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Abstract. A common technique employed for preventing a side channel
analysis is boolean masking. However, the application of this scheme is
not so straightforward when it comes to block ciphers based on Addition-
Rotation-Xor structure. In order to address this issue, since 2000, schol-
ars have investigated schemes for converting Arithmetic to Boolean (AtoB)
masking and Boolean to Arithmetic (BtoA) masking schemes. However,
these solutions have certain limitations. The time performance of the
AtoB scheme is extremely unsatisfactory because of the high complex-
ity of O(k) where k is the size of addition bit. At the FSE 2015, an
improved algorithm with time complexity O(log k) based on the Kogge-
Stone carry look-ahead adder was suggested. Despite its efficiency, this
algorithm cannot consider for constrained environments. Although the
original algorithm naturally extends to low-resource devices, there is no
advantage in time performance; we call this variant as the generic variant.
In this study, we suggest an enhanced variant algorithm to apply to
constrained devices. Our solution is based on the principle of the Kogge-
Stone carry look-ahead adder, and it uses a divide and conquer approach.
In addition, we prove the security of our new algorithm against first-order
attack. In implementation results, when k = 64 and the register bit size
of a chip is 8, 16 or 32, we obtain 58%, 72%, or 68% improvement,
respectively, over the results obtained using the generic variant. When
applying those algorithms to first-order SPECK, we also achieve about
40% improvement. Moreover, our proposal extends to higher-order coun-
termeasures as previous study.

Keywords: Arithmetic to Boolean masking, Kogge-Stone carry look-
ahead adder, ARX-based cryptographic algorithm

1 Introduction

Side channel analysis, which has been in the spotlight over the past decade,
belongs to the genre of software and hardware implementation attacks. With re-
spect to the properties of the cryptographic algorithm and physical information,
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the attack schemes of adversaries are diverse and they involve, for example, sim-
ple power analysis and differential power analysis attacks [2]. To counteract these
attacks, various countermeasures have been proposed in the literature. However,
among those proposals, countermeasures such as boolean masking, hiding, and
threshold implementation have outlasted other methods and are usually rec-
ommended. Especially, in terms of software implementation, first-order attacks
cannot destroy the (first-order) boolean masking scheme regardless of the num-
ber of traces.

In another context, the advent of the Internet of Things (IoT) has encour-
aged cryptographic algorithms, in some instances, to play an important role
in satisfying the needs of the IoT environment. In designing such algorithms,
external conditions including time performance and gate size have become in-
creasingly significant. Recently, cryptographic algorithms that satisfy these con-
ditions have been published. In the case of block ciphers, most of their struc-
tures utilize S-boxes of nibble units or use addition to introduce a confusion fac-
tor. Moreover, Addition-Rotation-Xor(ARX)-based structure can enhance time
performance and mathematical security through software implementation. For
these reasons, several lightweight cryptographic algorithms such as SPECK [13],
LEA [15], and LSH [14] have emerged.

From the side channel countermeasure perspective, it is quite complicated to
apply a boolean masking scheme to a block cipher with an ARX-based struc-
ture. To overcome this challenge, other approaches are required. Initially, algo-
rithms were developed for performing conversions between boolean and arith-
metic masking schemes. Goubin, in particular, described a very elegant algorithm
for converting from boolean to arithmetic (BtoA) masking [3], using only a con-
stant number of operations, independent of the size of the addition bit. This
allows for the easy exploitation of the BtoA masking algorithm at low cost. On
the other hand, there also have been several changes to the algorithm that con-
vert from arithmetic to boolean (AtoB) masking, in order to improve time per-
formance and/or reduce memory consumption. First, Goubin reported an AtoB
masking algorithm [3] which has O(k) complexity where k is the addition bit
size. Later, at CHES 2003, an AtoB masking algorithm [4] with a precomputed
table was introduced to reduce the time performance, rather than increasing the
memory consumption. This algorithm can also be easily modified to suit the
IoT environment due to the fact that the size of the precomputed table can be
defined beforehand. Shortly thereafter, Neiße et al. in [6] suggested that their
algorithm could result in lower memory consumption than the previous algo-
rithm. Within the decade, Debraize proposed a new high performance algorithm
as well as two modified algorithms with precomputed tables [11]. Despite these
efforts, the problem of time complexity has endured at about O(k).

In recent years, the rising demand for higher-order masking countermea-
sures has led to the introduction of second-order masking countermeasures. At
SPACE 2013, Vadnala et al. proposed two secure algorithms for converting be-
tween boolean and arithmetic masking schemes against second-order attacks [12].
These algorithms apply the generic second-order secure countermeasure devel-
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oped by Rivain et al. [9], but they were difficult to expand for a larger addition
bit size becuase 2k or 2k/k bytes of RAM is required. To overcome this obstacle,
handling of the carry bit was required and Vadnala et al. in [18] solved this
problem without difficulty by utilizing a precomputed table to handle carry bit,

At about the same time, general approaches were achieved also for higher-
order BtoA and AtoB schemes. The initial proposal [16] based on Goubin’s
conversion method [3] was described at the CHES 2014, although it has high
time complexity of O(n2 · k) for n = 2t+ 1 shares.

