
On the Computational Overhead of MPC with
Dishonest Majority

Jesper Buus Nielsen1 and Samuel Ranellucci2,3

jbn@cs.au.dk, samuel@umd.edu

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
2 Department of Computer Science, George Mason University, Virginia, USA
3 Department of Computer Science, University of Maryland, Maryland, USA

Abstract. We consider the situation where a large number n of players
want to securely compute a large function f with security against an
adaptive, malicious adversary which might corrupt t < cn of the parties
for some given c ∈ [0, 1). In other words, only some arbitrarily small
constant fraction of the parties are assumed to be honest. For any fixed
c, we consider the asymptotic complexity as n and the size of f grows.
We are in particular interested in the computational overhead, defined as
the total computational complexity of all parties divided by the size of
f . We show that it is possible to achieve poly-logarithmic computational
overhead for all c < 1. Prior to our result it was only known how to get
poly-logarithmic overhead for c < 1

2
. We therefore significantly extend

the area where we can do secure multiparty computation with poly-
logarithmic overhead. Since we allow that more than half the parties are
corrupted, we can only get security with abort, i.e., the adversary might
make the protocol abort before all parties learn their outputs. We can,
however, for all c make a protocol for which there exists d > 0 such that
if at most dn parties are actually corrupted in a given execution, then
the protocol will not abort. Our result is solely of theoretical interest. In
its current form, it has not practical implications whatsoever.

1 Introduction

We consider the situation where a large number n of players want to securely
compute a large function f with security against an adaptive, malicious adversary
which might corrupt t < cn of the parties for some given constant c ∈ [0, 1). In
other words, only some arbitrarily small constant fraction of parties are assumed
to be honest. We also require that there exists d > 0 such that if at most dn
parties are actually corrupted in a given execution, then the protocol will not
abort. We call this the setting with constant honesty and constant termination
guarantee.

For any fixed c, we consider the asymptotic complexity as n and the size of f
grows. We are in particular interested in the computational overhead, defined
by summing the total computational complexity of all parties and dividing by
the size of f . We show that it is possible to achieve poly-logarithmic computa-
tional overhead for all c < 1. Prior to our result, it was only known how to get

poly-logarithmic overhead for settings with constant honesty and constant ter-
mination guarantee for c < 1

2 (cf. [DIK+08,CDD+15,BSFO12,BCP15,CDI+13]).
We therefore significantly extend the area where we can do secure multiparty
computation with poly-logarithmic overhead. Let us state up front that our result
is only meant as an asymptotic feasibility result. The constants hidden by the
asymptotic analysis are so huge that the protocol has no practical implications.

Our protocol is based on standard assumptions. It can be built in a white-box
manner from essentially any multiparty computation protocol secure against any
number of corrupted parties and a secure multiparty computation protocol which
has poly-logarithmic overhead and which is secure when at most a quarter of
parties are corrupt. Both protocols should be secure against a malicious, adaptive
adversary. We give an information-theoretic secure protocol in the hybrid model
with oblivious transfer and a small number of initial broadcasts. We also give a
computationally secure protocol in the hybrid model with a CRS and a PKI.

We note that approaches based on selecting a small committees and having
the committee run the computation are doomed to failure in our model. This
is because any small committee can be corrupted by the adaptive adversary.
The protocol from [CPS14] is insecure in our model precisely for this reason.
We also note that our protocol, in contrast to the low overhead protocols of
[DPSZ12,DZ13,DKL+13], does not rely on pre-processing. The IPS compiler
[IPS08] is also a generic protocol with low computational overhead, but it has
a quadratic overhead in the number of players, so it does not have a low com-
putational overhead in the sense that we consider here. Finally, notice that an
approach based on fully homomorphic encryption, where the n parties send
their encrypted inputs to one party and lets this party do the computation
can have a poly-logarithmic computational overhead. However, it does not have
constant termination guarantee. To ensure this, it seems one would still need
some constant fraction of the parties to do all the computation, suffering a blow
up in the overhead of a factor Θ(n).

2 Technical Overview

Our protocol follows the same high level approach as [DIK+08] which is based
on the work of [Bra87]. Our protocol is also inspired by the IPS compiler from
[IPS08] and the player virtualization technique from [HM00]. The main idea is
that we will run an honest majority protocol with poly-logarithmic overhead.
Following [IPS08], we call this the outer protocol. Each of the parties Pi in the
outer protocol will be emulated by a constant number of the parties running a
protocol with security against any number of corrupted parties. The set of parties
that run Pi is called committee number i. The protocol that committees run is
called the inner protocol.

We use an expander graph to set up the committees so that except with
negligible probability, a vast majority of committees will contain at least one
honest player as long as at most cn of the real parties are corrupted. We call
a committee consisting of only honest parties an honest committee. We call a

2

committee containing at least one honest party and at least one corrupted party
a crashable committee. We call a committee consisting of only corrupted parties
a corrupted committee. Since the inner protocol is secure against any number of
corrupted parties, an honest committee corresponds to an honest party in the
outer protocol and a corrupted committee corresponds to a corrupted party in
the outer protocol. Since the inner protocol only guarantees termination when
all parties in the committee are honest, a crashable committee corresponds to a
party in the outer protocol which is running correctly and which has a private
state, but which might crash—if a corrupted committee member makes the inner
protocol abort.

We need the outer protocol to tolerate a large constant fraction of malicious
corruptions (one quarter) along with any number of fail-stop errors. At the same
time, we need it to guarantee termination if there is a large enough fraction
of honest parties. On top of that the protocol needs to have poly-logarithmic
overhead. Prior to our work, there is no such protocol in the literature. We show
how to build such a protocol in a white-box manner from off-the-shelf protocols
with poly-logarithmic overhead.

There are many additional complications along the way. Most honest majority
protocols rely on private and authenticated channels. Since an adversary can
corrupt players so that all committees contain a corrupted member,4 we need
a way to allow the inner protocols emulated by different sets of parties to
communicate securely while hiding the messages from the committee members.
We should also prevent corrupted committee members from attacking the delivery
or authentication of the transmitted messages. In addition, when a user sends
his input to an emulated party of the outer protocol emulated by a committee
that may only have a single honest party, we should still be able guarantee that
he can securely send a message to the inner protocol. This is necessary to ensure
that an honest party cannot be prevented from giving input. To prevent this, we
employ a multitude of new techniques described in the following technical sections
which includes player elimination and the use of a tamper-resilient secret-sharing
scheme.

Although the basic approach is the same, there are important technical
differences between this work and [DIK+08]. In the following, we describe the
most important ones. The work of [DIK+08] employs Verifiable Secret Sharing
(VSS) to solve the problem of secure message transmission between parties. It
also uses VSS to allow real parties to provide their inputs to the emulated parties
of the outer protocol. The work of [DIK+08] can employ VSS because it can set
up committees so that it is guaranteed that most committees have an honest
majority. In contrast, since it could be that a majority of players are corrupt,
we cannot ensure that any committee has an honest majority and therefore we
cannot employ VSS. Another difference is that we need an explicit bipartite
expander graph with constant left degree and constant right degree. Since we

4 If we for instance start out with a setting where 99 out of every 100 parties are
corrupted and we start forming random committees, of course we should expect all
or essentially all committees to get a corrupted member.

3

could not find such a construction in the literature, we constructed such an
expander using standard techniques.

3 Setting the Stage

We use λ to denote the security parameter. We consider a setting with n players
P1, . . . ,Pn. Here Pi is just a distinct name for each of the participating players.
We use P = {P1, . . . ,Pn} to denote the set of players. We assume that all players
agree on P. We assume that n is a function of λ and that n(λ) ≥ λ. We often
write n instead of n(λ).

We also assume that the parties agree on a circuit C to be computed. We
assume that all parties have a fixed size input in C. We use s = sizeBool(C) to
denote the size of C.

By a protocol π, we mean a generic protocol which has an instantiation
π(C, λ, n) for each circuit C, value of the security parameter λ and number n
of parties. We assume that there exists a uniform poly-time Turing machine
which produces circuits computing π(f, λ, n) given input (C, 1λ, 1n). We do
not consider the production of π(C, λ, n) as part of the complexity of π. We
use comp(π(C, n, λ)) to denote the expected total work done by all parties in
π(C, n, λ), where the work is measured as local computation, counting the sending
and receiving of one bit as 1 towards the work. Note that comp(π(C, n, λ)) in
particular is an upper bound on the communication of the protocol.

We are interested in the complexity of MPC as the size of C and the number of
parties grow. We are in particular interested in the overhead of the computation,
defined as the complexity of the protocol divided by the size of C. As usual,
we are also interested in how the complexity grows with the security parameter
λ and the number of parties n. In defining the computational overhead, we
follow [DIK10]. Let OH be a function OH : N× N× N→ R. We say that π has
computational overhead OH if there exists a polynomial p : N×N×N→ N such
that for all C, n and λ it holds that

comp(π(C, n, λ)) ≤ size(C) ·OH(n, λ, size(f)) + p(n, λ, log size(f)) .

