
Fair Client Puzzles from the Bitcoin Blockchain

Colin Boyd and Christopher Carr
Norwegian University of Science and Technology,

NTNU, Trondheim, Norway

{colin.boyd,chris.carr} @ntnu.no

Abstract

Client puzzles have been proposed as a mechanism for proving legit-
imate intentions by providing “proofs of work”, which can be applied to
discourage malicious usage of resources. A typical problem of puzzle con-
structions is the difference in expected solving time on different computing
platforms. We call puzzles which can be solved independently of client
computing resources fair client puzzles.

We propose a construction for client puzzles requiring widely dis-
tributed computational effort for their solution. These puzzles can be
solved using the mining process of Bitcoin, or similar cryptocurrencies.
Adapting existing definitions, we show that our puzzle construction sat-
isfies formal requirements of client puzzles under reasonable assumptions.
We describe a way of transforming our client puzzles for use in denial of
service scenarios and demonstrate a practical construction.

Keywords: Bitcoin, Client Puzzles, Denial of Service Resistance, Dis-
tributed Computation, Proofs of Work.

1 Introduction

Client puzzles, also referred to as proofs of work [2, 10, 11], were originally
introduced by Dwork and Naor [8] in 1993 and offer a valuable defence against
denial of service (DoS). Client puzzles are designed to be used when needed,
and can be turned on when a service is receiving an over abundance of requests.
Motivation for client puzzles, in the general sense, is fairly intuitive. All service
providers would like to ensure that those requesting service legitimately want it,
but in an online setting it is difficult to discern a legitimate request for service
from a malicious one. So how does one ensure the legitimate intentions of a client
machine? This question led to a heuristic that says ‘if a party requesting service
is willing to put in some level of effort to connect, then that party is likely to
be legitimate’ [18]. Schemes have been proposed that are built around solving
computationally expensive puzzles, such as extracting square roots modulo a
prime [8], or partially inverting a hash function [3]. Legitimate clients should

1

not find solving any single puzzle to be burdensome, yet, we do not want puzzle
solutions to be found trivially either. Thus anyone wishing to exhaust the
computational resources of the server by sending multiple connection requests
would have to solve one instance of the puzzle per request. It thus becomes
difficult for any DoS initiator to attack without access to an enormous amount
of computing power.

An issue of primary importance is availability of computational resources
on the client’s side, which can vary considerably from device to device. This
disparity is a persistent problem with client puzzle applicability. Indeed, an-
other line of research aims to alleviate the problem with computational cost by
instead relying on memory bounded cost [1, 16]. By adopting the blockchain
for use as the puzzle solution algorithm, we demonstrate an alternative and
simpler solution to this problem. We do this by equating monetary cost with
computational cost and simultaneously introduce a notion of fairness.

This paper introduces the notion of fair client puzzles by exploiting mod-
ern developments of distributing computation. Specifically by employing the
potential of the Bitcoin blockchain, we create an alternative form of client puz-
zle which is fair and avoids imposing heavy computations on clients. We go
on to demonstrate the theoretical grounding of these fair client puzzles before
describing a proof of concept implementation.

Bitcoin The cryptocurrency Bitcoin, in common with its many altcoin vari-
ants, requires a computational problem to be solved every time the set of trans-
actions moves forward by formation of a new valid block in the consolidated
blockchain. The computational problem is moderately hard which means that it
is too hard for a single device to solve in a reasonable time, yet easy enough that
a dedicated effort by distributed teams of solvers can obtain a solution within
a predictable time. The Bitcoin rules ensure that the current difficulty of the
computational problem involved is tuned to the available computational effort
worldwide so that the expected time to solve a problem remains more or less
constant.

The inspiration for the problems used in Bitcoin originally came from the
idea of proofs of work. Proofs of work are designed to be solvable by one
specific client without regard to its computational power, with solution time
varying depending on the local computing power. Whilst in contrast, puzzles
in Bitcoin are solvable at a predictable rate.

Based on the above observations, in this paper we propose client puzzles
based on the blockchain. We then describe their use as a mechanism for mit-
igation of denial of service attacks. This is, in a sense, coming full circle by
bringing back the moderately hard puzzles to a purpose they were originally
designed for. At the same time, the return comes with significant benefits due
to the distributed way that puzzles are solved in Bitcoin. The puzzles that we
define are fairer than conventional client puzzles as they do not affect, or rely
upon, the local computation of users. In fact, the fairness we allude to is order
preserving, which is inherited from the blockchain.

2

Bi−2 Bi−1 Bi

3

1

2

4

5

Blockchain

Client Server

0∗

Figure 1: Client puzzles from Bitcoin

Contributions We present a novel client puzzle construction that leverages
the distributed computing power of the Bitcoin network to solve them. Our cen-
tral idea is to embed puzzles within the blockchain as part of the puzzle solution
mechanism, and requiring clients to prove that their puzzle is contained in it.
Instantiating an interactive client puzzle construction, we show that the puzzles
we construct come with considerable practical advantages for both clients and
service providers:

1. Any service provider can implement these puzzles, without any require-
ment for affiliation with the Bitcoin network. Moreover, servers can tune
their puzzles to suit their needs, adjusting puzzle difficulty on the fly.

2. The puzzles provide order preserving fairness, a previously missing but
important goal of client puzzles. In particular, service providers can imple-
ment puzzles without concern for hardware availability of their potential
clients.

3. The puzzles are adaptable to various Bitcoin-like alternatives (altcoins)
and other distributed hash chaining schemes.

4. These constructions save expending any individual computational effort
of client devices, in contrast with previous client puzzle schemes, by using
the work already being produced within the Bitcoin network.

3

Summarising the DoS resistant attributes, we describe a protocol that op-
erates between a client, or multiple clients, and a server, which may have no
association with the Bitcoin network. The protocol runs by the client communi-
cation between the blockchain and the server. Referring to Figure 1, steps 1 and
2 correspond to a regular request and response round, where the client receives
a puzzle in response from the server. Inserting the puzzle in the blockchain
makes up step 3, and is performed by the client. Finally, step 4 is the verifica-
tion step where the client provides proof that the puzzle is contained within the
blockchain. Step 0* is an ongoing process where the server takes information
from the blockchain, such as block difficulty. The fifth stage represents general
service to the clients, provided that the server accepts at stage 4.