Another approach is to execute an arithmetic operation without converting
the masking form. At the COSADE 2014, Karroumi et al. in [17] demonstrated
that it was possible to use addition/subtraction for two boolean masked inputs.
As a result, an efficient algorithm was developed to satisfy the IoT environment,
using lookup tables. Despite all these efforts, however, the arithmetic opera-
tion of algorithms without conversion continues to be characterized by a time
complexity of about O(k).

Unlike the previous algorithms that were based on the classical ripple carry
adder, algorithms based on the Kogge-Stone carry look-ahead adder with the
logarithmic complexity O(log k) [19] have recently been proposed. These algo-
rithms not only easily expand to a higher-order masking scheme but can also be
applied to algorithms for AtoB masking and arithmetic operation without con-
version. To the best of our knowledge, these algorithms achieve an outstanding
performance. Although the algorithms proposed by Coron et al. [19] require a
low complexity of O(log k), they become infeasible for implementation on low-
resource devices such as the smart card. Practically, these algorithms cannot be
applied to the constrained devices without any modifications if the register bit
size of a chip is l bit is less than that of addition k bit. However, by using an
array concept, the original algorithm naturally extends to low-resource devices
although there is no associated advantage in time performance. In this paper,
we call this algorithm using an array concept as the generic variant. As a re-
sult, the generic variant algorithm may lose their merit when this algorithm is
implemented IoT devices.

Our Contributions. The addition size of the most cryptographic algorithms
with ARX-based structure does not correspond to the register size of IoT devices.
Although the generic variant algorithm from [19] can directly be applied to a
chip with the register l bit, we should endure a high cost. In response to this
limitation, we suggest that the enhanced variant algorithms are significantly
faster than the generic algorithm. Our solution follows the basic concept of the
Kogge-Stone carry look-ahead adder, but uses a divide and conquer approach to
prevent the time complexity from becoming too great. The currently proposed
core concept involves a means of handling the carry occurrence of the Kogge-
Stone carry look-ahead adder. Part of this procedure is to control the carries
propagating from less to more significant words, which must also be protected
by masking to prevent any first leakage. More precisely, after the carry value is
generated from the previous block, it fills up the least significant bit in the next
block. When the register size is k/2, we also provide the advanced algorithm more
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than the enhanced variant algorithm. We demonstrate that this can be achieved
in an efficient and secure fashion by using the principle of the Kogge-Stone
carry look-ahead adder for the carries. We also verify the correctness and prove
the security of our algorithms. In implementation results, the enhanced variant
algorithms have a 58% ∼ 72% advantage over the generic variant algorithms in
time performance. In the case of m = 2, we also acquire more 27% improvement
compared to our general solution algorithm is an enhanced variant algorithm.
Moreover, we apply the generic variant and enhanced variant algorithms for
first-order masked SPECK. As a consequent, we obtain improvement of about
40% over the generic algorithm results.

Organization of the paper. This paper is organized as follow: We describe the
Kogge-Stone carry look-ahead adder used for our variant algorithms in Section 2.
Section 3 proposes the enhanced variant algorithms used for our core idea. Also,
we present the result of the simulated implementation for our variant algorithms
and first-order block cipher SPECK in Section 4. Finally, Section 5 concludes
the paper.

2 Kogge-Stone Carry Look-Ahead Adder and Its
Countermeasure

2.1 Notation

Before representing the detailed description, refer to Table 1. provided for a bet-
ter understanding. The notations maintain the consistency for the representation
of all variables until the end of the paper.

For example, if the register bit size is 16 and the size of the addition is 64,
then the number of data blocks is 4. That is, x =

(
x(3)||x(2)||x(1)||x(0)

)
.

2.2 Kogge-Stone Carry Look-Ahead Adder

In this section, we first recall the Kogge-Stone carry look-ahead adder [1], [19]
which is based on recurrence equations, written c(i) = c(i), as follows:{

c(0) = 0

∀i ≥ 1, c(i) = {a(i− 1) ∧ c(i− 1)} ⊕ b(i− 1)
(1)

where x(i) is a low significant ith bit, c(i) is generated from the carry bit of∑i−1
j=0 2jx(j) +

∑i−1
j=0 2jy(j), and c(i), a(i), b(i) respectively represent c(i), x(i) ⊕

y(i), x(i)∧y(i). We can therefore compute the carry bit. Based on the recurrence
equation, we can re-construct the k bit addition as shown below.

x+ y =

k−1∑
i=0

2ixi +

k−1∑
i=0

2iyi =

k−1∑
i=0

(x(i) ⊕ y(i) ⊕ c(i)) (2)
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Notation Description

x k bit value

l Register bit size of chip

m
Number of data blocks
m = k/l (0 < m ≤ l)

x(i) Least significant i th bit

x(i)
i th data block of x(

x(i) = 2i×l∑l−1
j=0 (2j × xi×l+j)

)

X(i)

Modified i th data block that includes the carry value
generated from the previously modified data


2i(l−1)

(
c(i(l−1)) +

∑l−1
j=1 2jx(i(l−1)+j)

)
(1 ≤ i < m)