Let NC be Nick’s class, i.e., the set of functions that can be computed by
circuits of poly-logarithmic depth. We want to securely evaluate f in a distributed
manner without much overhead. Current techniques even for honest majority only
achieve this if the computation of f can be parallelised. This is why we consider
NC. Previous protocols essentially have the same restriction. For instance, the
protocol in [DIK10] has a complexity of the form s log(s) + d2 · poly(n, log(s)),
where s is the size of the circuit computing f and d is the depth of the circuit.
That means that if d is not polylog(s), then the overhead will not be polylog(s).

We prove security in the UC model assuming a synchronous model, point-to-
point channels and broadcast. The UC model is originally best geared towards
modeling asynchronous computation, but it can be adapted to model synchronous
computation.

4

3.1 UC and Synchronous Computation

Our study is cast in the synchronous model. Still, we would like to prove security
in the UC model which by design considers asynchronous computation. The
reason why we would like to use the UC model is to give modular proofs. We
need to consider reactive secure computations for which the UC model is the
de facto standard. One can cast synchronous computation in the UC model by
using the techniques of [KMTZ13]. The model from [KMTZ13] is, however, much
more refined and detailed than what we need, so we have decided to go for a
simpler model that we present below.

We are going to assume that synchrony is ensured by the environment giving
the parties Pi special inputs tick modeling that the time has increased by one
tick for Pi. The parties can then simply count what time it is. We then simply
require that the environment keeps the clocks of two honest parties at most one
tick apart. To make sure that all parts of a composed protocol and all ideal
functionalities know what time it is, we require that all parties which receive an
input tick passes it on to all its sub-protocols and ideal functionalities.

In a bit more detail, synchrony is defined via a synchrony contract that all
entities must follow for as long as all other entities do so. We describe the contract
now for the different entities of the UC framework. In doing so, we describe the
behaviour that the entity must show, assuming that all other parties followed
the contract until that point. If an entity A observes another entity B breaking
the contract, then A is allowed to exhibit arbitrary behaviour after that point.

Synchronous Environment A round is defined by all parties having received
the input tick from the environment. The environment might in each round
give additional input xi to a party Pi by inputting (tick, xi). In most of our
We use ri to denote the round in which Pi is. We say that party Pi is in round
ri, if it has received the input tick exactly ri times from the environment.
The environment must ensure that ri ≤ rj + 1 for all honest parties Pi and
Pj . Furthermore, when the environment sends tick to an honest party, it
cannot send another tick to that party until it has received an output from
Pi.

Synchronous Parties If a party Pi gets input tick from its environment it
must after this input, send tick exactly once to each of its ideal functionalities.
Note that the caller might be a super-protocol instead of an environment and
that Pi might be calling a sub-protocol instead of an ideal functionality. This
is transparent to Pi and we will use environment to denote the entity calling
Pi and ideal functionality to denote the entity being called by Pi. When an
honest party received back an output from all the sub-entities to which it
input tick, it must deliver an output to its environment as the next thing.

Notice that if we compose a synchronous environment with a synchronous
protocol to get a new environment, then we again have a synchronous environment,
which is the main observation needed to lift the UC composition theorem to the
synchronous setting.

5

In the following we will ignore the inputs tick as they are only used to define
which round we are in. We will say that Pi gets input xi in round ri if it gets
input (tick, xi) in that round. We will say that Pi gets no input in round ri if it
gets input (tick) in that round.

A synchronous ideal functionality is given by a transition function Tr which
in each evaluation takes the state from the previous evaluation, an input from
each other party and computes a new state and one output for each of the other
parties. Each evaluation is started by the honest parties, each giving an input.
For simplicity we require that these inputs are all given in the same round. We
also assume that each evaluation has a fixed round complexity, given by a round
function R. Evaluation number e will take R(e) rounds. If a corrupted party does
not give an input, a default value is used. For a given transition function Tr
and round function R the corresponding synchronous ideal functionality F sync

Tr,R is
given in Fig. 1.

Initialize Let e = 0; This is a counter of how many evaluations were done so far.
Throughout, let C denote the current set of corrupted parties and let H denote
the current set of honest parties. Let σ = 1λ; This is the initial internal state.
Let State← inputting.

Honest Input If in some round all parties Pi ∈ H give an input xi and State =
inputting, then set xj = ⊥ for Pj ∈ C, store (x1, . . . , xn), let e← e+ 1 and let
State← computing. (If in some round some honest party Pi gives an input xi
and some honest party Pj does not give an input or State 6= inputting, then
do a complete breakdown.)

Corrupt Input On input (Pi, x) for Pi ∈ C while State = computing, update
xi ← x. Then turn over the activation to the adversary.

Compute During the next R(e) rounds after setting State← computing all honest
parties just output tick.

Eval If the adversary inputs (eval) and State = computing, then compute
(σe, y1, . . . , yn) ← Tr(σe−1, x1, . . . , xn). Set State ← evaluated. Output
{(i, yi)}Pi∈C to the adversary.

Output In round R(e) + 1, after setting State← computing, output yi to Pi for
Pi ∈ H and let the adversary decide the order of delivery.

Abort The ideal functionality can be parametrized by an abort threshold a. If a is
not specified, it is assumed that a = n. If the adversary inputs (abort) and
|C| > a, then output abort to all honest parties and terminate.

Total Breakdown Doing a total breakdown in a given round means that the ideal
functionality outputs the current and all previous σi to the adversary along
with all previous inputs and then switches to a mode where it is the adversary
that determines which messages are sent by the ideal functionality.

Fig. 1. Synchronous Ideal Functionality F sync
Tr for Transition Function Tr and Round

Function R

We will be using an ideal functionality for synchronous communication.
In each evaluation, party Pi has input (xi,1, . . . , xi,n) and receives the output
(x1,i, . . . , xn,i), i.e., in each round each party can send a message to each other

6

party. We will not write this ideal functionality explicitly in our formal statements.
We consider it the ground model of communication, i.e., it is present in all our
(hybrid) models. The round complexity of each evaluation is 1.

We will be using an ideal functionality for broadcast between a set of parties
P1, . . . ,Pn. In each evaluation each party has input xi and receives the output
(x1, . . . , xn). The round complexity is the same in all rounds but might depend
on the number of parties. For n parties, we use Rbroadcast(n) to denote the round
complexity of each round of broadcast among n parties.

3.2 Broadcast.

For our protocols, we require a synchronous broadcast channel. A broadcast
channel is a primitive that allows a player to broadcast a message to a subset of
the players. When a player receives a broadcasted message, he is assured that
each other player received the same message.

The ideal functionality is for one sender S and r receivers R1, . . . ,Rr.

Broadcast On input m from S and input begin from all honest receivers Ri in
the same round, wait for Rbroadcast rounds and then output m to all receivers,
letting the adversary determine the order of delivery.

Corrupt sender If S is corrupt and does not provide an input, then let m = ⊥.
Furthermore, if S is corrupt and the adversary inputs (replace input,m′)
before an output was delivered to the first honest party, then let m← m′.

Fig. 2. The broadcast functionality Fbroadcast

4 The Outer Protocol

The outer protocol πout involves n users U1, . . . ,Un and m servers S1, . . . ,Sm.
Only the users have inputs and outputs. The protocol computes an n-party
function f : Dn → En given by circuit C. We assume that D = {0, 1}k and that
E = D ∪ {⊥}, but the protocol obviously generalises to differently structured
inputs and outputs. We use ⊥ to signal that a user did not get an output.

We assume that f is fixed and that the protocol runs in some fixed number
of rounds, which we denote by Rout.

We assume that the only interactions involving users is in the first round
where all users send a message to all servers (we call these the input messages)
and in some given round Rout all servers send a message to all users (we call
these the output messages). We use Inout to denote the randomized function
used to compute input messages from an input and we use Outout to denote the
deterministic function used to compute the output from output messages.

We assume that in each round r, each server Sj sends one message yrj,k to
each of the other servers Sk. We use yrj,j to denote the state of Si after round r

7

and at the start of round r + 1. We use Trout to denote the transition function
of the servers: the function applied in each round to compute a new state and
the messages to be sent in the given round.

Inputs
For i = 1, . . . , n user Ui has input xi and has random tape ti. For j = 1, . . . ,m
server Sj has no input and has random tape rj .

Server initialization
For j, k = 1, . . . ,m server Sj lets y0k,j be the empty string.

Generation of input shares
For i = 1, . . . , n user Ui samples (xi,1, . . . , xi,m)← Inout(xi; ti).

