(y)-many such x0 and x1 to the set Bsv. By construction,

|Bsv| = 2|Isv | (28)

Let Bs =
⋃n−1
k=0

⋃
v∈{0,1}k B

s
v, and let Qs := {0, 1}n \Bs be the set of “good” inputs.

Observe that fs is injective on Qs. To see why, consider some x ∈ Qs, and let x′ 6= x be such that
fs(x) = fs(x

′) = y if one exists. Suppose that the length of their longest common prefix v is maximal among
all such x′. By the maximality of the prefix v, x must be in Bsv. Therefore,

|Img(fs)| ≥ |Qs| (29)

To reduce clutter we define the following additional notation: for every secret key r ∈ {0, 1}n and level
` ∈ [n] we define

∆mix(r; `) = SD(fG0(r)(U`); fG1(r)(U`))

Informally, ∆mix(r; `) is the difference between the left and right subtrees rooted at r of depth `. For all
` < n and r ∈ {0, 1}n:

∆mix(r; `) ≥ ∆mix(r;n) (30)

7This essentially a data-processing inequality.
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This can be seen by expanding the definitions, or by considering the nature of the distributions as follows.
The GGM construction implies that if two internal nodes have the same label, then their subtrees exactly
coincide. Thus, the fraction of nodes at level n that coincide on trees rooted at G0(r) and G1(r) is at least
the fraction of nodes at level ` that coincide.

For every secret key s ∈ {0, 1}n, k ∈ [0, n− 1], and v ∈ {0, 1}k, it holds that:

∆mix(fs(v);n− k − 1) = 1− |Isv |
2n−k−1

(31)

Rearranging (31) and using (30) with ` = n− k, we have that

|Isv |
2n−k−1

≤ 1−∆mix(fs(v);n) (32)

Claim 2. For every ε > 0, n ∈ N, if SD(D̂k∗

0 , D̂k∗

1 ) ≤ 1− 1/n2+ε
′

(i.e., if (L.1*) is false), then

1− E
s←Un

[
|Qs|
2n

]
= E
s←Un

[
|Bs|
2n

]
<

2

nε/2
(33)

This claim implies (L.2) as follows, completing the proof of the Combinatorial Lemma:

SD
(
Dowf , Drand

)
= 1− E

s←Un

[
|Img(fs)|

2n

]
≤ 1− E

s←Un

[
|Qs|
2n

]
< 1− 2

nε/2
(34)

�

Proof of Claim 2. We can now bound the expected size of |Bs| as follows.

E
s←Un

[
|Bs|
2n

]
(35)

= Pr
s←Un
x←Un

[x ∈ Bs]

≤
n−1∑
k=0

∑
v∈{0,1}k

Pr
s,x

[x ∈ Bsv] by the definition of Bs

=

n−1∑
k=0

Pr
s,x

[
x ∈ Bsx[1:k]

]
≤
n−1∑
k=0

T · Pr
s,x

(
|Bsx[1:k]|

2n−k
≤ T

)
+ Pr
s,x

(
|Bsx[1:k]|

2n−k
> T

)
for any 0 ≤ T ≤ 1

≤
n−1∑
k=0

T + Pr
s,x

(
|Isx[1:k]|
2n−k−1

> T

)
by (28)

Fix constant ε > 0. Suppose (L.1*) is false; namely, for all k ∈ [0, n− 1],

SD
(
D̂k∗

0 , D̂k∗

1

)
= E

r←Un

ŝ←fr(Uk)

[
∆mix(ŝ;n)

]
> 1− 1

n2+ε
(36)

By Markov’s Inequality, for any τ > 0:

Pr
r←Un

ŝ←fr(Uk)

[
1−∆mix(ŝ;n) >

τ

n2+ε

]
<

1

τ
(37)
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Observe that the distributions
(
fs(x[1 : k])

)
s←Un
x←Un

and
(
ŝ
)

r←Un

ŝ←fr(Uk)
are identical. Therefore, by inequality

(32) and the above Markov bound:

Pr
s←Un
x←Un

(
|Isx[1:k]|
2n−k−1

> T

)
≤ Pr

s←Un
x←Un

(
1−∆mix(fs(x[1 : k]);n) > T

)
≤ 1

Tn2+ε
(38)

Continuing the series of inequalities from (35):

≤
n−1∑
k=0

(
T +

1

Tn2+ε

)
by (32)

≤ n τ

n2+ε
+ n

1

τ
for T =

τ

n2+ε
, by (37)

=
2

nε/2
for τ = n1+ε/2

This completes the proof Claim 2. �

5 When is GGM strongly one-way?

Theorem 2 shows that under some natural – albeit strong – conditions, the GGM function ensemble is
strongly one-way. Whether pseudorandom generators G exist that induce these conditions in the GGM
ensemble is, as of yet, unknown.