2i(l−1)
(
c(i(l−1)) +

∑m−1
j=1 2jx(i(l−1)+j)

)
(i = m)

x(0) (i = 0)

X ′(i)

Modified i th data block that doesn’t include the carry value
generated from the previously modified data


2i(l−1)∑l−1

j=1 2jx(i(l−1)+j)(1 ≤ i < m)

2i(l−1)∑m−1
j=1 2jx(i(l−1)+j)(i = m)

x(0) (i = 0)

Table 1: Notations used

According to Lemma 1 of [19], Eqn. (1) can be converted to a Kogge-Stone
recursive equation:

{
Pi,j = Pi−1,j

Gi,j = Gi−1,j (0 ≤ j < 2i−1){
Pi,j = Pi−1,j ∧ Pi−1,j−2i−1

Gi,j = (Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j (2i−1 ≤ j < k)

=⇒

{
c(0) = 0, c(1) = G0,0

c(j + 1) = Gi,j (2i−1 ≤ j < 2i)

(3)

When i corresponds to dlog (k − 1)e, we obtain the most significant carry bit
c(k−1).
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Eqn. (3) naturally extends to the recurrence equation of the k bit addition,
and time complexity with O(log k) is still required. By Theorem 3 of [19], the
recurrence equation of the k bit addition is as shown below.

{
Pi = Pi−1 ∧ (Pi−1 � 2i−1) (1 ≤ i < n)

Gi = (Pi−1 ∧ (Gi−1 � 2i−1))⊕Gi−1
=⇒ x+ y = x⊕ y ⊕ (2Gn) (4)

where Pi =
∑k−1

j=2i−1 2jPi,j with P0 = x ⊕ y, Gi =
∑k−1

j=0 2jGi,j with G0 =
x ∧ y, and n represents dlog (k − 1)e . Based on Eqn. (4), the sequence can be
computed using Algorithm 1.

Algorithm 1 Kogge-Stone Adder

Input: x, y ∈ {0, 1}k, n = max(dlog (k − 1)e , 1)
Output: z = x+ y mod 2k

1: P ← x⊕ y
2: G← x ∧ y
3: for i := 1 to n− 1 do
4: G← (P ∧ (G� 2i−1))⊕G
5: P ← P ∧ (P � 2i−1)
6: end for
7: G← (P ∧ (G� 2n−1))⊕G
8: return x⊕ y ⊕ (2G)

2.3 Generic variant for Kogge-Stone Adder and AtoB Masking

In this section, we introduce the k bit addition when the register bit size corre-
sponds to the l bit, where is less than k. Basically, a generic variant algorithm
using the array concept is a direct application of the Kogge-Stone adder and we
can convert a generic variant algorithm into a first-order algorithm. Refer to the
generic variant for Kogge-Stone adder and AtoB masking in Appendix A.

3 Enhanced Variant for AtoB Masking based on
Kogge-Stone Adder

3.1 Main Idea Sketch

In this section, we introduce our main idea for providing better comprehension.
Assuming k and l correspond to 8 and 4, respectively, we have to divide into 2
array from original data for the generic variant Kogge-Stone adder because the
size of the register is smaller than that of addition; refer to Array1 and Array0
in Fig.1. Therefore, the intermediate calculations of generic variant algorithm
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Fig. 1: Main Idea Sketch for Enhanced Variant Algorithm

consume more cost than those of original algorithm because of the difference
between original Kogge-Stone adder and generic variant algorithm.

However, for applying our main idea, we have to split into 3 array before
calculating the addition. As seen Fig.1, considering the register size of a chip,
we utilize the original Kogge-Stone adder without any modifications. To acquire
the most significant bit of each block, we review the correction of Theorem 3, as
addressed in [19], for our new design. 2Gn is not exactly equal to

∑k−1
j=0 2jcj , but

rather
∑k

j=0 2jcj . In other words, the 2Gn value that leaks the most significant
k-th bit is the basis of our enhanced variant algorithm. That is, after the carry
value is generated from the previous block, it fills up the least significant bit in
the next block.

3.2 Enhanced Variant for Kogge-Stone Adder

Our new conversion algorithm is based on the principle of the Kogge-Stone adder.
As mentioned earlier, due to the missing value, we can build an enhanced variant
of the Kogge-Stone adder and AtoB masking. The correctness of this technique
is demonstrated, as follows:

Theorem 1. Let x = (x(m−1)|| · · · ||x(0)), y = (y(m−1)|| · · · ||y(0)), z = x + y be

elements of {0, 1}k. Then
∑m−1

i=0 z(i) =
∑m

i=0 Z
′
(i)

(
=
∑m−1

i=0

(
x(i) + y(i)

))
Proof. By notation, we can rewrite the equation as follows:

m−1∑
i=0

z(i) =
〈1〉

m∑
i=0

Z ′(i) =
〈2〉

m∑
i=0

(
X(i) + Y(i) mod 2(i+1)×l

)
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For 〈1〉, we refer to Lemma 3 in Appendix B. Thus, we prove 〈2〉 in this
theorem. Also, by proving Eqn. (5), the above equation can be naturally proven.
Therefore, we provide only the proof of Eqn. (5).