Distribution of input shares
For i = 1, . . . , n and j = 1, . . . ,m user Ui sends xi,j to server Sj .

Embedding of input shares
For j = 1, . . . ,m server Sj sets y0j,j ← (x1,j , . . . , xn,j , rj).

Evaluation rounds
For r = 1, . . . ,Rout round r runs as follows:
Transition

For j = 1, . . . ,m server Sj computes (yrj,1, . . . , y
r
j,m) ←

Trout(r, yr−1
1,j , . . . , y

r−1
m,j).

Communication
For j, k = 1, . . . ,m server Sj sends yrj,k to server Sk.

Generation of output shares
For j = 1, . . . ,m server Sj computes (zj,1, . . . , zj,n) ← Trout(Rout +
1, yRout

1,j , . . . , y
Rout
m,j)

Distribution of output shares
For j = 1, . . . ,m and i = 1, . . . , n server Sj sends zj,i to user Ui.

Output reconstruction
For i = 1, . . . , n user Ui computes zi ← Outout(z1,i, . . . , zn,i).

Fig. 3. Running an outer protocol πout = (Rout, Inout,Trout,Outout) for f

We assume that users can be actively corrupted. To actively corrupt Ui the
adversary will input (active-corrupt) to Ui. In response to this Ui sends
its internal state to the adversary, will forward all incoming messages to the
adversary, and from now on, it is the adversary that determines what Ui sends.
After an active corruption, a user is called malicious. A user is called correct
if it is not malicious. We assume that a server Sj can be actively corrupted or
crash-stop corrupted. Active corruption is handled as usual. To crash-stop corrupt
Sj the adversary will input (crash-stop-corrupt) to Sj . In response to this
Sj , sends crashed to all other servers and stops giving any outputs and stops
sending any messages. After this we say that Sj is crashed. The adversary might
actively corrupt a crashed server. A server is called correct if it is not malicious
nor crashed. We work with two thresholds tmalout ttermout which are values between
and 0 and 1 that represent proportions of servers. We assume that at most a
tmalout proportion of servers are actively corrupted. We will allow any number of
malicious users and we will allow any number of crashed servers. However, we

8

will only guarantee termination if less than a ttermout proportion of servers are
incorrect.

The ideal functionality is for n users U1, . . . ,Un and m servers S1, . . . ,Sm and a
function f .

Input If in some round all correct users Ui give an input xi and in the same round
all correct servers get an input begin, then set xi = ⊥ for all actively corrupted
users. In the first round where a correct user or correct server gets an input not
of the above form, do a total break down.

Compute During the next Rout rounds, output nothing. We call this the computa-
tion period.

Eval If during the computation period the adversary inputs eval or if Rout

rounds have passed without such an input from the adversary, then compute
(z1, . . . , zn) ← f(x1, . . . , xn). After this we say that the evaluation has taken
place. Now for all Ui which are passively or actively corrupted, output (i, zi) to
the adversary.

Replace inputs If the evaluation has not yet taken place and the adversary inputs
(replace input, i, x′i) and Ui is actively corrupted, then set xi ← x′i.

Replace outputs If the evaluation has taken place and outputs have not yet been
delivered and the adversary inputs (replace output, i) and there are more than
ttermout incorrect servers, then set zi = ⊥.

Output After Rout + 1 rounds have passed output zi to Ui. After this we say that
outputs have been delivered.

Fig. 4. The ideal functionality F ttermout
out corresponding to an outer protocol for f

Definition 1. We say that πout is a (tmalout, t
term
out)-suitable outer protocol if it

UC realises the corresponding F ttermout
out against a proportion tmalout of adaptive, active

corruptions and any number of adaptive crash-stop corruptions.

Theorem 1. There exists a suitable outer protocol π for all C ∈ NC with OH =
polylog(n) · log(size(C)).

Proof (sketch). We only sketch a proof of the theorem as the desired protocol
can be built in a fairly straightforward manner from off-the-shelf techniques.

Starting from [DIK10] we get a protocol π for m servers and a circuit C
which is perfectly secure against m/4 adaptive, active corruptions. We can extend
this to the client-server setting by having each Ui secret share its input among
S1, . . . , Sm and then computing the function f ′ which first reconstructs the secret
sharings, computes f , and outputs secret sharings of the results. We denote
the resulting protocol by π′f . It runs the protocol πf ′ , i.e., the protocol π from
[DIK10] for the function f ′.

The secret-sharing scheme used for the inputs and outputs should have
the following properties. First, that given m shares of which at most 1

4m are
incorrect, one can efficiently reconstruct the message. Furthermore, the secret-
sharing scheme should also have the property that given at most m/4 shares,

9

one gets no information on the secret. Finally, when secret sharing a message x,
the secret-sharing scheme should produce a secret sharing of size O(|x|+m) and
it should be possible to share and reconstruct in time O(|x| + m). The secret
sharing scheme from [CDD+15] meets these criteria.

We now do a generic, white-box transformation of the protocol π into a
protocol π′f which can tolerate crash errors. Each server Sj will run exactly as in
π except that it keeps a counter cj which is initialized to 0 and which is increased
whenever Sj sees a party sent crashed. There is a threshold t = m/8 and when
cj ≥ t, server Sj will crash itself, i.e., it sends crashed to all parties and stops
sending messages. If at the end of the computation of f ′, a server is not crashed,
it sends its share of the output of Ui to Ui.

The intuition behind π′f is that we try to keep the number malicious servers
plus the number of crashed servers within the threshold m/4 of π. We will use
m/8 of the budget for crashes and have m/8 left for tolerating some additional
malicious corruptions. If we see too many crashed servers, then all servers will
shut down the execution of π by self-crashes. We say that π was shut down if all
correct servers did a self-crash.

We are going to reduce the security of π′f to that of π by considering all parties
which deviate from π′f as actively corrupted. Notice that in π′f there are three
types of parties which deviate from the underlying protocol πf ′ . 1) The servers
Sj which are actively corrupted in π′f . 2) The servers Sj which are crash-stop
corrupted in π′f . 3) The correct servers Sj which did a self-crash and hence
stopped running πf ′ . At any point in the execution, let di denote the number of
servers which deviated from π and are of type i and let d = d1 + d2 + d3. We
are going to show that at any point before the shut-down point, it holds that
d < m/4. This means that up to the shut-down point, we can perfectly emulate
an attack on π′f by an attack on πf ′ using < m/4 active corruption. This also
holds after the shut-down point since all honest parties have self-crashed and
therefore there is no more communication from honest parties to simulate.

What remains is to show that if d ≥ m/4, then the shut-down point has been
reached. Assume that d ≥ m/4. If in a given round there are (d1, d2, d3) deviators
of the various types, then at the beginning of the next round all correct servers
have seen d2 + d3 messages crashed as both crashed and self-crashed parties
sent out crashed to all parties. Hence before the next round begins it will hold
for all correct Sj that cj ≥ d2 +d3 = d−d1 ≥ m/4−d1 ≥ m/4−m/8 = m/8 = t.
Hence the shut-down point has been reached.

We then show that if any party gets an output then all honest users have
their inputs considered correctly and all honest parties who get an output get
the correct output. If the shut-down point is reached, then clearly no party gets
an output, so assume that the shut-down point was not reached. Then the attack
can be emulated given m/4 active corruptions. This means that at most m/4 of
the shares of the honest parties are missing or modified. Therefore each honest
Ui will correctly reconstruct zi.

This ends the proof that the protocol is secure. We now address when the
protocol is guaranteed to terminate.

10

It is clear that as long as d1 + d2 < t, we will have that d3 = 0 as all
cj ≤ d1 + d2 until the first self-crash. This shows that as long as d1 + d2 < t we
will have d < t = m/8 and therefore we will have guaranteed termination of π′f .
Furthermore, if d1 + d2 < m/8 then at least m − d ≥ 7

8m shares of the secret
shared inputs are correct and at most d1 + d2 ≤ m/8 are incorrect. Hence, all
honest parties will have their inputs xi reconstructed inside f ′. It will similarly be
guaranteed that each Uj receives at least m− d ≥ 7

8m shares of the secret shared
output and that at most m/8 of these are incorrect. Hence Ui can compute the
correct zi.

We then address the complexity of the functions. By the assumptions on the
secret sharing scheme and on the size of f , we have that |f ′| = O(|f |+ n ·m).
Assuming that m = O(n), this is of the form |f ′| = O(|f |) + poly(n), so for the
sake of computing the overhead, we can assume that |f ′| = O(|f |). When f ∈ NC,
then the protocol from [DIK10] has OH = polylog(n) · log(|f ′|).