Structure of the paper First we introduce client puzzles, with definitions
related to the literature [6, 12, 17], discussing and formally defining difficult and
costly client puzzles along with their respective security games. We introduce an
abstract client puzzle and prove that our construction satisfies these definitions.
Next, we move from our theoretical underpinning, to practical composition by
means of DoS resistance in Section 3, which describes the required properties
for DoS resistance, in order to introduce a DoS resistant protocol based on
previous work in the literature [17]. The penultimate section demonstrates the
proof of concept for DoS mitigation with client puzzles, and discusses how it
meets the properties in Section 3. The concluding section looks at possibilities
for advancing this line of work.

Throughout, we assume some familiarity with the workings of the Bitcoin
system. For a broad background understanding we suggest a mix of online
resources [20, 21, 22, 23, 24] and academic publications [4, 5, 15, 19].

2 Client Puzzles

In this section we formally define client puzzles and their security notions, before
concluding with a discussion on achieving fair client puzzles. Definition 1 closely
follows the one given in the literature [17].

Definition 1 (Client Puzzle). A client puzzle CP is a tuple of three efficient
probabilistic algorithms Setup, GenPuz, FindSol and a deterministic algorithm
VerSol. Let λ be the setup parameter, K the key space, D the difficulty space,
Str the string space, P the puzzle space and Sol be the solution space.

• Setup(1λ) : Select K,D,Str,P,Sol, k r←− K, params ← (K,P,Sol,D,Str)
Return (k, params).

• GenPuz(k ∈ K, d ∈ D, str ∈ Str) : Return p ∈ P.

• FindSol(str ∈ Str, p ∈ P, t ∈ N) : Return s ∈ Sol after at most t clock
cycles.

• VerSol(k ∈ K, str ∈ Str, p ∈ P, s ∈ Sol) : Return true or false.

4

All that is left is to define correctness. Let (k, params) ← Setup(1k) and
p← GenPuz(k, d, str), where d ∈ D and str ∈ Str, then there exists t ∈ N where

Pr[VerSol(k, str, p, s) = true | s← FindSol(str, p, t)] = 1.

Since their inception, client puzzles were studied as a means to mitigate
DoS, and reconsidered for use against distributed DoS. Using client puzzles for
DoS prevention led to problems with initial designs [7, 13, 17] as the standard
security definitions for client puzzles were not robust enough to capture DoS
resistance.

2.1 Security Notions

We now formalise the security notions for client puzzles in terms of games be-
tween an adversary A and a server S. The most obvious way in which an
adversary can undermine a client puzzle is to solve a puzzle quicker than ex-
pected. Another possibility, as discussed by Chen et al. [7], is a scenario where
an adversary could create puzzles independently from the server S. For an in-
teractive setting we desire that an adversary cannot create a puzzle that the
server believes to be valid, referred to as puzzle unforgeability. In fact, there are
a variety of properties required for DoS mitigation which may or may not be
useful as properties for client puzzles. We return to this in Section 3.

To define the security games for client puzzles, we first define meaningful
oracle calls to help describe them.

• O.GetPuz(str) : Return p← GenPuz(k, d, str) and record (str, p) in a list.

• O.GetSol(str, p) : If (str, p) was not recorded by O.GetPuz return ⊥. Else
find s such that VerSol(k, str, p, s) = true. Record (str, p, s) and return
s.

• O.VerSol(str, p, s): Return true if VerSol(k, str, p, s) = true, (str, p) has
been recorded by O.GetPuz and the tuple (str, p, s) has not been recorded
by O.GetSol. Else return false.

Let the security game EXECDIFF
A,d,CP(λ) between an adversary A and server S,

for a client puzzle CP with setup parameter λ and difficulty d ∈ D, be defined
as follows:

1. Server S performs (k, params)← Setup(1λ), and gives params to A.

2. Adversary A is allowed to make queries to O.GetPuz and O.GetSol.

3. At any point A can run O.VerSol, which terminates the game with the
result from the algorithm.

Definition 2 (Difficult Client Puzzle). Let CP be a client puzzle for fixed setup
parameter λ and d ∈ D. Let fλ,d(t) be a family of monotonically increasing
functions on t. Then CP is said to be fλ,d(t)-difficult if for every k ∈ K, str ∈
Str, p ∈ P, s ∈ Sol and all adversaries A running in time at most t,

5

Pr[EXECDIFF
A,d,CP(λ) = true] ≤ fλ,d(t).

2.2 Difficult Client Puzzles from the Blockchain

Now we describe a client puzzle based on hash functions, that are required to
produce outputs starting with a certain number of leading zeros. This is similar
to a type of puzzle that appears in both the literature and in practice [3, 9]. It
is adapted here to describe a high level hash based puzzle, creatable using the
blockchain.

Let Hi, 1 ≤ i ≤ 4 be publicly available hash functions running in polynomial
time, taking inputs in {0, 1}∗ and producing outputs in {0, 1}li . Then define
publicly available algorithms as follows:

• BC.VerTx on input x, p,m1 runs x̃ ← (m1,H1(p),H2(m1,H1(p))) and
returns true if x = x̃. Else returns false.

This process verifies that a transaction x contains a puzzle p along with some
auxiliary data m1, which captures the extra information required to form a
transaction.

• BC.Merk takes up to n inputs {tx1
, . . . , txn

}, for some fixed integer n, and
outputs a Merkle root rt, by forming a hash tree with hash function H3

and returning a single hash output.

The algorithm BC.Merk takes n ordered inputs, under the assumption that the
maximum number of inputs to BC.Merk is some polynomial on the input pa-
rameter, constructing a Merkle tree [14]. These inputs, txi can be thought of
as the transactions within Bitcoin that are contained within each block. The
first input tx1 is hashed with the second input tx2 , using the hash algorithm H3,
producing an output in {0, 1}l3 . This output is fed back into H3 again with the
next original input tx3

, and so on, until all n inputs have been included:

rt = H3(. . .H3(H3(tx1 , tx2), tx3) . . .).