Z ′(i)/2
i(l−1) = {X(i) + Y(i)}/2i(l−1) mod 2l (0 ≤ i ≤ m) (5)

{X(i) + Y(i)}/2i(l−1) mod 2l (0 < i < m)

=

c(i(l−1)) +

l−1∑
j=1

2jx(i(l−1)+(j−1)) + c(i(l−1)) +

l−1∑
j=1

2jy(i(l−1)+(j−1))


For comfortable expression, we re-index some variables as below.

(c(i(l−1)) is a(0) or b(0), x(i(l−1)+j) = a(j+1), y(i(l−1)+j) = b(j+1))

=

 l−1∑
j=0

2ja(j) +

l−1∑
j=0

2jb(j)

 mod 2l

=

l−1⊕
j=0

2j
(
a(j) ⊕ b(j) ⊕ d(j)

)

(d(j)which is generated from

j−1∑
p=0

a(p) +

j−1∑
p=0

b(p)

is the carry value of most significant bit)

= c(i(l−1)) ⊕ c(i(l−1)) ⊕
l−1⊕
j=1

2j
(
x(i(l−1)+j−1) ⊕ y(i(l−1)+j−1) ⊕ c(i(l−1)+j−1)

)
(By Theorem 4 in Appendix B)

=
l−1⊕
j=1

2j
(
z(i(l−1)+j−1)

)
= Z ′(i)/2

i(l−1)

In the case of i = 0 and m, the proof is straightforward so it is omitted
here. ut
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Algorithm 2 Enhanced Variant for Kogge-Stone Adder

Input: x =
(
x(m−1)|| · · · ||x(0)

)
, y =

(
y(m−1)|| · · · ||y(0)

)
∈ {0, 1}k

n = max(dlog (l − 1)e , 1)
Output: z =

(
z(m−1)|| · · · ||z(0)

)
= x+ y mod 2k

1: X(0) ←
(
x(l−1)|| · · · ||x(0)

)
2: Y(0) ←

(
y(l−1)|| · · · ||y(0)

)
3: C ← 0
4: for i := 1 to m do
5: X(i) ←

(
x(i(l−1)+l−2)|| · · · ||x(i(l−1)+0)||0

)
6: Y(i) ←

(
y(i(l−1)+l−2)|| · · · ||y(i(l−1)+0)||0

)
7: end for
8: for j := 0 to m do
9: P ← X(j) ⊕ Y(j)

10: G←
(
X(j) ∧ Y(j)

)
⊕ C

11: for i := 1 to n− 1 do
12: G←

(
P ∧

(
G� 2i−1

))
⊕G

13: P ← P ∧
(
P � 2i−1

)
14: end for
15: G←

(
P ∧

(
G� 2n−1

))
⊕G

16: Z′(j) ← X(j) ⊕ Y(j) ⊕ (2G)
17: if j 6= 0 then
18: Z′(j) ← Z′(j) � 1
19: end if
20: C ← G� (l − 1)
21: end for
22:

(
z(m−1)|| · · · ||z(0)

)
←
(
Z′(m)|| · · · ||Z′(0)

)
mod 2k

23: return z =
(
z(m−1)|| · · · ||z(0)

)

Based on Theorem 1, we can build an enhanced variant algorithm; see Algo-
rithm 2. There is no need to calculate the carry value in Step 9; (X(j) ⊕ C) ⊕
(Y(j)⊕C) = X(j)⊕Y(j). Also, in Step 10, the result of the addition can obviously
be acquired for only one operation with a carry value; (X(j)⊕C)∧ (Y(j)⊕C) =
(X(j) ∧ Y(j)) ⊕ C. Moreover, the important point is that the number of inner-
loops is dlog (l − 1)e and the unit of operation is the l bit although the number
of outer-loops is m+ 1.

3.3 Enhanced Variant for AtoB Masking

Similarly, here we demonstrate how to secure the AtoB masking algorithm. We
can convert Algorithm 2 into a first-order secure algorithm by protecting all
intermediate variables utilizing Algorithm 5; see Algorithm 3.

In Algorithm 3, some of the secure algorithms adopted, including SecShiftl,
SecAndl, and SecXorl are based on the l bit unit using only one array, unlike the
secure algorithms in Algorithm 5.
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Algorithm 3 Enhanced Variant for AtoB Masking

Input: a =
(
a(m−1)|| · · · ||a(0)

)
, r =

(
r(m−1)|| · · · ||r(0)

)
∈ {0, 1}k

n = max(dlog (l − 1)e , 1)
Output: x =

(
x(m−1)|| · · · ||x(0)

)
such that x⊕ r = a+ r mod 2k

1: s← {0, 1}l, t← {0, 1}l, u← {0, 1}l, δ ← {0, 1}l

2: a(0) ←
(
a(l−1)|| · · · ||a(0)

)
, r(0) ←

(
r(l−1)|| · · · ||r(0)

)
, C ← δ

3: for i := 1 to m do
4: a(i) ←

(
a(i(l−1)+l−2)|| · · · ||a(i(l−1)+0)||0

)
5: r(i) ←

(
r(i(l−1)+l−2)|| · · · ||r(i(l−1)+0)||0

)
6: end for
7: for j := 0 to m do
8: P ← a(j) ⊕ s
9: P ← P ⊕ r(j)

