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Abstract. “Mirror Theory” is the theory that evaluates the number of solutions of affine systems
of equalities (=) and non equalities (6=) in finite groups. It is deeply related to the security and
attacks of many generic cryptographic secret key schemes, for example random Feistel schemes
(balanced or unbalanced), Misty schemes, Xor of two pseudo-random bijections to generate a
pseudo-random function etc. In this paper we will assume that the groups are abelian. Most
of time in cryptography the group is ((Z/2Z)n,⊕) and we will concentrate this paper on these
cases. We will present here general definitions, some theorems, and many examples and computer
simulations.

1 Definitions

Definition 1 (Mirror System T , and H(T )). A “Mirror system” T is a set of affine equations
(=) or affine non equalities (6=) in a finite group G. In this paper we will assume that the group G
is abelian. Very often in cryptography G will be G = ((Z/2Z)n ,⊕). Then T is a set of equations
(and respectively non equalities) of the form: X1 ⊕ X2 . . . ⊕ Xk = c (respectively 6= c), where c
is a constant of G. Let m be the number of equalities in T , and v be the number of variables
X1, . . . , Xv in T .
Each equality of G has a linear part and a constant. We denote by c1, . . . , cm these m constants
(ci can be 0 or not). We denote by H(T ), or by H(c1, . . . , cm), or simply by H, the number of
solutions (X1, . . . , Xv) of T .

Remark 1. In more general abelian groups we can have variables Xi or X−1
i in these equalities

or non equalities, and the same variable can appear more than one time (for example X1 ∗X1 ∗
X1 ∗ X2 ∗ X2 = c), i.e. we can have some coefficients in the affine equations. However in the
cryptographic applications if we change G = ((Z/2Z)n,⊕) for another abelian group, we will
generally have no coefficient (except 0 or 1) in the variables of the mirror systems that we will
want to study. Therefore the definitions, analysis, and results obtained for G = ((Z/2Z)n,⊕) will
be generally very similar for other abelian groups in most cryptographic applications.

Definition 2. First case : when G = ((Z/2Z)n,⊕).
Let T be a mirror system. We will say that an equation E can be obtained (or deduced) from T
“by linearity” when we can obtain E by xoring some equalities of T .
Second case : more general abelian groups (G, ∗).
Here the definition is more complex since from one equation we also have its inverse equation
(for example from X1 ∗ X2 = c, we can also use X−1

1 ∗ X−1
2 = c−1), and since it is usefull to

integrate some simplification rules on the coefficients, but also since we have to be careful about
a coefficient making a variable to 0. All these points can be solved, but we will not give details
here since in this paper we concentrate only on First Case. (Moreover as said in Remark 1 above
for cryptographic applications we generally have mirror systems with no coefficients).

Definition 3. Let X1 be a variable of T . A “minimal equation” for X1 is an equation B such
that:
– we can deduce B from T by linearity
– B has the variable X1
– all the other equations with the variables X1 that we can deduce by linearity from T have at

least more or the same number of variables than B.



Definition 4 (block of variables, ξ(A), ξmax, depth(A)). We will say that two variables Xi
and Xj are “in the same block” when we can deduce this from these rules:
– if (i = j) then Xi and Xj are in the same block.
– If there is a minimal equation for Xi with the variable Xj then Xi and Xj are in the same

block.
– If there is a variable Xk such that (Xi and Xk are in the same block) and (Xj and Xk are

in the same block) then Xi and Xj are in the same block.
When A is a block of variables ξ(A) denotes the number of variables in A. ξmax denotes the
maximum value ξ(A) for a block A. depth(A) denotes the minimum number of variables that we
have to fix in order to fix by linearity all the variables of A.

For example if T is: x1 ⊕ x3 = x2 ⊕ x4, then in T we have only one block A, with ξ(A) = 4,
and depth(A) = 3. However, if we add the equation x1 = x2 ⊕ a, then now T has two blocks:
x1 = x2 ⊕ a and x3 = x4 ⊕ a, with ξ = 2 and depth = 1 in these two blocks.
From Definition 4 we see that “being in the same block” is (as expected) an equivalence relation.

Example 1 (“ξ = 3 and ξ = 2 system”). Let T be this system of 4 equations on (Z/2Z)n, with
pairwise distinct variables P1, P2, P3, P4, P5, P6, P7:

P2 = P1 ⊕ c1

P4 = P3 ⊕ c2{
P6 = P5 ⊕ c3
P7 = P5 ⊕ c4

c1, c2, c3, c4 are the constants.
We have here 3 blocks of equations, two blocks with ξ = 2 and one block with ξ = 3, so ξmax = 3.