5 The Inner Protocol

The inner protocol πout involves c parties U1, . . . ,Uc. It must securely realize
reactive secure computation, i.e., there are several stages of inputs and outputs
and a secure state is kept between the stages. Each stage is computed via a
transition function Trin. We need that the round complexity of each stage is
known before the protocol is run. The round complexity of stage Stage is denoted
by Rin(Stage).

Definition 2. We say that πin is a suitable inner protocol for (Trin,Rin) if it

UC realises FTrin,Rin
in against adaptive, active corruption of any number of parties.

Theorem 2. For for all c and poly-sized Trin there exists Rin and πin such
that πin is a suitable inner protocol for (Trin,Rin) in the OT-hybrid model with
statistical security and complexity O(poly(c)|Trin|), where in the complexity the
calls to the OT functionality are counted as the size of the inputs and outputs.

Proof. One can use the protocol from [IPS08]. One can in particular note that
once the circuit to be computed is fixed, [IPS08] has a fixed round complexity.

Theorem 3. For all c and poly-sized Trin there exists Rin and πin such that πin
is a suitable inner protocol for (Trin,Rin) in the CRS model with computational
complexity O(poly(c)|Trin|λ).

Proof. Replace the ideal OTs in Thm. 2 by the adaptive secure OT from [GWZ09].

6 Combining the Inner Protocol and the Outer Protocol

In this section, we describe how to combine the inner and outer protocol into the
protocol that we call the combined protocol. This is a new instance of a black-box
protocol transformation defined by [IKP+16]. First, we will describe tools that

11

The ideal functionality is for c parties P1, . . . ,Pc, transition function Trin and round
complexity function Rin.

Init Initialize a stage counter Stage ← 1 and initialize a state variable State ←
inputting.

Input If in some round all correct parties Ui give an input xi and State =
Inputting, then set xi = ⊥ for all actively corrupted parties. Set State ←
computing. If in some round some honest party gives an input and (State 6=
inputting or some honest party does not give an input), then do a complete
breakdown.

Compute During the Rin(Stage) rounds which follow State being set to computing,
output tick to all parties.

Replace inputs If State = computing and the adversary inputs
(replace input, i, x′i) and Pi is actively corrupted, then set xi ← x′i.

Eval If State = computing and the adversary inputs eval or if Rin(Stage) rounds
have passed since State was set to computing without such an input from the
adversary, then compute (σStage+1, y1, . . . , yc)← Trin(σStage, x1, . . . , xc) and for
all corrupted Pi, output (i, yi) to the adversary. Set State← evaluated.

Replace outputs If State = evaluated and the adversary inputs
(replace output, i) and Pi is honest, then set yi = ⊥.

Output Exactly Rin(Stage) rounds after State was set to computing, output yi to
Pi and let the adversary specify the order of delivery. Set State← inputting.
If any honest Pi receives ⊥, then do a crash (see below).

Crash Set State ← crash, output crash to all parties, ignore all future input,
and in all future rounds output tick to all parties.

Crashing If all honest parties input crash in the same round, then do a crash as
above. If some corrupted party inputs crash then do a crash as above. If in
some round, some honest party inputs crash and some honest party does not
input crash, then do a complete breakdown.

Fig. 5. The ideal functionality Fin for the inner protocol

we will need. The first tool is called an expander graph. The second tool called
authentic secret sharing is a secret sharing scheme that allows an honest party
that receives shares to detect tampering. Our third tool is called Authenticated
One-Time Encryption which is an information-theoretic authenticated encryption
scheme. It is analogous to the one-time pad. Finally, we will describe how to run
the combined protocol. We will describe what to do when an emulated server
crashes, how emulated servers can exchange keys with other parties even when
its committee only has a single honest party and then how the servers can then
use those keys to securely communicate. We will then describe our final protocol
and prove that it has poly-log overhead and some termination guarantees.

6.1 More Tools

Threshold bipartite expander graph. A threshold bipartite expander graph
is a bipartite graph with n left nodes and m right nodes which guarantees
that that for any set of left nodes that has size greater or equal to αn, the

12

size of the neighborhood of that set is greater or equal to βm. Recall that
given a graph G = (V,E) and some subset S ⊆ V , the neighbourhood of S
denoted by N(S) is the set of nodes that are adjacent to a node in S, i.e.,
N(S) := {v ∈ V | ∃ u ∈ S : (u, v) ∈ E}. As usual a bipartite graph is a graph
G = (L ∪ R,E) where L ∩ R = ∅, N(L) ⊆ R and N(R) ⊆ L. The left (right)
degree is the maximal degree of a node in L (R).

Definition 3. A (n,m,α, β)-threshold bipartite expander is a bipartite graph
G = (L ∪ R,E) with |L| = n, |R| = m such that if S ⊆ L and |S| ≥ αn then
N(S) ≥ βm.

We show that for all constant 0 < α < 1 and 0 < β < 1 there exists m = O(n)
and an (n,m,α, β)-threshold bipartite expander where the left degree is O(1)
and the right degree is O(1).

We describe a simple construction of a bipartite threshold expander graph. It
is inspired by [SS96]. We will show that for any α > 0, that there exists a degree
d such that for every n, β there exists an explicit way of constructing graphs
such that the resulting graph is (n, n, α, β)-threshold bipartite expander graph
except with probability negligible in n. In addition, the degree of the graph is at
most d and each right node has at least one edge. We denote the binary entropy
function as H.

The construction is rather simple. First, we sample at random a set of d
permutations.

Π← {π1, . . . , πd : [n]→ [n]}

We denote L = {1, . . . , n} as the set of left edges and R = {n+ 1, . . . , 2n} as
the set of right edges. We select the graph as follows:

E ←
⋃
π∈Π

{(1, n+ π(1)), . . . , (n, n+ π(n))} (1)

G← (L ∪R,E) (2)

Theorem 4. For any 0 < α, β < 1, let d =
⌈
−H(α)+H(β)

α log β

⌉
+1 then for any n ∈ N

the previous construction results in a bipartite (n, n, α, β)-threshold expander
except with probability smaller than 2αn log β

We note that the number of left sets of size αn is equal to
(
n
αn

)
. We note that

the number of right sets of size (1− β)n is equal to
(
n
βn

)
=
(

n
(1−β)n

)
.

We will now upper bound the probability that the neighborhood of αn left
nodes does not intersect a set of (1− β)n right nodes. We can see that for each
permutation, for each element in the left set, the probability that the element is
not mapped to an element in the right set is less than or equal to β. Therefore
we have that the probability is upper bounded βαnd.

By the union bound, we know that the probability that there exists such sets
is less than βαnd

(
n
αn

)(
n
βn

)
. By applying Stirling’s approximation, we get that this

13

probability is upper bounded by

2nH(α)+nH(β)+αnd log(β) = 2n(H(α)+H(β)+αd log(β))

Finally, by setting d =
⌈
−H(α)+H(β)

α log β

⌉
+ 1

2n(H(α)+H(β)+αd log(β)) ≤ 2αn log β

Lemma 1. For the construction above, the degree of the graph is at most d.

This follows since there are d permutations in Π and each node gains at most
one edge per permutation.

Lemma 2. For the construction above, each right node has at least one edge.

This follows since each permutation assigns each right node to a left node.

Authentic Secret Sharing. Let F be a finite field and n be an integer. A secret
sharing scheme consists of two algorithms share and rec. For every s ∈ F, share(s)
outputs a randomized set of shares (s1, . . . , sn). We use share(s) to denote the
distribution on (s1, . . . , sn) when the input is s. The algorithm rec takes as input
(s′1, . . . , s

′
n) and gives an output in F ∪ {⊥} where ⊥ signals error.

For any i ∈ [n] we let (s1, . . . , sn)−i = (s1, . . . , si−1, si+1, . . . , sn). For any
(s1, . . . , sn)−i and any s we let ((s1, . . . , sn)−i, s) = (s1, . . . , si−1, s, si+1, . . . , sn).
For all i and all s ∈ F and all unbounded adversaries A taking as input
(s1, . . . , sn)−i and giving outputs (s′1, . . . , s

′
n)−i consider the game where we

sample (s1, . . . , sn)← share(s) and compute s′ = rec(A((s1, . . . , sn)−i), si). Note
that it might be the case that s′ = ⊥. We use A−i(s) to denote the distribution
of s′, i.e., the result of reconstructing with the n− 1 possibly modified shares. Let
δ(⊥) = ⊥ and δ(x) = > for x 6= ⊥. We use Â−i(s) to denote (δ(s′), (s1, . . . , sn)−i),
i.e., the shares seen by the adversary plus the information whether reconstructing
with the wrong shares gave an error or not.

Definition 4 (authentic secret sharing). Let (share, rec) be a secret sharing
scheme. We call (share, rec) an authentic secret sharing scheme if the following
conditions hold.