10: G← s⊕
((
a(j) ⊕ t

)
∧ r(j)

)
⊕ C

11: G← G⊕
(
t ∧ r(j)

)
⊕ δ

12: for i := 1 to n− 1 do
13: H ← SecShiftl[G, s, t, 2

i−1]
14: W ← SecAndl[P,H, s, t, u]
15: G← SecXorl[G,W, u]
16: H ← SecShiftl[P, s, t, 2

i−1]
17: P ← SecAndl[P,H, s, t, u]
18: P ← P ⊕ s
19: P ← P ⊕ u
20: end for
21: H ← SecShiftl[G, s, t, 2

n−1]
22: W ← SecAndl[P,H, s, t, u]
23: G← SecXorl[G,W, u]
24: X ′(j) ← a(j) ⊕ (2G)
25: X ′(j) ← X ′(j) ⊕ (2s)
26: if j 6= 0 then X ′(j) ← X ′(j) � 1
27: end if
28: C ← [{G� (l − 1)} ⊕ δ]⊕ {s� (l − 1)}
29: end for
30:

(
x(m−1)|| · · · ||x(0)

)
←
(
X ′(m)|| · · · ||X ′(0)

)
mod 2k

31: return x =
(
x(m−1)|| · · · ||x(0)

)

In addition, there are some differences between Algorithms 2 and 3, because
the δ value is required in order to prevent the leakage of the carry value. Thus,
the carry value is masked by the δ value in Step 28. As such, in Step 11, we must
eliminate the masked value δ because the G value had already been masked by
s in Step 10. The following Lemma proves the security of our new algorithm
against first-order attack.

Lemma 1. When r is uniformly distributed in F2k , any intermediate variable
in Algorithm 3 has a distribution independent of x = A+ r mod 2k.



Efficient Conversion Method from AtoB Masking in Constrained Devices 11

Proof. The proof is based on Lemma 5 of the previous paper [19], and also on the
fact that all intermediate variables from Steps 10, 11, and 28 have a distribution
independent of x.

Case 1: All variables from Step 28. have a distribution independent of x
G, G � (l − 1), {G � (l − 1)} ⊕ δ, and [{G� (l − 1)} ⊕ δ] ⊕ {s � (l −
1)}

(
= c(j(l−1)+(i−2)) ⊕ s

)
have a distribution independent of x, since G ⊕ s is(

c(j(l−1)+(i−2))|| · · · ||c(j(l−1)+0)||0
)
.

Case 2: All variables from Step 10. have a distribution independent of x
C has a distribution independent of x because of the masked value δ. Therefore,
other intermediate variables have uniform distribution.

Case 3: All variables from Step 11. have a distribution independent of x
Since G corresponds to s⊕

((
a(j) ⊕ t

)
∧ r(j)

)
⊕C⊕

(
t ∧ r(j)

)
⊕δ (= (a(j)∧r(j))⊕

c(j(l−1)+(i−2)) ⊕s), G has a distribution independent of x, and other intermediate
variables have uniform distribution. ut

Algorithm 3 is the generalization of the l and k variables. However, in the
case m = 2, we obtain more improvement time performance by modifying the
operation for the most significant block. In other words, the outer-loop can be
reduced m − 1 times, since there remains just a single bit in X(m) and Y(m)

excluding the carry value. The following Lemma provides more detail. Note also
that the algorithm in Appendix C could be used as an enhanced variant of AtoB
masking for m = 2.

Lemma 2. When m is 2, X(m) + Y(m) is identical to 2m(l−1)+1z(m(l−1)+1).
Moreover, the total operation requires only two XOR operations.

Proof.

X(m) + Y(m)

= 2m(l−1)
(
c(m(l−1)) + 2× x(m(l−1)+1)

)
+ 2m(l−1)

(
c(m(l−1)) + 2× y(m(l−1)+1)

)
= 2m(l−1)+1

(
c(m(l−1)) + x(m(l−1)+1) + y(m(l−1)+1)

)
= 2m(l−1)+1

(
c(m(l−1)) ⊕ x(m(l−1)+1) ⊕ y(m(l−1)+1)

)
= 2m(l−1)+1z(m(l−1)+1)

4 Implementation Results

In this section, we give the simulation results of our new algorithms and first-
order masked lightweight block cipher SPECK [13] based on the ARX structure.
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4.1 Simulation Results for our Variant Algorithms

We implemented our variant algorithms along with the Kogge-Stone adder. Con-
sidering low-resource devices such as the smart card, we implemented three pos-
sibilities partitioning 64 bit additions, with the register length l = 8, l = 16 and
l = 32. To compare time performance, we used the AVR Studio 6.2 simulation
for l = 8, the IAR Embedded Workbench Evaluation simulation for l = 16, and
the CodeWarrior for ARM Developer Suite v1.2 for l = 32. In addition, to ensure
a fairness of the experiment, we do not consider the time performance for the
generation of random numbers.