Definition 5 (Regular Systems). We will say that T is a “regular system” if it is a miror
system that satisfies these properties S1 and S2:

S1: By linearity from the equalities of T we cannot obtain Xi = a constant, or Xi 6= a
constant (where Xi is one of the variables of T ), i.e. we always have by linearity at least two
variables in = or 6=.
S2: Let X ′1, . . . , X ′a be the variables of a block B, and X1, . . . , Xq the other variables of T
(not in B). We say that we have property S2 when: for each block B of T , when X1, . . . , Xq
are fixed, the number of X ′1, . . . , X ′a that satisfy the non equalities ( 6=) do not depend on
X1, . . . , Xq.

Example. In example 1 above the system T is a “regular system”. For example when P1, P2, P3, P4
are fixed, for (P5, P6, P7) we have exactly (2n − 4)(2n − 5)(2n − 6) solutions that satisfy all the
non equalities ( 6=).
However with this system T ′:

X1 ⊕X2 =c1,

X3 ⊕X4 =c2,

X5 ⊕X6 =c3,

X5 6= X1, X5 6=X3,

T ′ is not a “regular system” since whenX1, X2, X3, X4 are fixed, the number of solutions (X5, X6)
that satisfy X5 6= X1 and X5 6= X3 depend on the fact that X1 = X3 or not.

Definition 6 (“Standard form”). A system T is in “standard form” when all the non equali-
ties ( 6=) of T are of the form Xi 6= Xj (with i 6= j). By introducing new variables Xk it is always
possible to write a system T in standard form.



Definition 7 (Weight(T )). Weight(T ) is the number of (X1, . . . , Xv) that satisfy only the non
equalities ( 6=) of T (i.e. we give up here the equalities). In standard form, Weight(T ) is always
easy to compute.

Example. In example 1 above, Weight(T ) = 2n(2n − 1)(2n − 2)(2n − 3)(2n − 4)(2n − 5)(2n − 6).

Definition 8 (Block conditions and Space(T )). The “block conditions" are equalities or non
equalities on the constants ci that we can deduce by linearity by using the equalities and non
equalities of T (when we consider c1, . . . , cm as variables).

Example. In example 1 above the “Block conditions” are

c1 6= 0, c2 6= 0, c3 6= 0, c4 6= 0, c3 6= c4.

We say that a constant ci is “compatible with T by linearity” if ci satisfies all the block conditions.
When T is in standard form, Space(T ) is the number of (c1, . . . , cm) that are compatible with T
by linearity. Space(T ) is also easy to compute.

Example. In example 1 above

Space(T ) = (2n − 1)3(2n − 2).

Remark 2. As said above, any system can be written in standard form. However the resulting
system will generally not have the same weight, or space.

Definition 9 (H̃ and M̃). We will denote

H̃ = Weight(T )
Space(T )

H̃ is the mean value of H when (c1, . . . , cm) are randomly chosen compatible by linearity with T .

H̃ =
∑

c1,...,cm compatible by linearity

H(T )
Number of c1, . . . , cm compatible by linearity

We will denote
M̃ = Weight(T )

|G|m .

M̃ is the mean value of H when (c1, . . . , cm) are randomly chosen in Gm.

M̃ =
∑

(c1,...cm)∈Gm

H(T )
|G|m

Definition 10 (Tame and Wild systems). We say that T is “Tame” (on (c1, . . . , cm)) when
H ' H̃ i.e. H ' Weight(T )

Space(T ) (here c1, . . . , cm are fixed).
We say that T is “Wild” when T is not Tame.
For a system T (now c1, . . . , cm are not fixed), the “wild” coefficient is defined as W(T ) =
E(|H−H̃|)

H̃
where E is the mean value function.

We say that T is “Tame on average” when for randomly chosen (c1, . . . , cm) compatible by lin-
earity with T there is a high probability that T is Tame, i.e. when W(T )� 1.
We say that T is “Always Tame” or “Tame in worst case” when for all constants (c1, . . . , cm)
compatible with T by linearity

H(c1, . . . , cm) ?
Weight(T )
Space(T ) .

Here a ? b means a ≥ b or a ' b.
We say that H is “homogeneous” when for all constants (c1, . . . , cm) compatible with T by linearity

H(c1, . . . , cm) ' Weight(T )
Space(T ) .