Reconstruction For all s ∈ F it holds that Pr[rec(share(s)) = s] = 1.
Sound For all s ∈ F and all i ∈ [n] and all unbounded adversaries A it holds

that Pr[A−i(s) ∈ {s,⊥}] = 1.
Privacy For all s, s̄ ∈ F and all i ∈ [n] and all unbounded adversaries A it holds

that Â−i(s) and Â−i(s̄) are statistically close.

Authenticated One-Time Encryption. An Authenticated One-Time En-
cryption scheme is given by a key space, encryption algorithm and decryption
algorithm (K,Enc,Dec). For each message length m and value λ of the secu-
rity parameter we have a key space Km,λ. Given K ∈ Km,λ, λ and message
x ∈ {0, 1}m the encryption algorithm outputs a ciphertext A = EncK,λ(x). Given
K ∈ Km,λ, λ, m and ciphertext A the decryption algorithm outputs message
x = DecK,λ,m(A).

14

Correctness For all m and all x ∈ {0, 1}m it holds with probability 1 for a
random key K ← Km,λ that DecK,λ,m(EncK,λ(x)) = x.

Security Let A be a computationally unbounded algorithm. Input λ to A and
run it to get m and x0, x1 ∈ {0, 1}m. Sample a uniformly random bit b ←
{0, 1}. Sample K ← Km,λ and A← EncK,λ(xb). Let Om,K,A(B) be the oracle
which on input B 6= A returns DecK,λ,m(B). Compute g ← AOm,K,A(B)(A)
for g ∈ {0, 1}. The advantage of A is given by AdvA(λ) = |Pr[g = b]− 1

2 |. We
say that (K,Enc,Dec) is secure if AdvA(λ) ∈ negl(λ) for all A which makes
at most a polynomial number of queries to its oracle.

Authenticity Let A be a computationally unbounded algorithm. Input λ to A
and run it to get m. Sample K ← Km,λ. Let Om,K(B) be the oracle which
on input B returns DecK,λ,m(B). Compute c← AOm,K,A(B)(). We say that
(K,Enc,Dec) has authenticity if Pr[DecK,λ,m(c) 6= ⊥] ∈ negl(λ) for all A
which makes at most a polynomial number of queries to its oracle.

We say that an Authenticated One-Time Encryption scheme has overhead
O(1) if it holds for all messages x and all K ∈ K|x|,λ that |K| + |EncK(x)| ∈
O(|x|+ poly(λ)) for a polynomial independent of |x| and if we can encrypt and
decrypt in time O(|K|+ |EncK(x)|+ |x|). This means that for large enough x we
have that |K|+ |EncK(x)| ∈ O(|x|) and that we can encrypt and decrypt in time
O(|x|). We can construct such a scheme off-the-shelf. Let MAC be an information-
theoretic MAC which can handle message of length O(λ) using keys of length
O(λ) and which can be computed in time poly(λ). Such a scheme is described
for instance in [WC81]. Let H be a family of almost universal hash-functions
which can be computed in linear time, see for instance [IKOS08]. For messages
of length m, the key for the encryption scheme will consist of (L,H, P), where
L is a random key for the MAC, H ← H is a random hash function from the
family and P is uniformly random in {0, 1}m. To encrypt, compute C = x⊕ P ,
M = H(C) and A = MACL(M) and send (C,A). To decrypt, if |C| 6= m, output
⊥. Otherwise, compute M = H(C) and A′ = MACL(M). If A′ 6= A, output ⊥.
Otherwise, output C ⊕ P . The complexity is as claimed and the security follows
from [WC81].

6.2 The Combined Protocol

For the combined protocol we have n parties P1, . . . ,Pn of which at most n ·
tmal,comb are corrupted. We want to compute a function f . The parties are going
to run one execution of the outer protocol to compute f . In the outer protocol we
have n users U1, . . . ,Un and m servers S1, . . . , Sm of which we need that at most
tmal,out ·m are corrupted. Party Pi is going to run the code of Ui. Each server Sj
is going to be emulated by a small subset of the parties. The inner protocol will
be used to emulate servers. We set α = 1− tmal,comb and set β = 1− tmal,out. We
use a (n,m,α, β)-threshold expander graph G = (V,E) to form the committees.
For j = 1, . . . ,m we let

Cj = {Pi | (i, j) ∈ V }

15

We call Cj committee j. Using the graph from Section 6.1, the size of committees
is constant and except with negligible probability all sets of αn parties have
members in at least βm committees.

We will present our result in a hybrid model with ideal functionalities for the
inner protocol. We call this the inner-hybrid model. For each i = 1, . . . ,m, we are
going to have an ideal functionality Fj of the form given in Fig. 5 with c = |Cj |
and the parties being Cj . We call Fj virtual server j and we specify later the
behaviour of Fj .

We set up some notation. Let P = {P1, . . . ,Pn}. At any point in the execution,
Phonest ⊂ P denotes the set of parties which are honest in the combined protocol
and we let Pmal be the set of maliciously corrupted parties..

We use S = {1, . . . ,m} to denote the identities of the virtual servers. We
define three disjoint subsets as follows

Shonest = {j ∈ S | Cj ⊆ Phonest}
Smal = {j ∈ S | Cj ⊆ Pmal}

Scrashable = S \ (Shonest ∪ Smal)

If j ∈ Shonest, then all parties in committee j are honest. Therefore, Fj is secure
and also has guaranteed output delivery. This will correspond to Sj being secure
in the outer protocol. If j ∈ Smal, then all parties in committee j are malicious.
Therefore, Fj provides no security. This will correspond to Sj being malicious in
the outer protocol. If j ∈ Scrashable, then at least one party in committee j is
honest and at least one party is malicious. Therefore Fj provides privacy and
correctness, but some or all honest parties might not learn the output. If at some
point a party in committee j does not get an output, then Fj will abort. This
corresponds to Sj crashing in the outer protocol. We will let the honest party in
Cj which received output ⊥ inform all other parties that Fj has aborted. Overall,
this will correspond to a crash-stop corruption of Sj in the outer protocol.

By the way we have set the parameters of the threshold expander graph it
follows that if |Pmal| ≤ n · tmal,comb then |Smal| ≤ m · tmal,out. We have therefore
almost perfectly emulated the entities U1, . . . ,Un, S1, . . . , Sm of the outer protocol
with the needed adversary structure as long as |Pmal| ≤ n · tmal,comb. The only
significant difference between U1, . . . ,Un, S1, . . . , Sm and P1, . . . ,Pn, F1, . . . ,Fm
is the fact that in the outer protocol, the entities U1, . . . ,Un,S1, . . . ,Sm can
send private messages to each other, whereas most of the entities P1, . . . ,Pn,
F1, . . . ,Fm cannot send private messages to each other. This is going to give us
the so-called secret communication problems when we emulate the protocol in
Fig. 3.

Distribution of input shares To give inputs, each Ui sends a share to Sj . In
the emulated outer protocol this corresponds to Pi inputting a message to
Fj . If Pi 6∈ Cj , this is not allowed.

Server Communication As part of the evaluation, each Sj sends a message to
Sk. In the emulated outer protocol, this corresponds to Fj sending a message
to Fk. This is not allowed since ideal functionalities cannot communicate.

16

Distribution of output shares To give outputs, Sj sends a share to Ui. In
the emulated outer protocol this corresponds to Fj outputting a message to
Pi. If Pi 6∈ Cj , this is not allowed.

Another problem is that in the outer protocol, if a server Si crashes, it will
by definition notify the other servers. However, now the code of Si is “trapped”
inside Fi so Si must notify Sj via the parties Ci and Cj and there might be
corrupted parties among Ci ∪ Cj . We call this the abort propagation problem.
Handling of the the abort propagation problem is described in Fig. 6.

The parties run a copy of the outer protocol. The code and state for Si will be inside
Fi. If Si crashes inside Fi, then Fi will also crash, i.e., it will enter a state with
State = crash and will output crash to all parties. As we will describe later, there
will be other events which can trigger Fi to crash. In all those cases, we want that
all other Fj learn that Fi has crashed. This is handled as follows:

Define Crashing We say that Fi is crashed if it enters a state where State = crash.
If this happens, it outputs crash to all P ∈ Ci

Crash Alerting If at any point during the execution a party P ∈ Ci sees Fi output
crash, then for j = 1 . . .m, P broadcasts (crash, i) to all parties in Ci ∪ Cj .

Crash Recording A crash alert is received as follows.

– If at any point during the execution, a party Pk ∈ Cj receives a broadcast
(crash, i) from a party in Ci to Ci ∪ Cj then Pk inputs (crash, i) to Fj .