For l = 8, we obtained a 58% improvement over the generic variant algorithm,
for l = 16, we obtained a considerable 72% improvement, and for l = 32 we
obtained a 68% improvement. Especially, we have more 27% improvement over
a general enhanced variant algorithm compared to between Algorithm 3 and
Algorithm 6.

Algorithm l k
Clock
Cycle
(CC)

Penalty Factor

Algorithm 5 8 64 2864 1.00

Algorithm 3 8 64 1217 0.42

Algorithm 5 16 64 2705 1.00

Algorithm 3 16 64 765 0.28

Algorithm 5 32 64 1196 1.00

Algorithm 3 32 64 526 0.44

Algorithm 6 32 64 384 0.32

Table 2: Simulation Results for our Variant Algorithms

4.2 Simulation Results for first-order SPECK

In this section, we apply our countermeasure to realize the first-order secure
implementation of SPECK-256/256. Since the structure of SPECK has ARX
operations, we must convert between boolean and arithmetic masking scheme.
For BtoA masking scheme, we used Goubin’s algorithm in [3]. Considering the
SPECK structure, we must perform two BtoA maskings and one AtoB masking
per round, totaling 64 BtoA maskings and 32 AtoB maskings overall.

The results for computing the SPECK-256/256 of a single message block are
summarized in Table 3. Similar to previous simulation results, we achieved about
36%, 43%, and 37% improvements over the masked SPECK for l = 8, l = 16
and l = 32, respectively.
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Algorithm l k Clock Cycle (CC) Penalty Factor

Non-Masked SPECK 8 64 24,360 1.00

Masked SPECK with Algorithm 5 8 64 177,303 7.27

Masked SPECK with Algorithm 3 8 64 112,951 4.64

Non-Masked SPECK 16 64 21,446 1.00

Masked SPECK with Algorithm 5 16 64 143,642 6.70

Masked SPECK with Algorithm 3 16 64 81,562 3.80

Non-Masked SPECK 32 64 10,279 1.00

Masked SPECK with Algorithm 5 32 64 71,006 6.91

Masked SPECK with Algorithm 3 32 64 49,470 4.81

Masked SPECK with Algorithm 6 32 64 44,926 4.37

Table 3: Simulation Results for Non-Masked and Masked SPECK

5 Conclusion

For low-resource devices, we proposed two enhanced variant algorithms that are
based on the principle of the Kogge-Stone carry look-ahead adder. One is a gener-
alized algorithm for the register size l and the other, in the case l = k/2, has more
improvement over a general enhanced variant algorithm in time performance. As
such, all variant algorithms not only keep the logarithmic complexity O(log k)
but also outperform the generic variant algorithm of the Kogge-Stone adder. We
also proved our algorithms to be secure against first-order attacks, and that they
naturally extend to higher-order AtoB masking scheme and arithmetic operation
without conversion. In the implementations, we obtained improvements of about
58 ∼ 72% over the generic variant algorithm results. Moreover, when applied to
lightweight block cipher SPECK, we obtained improvements of about 36 ∼ 43%
compared to the generic variant algorithm from [19].
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18. Vadnala, P.K. and Großschädl, J.: Faster Mask Conversion with Lookup Tables.
In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2015, LNCS, vol. 9064, pp.
207-221. Springer, Heidelberg (2015)
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A Generic Variant for Kogge-Stone Adder and AtoB
Masking

A.1 Generic Variant for Kogge-Stone Adder

A Shift algorithm indicates a left shift operation after it has split variable x into
some data blocks. Thus, the Shift algorithm has greater associated cost than the
general left shift operation.
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Algorithm 4 Generic Variant for Kogge-Stone Adder

Input: x =
(
x(m−1)|| · · · ||x(0)

)
, y =

(
y(m−1)|| · · · ||y(0)

)
n = max(dlog (k − 1)e , 1)

Output: z =
(
z(m−1)|| · · · ||z(0)

)
= x+ y mod 2k

1:
(
p(m−1)|| · · · ||p(0)

)
←
(
x(m−1)|| · · · ||x(0)

)
⊕
(
y(m−1)|| · · · ||y(0)

)
2:
(
g(m−1)|| · · · ||g(0)

)
←
(
x(m−1)|| · · · ||x(0)

)
∧
(
y(m−1)|| · · · ||y(0)

)
3: for i := 1 to n− 1 do
4:

(
h(m−1)|| · · · ||h(0)

)
← Shift[g, 2i−1]

5:
(
h(m−1)|| · · · ||h(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
∧
(
h(m−1)|| · · · ||h(0)

)
6:

(
g(m−1)|| · · · ||g(0)

)
←
(
h(m−1)|| · · · ||h(0)

)
⊕
(
g(m−1)|| · · · ||g(0)

)
7:

(
h(m−1)|| · · · ||h(0)

)
← Shift[p, 2i−1]

8:
(
p(m−1)|| · · · ||p(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
∧
(
h(m−1)|| · · · ||h(0)

)
9: end for

10:
(
h(m−1)|| · · · ||h(0)

)
← Shift[g, 2n−1]

11:
(
h(m−1)|| · · · ||h(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
∧
(
h(m−1)|| · · · ||h(0)