Remark 3. The use of the fusy term (') in the definition of “Tame” can look at first surprising,
but, as we will see, “Tame” will be closely related to “Secure” in most generic cryptographic
application, and in the same way that we can use “Advantage” to evaluate precisely the security,
we can use the wild coefficient (defined without the fusy term) to evaluate Tame.

Remark 4. Very often systems T will have a very small number of (c1, . . . , cm) withH(c1, . . . , cm)
much larger than Weight(T )

Space(T ) . This will generally not be a problem (as long as this number of
(c1, . . . , cm) is small) and this is why in the definition of “Always Tame” we used ? instead of
'. Homogeneous systems seldom appear and are at present much less important than Always
Tame systems in systems that are used in cryptography.

We say that H is “σ Tame” when, for constants (c1, . . . , cm) randomly chosen compatible by
linearity with T the standard deviation σ(H) of H satisfies: σ(H)� Weight(T )

Space(T ) (a� b means as
usual that a is small compared with b).
“Mirror Theory” is the theory that evaluates the number of solutions H of mirror systems T . A
particularly important aim in Mirror Theory is to evaluate when T is Tame. As we will see this
is closely related to the security of many generic cryptographic designs, where “Tame” will be
associated with “secure” (with a proof of security).

Remark 5. The nickname “Mirror” comes from the fact that we will have a huge number of
induction formulas between these systems, and also with the systems related with σ(H).

2 First Properties

Theorem 1. For all Mirror systems T ,

homogeneous
Always Tame

σ Tame
Tame in average

Proof.
· Homogeneous =⇒ Always Tame: comes immediately from the definitions.
· Homogeneous =⇒ σ Tame: if ∀c1, . . . , cm, |H − E(H)| ≤ ε, then σ(H) ≤ ε.
· Always Tame =⇒ Tame in average: if ∀c1, . . . , cm, H ≥ E(H)−ε, then E(|H−E(H)|) ≤ 2ε
· σ Tame =⇒ Tame in average: E(|H − E(H)|) ≤ σ(H) (see Cauchy-Schwartz or Jensen’s
inequality since x2 is a convex function).

However σ Tame 6=⇒ Always Tame (example: a small probability where H � E(H)), and
Always Tame 6=⇒ σ Tame (example: H ≥ E(H)− ε and with probability ε

2A , H ≥ E(H) + A
with A ≥ 1

ε
).

Theorem 2. Let T ′ be a regular system. Let T be a sub-system of T ′ where some blocks of T ′
have been removed. Then:
– if T ′ is Tame, T is Tame,
– if T ′ is Always Tame, T is Always Tame,
– W(T ) ≤W(T ′).

Proof. LetX ′1, X ′2, . . . , X ′v be the variables in T ′ and not in T . LetX1, X2, . . . , Xq be the variables
of T . Let c′1, c′2, . . . , c′µ be the constants in T ′ and not in T . Let c1, c2, . . . , cα be the constants of
T .
Since T ′ is regular:

H(c1, . . . , cα) =

∑
c′

1,...,c
′
µ

H(c1, . . . , cα, c
′
1, . . . , c

′
µ)

[Number of X ′1, . . . , X ′v that satisfy the 6= when X1, . . . , Xq is fixed] . (1)



Therefore H(c1, . . . , cα) of T is proportional (with a fixed constant) to the average value (on
c′1, . . . , c

′
µ) of H(c1, . . . , cα, c

′
1, . . . , c

′
µ) of T ′.

By definition,

W(T ) = E(|H − E(H)|)
E(H) , (2)

and W(T ) = E(|H ′ − E(H ′)|)
E(H ′) , (3)

where H ′ denotes H(c1, . . . , cα, c
′
1, . . . , c

′
µ). From 1 and 2 we get W(T ) ≤W(T ′) as claimed (we

regroup some terms of H ′ in H, and due to the absolute value W(T ) ≤W(T ′)).

Definition 11 ((P1), (P2) and (P3) properties). We will denote by (P1), (P2) and (P3)
these properties (they can be satisfied or not):

(P1): For all (c1, . . . , cm) compatible by linearity with T we have: H(c1, . . . , cm) 6= 0
P1 means that if (c1, . . . , cm) are compatible by linearity, then (c1, . . . , cm) are really compatible.

(P2): For all (c1, . . . , cm) compatible by linearity with T we have: H(c1, . . . , cm) ≥ M̃ .
Very often we will see that Tame systems T have property (P1) and (P2).

(P3): When a set A of systems T satisfies: “for all T ∈ A, if T satisfies (P1) then T is
Tame” we will say that A satisfies property (P3).