• BC.VerMerk takes input rt, a Merkle root, and up to n inputs tx1 , . . . , txn ,
then runs r̃t ← BC.Merk{tx1 , . . . , txn}, and returns true if rt = r̃t. Else
returns false.

This verification algorithm checks that the submitted Merkle leaves form into
the correct Merkle root.

• BC.VerBlk takes inputs s′, rt and m2, returning true if H4(s′, rt,m2) has
d leading zeros. Else returns false.

This process mimics the Bitcoin block verification algorithm, where s′ is the
solution and rt is the Merkle tree containing the transactions and m2 is any
auxiliary or extra data to be included.

6

Abstract Blockchain Based Client Puzzle. Using these algorithms,
we can now define an abstract blockchain-based client puzzle by instantiating the
algorithms in Definition 1 as follows:

• Setup(1λ): Selects K = ∅, D ⊆ {0, 1, . . . , l4}, Str ⊆ {0, 1}∗, P ⊆ {0, 1}∗,
Sol ⊆ {0, 1}∗ and returns params = (D,Str,P,Sol).

• GenPuz(d, str): Returns puzzle p = str.

• FindSol(str, p): Returns s of the form s = (s′, rt, x, tx2
, . . . , txq

,m1,m2).

• VerSol(p, s) where s = (s′, rt, x, tx2 , . . . , txq ,m1,m2): Returns true if
BC.VerTx(x, p,m1) returns true, BC.VerMerk(rt, x, tx2

, . . . , txq
) returns true

and BC.VerBlk(s′, rt,m2) returns true. Else returns false.

Assuming H4 is at least surjective, it is easy to find a t such that correctness
holds. Note that we purposely omit describing the inputs to the client puzzle
algorithms where they are not used; in this instance the client puzzle is not
keyed, so we do not list k ∈ K as an input to either GenPuz or VerSol.

Theorem 1. Let CP be an abstract blockchain based client puzzle, for security
parameter λ, d ∈ D, and let Hi, 1 ≤ i ≤ 4 be random oracles, with output
lengths l1, l3, l4 ≥ d. Let fλ,d(t+ 1) = t

2d
. Then CP is an fλ,d(t)−difficult client

puzzle.

Proof. For Adversary A to win the game, it equates to finding an s′ such that
H4(s′, rt,m) has at least d leading zeros. A first queries GenPuz on some string
str, returning the puzzle p = str, thus (str, str) is now recorded. This step
must take place, otherwise O.VerSol could only output false. Next, A generates
a valid transaction x, and Merkle root rt, using the public algorithms H1,H2

and H3. This first process takes at least one step. All that is left is to find
a valid s′ such that H4(s′, rt,m) has d leading zeros. W.l.o.g. fix m, then A
proceeds to run the function H4(s′, rt,m) for different values of s′. For any one
run, the chance of finding a valid s′ satisfying this condition is 1/2d. If a solution
has not been found after the penultimate attempt, A may attempt a guess for
s′, along with the call to O.VerSol. Hence, the probability of A succeeding, and
O.VerSol returning true, is bounded by t/2d.

This client puzzle construction can be realised using the blockchain. Finding
a solution to a puzzle is simply the process of encapsulating it within a trans-
action in a subsequent block. Thus, the difficulty must be chosen with respect
to the difficulty specified by the blockchain protocol. For the Bitcoin system,
taking difficulty d from the blockchain makes it improbable for any individual
to solve a puzzle in a reasonable amount of time. Rather than expect a user to
mine a block, we rely on the Bitcoin system to solve the puzzle. Consequently,
a client needs only to form a transaction on the blockchain including the puzzle,
then wait for the miners to find a solution to the block – hence the puzzle.
This client puzzle effectively replaces computational cost by a time delay. Con-
structing a client puzzle is demonstrated in Section 4, with a proof-of-concept
implementation.

7

2.3 Stronger Security from Cost-Based Puzzles

Definition 2 only captures the difficulty of solving one puzzle in t computational
steps. This does not fully express the intuition behind client puzzles [9, 17],
as it says nothing about the possibility of attempting to solve many puzzles at
once. We want client puzzles where solving n puzzles is approximately n times
as difficult as solving just one. Client puzzles with this property are referred to
as strongly difficult. We formalise this notion slightly differently, by employing
abstract blockchain based client puzzles, and replacing difficulty in terms of
computational steps by cost in terms of monetary expense.

Despite a time delay feature, the abstract scheme as described is free of any
significant cost for the clients and whilst this is the case clients are able to solve
as many puzzles as they like provided they do not mind waiting. What is more,
any client can solve multiple puzzles in the same time it takes to solve one.
Later we will see that both of these problems can be addressed using Bitcoin
by imposing a monetary cost to embedding puzzles within a block, and thus
finding a solution. Formalising this idea is achieved in a similar manner to the
work on interactive strong puzzle difficulty, originally given by Stebila et al.
[17]. For now, we need to define the security experiment, and make adversarial
assumptions.

Define the security game for EXECCCPCP,A,d,n,ct(λ) between a p.p.t adversary
A and server S, for a client puzzle CP with setup parameter λ, n ≥ 1 and a
predetermined cost ct ≥ 0 as follows.

1. Server S performs (k, params)← Setup(1λ), and gives params to A.

2. Server S runs pi ← O.GetPuz(stri) for distinct, random stri, i = 1, . . . , n.
All (stri, pi) are recorded and given to A.

3. Adversary A has oracle access to O.GetSol and a solution verification ora-
cle taking inputs (str, p, s) and returning VerSol(k, str, p, s). Additionally,
A may solve any puzzle pi at a fixed cost ct.

4. Adversary A generates L = {(stri, pi, si) : i ∈ {1, . . . , n}}.

5. At any point A can end the game by submitting L as a solution. The
algorithm returns true if for all i from 1 to n, O.VerSol(stri, pi, si) = true.

With this new version of the puzzle security game we can now define a costly
client puzzle as an analogue of the strongly difficult client puzzles [17].