– If Fj receives input (crash, i) from all parties in Cj then it inputs (crash, i)
to Sj as if coming from Si in a run of the outer protocol. If Fj receives input
(crash, i) from all honest parties but some corrupted party did not give
input (crash, i) then Fj does a crash. a If Fj receives input (crash, i) from
some honest parties but some other honest party did not input (crash, i),
then Fj does a complete break down.

a Recall that in the UC model ideal functionalities know which parties are corrupt.

Fig. 6. Crash Handling Part of πcomb

We handle all three secret communication problems by letting the entities
that need to communicate share a secret key which is used to encrypt the
given message using an Authenticated One-Time Encryption scheme. Then the
authenticated ciphertext c can be sent in cleartext between the two involved
entities. This solves the problem as an ideal functionality Fj for instance can
output c to all members of Cj which can then all send c to all the members of Ck
who will input it to Fk. Our way to solve the secret communication problems
is significantly more complicated than the approach in [IPS08] and other player
emulation protocols. The reason is that previous techniques incur an overhead
of at least n. For instance, in [IPS08] each message is secret shared among all
parties, which means that messages will become a factor n longer. We need
constant overhead. This is not an issue for [IPS08] as they consider n to be a
constant. Also, the technique in [IPS08] do not guarantee termination if there is
just one corrupted party.

17

To have servers and players share keys, we use a subprotocol to do so. This
introduces another problem. It is possible that all committees contain at least one
corrupt player. When a player is generating a key with a committee, a problem
may arise. This can occur because either the player is corrupt or the committee
contains at least one dishonest member. It is imperative that a server with at least
one honest member must get the key from each honest user or abort. Otherwise,
the corrupt parties can prevent honest parties from giving inputs. We employ
player elimination techniques [HMP00] to solve this problem.

Distribution of input shares When Ui needs to send a message m to Sj
and they are both honest there will exist a random secret key Ki

j which is
held by Pi and which is inside Fj . Then Pi computes c = EncKi

j
(m) and

sends it to each Pk ∈ Cj . Then each Pk inputs c to Fj . Let ck denote the
value input by Pk. Then the virtual server Fj computes mk = DecKi

j
(c). If

|{mk}k∈Cj \ {⊥}| = 1, then let m be the unique value in {mk}k∈Cj \ {⊥}.
Otherwise, let m = ⊥. Notice that if Pi is honest and there is at least one
honest Pk ∈ Cj , then the correct ciphertext will be input to the virtual server
and therefore m ∈ {mk}k∈Cj . Furthermore, no corrupted committee member
can input another valid ciphertext. In particular, when the correct message
is not received, either Pi is corrupted or j ∈ Smal.

Server Communication When Si needs to send a message m to Sj and they
are both honest there will exist a random secret key Ki,j which is inside Fi
and Fj . Then Fi computes c = EncKi,j

(m) and outputs it to all Pk ∈ Fi.
Then all Pk ∈ Fi sends c to all Pl ∈ Cj and they all input all the ciphertexts
they received. The virtual server decrypts all ciphertexts and sets m to be
the unique message different from ⊥ if it exists and ⊥ otherwise. If Ci crashes
the message is also set to ⊥. Assume that Ci is not crashed and Cj is not
corrupted. Then all the honest parties Pk ∈ Ci sent the correct ciphertext
and no party knows the secret key, so the only correct ciphertext input to
the virtual server is the correct one. Hence m arrives correctly. Assume then
that that Ci is crashed and Cj is not corrupt. Then the message is set to ⊥
as it should be.

Distribution of output shares When Sj needs to send a message m to Ui and
they are both honest there will exist a random secret key Ki

j which is held
by Pi and which is inside Fj . Then Fj computes c = EncKi

j
(m) and outputs

it to all parties Pk ∈ Cj , who all forward it to Pi. The party decrypts all
ciphertexts and sets m as above. Assume that Cj is not crashed or corrupted
and that Pi is honest. Then all the honest parties Pk ∈ Cj sent the correct
ciphertext and no party knows the secret key, so the only correct ciphertext
sent to Pi is the correct one. Hence m arrives correctly. Assume then that Cj
is crashed and that Pi is honest. Then the message is set to ⊥ as it should be.
Assume that Cj is corrupted and that Pi is honest. Then any message might
arrive, but this is allowed as it correspond to Sj being corrupted. Similarly if
Pi is corrupted.

18

It should be clear that the above emulation of the outer protocol should
work as long as the security of the encryption scheme is not broken. We are,
however, still left with the problem of getting the keys in place. We describe the
key distribution protocols below.

Key Generation We use a key generation protocol KeyGenerationU↔Si,j run between
Pi and the parties in Cj . It is invoked by all parties in the same round by giving
the input (key, kid,m), where kid is a fresh key id and m is the length of the
message that will later be encrypted. It proceeds as follows:
1. Let C = Cj ;
2. If C = ∅, then Pi terminates the protocol. Otherwise it proceeds as follows.
3. Pi samples Ki

j ← Km,λ;
4. Pi samples an authenticated secret sharing {Ki

j,k}k∈C ← share(Ki
j) among

the parties C.
5. For k ∈ C, party Pi sends Ki

j,k to Pk and Pk inputs Ki
j,k to Fj .

6. Let K̂i
j,k be the value of Ki

j,k received by Fj ;
7. Fj computes K̂i

j ← rec({K̂i
j,k}k∈C);

8. If K̂i
j 6= ⊥, then Fj outputs success to all parties in Cj and stores

(kid,m, K̂i
j). All parties terminate the protocol.

9. If K̂i
j = ⊥, then Fj outputs {K̂i

j,k}k∈C to all parties in Cj ;
10. Each party Pk ∈ Cj broadcasts {K̂i

j,k}k∈C to Cj ∪ {Pi}.
11. If Pk ∈ Cj sees that not all parties from Cj broadcast the same values, then

Pk inputs crash to Fj and waits for two rounds to let the crash propagate.
12. If Fj crashed during the above, then each Pk ∈ Cj broadcasts crash to
Cj ∪ {Pi};

13. If Fj did not crash during the above but still some Pk ∈ Cj broadcast
crash, then all honest Pk ∈ Cj inputs crash to Fj ;

14. If Pi did not see any Pk ∈ Cj broadcast crash, then Pi received {K̂i
j,k}k∈C

from all parties. It then finds k such that K̂i
j,k 6= Ki

j,k and broadcasts k to
Cj ;

15. If Pi does not broadcast k ∈ C then Pi is corrupt and the protocol terminates
with the output being some dummy key.

16. If Pi does broadcast k ∈ C, then each P ∈ Cj sets C ← C \ {k} and inputs
k to Fj ;

17. Unless all P ∈ Cj input the same k, Fj will crash. Otherwise it sets C ←
C \ {k};

18. Pi and all parties in Cj go to Step 2.

Fig. 7. User-Server Key-generation Communication Part of πcomb

Generating Input Keys. The basic idea behind generating the key Kj
i is to let

Pi generate it and distribute an authentic secret sharing {Kj
i,k}k∈Cj ← share(Kj

i,k)
among the parties Pk ∈ Cj who will input the shares to Fj which will in turn

compute Kj
i ← rec({Kj

i,k}k∈Cj) and store it for later use. The main problem
arises when the reconstruction fails. This will prevent Pi from giving (secure)

19

User-Server communication We use a communication protocol SendU→Si,j run
between Pi and the parties in Cj . It is invoked by all parties in the same round
by giving the input (send, kid), where some (kid,K,m) is stored. In addition
Pi inputs x ∈ {0, 1}m. It proceeds as follows.
1. Delete (kid,K,m).
2. If x ∈ {0, 1}m then Pi computes c = Encλ,K(x) and sends c to all parties

Pk ∈ Cj .
3. Each Pk inputs the received c to Fj . Let ck be the value received from Pk.
4. For k ∈ Cj the ideal functionality computes xk = Decλ,m,K(ck).
5. If there exists x ∈ {0, 1}m such that {x} = {xk}k∈Cj \ {⊥}, then store

(message, kid, x). Otherwise, store (message, kid,⊥).
Server-User communication We use a communication protocol SendS→Uj,i run

between Pi and the parties in Cj . It is invoked by all parties in the same round
by giving the input (send, kid), where some (kid,K,m) is stored. It proceeds
as follows.
1. Fj deletes (kid,K,m).
2. Fj computes c = Encλ,K(x) and sends c to all parties Pk ∈ Cj .
3. Each Pk ∈ Cj , awaits c from Fj .
4. Each Pk ∈ Cj , sends c to Pi. Let ck be the value received from Pk.
5. For k ∈ Cj , Pi computes xk = Decλ,m,K(ck).
6. If there exists x ∈ {0, 1}m such that {x} = {xk}k∈Cj \ {⊥}, then store

(message, kid, x). Otherwise, store (message, kid,⊥).