Typical Theorem in Mirror Theory

A typical Theorem in Mirror Theory will be for example: if in all the blocks ξ � a value A (or if
the average value of ξ is ≤ A) and the number v of variables is v � |G|, then the system is Tame.
Notice that here for the number of variables we have |G| and not

√
|G| for example. Moreover

we will generally want precise evaluations for how “Tame” the system is, and for �, and for the
value A. This is what is done for some T systems in [?], [?] or [?] for example.

3 Examples

Example (same example as in section 1)“ξ = 3 and ξ = 2 system”). Let T be this system of 4
equations on (Z/2Z)n, with pairwise distinct variables P1, P2, P3, P4, P5, P6, P7:

P2 = P1 ⊕ c1

P4 = P3 ⊕ c2{
P6 = P5 ⊕ c3
P7 = P5 ⊕ c4

c1, c2, c3, c4 are the constants.
We have here 3 blocks of equations, two blocks with ξ = 2 and one block with ξ = 3 so ξmax = 3.
The block conditions are c1 6= 0, c2 6= 0, c3 6= 0, c4 6= 0 and c3 6= c4.
In (Z/2Z)3, i.e. on 3 bits

On 3 bits, we have

M̃ = Weight(T )
84 = 8 · 7 · 6 · 5 · 4 · 3 · 2

84 = 40320
4096 = 9.84.

Space(T ) = 73 · 6 = 2058 constants (c1, c2, c3, c4) satisfy the bloc conditions.

H̃ = Weight(T )
Space(T ) = 19.59.

Computer simulations show that here we have:
– 924 values (c1, c2, c3, c4) satisfy the block conditions but have H = 0
– 1008 values have H = 32



– 126 values have H = 64.
We can check that: 924 + 1008 + 126 = 2058 (all the constants that satisfy the block conditions)
and that: 1008 · 32 + 126 · 64 = 40320 (all the (P1, P2, . . . , P7)).
We see that here the system T (on 3 bits) is “always wild”, i.e. for every constants c1, c2, c3, c4,
H is never ' 9.84.
In (Z/2Z)4, i.e. on 4 bits
On 4 bits we have M̃ = Weight(T )

164 = 879.78.
We have 153 · 14 = 47250 constants that satisfy the block conditions, and H̃ = Weight(T )

47250 =
1220.26.
Computer simulations show that here we have:
– 0 values (c1, . . . , c4) that satisfy the bloc conditions with H = 0
– 7560 values have H = 1024
– 20160 values have H = 1152
– 2520 values have H = 1280
– 15120 values have H = 1344
– 1260 values have H = 1536
– 630 values have H = 1920.

Let σ′(H) = E(|H − H̃|). Here we have: σ′(H) ' 120� 1220 and therefore here T is “Tame on
average”. The standard deviation is σ(H) ' 152� 1220 and therefore here T is also “σ Tame”.
Moreover here the system T (on 4 bits) is “always Tame”, i.e. for every constants ci compatible
with the block conditions we have H ? H̃ since 1024 ' 1220. Here the system is always Tame
but not Homogeneous since 1920 is not ' 1220 but this is classical: very often tame systems have
very large H on a very small number of variables. We also have here properties (P1) and (P2).
Figure 1 illustrates such systems.

6

-

Number Hα of solutions

0

M̃

H̃

(ci) not compatible

by linearity

(ci) compatible by linearity

Fig. 1. Typical solution H for always Tame systems but not Homogeneous systems, with property (P2).

Example 2 (“Pi ⊕Qj with ξmax = 2”, or “Xor of Two bijections in H standard”). Let T be this
system of 7 equations with pairwise distinct variables Pi, and pairwise distinct variables Qi:

P1 ⊕Q1 = c1

P2 ⊕Q2 = c2

P3 ⊕Q3 = c3

P4 ⊕Q4 = c4

P5 ⊕Q5 = c5

P6 ⊕Q6 = c6

P7 ⊕Q7 = c7.



We have here 7 blocks of equations, ξ = 2 on each block. Here we have no block conditions on
the ci.
We did our computation on G = (Z/2Z)3, i.e. on 3 bits. Here Weight(T ) = (8!)2, Space(T ) = 87,

H̃ = M̃ = Weight(T )
87 = 775.19.

Computer simulation show that here we have:
– 0 values (c1, . . . , c7) with H = 0
– 40320 values have H = 384
– 987840 values have H = 640
– 752640 values have H = 768
– 258720 values have H = 1152
– 35280 values have H = 1408
– 18816 values have H = 1920
– 1960 values have H = 3456
– 1568 values have H = 5760
– 8 values have H = 40320.