Definition 3 (Costly Client Puzzle). Let CP be a client puzzle, let fλ,d,n(t) be
a family of functions monotonically increasing in t and let negl be a negligible
function where

|fλ,d,n(t)− fλ,d,1(t/n)| ≤ negl(λ, d),

for all t, n such that fλ,d,n(t) ≤ 1. For a fixed setup parameter λ and difficulty
parameter d ∈ D, for n ≥ 1, then CP is an fλ,d,n(t)−costly client puzzle if for all

8

p.p.t algorithms A running in time at most t, where each puzzle has associated
cost ct > 0,

Pr[EXECCCPCP,A,d,n,ct(λ) = true] ≤ fλ,d,n(t).

Remark 1. An adversary attacking the strong security of a blockchain based
client puzzle may attempt to embed multiple puzzles in one block. This may be
possible, and in fact is a design goal of blockchain based puzzles. However, as
the number of embedded puzzles per block increases, the average computational
cost expended per puzzle decreases. Therefore the design of the puzzle should
ensure that the number of puzzles embedded in a block is limited to some
threshold n. Furthermore, the cost to the adversary of mining a block should
remain (much) higher than the cost of solving one puzzle in the intended manner,
namely embedding it in a valid Bitcoin transaction.

To achieve strong security of a blockchain-based client puzzle we assume
that the adversary is unable to reduce the average cost of finding solutions to
puzzles below a certain threshold cost ct which we call the design cost of the
puzzle. The design cost can be assigned in different ways, such as applying
transaction fees or “proof-of-burn”[22] (to list just two methods). Note that ct
is a monetary cost which we freely compare with computational cost. This is
important, as it means clients can outsource their puzzles for a cost, which is
itself equatable to computation, meaning the outsource is not achieved for free.

Returning to our abstract puzzle definition, the adversary can attempt to
solve multiple puzzles at once within a single Merkle root rt, and finding one
s′ and auxiliary m such that H4(s′, rt,m) has the requisite number of leading
zeros. We need this to cost more than the cost of solving the maximum number
of puzzles which can be embedded in one block.

Assumption 1. Let CP be an abstract blockchain based client puzzle, with se-
curity parameter λ. Let ct be the design cost of solving one puzzle, and fix a
parameter of difficulty d. Then there exists q ∈ Z>0 where, for all rt and m, the
average computational cost of finding an s′ such that H4(s′, rt,m) has d leading
zeros, is at least q · ct.

In our Bitcoin embodiment, Assumption 1 expresses the idea that generating
a block is so stupendously expensive that it is cheaper to bear the cost of
embedding a significant number of puzzles. In practice there is a limit on the
number of puzzles that can be embedded in one Bitcoin block due to a fixed limit
on the size of blocks. Each block has a capped limit of 1Mb [22] and a puzzle
included within a transaction with one input and one output is approximately
214 bytes, so currently just under 4, 900 transactions are embeddable per block.
Thus for Bitcoin this can be a realistic choice for q.

Using Assumption 1 we can prove that the abstract blockchain based puzzle
is a costly client puzzle. Thus we can use this puzzle to ensure that an adversary
who wishes to solve puzzles must incur a cost that is linear in the number of
puzzles they intend to solve, which is a significant disincentive to carrying out
DoS attacks by attempting to solve multiple puzzles. This can be an attractive

9

mechanism to use in practice on the assumption that legitimate users are willing
to accept a single fee ct in order to maintain access to a service during times of
attack. We explore the use of such client puzzles in more detail in Section 3.

Theorem 2. Let CP be an abstract blockchain based client puzzle, for security
parameter λ, d ∈ D, cost per puzzle ct, and let Hi, 1 ≤ i ≤ 4 be random oracles,
with output lengths l1, l3, l4 ≥ d. Let fλ,d,n(t) = (t− ct(n− 1))(n− 1)/2d. Then
CP under Assumption 1 with q > n is an fλ,d,n(t)−costly client puzzle.

Proof. Following from the assumption, if A attempts to attach the received
puzzles within a Merkle root rt, and then tries to compute an s′, such that
H4(s′, rt,m) has d leading zeros, it becomes far too costly, i.e. the total cost
would be q · ct, which is much more expensive than if A simply won the game
by paying for each solution.

Another strategy for A is to ask for the solution to all but one puzzle, each
costing ct computational steps, leaving A with t − ct(n − 1) steps remaining.
Now, A can generate a legitimate transaction x← (m1,H1(p),H2(m1,H1(p))).
Note that for each of the paid for n − 1 puzzle and solution pairs, (pj , sj), the
solution contains a Merkle root rtj . Thus A can attempt to form a Merkle
root rt by finding some value m′, such that H3(x,m′) gives rt = rtj for any
j. This approach is essentially attempting to find a collision within one of
the n − 1 Merkle trees. The output space of H3 is 2l3 , so the probability of
finding a solution in t steps is (t − ct(n − 1))(n − 1)/2l3 . As l3 > d we have
(t− ct(n− 1))(n− 1)/2l3 ≤ (t− ct(n− 1))(n− 1)/2d as required.

2.4 Achieving Fair Client Puzzles

So far we have explored difficult and costly client puzzles, but have not con-
sidered fairness. Why do we need fairness in client puzzles? Consider a case
that behaves very similarly to a DoS attack, where multiple legitimate clients
request service all at once, referred to as a flash flood scenario. Here, the natural
approach is to serve clients on a first come, first served basis. However, a dated
smart phone would be able to perform significantly less operations per second
than a high end desktop computer, and so would be at a disadvantage if it were
forced to solve client puzzles to gain access. These are fairness considerations.

Essentially, the fairness required is order preserving. We state this informally
as: for any two clients C and C ′, if C attempts to solve a puzzle before C ′, it
should find a solution no later than C ′. For our abstract blockchain-based client
puzzle, instantiated with the Bitcoin blockchain, this becomes achievable. There
is an order preserving algorithm, namely the process of adding a transaction
to the blockchain. It is also reasonable to assume that any adversary we are
concerned with would not generate a block before the worldwide collection of
Bitcoin miners. The Bitcoin protocol cannot be fair in an ideal way due to
factors such as transaction fees and availability of nearby nodes, which affect
the time until a transaction is included in the blockchain. However, in general
complete availability is not achievable, and we must assume, along with the

10

built in assumptions on Bitcoin, that provided the correct transaction fees are
included nodes do not arbitrarily reject certain transactions.