Fig. 8. User-Server Communication

inputs to Fj . Unfortunately the error can arise either due to Pi being corrupted
or some Pk ∈ Cj being corrupted. In the later case Cj is crashable but might not
be crashed, in which case Pi must be able to give secure inputs, as an honest Ui
can give secure inputs to an honest Sj in the outer protocol.

We describe how to handle the case when reconstruction fails. First Fj will

output to all parties in Cj all the shares {K̂j
i,k}k∈Cj that was input. If this does

not crash Cj then all parties Pk ∈ Cj will broadcast {K̂j
i,k}k∈Cj to Cj ∪{Pi}. If all

parties Pk ∈ Cj do not broadcast the same values, then all honest parties Pk ∈ Cj
will crash Cj by sending crash to all parties and Fj . Otherwise, Pi will identify

the indices k such that K̂j
i,k 6= Kj

i,k and will broadcast the indices to Cj ∪ {Pi}.
If Pi does not do so, then Pi is corrupted and the parties in Cj will ignore all
future messages from Pi. If parties were excluded, then the above procedure is
repeated, but now Pi secret shares only among the committee members that
were not excluded. Notice that only corrupted parties are excluded. Therefore, if
Cj is not corrupted, the procedure will terminate before all committee members

were excluded, at which point Kj
i was added to Fj . If eventually all committee

members were excluded, Pi will consider Cj corrupted.

Generating Committee Keys. The basic idea behind generating Ki,j is
to let Fi generate Ki,j and sample an authentic secret sharing {Ki,j,k}k∈Ci ←
share(Ki,j) and output Ki,j,k to Pk. Then Pk inputs Ki,j,k to Cj using the method

20

Key Generation We use a key generation protocol KeyGenerationS↔Si,j run between
the parties in Ci ∪ Cj . It is invoked by all parties in the same round by giving
the input (key, kid,m), where kid is a fresh key id and m is the length of the
message that will later be encrypted. It proceeds as follows:
1. All parties in Ci ∪ Cj set C = Ci;
2. If C = ∅, then terminate and use a dummy key. Otherwise proceed as

follows.
3. Fi samples Ki,j ← Km,λ;
4. Fi samples an authenticated secret sharing {Ki,j,k}k∈C ← share(Ki

j) among
the parties C.

5. For k ∈ C, the functionality Fi outputs Ki,j,k to Pk.
6. For k ∈ C, party Pk uses the code in Fig. 8 to send Ki,j,k to Fj .
7. Let K̂i,j,k be the value of Ki,j,k received by Fj (if the transmission fails,

then K̂i,j,k = ⊥ which will trigger a reconstruction error which is handled
below);

8. Fj computes K̂i,j ← rec({K̂i,j,k}k∈C);
9. If K̂i,j 6= ⊥, then Fj outputs success to all parties in Cj and stores

(key, kid, i, j,m, K̂i,j). All parties terminate the protocol.
10. If K̂i,j = ⊥, then Fj outputs {K̂i,j,k}k∈C to all parties in Cj .
11. Each party Pk ∈ Cj broadcasts {K̂i

j,k}k∈C to Ci ∪ Cj .
12. If Pk ∈ Cj sees that not all parties from Cj broadcasts the same values,

then Pk inputs crash to Fj and waits for two rounds to make the crash
propagate. In this case no key is needed.

13. If Fi does not consider Fj crashed during the above, then all Pk ∈ Ci inputs
{K̂i

j,k}k∈C to Fi. If they do not all input the same value, Fi will crash.

14. If Fi did not crash it will find k such that Ki,j,k 6= K̂i,j,k and outputs k
to all parties in Ci. Following the usual patterns, they will all broadcast k
to Ci ∪ Cj , crash Fi if there is not agreement and otherwise let all parties
input k to Fj which will crash if there is not agreement.

15. If neither Fi nor Fj is crashed, then set C ← C \ {k} and go to Step 2.

Fig. 9. Server-Server Communication Part of πcomb (Key Generation)

for when Uk gives input to Fj . Recall that when Uk gives input to Fj it will
succeed unless Fj crashes or Cj detects Uk as being corrupted. If Fj crashes there
is no need to generate a key. If Cj detects Pk as corrupted, they all broadcast
this to Ci ∪ Cj and Pk. Notice that if this happens, then either Pk is corrupted,
and it is secure to excluded it, or Cj is corrupt, which corresponds to Sj being
corrupt, and hence there is no reason to keep the key secret, so again it is secure
to exclude Pk. Let C′i ⊆ Ci be the parties that were not excluded. If any parties
were excluded, then Fi generates a new key Ki,j and samples an authentic secret
sharing {Ki,j,k}k∈C′i ← share(Ki,j) and outputs Ki,j,k to Pk. The procedure is
repeated until C′i = ∅ or Ci crashed or Cj crashed or in some attempt all keys
{Ki,j,k}k∈C′i were successfully input to Fj . In the three first cases, either Ci or
Cj is corrupted and there is no need for a key. In the last case, Fj computes
Ki,j ← rec({Ki,j,k}k∈C′i). If Ki,j 6= ⊥, then the key is the same as generated by
Fi unless the security of the secret sharing scheme was broken. Assume then

21

Communication Defines a procedure SendS→Si,j . It is invoked by all parties in the
same round by giving the input (send, kid), where some (key, i, j, kid,K,m) is
stored inside Fi and some (message, i, j, kid, x ∈ {0, 1}m) is stored inside Fi.
It proceeds as follows:
1. Fi deletes (key, i, j, kid,K,m);
2. Fi computes c = Encλ,K(x) and outputs c to all parties Pk ∈ Ci.
3. Each Pk ∈ Ci sends c to all parties Pl ∈ Cj . The parties Pl might receive

conflicting values, in which case they keep them all.
4. For l ∈ Cj each Pl inputs all the values c received from parties Pk ∈ Ci to
Fj . The functionality accepts at most |Ci| values from each party.

5. Let A denote the set of ciphertexts c received by Fj . There might be up to
|Ci| · |Cj | such values.

6. If there exist x ∈ {0, 1}m such that {x} = {Decλ,K,m(c)}c∈A \ {⊥}, then
store (message, i, j, kid, x). Otherwise, store (message, i, j, kid,⊥).

Fig. 10. Server-Server Communication Part of πcomb (Communication)

Ki,j = ⊥. Since we are in a situation which might correspond to both Si and Sj
being honest (if for instance Ci and Cj are crashable but not crashed) we have
to handle Ki,j = ⊥ by trying again. When Ki,j = ⊥ the virtual server Fj will
output this to Cj along with {Ki,j,k}k∈C′i which will all broadcast the shares to
Ci ∪ Cj . If they do not all broadcast the same value, then the honest parties in Cj
will crash Cj which is safe as there must be a corrupted party in Cj . If they all
broadcast the same value, denote this value by {Ki,j,k}k∈C′i . Then all parties in
Ci will give these values to Fi. Again, if they do not all give the same values, the
Fi will crash. Otherwise Fi will find the indices k for which the wrong shares
arrived at Fj . This only happens if Pk is corrupted, so it is not safe to remove
Pk from the set of parties among which the secret sharing is done and try again.
The code is given in Fig. 9 and Fig. 10.

Putting the Pieces Together. We now describe how to put the pieces together.
The combined protocol is given in Fig. 11. Since the tools we use are information-
theoretically secure, the information theoretic security of πcomb is fairly straight
forward to argue, using the arguments we gave above for the security of the
individual sub-protocols.

Termination. To analyze termination, we use that each party is in at most
d = O(1) committees and that n = O(m). Let δ = m/(8nd). If less than δn
parties are corrupted, there will be at most dδn = m/8 committees which even
contain a corrupted member. Therefore the total number of corrupted committees
plus crashable committees will be at most m/8. Since the outer protocol is
secure (including termination guarantee) against m/8 malicious corruptions, it
follows that the combined protocol guarantees termination against δn malicious
corruptions.

22

Formation For j = 1, . . . ,m initialize Fj with committee Cj as defined above. The
code of Fj is describe in the figures above . Below, we describe further behaviour
of Fj .

Crash Handling Start running the sub protocols in Fig. 6. If Fj learns that Fi is
crashed as part of the crash handling, then this is added to the current state
yrj,j of Sj below as in a run of the outer protocol.

Key Generation For all Ui and Sj and messages x of length m and with id kid
to be sent from Ui to Sj or Sj to Ui, run KeyGenerationU↔Si,j (kid,m). For all Si
and Sj and messages x of length m and with id kid to be sent from Si to Sj in
the outer protocol, run KeyGenerationS↔Si,j (kid,m). All parties wait a number of
rounds which upper bounds the worst case running time of all the sub protocols
to stay synchronized.