Here the system is not always Tame since 384 ≤ H̃
2 , but it is Tame on average.

Here we have property (P1) (i.e. 0 values block compatible with H = 0) and not property (P2).
In fact property (P2) was impossible here since H̃ = M̃ and H is not a constant.
Moreover it is interesting to notice that it was possible to see that property (P1) was true without
doing any computation. We just have to use a Theorem of 1952 of Marshall Hall Jr: see [?]. We
will give more details about this section 5 of this paper.

Remark 6. Let us now consider the system T ′ such that T ′ is T plus one more equation: P8⊕Q8 =

c8. In (Z/2Z)3 we will have:
8⊕
i=1

Pi = 0 and
8⊕
i=1

Qi = 0. Therefore if
8⊕
i=1

ci 6= 0, we will have no

solution. And if
8⊕
i=1

ci = 0 then P8 ⊕Q8 = c8 can be removed since it is just a consequence of T ,

and T and T ′ have the same solutions.

Example 3 (“Pi ⊕ Pj with ξmax = 2”).
7 equations

Let T be this system of 7 equations with pairwise distinct variables Pi:

P1 ⊕ P2 = c1

P3 ⊕ P4 = c2

P5 ⊕ P6 = c3

P7 ⊕ P8 = c4

P9 ⊕ P10 = c5

P11 ⊕ P12 = c6

P13 ⊕ P14 = c7

We have here 7 blocks of equations, ξ = 2 on each block. Here the block conditions are: ∀i, 1 ≤
i ≤ 7, ci 6= 0.
We did our computation on G = (Z/2Z)4, i.e. on 4 bits. Here

Weight(T ) = 16!
2 , Space(T ) = 157,

H̃ = Weight(T )
157 = 61228.10, M̃ = 16!

2·167 = 38971.73.

Computer simulations show that here we have (13 cases here):
– 10678710 values (c1, . . . , c7) block compatible give H = 0 solutions.
– 40294800 values have H = 49152
– 50803200 values have H = 57344



– 25401600 values have H = 65536
– 11289600 values have H = 73728
– 17992800 values have H = 81920
– 11289600 values have H = 98304
– 2690100 values have H = 147456
– 264600 values have H = 180224
– 141120 values have H = 245760
– 7350 values have H = 442368
– 5880 values have H = 737280
– 15 values have H = 5160960.

Here the system T is Tame but not always Tame. The fact that it is Tame is a very good stability
property since here the number of variables (14) is almost the number of elements in G (since
here |G| = 16) and we have a lot of equations (7). (This result is also compatible with the general
analysis of such systems done in [?, ?], i.e. “Theorem Pi ⊕ Pj”).
8 equations

Let us now consider the system T ′ such that T ′ is T plus one more equation: P15 ⊕ P16 = c8. In

(Z/2Z)4 we will have
16⊕
i=1

Pi = 0. Therefore if
8⊕
i=1

ci 6= 0, we will have no solution. And if
8⊕
i=1

ci = 0

then P15 ⊕ P16 = c8 can be removed since it is just a consequence of T , and T ′ has exactly 2
times the number of solutions of T (since (P15, P16) and (P16, P15) give the same solution).
6 equations

Let us now consider the system T ′′ such that T ′′ is T without the equation P13 ⊕ P14 = c7.
On (Z/2Z)4 computer simulations show that here we have 0 values (c1, . . . , c6) block compatible
with H = 0 (i.e. we have property (P1)). We have 19 different values H when (c1, . . . , c6) are
block compatible, with Hmin = 57344 and Hmax = 1290240, M̃ = 51962, and H̃ = 76535. If we
assume 57344 ' 76535 we can say that the system is always Tame (but not Homogeneous, as
usual).
4 equations

T :


P2 = P1 ⊕ c1
P4 = P3 ⊕ c2
P6 = P5 ⊕ c3
P8 = P7 ⊕ c4

We want solutions with pairwise distinct Pi, 1 ≤ i ≤ 8. On (Z/2Z)4, computer simulations show
that we have 0 values (c1, . . . , c4) block compatible with H = 0. We have 7 different values
H when (c1, . . . , c4) are block compatible, with Hmin = 9216, Hmax = 26880, M̃ = 7918 and
H̃ = 10250.
Here the system is always Tame (9216 ' 10250), but not Homogeneous (as usual).
We see in these examples with 5,6,7 and 8 equations that when we have less blocks the systems
are more Tame (as for any system T , see Theorem 2).