3 Application to Denial of Service Resistance

Denial of service (DoS) attacks, including distributed denial of service (DDoS)
attacks, are popular and widely employed techniques of attacking web based re-
sources and services, causing considerable concern for online service providers1.
DoS is an easily exploitable attack vector, challenging to defend against and
relatively simple to invoke. Despite the awareness and wide acknowledgement
of the problem, DoS is still a prevalent threat.

A conventional DoS attack, and the one we focus on, aims to deplete the
computational resources of the server by requesting and re-requesting connec-
tion [17]. If the server demands secure authentication this will require expend-
ing computational effort, which the attacker exploits by not completing the
authenticated handshake. This type of DoS attack makes the effort expended
asymmetric. The attacking clients are free to ignore all replies, thus expending
no effort other than a request for service, whilst the server expends considerable
effort for each request. Ameliorating this imbalance is the aim of this section,
using the abstract client puzzle construction as described so far. The inten-
tion is to incorporate these client puzzles within a pre established DoS resistant
framework.

3.1 Client Puzzles for Denial of Service Resistance

The criteria provided below are extracted from recent literature on DoS resis-
tance using client puzzles [6, 7, 9, 18], with the exception of Criterion 4, which
expresses the notion of fairness developed in Section 2.4. The term, expensive
operations is left ambiguous, since it depends on capabilities of the server.

1. A server S should not carry out any expensive operations unless it believes
that the client C legitimately wants service.

2. Server S should not perform any expensive operations unless it believes
that client C intends to communicate with S, and not with another server
S̃.

3. All cost incurred by the client C in order to solve a client puzzle for server
S, can only be used to prove C’s intentions to communicate with S.

4. Any client C, that attempts to solve a challenge p from server S, before
any other client C̃ attempts to solve challenge p̃, should find a solution to
p no later than C̃ finds a solution to p̃.

1Throughout we use DoS to refer to both DoS and DDoS, when not explicitly stated
otherwise.

11

5. The cost of solving n puzzles is approximately n times the cost of solving
1 puzzle.

6. No party other than S should be able to generate valid puzzles for S, with
non-negligible probability.

7. Any client that receives puzzles from S cannot solve and store the puzzles,
then later respond with an overwhelming number of legitimate puzzle
solutions at one time.

8. It is not possible to replay previously accepted puzzle solutions.

9. The cost required for solving a puzzle is adjustable.

Criterion 2 is designed to prevent a malicious server redirecting requests
for service to a legitimate server S. This exploit is discussed in detail by Mao
and Paterson [13], and is crucial to DoS resilience. The concern here is that,
with almost no effort expended by the malicious server S̃, it is possible to
forward all requests on to a legitimate server S, where the client believes it is
communicating with S̃, and the server S believes it is communicating with C.
Another property, Criterion 6, refers to the unforgeability of client puzzles. For
interactive client puzzles, this is necessary, however some client puzzles have
been designed specifically to be non-interactive, so that a client can generate a
valid puzzle. For non-interactive puzzles, unforgeability is meaningless.

3.2 Creating a DoS Resistant Protocol

Stebila et al. [17] demonstrate a way of transforming any interactive strongly
difficult client puzzle into a DoS resistant protocol. This transformation is also
achievable for any interactive costly client puzzles as described here. First ob-
serve that the only difference between costly client puzzles and strongly difficult
ones is the way that cost is measured. We can create an upper bound in terms
of cost, which is equatable with computational steps, and thus use the proof
from Steblia et al. [17, Eq 7, p.28].

Building on this construction, we demonstrate the use of our abstract block-
chain-based client puzzle in a DoS resistant scenario, by means of an example –
see Figure 2. This protocol is constructed as detailed by Stebila et al. [17, § 5].
We assume that server and client have public identities ids and idc. The aim
is for the server to accept an identity from the client and store the identity in
a list of accepted identities only if a valid run of the protocol for that identity
has taken place. The intention here is that the protocol is run prior to any
further, perhaps more expensive, demands on the server, such as key agreement.
However, the more general construction [17] allows for any protocol to be built
into the first 3 stages, provided that the server does not perform any expensive
computation until after the response has been accepted – so after line 15 in
Figure 2.

12

Client Server

skc, idc, nc ←r N

str ← (idc, ids, nc, ns, c)

s← FindSol(str, p)

sks, ids, c

ns ←r N
str ← (idc, ids, nc, ns, c)

p ← GenPuz(d, str)

mac ← MACsks
(str, p)

Check idc is not recorded, else STOP

Check mac = MACsks(str, p), else STOP

Check VerSol(str, p, s) = true, else STOP

Check s includes cost ≥ c, else STOP

Record idc

(<request>, idc, nc)

(<challenge>, ns, p,mac, c)

(<response>, str, p,mac, s)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

Figure 2: Abstract Blockchain DoS Resistant Protocol

3.3 Meeting the Denial of Service Resistant Criteria

Relating to the DoS resistance criteria specified in Section 3.1, notice that for
most of the desired properties it is straightforward to see that they are achieved.
Here, we expand further on the less obvious criteria.

Point 4 holds with the assumption that once a transaction is created and
broadcast, it will be included in the next block, which is a fundamental assump-
tion discussed previously discussed in Section 2.4. Thus, under this assumption,
we achieve an order preserving fairness where puzzle solutions cannot be found
any sooner than solutions to earlier puzzles.

Observe that point 7 is not satisfied in this instance. Originally noted by
Groza and Warinschi [9], the proposed method for adapting client puzzles for
DoS prevention [17] provides no defence against a next–day attack, as there
is no limit on the time allowed to return a solved puzzle. A simple solution
involves the server changing keys at regular intervals. To accomplish this, whilst
maintaining fairness for clients, the server generates and stores two keys: an old
key sks1 and a new key sks2 . The server then periodically updates the keys,
redeclaring the current newest as the oldest sks1 = sks2 , then generating and
storing a new key sks2 . The new key, sks2 , is then used to generate the MAC
on line 6 of Figure 2, but the verification on line 12 will have to test both keys
and continue if the MAC returned by the client is valid under one of the keys.