)
12:

(
g(m−1)|| · · · ||g(0)

)
←
(
h(m−1)|| · · · ||h(0)

)
⊕
(
g(m−1)|| · · · ||g(0)

)
13:

(
h(m−1)|| · · · ||h(0)

)
← Shift[p, 2n−1]

14: return
(
x(m−1) ⊕ y(m−1) ⊕ h(m−1)|| · · · ||x(0) ⊕ y(0) ⊕ h(0)

)

A.2 Generic Variant for AtoB Masking based on Kogge-Stone
Adder

The generic variant for AtoB masking is a direct application of the previous
paper [19]. To compare the enhanced variant version, we use this variant. As
before, we are given as input two arithmetic shares A, r of x = A+ r mod 2k,
and we must obtain the result x′ such that x = x′ ⊕ r, without leaking sensitive
variable with respect to x. To protect the leakage of all the intermediate variables,
all operations must be converted into secure versions.

Fortunately, Kogge-Stone adder involves uncomplicated operations;, i.e., And,
Xor, and Shift. Since it is well known, we use a secure And operation, in particu-
lar, as the field multiplication of the S-box operation. It is easy to protect against
first-order attack for the other operations. For further details, refer to [19]. In this
paper, we denote the secure operations as SecAnd, SecXor, and SecShift, respec-
tively. Finally we can convert Algorithm 4 into a first-order secure algorithm, as
in the previous paper, using Algorithm 5.

Algorithm 5 Generic Variant for AtoB Masking

Input: a =
(
a(m−1)|| · · · ||a(0)

)
, r =

(
r(m−1)|| · · · ||r(0)

)
n = max(dlog (k − 1)e , 1)

Output: x =
(
x(m−1)|| · · · ||x(0)

)
such that x⊕ r = a+ r mod 2k

1:
(
s(m−1)|| · · · ||s(0)

)
← {0, 1}k

2:
(
t(m−1)|| · · · ||t(0)

)
← {0, 1}k

3:
(
u(m−1)|| · · · ||u(0)

)
← {0, 1}k
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4:
(
p(m−1)|| · · · ||p(0)

)
←
(
a(m−1)|| · · · ||a(0)

)
⊕
(
s(m−1)|| · · · ||s(0)

)
5:
(
p(m−1)|| · · · ||p(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
⊕
(
r(m−1)|| · · · ||r(0)

)
6:
(
g(m−1)|| · · · ||g(0)

)
←
(
a(m−1)|| · · · ||a(0)

)
⊕
(
t(m−1)|| · · · ||t(0)

)
7:
(
g(m−1)|| · · · ||g(0)

)
←
(
g(m−1)|| · · · ||g(0)

)
∧
(
r(m−1)|| · · · ||r(0)

)
8:
(
g(m−1)|| · · · ||g(0)

)
←
(
g(m−1)|| · · · ||g(0)

)
⊕
(
s(m−1)|| · · · ||s(0)

)
9:
(
h(m−1)|| · · · ||h(0)

)
←
(
t(m−1)|| · · · ||t(0)

)
∧
(
r(m−1)|| · · · ||r(0)

)
10:

(
g(m−1)|| · · · ||g(0)

)
←
(
g(m−1)|| · · · ||g(0)

)
⊕
(
h(m−1)|| · · · ||h(0)

)
11: for i := 1 to n− 1 do
12:

(
h(m−1)|| · · · ||h(0)

)
← SecShift[g, s, t, 2i−1]

13:
(
w(m−1)|| · · · ||w(0)

)
← SecAnd[p, h, s, t, u]

14:
(
g(m−1)|| · · · ||g(0)

)
← SecXor[g, w, u]

15:
(
h(m−1)|| · · · ||h(0)

)
← SecShift[p, s, t, 2i−1]

16:
(
p(m−1)|| · · · ||p(0)

)
← SecAnd[p, h, s, t, u]

17:
(
p(m−1)|| · · · ||p(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
⊕
(
s(m−1)|| · · · ||s(0)

)
18:

(
p(m−1)|| · · · ||p(0)

)
←
(
p(m−1)|| · · · ||p(0)

)
⊕
(
u(m−1)|| · · · ||u(0)

)
19: end for
20:

(
h(m−1)|| · · · ||h(0)

)
← SecShift[g, s, t, 2n−1]

21:
(
w(m−1)|| · · · ||w(0)

)
← SecAnd[p, h, s, t, u]

22:
(
g(m−1)|| · · · ||g(0)

)
← SecXor[g, w, u]

23:
(
g(m−1)|| · · · ||g(0)

)
← Shift[g, 1]

24:
(
x(m−1)|| · · · ||x(0)

)
←
(
a(m−1)|| · · · ||a(0)

)
⊕
(
g(m−1)|| · · · ||g(0)

)
25:

(
s(m−1)|| · · · ||s(0)

)
← Shift[s, 1]

26:
(
x(m−1)|| · · · ||x(0)

)
←
(
x(m−1)|| · · · ||x(0)

)
⊕
(
s(m−1)|| · · · ||s(0)

)
27: return

(
x(m−1)|| · · · ||x(0)

)

B Remaining proof of Theorem 1

Here, we provide the remaining proof of Theorem 1, and thereby prove the
following Lemma.