Example 4 (“σ for the Xor of two bijections”).
Let H be the number of (fi, gi, hi), 1 ≤ i ≤ m, fi, gi, hi ∈ (Z/2Z)n such that:
1. All the fi are pairwise distinct.
2. All the gi are pairwise distinct.
3. All the hi are pairwise distinct.
4. All the fi ⊕ gi ⊕ hi are pairwise distinct.
This system T is associated with the standard deviation of a value in relation with the Xor of
two bijections (see [?, ?]).
In “standard form” H is also the number of (fi, gi, hi, ti), 1 ≤ i ≤ m, such that:
1. All the fi are pairwise distinct.
2. All the gi are pairwise distinct.
3. All the hi are pairwise distinct.
4. All the ti are pairwise distinct.
5. ∀i, 1 ≤ i ≤ m, fi ⊕ gi ⊕ hi ⊕ ti = 0.



Here Weight(T ) = [2n(2n−1) · · · (2n−m+1)]4 and Space(T ) = 2nm. Here the minimal equations
have 4 variables.

Example 5 (“large ξ”). Let T be this system of 6 equations with pairwise distinct variables Pi:{
P2 = P1 ⊕ c1
P3 = P1 ⊕ c2
P4 = P1 ⊕ c3

and

{
P6 = P5 ⊕ c4
P7 = P5 ⊕ c5
P8 = P5 ⊕ c6.

We have here 2 blocks of equations, ξ = 4 on each block.
Here the block conditions are:

c1 6= 0, c2 6= 0, c3 6= 0, c1 6= c2, c1 6= c3, c2 6= c3,

c4 6= 0, c5 6= 0, c6 6= 0, c4 6= c5, c4 6= c6, c5 6= c6.

We did our computation on G = (Z/2Z)4, i.e. on 4 bits. Here

Weight(T ) = 16 · 15 · 14 · 13 · 12 · 11 · 10 · 9,
Space(T ) = (15 · 14 · 13)2

H̃ = Weight(T )
Space(T ) = 69.62

M̃ = Weight(T )
166 = 30.93.

Computer simulations show that here we have:
– 141120 values (c1, . . . , c6) block compatible give H = 0 solutions
– 725760 values have H = 32
– 3991680 values have H = 64
– 1935360 values have H = 80
– 597240 values have H = 128
– 60480 values have H = 144
– 1260 values have H = 192.

Here 11% of the values (c1, . . . , c6) block compatible have H < H̃
2 , and moreover 1.89% have

H = 0 (however, as often, when H 6= 0, then H ≥ M̃). The system is not Tame. More generally,
let G = (Z/2Z)n and let us consider the number h′ of (P1, . . . , Pα) such that the Pi are pairwise
distinct and: 

P2 = P1 ⊕ c1
P3 = P1 ⊕ c2
...

Pα/2 = P1 ⊕ cα/2−1

and


Pα/2+2 = Pα/2+1 ⊕ cα/2

...
Pα = Pα/2+1 ⊕ cα−2.

We have here 2 blocks of equations and ξ = α
2 on these blocks.

For (P1, . . . , Pα/2) we have 2n possibilities: just fix P1 to any value.
For Pα/2+1 we want this value to be different from all the following values (by convention c0 = 0
and cα−1 = 0):

P1 ⊕ ci ⊕ cj for all 0 ≤ i ≤ α

2 − 1, α2 ≤ j ≤ α− 1 (because we want Pi 6= Pj)

Now when α2 � 2n with α � 2n, it can occur that the ci ⊕ cj cover all the values of (Z/2Z)n.
Then we will have here H = 0 despite the fact that the constants ci are block compatible.



4 About the computer simulations

When G is very small, we can often perform exhaustive search of the solutions on a computer in
reasonable time.
However, there are many ways to accelerate the computations (or do them on larger G, or with
more variables or equations). Here are some of these ideas (many more exist).

1. In our examples, we can assume P1 = 0.

Proof. If we change all the Xi variables by Xi ⊕ c, where c is a constant, and since in our
example we always have an even number of variables in our equations, then if (X1, . . . , Xm)
is a solution, (X1 ⊕ c, . . . , Xm ⊕ c) is also a solution. Therefore H = (H with P1 = 0) · 2n
when G = (Z/2Z)n in our examples. ut

2. In our examples 2, 4, 5 we can assume c1 = 1

Proof. c1 6= 0 (from the block conditions). Now in GF(2n) the value c1 has an inverse β = 1
c1
.