13

We have excluded this rekeying process from the protocol for two reasons.
Firstly, it further convolutes an otherwise straightforward protocol, and is very
easy to solve. Secondly, perhaps most crucially, we expect that a server would
only employ this DoS mitigation protocol when receiving high volumes of traffic,
and thus generate a fresh key at each instantiation. Unless there is some sus-
tained attack, there may be no need to implement a rekeying procedure. Thus,
we leave this process as an optional mechanism.

Point 3 is slightly trickier, as there is nothing stopping a client solving a
puzzle on the behalf of someone else. However, if we consider an established
beneficiary of C to be a part of C itself, it becomes clear that this property is
also achieved, by virtue of the string generation on the client side (Step 8 Fig
2), and the subsequent MAC verification on the server side (Step 12, Fig 2).

4 Proof of Concept

We provide a practical demonstration of the protocol described in Figure 2, by
creating an example puzzle and storing it within a transaction using the Bitcoin
Testnet.

Suppose a client C wishes to register identity idc with a server S, in order
to later receive some service. First C generates a nonce nc, and sends it along
with idc to the server S. In response, the server generates and returns a puzzle
p, a server nonce ns, a cost c and a message authentication code mac.

To create the response, the server first forms the string str, which is made
up of the server address ids and the client address idc, along with their nonces
and the server specified cost c. For our example, we take

idc = mjMnKihRdbr5VVdDV67QGd13EVnUBm6F7k

ids = mmsU7xHjJLdiqgL3udyJ7oooNXTo94M9nE

nc = 27e7e82f79c5ab86e99fcf7024fd4003b87fc8a7eb99fd00e77d9ba55a02e197

ns = d053c6e0c1756705b0abfb3ff9374e85a5c1e85d9ed7481f1b61926dcce17f9f

c = 1

str = (idc||ids||nc||ns||c)

Addresses idc and ids are encoded in the Bitcoin specified base-58, whilst
the nonces used are hexadecimal. Cost c is represented in decimal with cost
1 equating to 10−7 bitcoins. In this instance the generate puzzle algorithm,
GenPuz, simply returns the string p = str, as the difficulty on the blockchain
does not need to be known to create puzzles.

Now the client can solve the puzzle p by encapsulating it within the next
block. One way of inputting this puzzle into the blockchain is to form the
puzzle into an address, which requires running the puzzle p through the Bitcoin
public key to address generation algorithm. The client does this by running
p′ ← RIPEMD160(SHA-256(p)), then prepends some auxiliary message data m1

14

to p′, then takes m2, the first four bytes of SHA-256(SHA-256(m1||p′)), and
appends them to m1||p′ to form the full output m1||p′||m2. This process is
designed to agree with the address generation method of Bitcoin.

Running this algorithm on the string above we get mwwCiu...p7NS encoded
in base-58. This is now a legitimate Testnet address. The client creates a
transaction including this address and cost c, then sends it to the network.

1: "vout" : [

2: {

3: "value" : 0.00000010,

4: "n" : 0,

5: "scriptPubKey" : {

6: "asm" : "OP_DUP OP_HASH160 b4180a2

7: fdaef5c1afdc3b0e73fe699094e634ff7

8: OP_EQUALVERIFY OP_CHECKSIG",

9: "hex" : "76a914b4180a2fdaef5c1afdc

10: 3b0e73fe699094e634ff788ac",

11: "reqSigs" : 1,

12: "type" : "pubkeyhash",

13: "addresses" : [

14: "mwwCiu1hfeJVppaWtfAHCWwKZ2j57Fp7NS"

15:]

16: }

17: },

Above is a portion of a Bitcoin Testnet transaction, created to include the
puzzle in the block. Line 14 specifies the receiving address, which we recognise
as m1||p′||m2, a function of the puzzle p. On line 3, the value specifies the
number of bitcoins assigned to the address. This is the specified cost. The full
transaction is described in Appendix A.

It is now possible to verify that the transaction is recorded in the block,
within transaction x = c55 . . . 2d5, which is a double SHA-256 of the complete
transaction. This transaction is then encoded within the block 000 . . . aa4,
which can be verified using the block’s details.2 This also allows us to verify the
cost associated with the transaction, and note that the address of the puzzle is
assigned 0.00000010 bitcoins, as specified by the puzzle – we are using a cost of
1 to be equivalent to 10−7 bitcoins. The cost is a protocol level specification,
verified at line 14 in the figure. Merkle root creation and block generation
are performed by the mining nodes, encompassing the transaction within the
blockchain. Once this process is complete, the client can return the valid string
str, p, s,m.

Upon receiving the response, the verification algorithms BC.VerMerk and
BC.VerBlk are run by the server, which also take into account the difficulty of
Bitcoin. In Bitcoin, the blockchain difficulty remains static for 2016 blocks at

2https://www.blocktrail.com/tBTC/block/000000000000015b97c1c04e9ec0ce7266d837/

9dceac7e3b0a38a32872687aa4

15

a time. For this example, the difficulty d was set at 227267.00000000. This
verification process is incredibly cheap in terms of computation, and is similar
to the process used when participating as a node in the Bitcoin network. In
simulations, it was possible to generate one hundred thousand puzzles in 1.225
seconds, with the MAC verification step taking on average 1.061 seconds per
hundred thousand puzzle responses.

Provided the straightforward verification stages 11, 12 and 14 from Figure
2 return true, the only other verification needed is to check that x, returned
by the client as part of the solution s, exits as a transaction within the block,
which includes an encoding of the puzzle p and supplementary data m.