Theorem 2. Let FG be the GGM ensemble with pseudorandom generator G. FG is a strongly one-way
collection of functions if either of the following hold:

(a) There exists a negligible function negl(·) such that for all sufficiently large n

E
s←Un

[
|Img(fs)|

2n

]
≥ 1− negl(n) (39)

(b) There exists a polynomial β(·) such that for all sufficiently large n and for all s, y ∈ {0, 1}n∣∣f−1s (y)
∣∣ ≤ β(n) (40)

Remark 5. These two conditions have some overlap, but neither is contained in the other. Additionally,

a weaker – but somewhat more abstruse – condition than (b) also suffices: namely, that
∑
s,y

(
|f−1

s (y)|
2n

)2
is bounded above by some polynomial. This quantity is related to the collision entropy of the distribution
(s, fs(Un))s←Un .

Proof of Theorem 2. Suppose FG satisfies one of the conditions of Theorem 2. Further suppose towards
contradiction that there exists a probabilistic polynomial-time A and a polynomial w(·), such that for
infinitely-many n ∈ N

AdvA
(
(s, fs(Un))s←Un

)
≥ 1

w(n)
(41)

By the Distinguishing Lemma, to derive a contradiction it suffices to prove for some polynomial α(·) related
to w

AdvA(Un × Un) >
1

α(n)
(42)
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Case (a) Applying equations (9) and (8) to the assumption on Es←Un

[ Img(fs)
2n

]
yields

SD
(
(s, fs(Un))Un

, (Un, Un)
)
≤ negl(n) (43)

It follows immediately that (42) holds for 1/α(n) = 1/w(n) − 1/poly(n), for any polynomial poly (e.g. for
1/α(n) = 1/2w(n)).

Case (b) For this case, we use the facts about Rényi divergence from the Preliminaries and follow that
notation closely. Let P = Dowf = (s, fs(Un))s←Un and Q = Drand = U2n be probability distributions over
{0, 1}2n.

Claim 3. R (P‖Q) ≤ β(n)2.

Proof of Claim 3.

R (P‖Q) =
∑

(s,y)∈{0,1}2n

P (s, y)2

Q(s, y)

= 22n
∑
s,y

P (s, y)2

= 22n
∑
s,y

(
1

2n
· Pr
P

[y|s]
)2

=
∑
s,y

Pr
P

[y|s]2

=
∑
s,y

(
|f−1s (y)|

2n

)2

≤ β(n)2

�

Let the event

E =

{
(s, y) ∈ {0, 1}n × {0, 1}n : Pr

A
[A(s, y) ∈ f−1s (y)] >

1

2w(n)

}
be the set of pairs (s, y) on which A successfully inverts with probability at least 1/2w(n). By an averaging
argument:

1

w(n)
< AdvA(P ) = Pr

(s,y)←P
[A(s, y) ∈ f−1s (y)]

= Pr
P

[A(s, y) ∈ f−1s (y) ∧ E]

+ Pr
P

[A(s, y) ∈ f−1s (y) ∧ ¬E]

≤ Pr
P

[E] + Pr[A(s, y) ∈ f−1s (y) | ¬E]

≤ P (E) +
1

2w(n)

Using (11) from the Preliminaries (i.e., Q(E) ≥ P (E)2

R(P‖Q) ), we get that

P (E) >
1

2w(n)
=⇒ Q(E) >

1

4w(n)2B(n)2
(44)
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From the definition of event E, it follows that the condition in (42) holds, completing the proof:

AdvA(Q) = Pr
(s,y)←U2n

[A(s, y) ∈ f−1s (y)] >
Q(E)

2w(n)
>

1

8w(n)3B(n)2
(45)

�

6 Conclusion

In this work, we demonstrated that the length-preserving Goldreich-Goldwasser-Micali function family is
weakly one-way. This is the first demonstration that the family maintains some cryptographic hardness even
when the secret key is exposed. Two interesting open questions suggest themselves:

1. Is GGM strongly one-way for all pseudorandom generators, or does there exist a generator for which
the induced GGM ensemble can be inverted some non-negligible fraction of the time? A positive answer
to this question would be very interesting and improve upon this work; a negative answer would be a
spiritual successor to [Gol02].