If (X1, . . . , Xm) is a solution for (c1, . . . , cm), then (βX1, . . . , βXm) is a solution for (1, βc2, . . . , βcm).
Therefore (c1, . . . , cm) and (1, βc2, . . . , βcm) have the same number H of solution. So we can
assume c1 = 1 (in examples 2, 4, 5) and multiply by 2n − 1 the number of (c1, . . . , cm) that
give H solutions. ut

Similarly, in example 3 we can compute only for c1 = 0 and for c1 = 1 (all c1 6= 0 will have
the same property as c1 = 1).

3. In example 4 we can assume P3 < P4, P5 < P6, . . . , P13 < P14

Proof. This is obvious by symmetry of the hypothesis. Then we will just multiply H by 26

(since P1 was fixed, from idea 1 above, we did not use P1 < P2 here). ut

Similarly in all the other examples we have also many symmetries.
4. We can use symmetries on the ci

Here we will separate the case where all the ci are pairwise distinct, then the case where we
have exactly one equality, then 2 cases where we have 2 equalities (like c1 = c2 and c3 = c4
or like c1 = c2 = c3) etc.

5. In [?, ?] some “Orange”, “Purple” and “Red” induction equations have been introduced for
a theoretical analysis. We will not present these equations in this paper but it is also possible
to use them to accelerate the computations on many systems.

5 Marshall Hall Jr Theorem and my conjecture of 2008

Let Fn be the set of all applications {0, 1}n −→ {0, 1}n. Let Bn be the set of all bijections
{0, 1}n −→ {0, 1}n.
In 1952, Marshall Hall Jr has proved (see [?]) that:

∀f ∈ Fn, if
⊕

x∈{0,1}n
f(x) = 0, then ∃(g, h) ∈ B2

n such that f = g ⊕ h.

This theorem was proved again in 1979 in [?].
Moreover this result was proved on any abelian group, not only for ((Z/2Z)n,⊕).
However in [?, ?] we just have that ∃(g, h) ∈ B2

n, but we have no information about the number
H of such (g, h) (except that H 6= 0).

Remark 7. Example 2 of section 3 (or, more precisely the system T ′ given after example 2 of
section 3) is just a special case on ((Z/2Z)3,⊕). Marshall Hall Theorem says H > 0, and our
simulations shows H ≥ 384.



My conjectures of 2008
Conjecture 1. ∀f ∈ Fn, if

⊕
x∈{0,1}n

f(x) = 0, then the numberH of (g, h) ∈ B2
n such that f = g⊕h

satisfies
H ≥ |Bn|

2

2n2n .

I made this conjecture on any abelian group, not only for ((Z/2Z)n ,⊕).

Conjecture 2. The minimum value for H is obtained when f is a bijection.

As far as I know these two conjectures are still open problems.

Remark 8. It is however easy to see that the maximum value for H is obtained when f is a
constant function. Then H = |Bn| since then for all g ∈ Bn, f ⊕ h is a bijection.
For constant functions f the value H is much larger than the average value for H.

Computer simulations
Example 3 of section 2 shows that my conjecture 1 is true on (Z/2Z)3 since 384 ≥ 775.19

8 = 96.89.
Emmanuel Volte (of University of Cergy-Pontoise) has done many more computer simulations
to test my conjecture 1 on various groups. Let H∗ = |Bn|2

2n2n . Here are the result he found (where
the conjecture means Hmin ≥ H∗):
– (Z/2Z)2 : Hmin = 8, H∗ = 2
– Z/4Z : Hmin = 8, H∗ = 2
– Z/6Z : Hmin = 48, H∗ = 11
– (Z/2Z)3 : Hmin = 384, H∗ = 96 (same result as my example 2)
– Z/2Z× Z/4Z : Hmin = 384, H∗ = 96
– Z/8Z : Hmin = 512, H∗ = 96
– Z/9Z : Hmin = 2025, H∗ = 340
– Z/10Z : Hmin = 9280, H∗ = 1320
– Z/12Z : Hmin = 210432, H∗ = 25700
– (Z/2Z)4 : Hmin = 244744192, H∗ = 23700000.

In each case computed we see that conjecture 1 was true.

6 Examples of Connections between Mirror Systems and
Cryptographic Security of Generic Schemes

In denotes {0, 1}n.