5 Conclusion

There are various ways to extend and adapt this work. One possibility is to
develop a rigorous notion of fairness in terms of client puzzles, and relating that
to what is achievable with puzzles constructed from the blockchain, along with
analysis that focuses on achieving a fairness property in a practical setting.
Extending this work by looking at altcoins could lead to more efficient, and
potentially simpler client puzzles constructions, running quicker than on the
Bitcoin network. This approach may increase the scope of potential applications,
though we expect there to be some trade off between security and application.
From a broader perspective, research on the willingness of clients to spend
money over allowing their machine to perform computations is a nice avenue for
investigation. In all, there still remain challenges to developing and deploying
practical client puzzles based on Bitcoin.

5.1 Real-time delays

Bitcoin blocks are generated approximately every ten minutes which may seem
impractical for client puzzle applications such as in DoS prevention. We em-
phasise that, like many DoS resistant measures, client puzzles should only be
used during times of stress for the server, when there is an abnormally high
volume of traffic. For typical situations the puzzles are not used and there is
zero overhead. During exceptional periods, waiting around 10 minutes for ser-
vice is not unreasonable depending on the type of service and the circumstance.
A good example of this is online ticketing, where frequently online queues are
introduced that redirect to backup systems in order to cope with the demand.
Here, a waiting time of far more than ten minutes is not uncommon.

Various alternatives to the standard Bitcoin protocol are available, with
many altcoins offering significantly lower block generation time. Litecoin, Do-
gecoin and Quarkcoin are examples of Bitcoin-like schemes offering block gen-
eration times of 2.5 minutes, 1 minute and 30 seconds respectively. It must be
pointed out that the use of an alternative currency must be weighed up based
on an assessment of its own merit, and only provided that Assumption 1 in
Section 2.3 is considered reasonable in that context. For example, whilst the

16

Bitcoin system is producing approximately 747,930,000 giga hashes per second,
the quark system is producing much less, at 264.13 mega hashes per second.3

On top of this, Litecoin, Dogecoin and Quarkcoin are based on different hash
functions than Bitcoin, which have not experienced as much scrutiny from the
community. Although altcoins have good potential, any assumptions on Bitcoin
cannot be trivially carried over to its Bitcoin-like alternatives.

5.2 Implementation challenges

The protocol described in Figure 2 does not limit a third party from including
the puzzle in the blockchain on the behalf of a client, allowing the solution
finding process to be outsourced. In this way a large service provider, or many
smaller providers, could take a prepaid fee in order to allow a client to use
their service in the future. This approach also allows the service providers to
group multiple puzzle solutions into one transaction, enabling the cost per puzzle
solution to be reduced.

A potential concern is that with the space of 1Mb per block, using Bitcoin
as a true client puzzle scheme would soon overwhelm the network with transac-
tions. Whilst this is a concern for Bitcoin currently, there may be larger block
sizes in the near future4. Furthermore, by collecting multiple puzzles into one
transaction, via a service provider or otherwise, this will substantially reduce
the size of each puzzle. The ability to embed more puzzles in a single block must
also be scrutinised in the context of Assumption 1, which depends on factors
such as the difficulty of the blockchain, and the design cost per puzzle.

An alternative way of including cost in a puzzle is to include a cost in with
the transaction fee of the puzzle. However, the approach we have taken makes
it possible to solve multiple puzzles for the cost of one single transaction fee,
and therefore we prefer to make the assignment of the value to an unspendable
address – the puzzle. A neater alternative is to use special transactions de-
signed specifically for embedding messages within the blockchain, namely OP–
RETURN transactions [22]. For completeness, we have also embedded the same
puzzle in an OP–RETURN transaction on the Testnet, with a minor change in
cost parameters.5

This method also allows the cost can be sent to an address the server owns,
along with the identifying message. As a result, the server could actually gain
monetarily from any attempted DoS attack. It also allows the server to reim-
burse the cost of solving the puzzle back to the user, albeit without returning
the cost of a transaction fee. This approach also comes with the advantage of
not increasing the size of the set of unspent transaction outputs (UXTO), which
would otherwise have ramifications for those running Bitcoin nodes.

Overall, we have presented a novel approach to client puzzles, providing a
fair alternative to previously proposed proof of space and proof of work schemes,

3bitinfocharts.com – 19 Jan 16
4https://bitcoinxt.software/index.html Jan – 2016
5https://www.blocktrail.com/tBTC/tx/97c68c417f4c254b9cefc7c5495aad47bc006b4e8/

0dbec0497e35a67f63acb71

17

which lack this property. Using Bitcoin’s proof of work system for client puzzles
is in some ways coming full circle, but we have gained considerably along the
way. We can now construct client puzzles which are solvable in a fixed time, and
independent of client device. Focus can now be directed towards implementation
issues, such as speed, reliability and practical application.

References

[1] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi.
Proofs of space: When space is of the essence. In Security and Cryptography
for Networks, SCN 2014, volume 8642 of LNCS, pages 538–557. Springer,
2014.

[2] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant au-
thentication with client puzzles. In Bruce Christianson et al., editors, Se-
curity Protocols, 8th International Workshop, volume 2133 of LNCS, pages
170–177. Springer, 2001.

[3] Adam Back. Hashcash-a denial of service counter-measure. http://www.

hashcash.org/papers/hashcash.pdf, 2002.

[4] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better
- how to make Bitcoin a better currency. In Financial Cryptography and
Data Security, FC 2012, volume 7397 of LNCS, pages 399–414. Springer,
2012.

[5] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. SoK: Research perspectives and
challenges for Bitcoin and cryptocurrencies. In IEEE Symposium on Secu-
rity and Privacy, SP 2015, pages 104–121. IEEE Computer Society, 2015.

[6] Colin Boyd, Juan Gonzalez-Nieto, Lakshmi Kuppusamy, Harikrishna
Narasimhan, C Pandu Rangan, Jothi Rangasamy, Jason Smith, Douglas
Stebila, and V Varadarajan. Cryptographic approaches to denial-of-service
resistance. In An Investigation into the Detection and Mitigation of Denial
of Service (DoS) Attacks, pages 183–238. Springer, 2011.

[7] Liqun Chen, Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. Se-
curity notions and generic constructions for client puzzles. In Advances
in Cryptology, ASIACRYPT 2009, volume 5912 of LNCS, pages 505–523.
Springer, 2009.