2. In the absence of a positive answer to the above, do there exist pseudorandom generators for which
the induced GGM ensemble is strongly one-way? In particular, do there exist generators that satisfy
the requirements of Theorem 2?
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A Appendix

Proof of (8):

SD ((p,D(p))P , (p,D
′(p))P )

=
1

2

∑
(p,x)∈Supp(P )×X

∣∣∣∣ Pr
(p,D(p))P

(p, x)− Pr
(p,D′(p))P

(p, x)

∣∣∣∣
=

∑
p∈Supp(P )

Pr
P

(p) · 1

2

∑
x∈X

∣∣∣∣ Pr
D(p)

(x)− Pr
D′(p)

(x)

∣∣∣∣
=

∑
p∈Supp(P )

Pr
P

(p) · SD (D (p) , D′ (p))

= E
p←P

[SD (D (p) , D′ (p))]

Proof of (9):

SD(f(Un), Un) =
1

2

∑
α∈{0,1}n

∣∣∣∣Pr[f(Un) = α]− Pr[Un = α]

∣∣∣∣
=

1

2

∑
α

∣∣∣∣ |f−1(α)|
2n

− 1

2n

∣∣∣∣
=

1

2

( ∑
α∈Img(f)

∣∣∣∣ |f−1(α)|
2n

− 1

2n

∣∣∣∣+
∑

α/∈Img(f)

1

2n

)
=

1

2

(
1− |Img(f)|

2n
+ 1− |Img(f)|

2n

)
= 1− |Img(f)|

2n

Proof of Inequality (23): Recall the following definition.

Definition 8 (q-good) For any q ∈ [0, 1], an element y ∈ {0, 1}n is called q-good with respect to θ if it is
both θ-thin and A finds some preimage of y for a uniformly random secret key s with probability at least q.
Namely,

Goodq :=
{
y ∈ Thinθ : Pr

s←Un

[A(s, y) ∈ f−1s (y)] > q
}

We begin with two observations:

� The distribution over yb is equivalent to the distribution (Gb(x))(b,x)←U×Un
. The number of pairs (b, x)

such that Gb(x) ∈ Goodq is at least |Goodq|, while the number of pairs (b, x) such that Gb(x) ∈ Thinθ
is at most θ|Thinθ|. Therefore:

Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ]

= Pr
(b,x)←U×Un

[Gb(x) ∈ Goodq | Gb(x) ∈ Thinθ]

≥ 1

θ
· |Goodq|
|Thinθ|

=
1

θ
· Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ]
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� By definition of Goodq:
Pr

s←Un

y←GU (Un)

[
A(s, y) ∈ f−1s (y)

∣∣ y ∈ Goodq
]
> q (46)

Combining the above

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1s (y)

∣∣ y ∈ Thinθ
]

≥ Pr
s←Un

y←GU (Un)

[y ∈ Goodq | y ∈ Thinθ] · Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1s (y)

∣∣ y ∈ Goodq
]

≥ q

θ
· Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ] (47)

If we show that

Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ] ≥
1

α(n)
− 2

θ
− q (48)

then selecting θ = 4α(n) and q = 1/4α(n), the value of (47) is bounded below by

Pr
s←Un

y←GU (Un)

[
A(s, y) ∈ f−1s (y)

∣∣ y ∈ Thinθ
]
≥ q

θ
· Pr
s,y←Un

[y ∈ Goodq|y ∈ Thinθ]

≥
(

1

4α(n)

)3

The following proves inequality (48) and completes the proof of (23).

1

α(n)
< Pr

s←Un
y←Un

[A(s, y) ∈ f−1s (y)] by (14)

= Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) ∧ y ∈ Thinθ]

+ Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) ∧ y 6∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) | y ∈ Thinθ] + Pr
y←Un

[y 6∈ Thinθ]

≤ Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) | y ∈ Thinθ] +
2n+1/θ

2n
by (22)

=⇒ 1

α(n)
− 2

θ
< Pr

s←Un
y←Un

[A(s, y) ∈ f−1s (y) | y ∈ Thinθ]

= Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) | y ∈ Goodq]

+ Pr
s←Un
y←Un

[y 6∈ Goodq | y ∈ Thinθ]

· Pr
s←Un
y←Un

[A(s, y) ∈ f−1s (y) | y ∈ Thinθ \ Goodq]

≤ Pr
s←Un
y←Un

[y ∈ Goodq | y ∈ Thinθ] + q

The final inequality is by the definition of Thinθ \ Goodq.
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