Xor of 2 bijections, H standard technique
Let f and g be two random bijections from In → In. We want to distinguish f⊕g from a random
application from In → In. For this problem, the security in KPA and CPA-2 are equivalent (see
[?] p. 5).
With m queries we have an exact value for the Advantage (see [?] p. 4):

Advm = 1
2 · 2nm

∑
b1,...,bm∈In

∣∣∣∣hmh̃m − 1
∣∣∣∣ = 1

2nm
∑

b1,...,bm∈F

(
hm

h̃m
− 1
)

where
– hm is the number of (P1, . . . , Pm, Q1, . . . , Qm) ∈ I2m

n such that
1. The Pi are pairwise distinct.
2. The Qi are pairwise distinct.
3. ∀i, 1 ≤ i ≤ m,Pi ⊕Qi = bi.



– h̃m is the average value of hm when (b1, . . . , bm) ∈R Imn . We have

E(hm) = h̃m = (2n(2n − 1) . . . (2n −m+ 1))2

2nm .

– F = {(b1, . . . , bm) ∈ Imn such that h(b1, . . . , bm) ≥ h̃m}.
Therefore, we see that the security for this problem is exactly the fact that the system T : Pi⊕Qi =
bi for pairwise distinct Pi, and pairwise distinct Qi is Tame on average, and Advm = W(T )

2 , where
W(T ) is the “wild coefficient” of the system T .
From this in [?] security for this problem is proved when q � 2n.

Xor of 2 bijections, Hσ technique
With the same notations as above, we have:

Advm ≤ 2
(
σ(hm)
E(hm)

)2/3

(see [?]).

Let λm be the number of (fi, gi, hi) ∈ I3m
n such that:

1. The fi are pairwise distinct.
2. The gi are pairwise distinct.
3. The hi are pairwise distinct.
4. The fi ⊕ gi ⊕ hi are pairwise distinct.
Let T ′ be these sets of equalities and non equalities. Let

Um = (2n(2n − 1) · · · (2n −m+ 1))4

2nm = H̃(T ′).

Then
Advm ≤ 2

(
λm
Um
− 1
)1/3

[?]

Here we have no more ci values (only the constant 0), and we introduce zi = fi ⊕ gi ⊕ hi, we
have equations involving 4 variables. The security is directly related to the mirror system T ′: we
have security if λm ' Um, i.e. H(T ′) ' H̃(T ′), i.e. if T ′ is Tame (for the constants 0).
From this security for this problem is proved in [?] when q � 2n (as with classical H technique).

Security of classical(=balanced) Feistel Schemes
As shown in [?, ?], the security (for 4 rounds in KPA, 5 or 6 rounds in CPA-2) is related to this
system T of Mirror Theory (called “problem Pi ⊕ Pj”):
T : The Pi variables are pairwise distinct variables of In, and we have some equalities Pi⊕Pj = cij .
The number of variables Pi is smaller than the number of queries q (it is about q2

2n ), the average
value of the number ξ(A) for a block A is about 2.
The security in KPA is related to the fact that T is tame on average, and a sufficient condition
for CPA-2 security is for T to be always Tame.
From this security when q � 2n is given in [?].

Security of f(x||0)⊕ f(x||1) when f is a bijection
This problem can be seen as a variant of the Xor of two bijections, but here the two bijections
are not independent: we use only one bijections f , and the last bit of the input is fixed to be 0
in the first term, and 1 in the second term. Again, the problem is to distinguish the Xor of these
two bijections from a random function from In → In. In fact, this problem is exactly equivalent
to the “problem Pi ⊕ Pj” (seen above) when ξmax = 2, i.e. for this mirror system T :
T : the Pi variables are pairwise distinct variables of In, (we write them Pj,1 or Pj,2) and we have
some equalities: Pi,1 ⊕ Pi,2 = ci (ci 6= 0).
The security of f(x||0)⊕ f(x||1) is directly related to the analysis if T is Tame on average.
This problem is slightly more difficult than the Xor of two random permutions (we have Pi⊕Pj
instead of Pi ⊕Qj but we can proceed similarly) and simpler than the general Pi ⊕ Pj problem
related with the security of classical Feistel schemes (since here ξ is always 2).



Other schemes

We can also get similar connections for generic Benes schemes, Misty L schemes, unbalanced
Feistel schemes, Feistel schemes with internal bijections (instead of internal functions) etc.

7 Conclusion

In this paper we have defined the mirror systems, and given some of their properties. We also
have shown many examples, some computer simulations, and the connections between these
systems and some generic cryptographic constructions. It is interesting to notice how complexity
and order quickly appears even on very small examples. This area of research is still in progress.
The fact that we have often an equivalence between the security of some generic cryptographic
schemes and the property “Tame” or not of the related system is a strong motivation to study
the property of these systems.
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