[8] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Advances in Cryptology, CRYPTO 1992, volume 740 of LNCS,
pages 139–147. Springer, 1992.

[9] Bogdan Groza and Bogdan Warinschi. Revisiting difficulty notions for
client puzzles and DoS resilience. In Information Security, ISC 2012, vol-
ume 7483 of LNCS, pages 39–54. Springer, 2012.

18

[10] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding pro-
tocols. In Secure Information Networks: Communications and Multime-
dia Security, volume 152 of IFIP Conference Proceedings, pages 258–272.
Kluwer, 1999.

[11] Ari Juels and John G. Brainard. Client puzzles: A cryptographic coun-
termeasure against connection depletion attacks. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 1999. The In-
ternet Society, 1999.

[12] Ghassan Karame and Srdjan Capkun. Low-cost client puzzles based on
modular exponentiation. In European Symposium on Research in Computer
Security, ESORICS 2010, volume 6345 of LNCS, pages 679–697. Springer,
2010.

[13] Wenbo Mao and Kenneth G Paterson. On the plausible deniability feature
of Internet protocols. www.isg.rhul.ac.uk/~kp/IKE.ps, 2002.

[14] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology, CRYPTO 1987, volume 293 of LNCS,
pages 369–378. Springer, 1988.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

[16] Colin Percival. Stronger key derivation via sequential memory-hard func-
tions, 2009. http://bitcoin-class.org/0/classes/class16/scrypt.

pdf.

[17] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and
Juan Manuel González Nieto. Stronger difficulty notions for client puzzles
and denial-of-service-resistant protocols. In RSA Conference 2011, volume
6558 of LNCS, pages 284–301. Springer, 2011.

[18] Douglas Stebila and Berkant Ustaoglu. Towards denial-of-service-resilient
key agreement protocols. In Australasian Conference on Information Se-
curity and Privacy, ACISP 2009, volume 5594 of LNCS, pages 389–406.
Springer, 2009.

[19] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A tech-
nical survey on decentralized digital currencies. IACR ePrint Archive,
2015:464, 2015.

[20] Web. Ken shirriff www.righto.com. http://www.righto.com/2014/02/

bitcoins-hard-way-using-raw-bitcoin.html, 2014. [Acc: Oct 15].

[21] Web. Bitcoin Block Explorer. http://blockexplorer.com/, 2015. [Acc:
Nov 15].

19

[22] Web. Bitcoin Wiki. https://en.bitcoin.it/wiki/Main_Page, 2015.
[Acc: Nov 15].

[23] Web. CoinDesk. http://www.coindesk.com/, 2015. [Acc: Nov 15].

[24] Web. michaelnielsen.org. http://www.michaelnielsen.org/ddi/how-

the-bitcoin-protocol-actually-works/, 2015. [Acc: Nov 15].

Appendix

A Constructed Client Puzzle

Below is presented the complete transaction including the puzzle on the Bitcoin
Testnet, comprising of 3 main parts. Lines 6 to 29 specify the inputs to the
transaction. Lines 31 to 46 assigns 0.00000010 bitcoins to the puzzle (address)
we created in Section 4. Lines 47 to 62, specify the value being assigned to an
address that is owned by us (the client), which returns the change. Included is
a transaction fee of 0.00000010, which is the difference between the total value
of the input to the transaction and the total value assigned to the two receiving
addresses.

1: {

2: "txid" : "c55d38e3aa21dcfe3f2179b47eb881b5f832

3: 9f3231a21a837c52a1e43a3dd2d5",

4: "version" : 1,

5: "locktime" : 0,

6: "vin" : [

7: {

8: "txid" : "d863c7d202d1aa31cc0e802c781b

9: f1e223f0cc8850886def66e43e8a960348e3",

10: "vout" : 1,

11: "scriptSig" : {

12: "asm" : "304402203e673472cbb2062a1

13: 6d7fb941725ee39db9bdb5af6e7d2c7623

14: 54979fcf1818a0220238d678989bdcf45c

15: 3aa86bf8612a915cd9b39caaa81546be14

16: f0af68e10c30f0103d3e79264b08929cd4

17: 69398326b2c923430e9fdb68bf841fe134

18: 8146685ee22c9",

19: "hex" : "47304402203e673472cbb2062

20: a16d7fb941725ee39db9bdb5af6e7d2c76

21: 2354979fcf1818a0220238d678989bdcf4

22: 5c3aa86bf8612a915cd9b39caaa81546be

23: 14f0af68e10c30f012103d3e79264b0892

24: 9cd469398326b2c923430e9fdb68bf841f

25: e1348146685ee22c9"

26: },

27: "sequence" : 4294967295

20

28: }

29:],

30: "vout" : [

31: {

32: "value" : 0.00000010,

33: "n" : 0,

34: "scriptPubKey" : {

35: "asm" : "OP_DUP OP_HASH160 b4180a2

36: fdaef5c1afdc3b0e73fe699094e634ff7

37: OP_EQUALVERIFY OP_CHECKSIG",

38: "hex" : "76a914b4180a2fdaef5c1afdc

39: 3b0e73fe699094e634ff788ac",

40: "reqSigs" : 1,

41: "type" : "pubkeyhash",

42: "addresses" : [

43: "mwwCiu1hfeJVppaWtfAHCWwKZ2j57Fp7NS"

44:]

45: }

46: },

47: {

48: "value" : 0.13999980,

49: "n" : 1,

50: "scriptPubKey" : {

51: "asm" : "OP_DUP OP_HASH160 fd2e085

52: 3c80c493fc4f1bd1514e56c885f9c6f29

53: OP_EQUALVERIFY OP_CHECKSIG",

54: "hex" : "76a914fd2e0853c80c493fc4f

55: 1bd1514e56c885f9c6f2988ac",

56: "reqSigs" : 1,

57: "type" : "pubkeyhash",

58: "addresses" : [

59: "n4bePyywwEu13TKefhFfyXH7qTXppmiHTn"

60:]

61: }

62: }

63:]

64:}

21