Computation Now emulate the outer protocol πout as follows.
Inputs For i = 1, . . . , n party Pi has input xi.
Server initialization For j, k = 1, . . . ,m functionality Fj initializes Sj by

letting y0k,j be the empty string.
Generation of input shares For i = 1, . . . , n user Pi samples

(xi,1, . . . , xi,m)← Inout(xi; ti) for a random tape ti.
Distribution of input shares For i = 1, . . . , n and j = 1, . . . ,m user Pi

sends xi,j to server Fj using SendU→Si,j .
Embedding of input shares For j = 1, . . . ,m functionality Fj sets y0j,j ←

(x1,j , . . . , xn,j , rj) for a random tape rj .
Evaluation rounds For r = 1, . . . ,Rout round r is emulated as follows:

Transition
For j = 1, . . . ,m functionality Fj computes (yrj,1, . . . , y

r
j,m) ←

Trout(r, yr−1
1,j , . . . , y

r−1
m,j).

Communication
For j, k = 1, . . . ,m functionality Fj sends yrj,k to functionality Fk using
SendS→Sj,k

Generation of output shares For j = 1, . . . ,m functionality Sj computes
(zj,1, . . . , zj,n)← Trout(Rout + 1, yRout

1,j , . . . , y
Rout
m,j)

Distribution of output shares For j = 1, . . . ,m and i = 1, . . . , n server Sj
sends zj,i to party Pi using SendS→Uj,i .

Output reconstruction For i = 1, . . . , n party Pi computes zi ←
Outout(z1,i, . . . , zn,i).

Fig. 11. The combined protocol πcomb

Complexity. We now address the complexity of the combined protocol when
run in inner-hybrid model. We count one computational step by some Fj as
1 towards the complexity. We count one computational step by some Pi as 1
towards the complexity. We count the sending of a message x by some Pi as |x|
towards the complexity. We count the broadcast of one bit to log(n) parties as
polylog(n). Notice that throughout the protocol, we ever only broadcast to sets
of parties of constant size, as all committees have constant size. Let c denote
the complexity of running the outer protocol as a plain protocol. We want to
compute the complexity of running the combined protocol and show that it is
of the form O(c · polylog(n)) + poly(n, λ). This would show that the overhead

23

of the outer protocol is OH = polylog(n). The emulation of the computation of
the outer protocol clearly introduces no other overhead than the abort handling,
key generation and the encryption of messages. It is clear that crash handling
sends at most O(n2) messages of constant size. This can be swallowed by the
poly(n, λ) term. It is clear that one attempt of a key generation of a key of length
k will have complexity O(k), as secret sharing is done among a constant number
of parties and secret sharing and reconstruction is linear and we broadcast a
constant number of messages in one attempt. Since C initially has constant size
and each attempt of generating a key sees the size of C go down by at least 1 and
the procedure stops when C = ∅, it follows that key generation has complexity
O(k). By assumption the overall complexity of key generation and sending a
message is therefore O(k) + poly(λ). There are in the order of 2n + m2Rout

messages, so the total complexity of sending the encrypted messages of total
length M will be O(M)+(2n+m2) ·poly(λ). The total length M of the messages
is already counted as part of the complexity c and can therefore be swallowed by
the O(c · polylog(n)) terms. The remaining (2n+m2) · poly(λ) can be swallowed
by poly(n, λ) as m = O(n).

Theorem 5. For all c ∈ [0, 1) there exists a protocol π for the inner-hybrid
model for all f ∈ NC secure against malicious, adaptive corruption of up to cn
parties and with termination guarantee against a non-zero constant fraction of
corruptions with OH = polylog(n) · log(size(f)).

We can use the UC theorem to replace each Fj by a suitable inner protocol.
Using the fact that all Cj have constant size along with Theorem 2, this gives
a combined protocol for the model with OT and a broadcast between sets of
parties of constant size with an overhead of OH = polylog(n) · log(size(f)).

When we want to tolerate that more than half the parties are corrupted, there
is no way to implement the broadcast from scratch. We can, however, weaken
the assumption on broadcast to only having access to poly(n) broadcasts which
are all performed prior to the protocol being run. They might even be performed
prior to knowing f . The broadcasts can either be used to set up a public-key
infrastructure and then rely on signatures. They can also be used to run the
setup phase of the protocol from [PW92] which can then be used to implement
an unbounded of number of broadcasts in the online phase.

The protocol from [PW92] has information theoretic security. To broadcast
between c parties the protocol from [PW92] has complexity poly(c)·λ to broadcast
one bit. Since we broadcast poly(n, λ) bits among log-size sets this will all in all
contribute with a complexity of poly(n, λ), which does not affect the overhead.

Corollary 1. For all c ∈ [0, 1) there exists an information-theoretically secure
protocol π secure against adaptive, malicious corruption of up to cn parties and
with termination guarantee against a non-zero constant fraction of corruptions
for the hybrid model with initial broadcast and oblivious transfer for all f ∈ NC
with OH = polylog(n) · log(size(f)).

We can similarly use Theorem 3 to get a protocol for the CRS model and
initial broadcast between log-size sets of parties. In this case we will only get

24

computational security, and we might therefore as well go for the weaker model
where we assume a PKI instead of initial broadcasts. Given a PKI we can
implement the broadcasts using for instance the protocol in [DS83].

Corollary 2. For all c ∈ [0, 1) there exists a protocol π secure against adaptive,
malicious corruption of up to cn parties and with termination guarantee against
a non-zero constant fraction of corruptions for the (PKI, CRS)-hybrid model for
all f ∈ NC with OHArith = λ · polylog(n) · log(size(f)).

Acknowledgments

This work is supported by European Research Council Starting Grant 279447.
Samuel Ranellucci is supported by NSF grants #1564088 and #1563722. This
work is partially supported by the H2020-LEIT-ICT project SODA, project
number 731583. The authors would also like to thank the anonymous reviewers for
their valuable comments and suggestions. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

References

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computa-
tion: Multi-party computation for (parallel) RAM programs. In Advances in
Cryptology–CRYPTO 2015, pages 742–762. Springer, 2015.

[Bra87] Gabriel Bracha. An o (log n) expected rounds randomized byzantine generals
protocol. Journal of the ACM (JACM), 34(4):910–920, 1987.

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minority.
In Advances in Cryptology–CRYPTO 2012, pages 663–680. Springer, 2012.

[CDD+15] Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and
Gabriele Spini. Linear secret sharing schemes from error correcting codes
and universal hash functions. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of
Lecture Notes in Computer Science, pages 313–336. Springer, 2015.

[CDI+13] Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro
Miltersen, Ran Raz, and Ron D Rothblum. Efficient multiparty protocols
via log-depth threshold formulae. In Advances in Cryptology–CRYPTO 2013,
pages 185–202. Springer, 2013.

[CPS14] Ashish Choudhury, Arpita Patra, and Nigel P Smart. Reducing the overhead
of MPC over a large population. In Security and Cryptography for Networks,
pages 197–217. Springer, 2014.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam Smith. Scalable multiparty computation with nearly optimal work
and resilience. In Advances in Cryptology–CRYPTO 2008, pages 241–261.
Springer, 2008.

25

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science, pages 445–465. Springer,
2010.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P Smart. Practical covertly secure MPC for dishonest majority–or:
Breaking the SPDZ limits. In Computer Security–ESORICS 2013, pages
1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in
Cryptology–CRYPTO 2012, pages 643–662. Springer, 2012.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM J. Comput., 12(4):656–666, 1983.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In Theory of Cryptography, pages
621–641. Springer, 2013.

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-
committing encryption and efficient adaptively secure oblivious transfer. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science,
pages 505–523. Springer, 2009.

[HM00] Martin Hirt and Ueli Maurer. Player simulation and general adversary
structures in perfect multiparty computation. Journal of cryptology, 13(1):31–
60, 2000.

[HMP00] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-
party computation. In Tatsuaki Okamoto, editor, Advances in Cryptology
- ASIACRYPT 2000, 6th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kyoto, Japan, December
3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer Science,
pages 143–161. Springer, 2000.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptogra-
phy with constant computational overhead. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 433–442. ACM,
2008.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-
Hua Yu. Secure protocol transformations. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 430–458. Springer, 2016.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, Advances in
Cryptology - CRYPTO 2008, 28th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume
5157 of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

26

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Uni-
versally composable synchronous computation. In TCC, pages 477–498,
2013.

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement
for any number of faulty processors. In Alain Finkel and Matthias Jantzen,
editors, STACS 92, 9th Annual Symposium on Theoretical Aspects of Com-
puter Science, Cachan, France, February 13-15, 1992, Proceedings, volume
577 of Lecture Notes in Computer Science, pages 339–350. Springer, 1992.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans.
Information Theory, 42(6):1710–1722, 1996.

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their use in
authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

27