Lemma 3.
∑m−1

i=0 x(i) is equal to
∑m

i=0X
′
(i).

Proof.

m−1∑
i=0

x(i)

= x(0) + x(1) + · · ·+ x(m−2) + x(m−1)

= 20
(

20x(0) + · · ·+ 2l−1x(l−1)
)

+ 2l
(

20x(l+0) + · · ·+ 2l−1x(l+l−1)
)

+ · · ·
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+ 2l(m−2)
(

20x(l(m−2)+0) + · · ·+ 2l−1x(l(m−2)+l−1)
)

+ 2l(m−1)
(

20x(l(m−1)+0) + · · ·+ 2l−1x(l(m−1)+l−1)
)

= 20
(

20x(0) + · · ·+ 2l−1x(l−1)
)

+ 2l−1
(

21x((l−1)+1) + · · ·+ 2l−1x((l−1)+l−1)
)

+ · · ·

+ 2(l−1)(m−1)
(

21x((l−1)(m−1)+1) + · · ·+ 2l−1x((l−1)(m−1)+l−1)
)

+ 2(l−1)m
(

21x((l−1)m+1) + · · ·+ 2l−1x((l−1)m+(m−1))
)

= X ′(0) + · · ·+X ′(m−1) +X ′(m) =

m∑
i=0

X ′(i)

ut

Lemma 4. d(j) is equal to c(i(l−1)+j−1).

Proof. We proceed to this Lemma by mathematical induction.

Show that the equation of Lemma 4 holds for j = 0.

d(1) = {(a(0) ⊕ b(0)) ∧ d(0)} ⊕ (a(0) ∧ b(0))
= {(c(i(l−1)) ⊕ c(i(l−1))) ∧ d(0)} ⊕ (c(i(l−1)) ∧ c(i(l−1)))
= (0 ∧ d(0))⊕ (c(i(l−1)) ∧ c(i(l−1))) = c(i(l−1))

Show that if the equation of Lemma 4 holds for j = k, then also the equation
holds for j = k + 1. (That is, d(k) = c(i(l−1)+k−1))

d(k+1)

= {(a(k) ⊕ b(k)) ∧ d(k)} ⊕ (x(i(l−1)+k−1) ∧ y(i(l−1)+k−1))

= {(x(i(l−1)+k−1) ∧ y(i(l−1)+k−1)) ∧ c(i(l−1)+k−1)} ⊕ (x(i(l−1)+k−1) ∧ y(i(l−1)+k−1))

= c(i(l−1)+k)

ut
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C Enhanced Variant for AtoB Masking (m = 2)

Algorithm 6 Enhanced Variant for AtoB Masking (m = 2)

Input: a =
(
a(m−1)|| · · · ||a(0)

)
, r =

(
r(m−1)|| · · · ||r(0)

)
∈ {0, 1}k

n = max(dlog (l − 1)e , 1)
Output: x =

(
x(m−1)|| · · · ||x(0)

)
such that x⊕ r = a+ r mod 2k

1: s← {0, 1}l, t← {0, 1}l, u← {0, 1}l, δ ← {0, 1}l

2: a(0) ←
(
a(l−1)|| · · · ||a(0)

)
, r(0) ←

(
r(l−1)|| · · · ||r(0)

)
, C ← δ

3: for i := 1 to m do
4: a(i) ←

(
a(i(l−1)+l−2)|| · · · ||a(i(l−1)+0)||0

)
5: r(i) ←

(
r(i(l−1)+l−2)|| · · · ||r(i(l−1)+0)||0

)
6: end for
7: for j := 0 to m− 1 do
8: P ← a(j) ⊕ s
9: P ← P ⊕ r(j)

10: G← s⊕
((
a(j) ⊕ t

)
∧ r(j)

)
⊕ C

11: G← G⊕
(
t ∧ r(j)

)
⊕ δ

12: for i := 1 to n− 1 do
13: H ← SecShiftl[G, s, t, 2

i−1]
14: W ← SecAndl[P,H, s, t, u]
15: G← SecXorl[G,W, u]
16: H ← SecShiftl[P, s, t, 2

i−1]
17: P ← SecAndl[P,H, s, t, u]
18: P ← P ⊕ s
19: P ← P ⊕ u
20: end for
21: H ← SecShiftl[G, s, t, 2

n−1]
22: W ← SecAndl[P,H, s, t, u]
23: G← SecXorl[G,W, u]
24: X ′(j) ← a(j) ⊕ (2G)
25: X ′(j) ← X ′(j) ⊕ (2s)
26: if j 6= 0 then
27: X ′(j) ← X ′(j) � 1
28: end if
29: C ← [{G� (l − 1)} ⊕ δ]⊕ {s� (l − 1)}
30: end for
31: x(m) ←

(
a(m) ⊕ C

)
⊕ δ

32:
(
x(m−1)|| · · · ||x(0)

)
←
(
X ′(m)|| · · · ||X ′(0)

)
mod 2k

33: return x =
(
x(m−1)|| · · · ||x(0)

)
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