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Abstract—The security of SHA-3 against different kinds
of attacks are of vital importance for crypto systems with
SHA-3 as the security engine. In this paper, we look into
the differential fault analysis of SHA-3, and this is the first
work to conquer SHA3-224 and SHA3-256 using differential
fault analysis. Comparing with one existing related work, we
relax the fault models and make them realistic for different
implementation architectures. We analyze fault propagation in
SHA-3 under such single-byte fault models, and propose to use
fault signatures at the observed output for analysis and secret
retrieval. Results show that the proposed method can effectively
identify the injected single-byte faults, and then recover the
whole internal state of the input of last round χ operation
(χ22

i ) for both SHA3-224 and SHA3-256.

Keywords-SHA-3, Keccak, Security, Differential fault analy-
sis

I. INTRODUCTION

As the new secure hash standard (SHA-3), the security
of Keccak against different attacks is of vital importance.
Keccak algorithm is a family of sponge function based on
the permutation function f , Keccak-f[r+c]. The parameter
r means the bitrate and c means the capacity, and the
internal state size is 1,600 = r + c bits for SHA-3. SHA-
3 has four modes with different lengths of the digest,
d ∈ {224, 256, 384, 512} [1]. While there exists only one
previous work of differential fault analysis (DFA) on SHA3-
384 and SHA3-512 under single-bit fault model [2], SHA3-
224 and SHA3-256 have not been attacked using DFA yet.
In this paper, we extend DFA to SHA3-224 and SHA3-256,
and also adopt more relaxing and realistic fault models.

DFA utilizes the dependency of the output faults on the
internal intermediate variables to recover the secret. DFA
is a powerful and efficient attack method, and has been
used to break various cryptographic algorithms. It was first
introduced to hack the Data Encryption Standard (DES)
algorithm [3]. Later it was used to break the Advanced
Encryption Standard (AES) [4] - only two pairs of correct
and faulty ciphertexts with one fault injected are needed
to break the AES-128. Many other ciphers have also been
hacked by DFA, including CLEFIA [5], Mickey [6], [7] and
Grain [8], [9].

This work has been published in FDTC’2016, please cite that version
instead. Simulation code used in this paper will be provided online at
http://tescase.coe.neu.edu/.

Some existing hash standards have been evaluated against
DFA attacks, including SHA-1 [10], Streebog [11], MD5
[12] and GrøStl [13]. DFA can be used to retrieve the
original message when hash functions are in general usage
[12], [13]. When hash functions are used in the message
authentication code (MAC) mode with a secret key, DFA
also becomes a great threat and it can be used to recover
the key, and then the attackers can generate forgery messages
and MAC against authentication [10], [11], [13]. As Keccak
has a very different design philosophy from previous crypto
algorithms, previous attack methods on hash functions can-
not be applied directly to SHA-3.

Previous works on SHA-3 mainly focus on side-channel
power analysis and collisions attacks, etc [14]–[30]. The
only existing DFA work on SHA-3 [2] is based on single-bit
fault model, and targets two modes of SHA-3, SHA3-512
and SHA3-384. However, this fault model is overly sim-
plified and unrealistic. Because many general fault injection
methods, such as clock glitches and supply voltage variation,
would affect a group of bits in intermediate states all together
and it is almost impossible to precisely inject single-bit faults
into the system without using sophisticated invasive fault
injection methods, such as laser emission and ion beaming.
Attacking the other two modes of SHA-3 is also much more
challenging with less observable digest output.

In this paper, we propose DFA attack on SHA3-224 and
SHA3-256, which have not been conquered using DFA yet,
under more realistic and relaxed fault models - byte-level
faults. Our approach includes generation of Fault Signature
(FS) representing the propagation result in SHA-3 with
various faults injected. It then uses the limited observable
digest output to recover part of the input of the last round
χ operation, χ23

i , for attacks. We implement and simulate
all the proposed methods and algorithms in C++ using
randomly generated messages and faults. Results show that
the proposed DFA can efficiently recover all 1,600 internal
state bits for both SHA3-224 and SHA3-256.

The rest of this paper is organized as follows. In Section
II, the preliminaries of SHA-3 will be given first, then the
fault model used in this work will be presented. In Section
III, we will introduce the use of fault signatures to represent
the fault propagation in SHA-3, and the method to recover
part of χ23

i for attacks. Attack results based on the generated
fault signatures and the recovered χ23

i will be given. In



Section IV, we improve the attacks by constructing fault
signatures at the output of last χ operation and present the
attack results. We further improve the attacks by injecting
faults into the last round input, and present the improved
attack results. Finally, we conclude this paper in Section V.

II. PRELIMINARIES OF SHA-3 AND DIFFERENTIAL
FAULT ANALYSIS

A. Preliminaries of Keccak Hash Function
The Keccak hash algorithm can work in different modes

with variable length. Standardized by NIST, SHA-3 func-
tions operate in modes of Keccak-f [1600, d] [1], where each
internal state is 1600-bit organized in a 3-D array, as shown
in Figure 1, and d is the capacity and also the output length
at choice. Each state bit is addressed by three coordinates,
denoted as S(x, y, z), x, y ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}.
2-D entities, plane, sheet and slice, and 1-D entities, lane,
column and row, are also defined in Keccak and shown in
Figure 1.
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Figure 1: State data structures used in Keccak [31]

We also define vectors X = [0 : 4], Y = [0 : 4]
and Z = [0 : 63] to stand for multiple bits in one row,
column, and lane, respectively. For example, we can denote
the bottom plane of state S (320 bits) as S(X, 0, Z). Note
that coordinates x and y are modular of 5 while z is modular
of 64.

Keccak relies on a Sponge architecture to iteratively
absorb message inputs and squeeze out digests by a f
permutation function. Each f function works on a state at
a fixed length b = r+ c. In the squeezing phase, the length
of the output is configurable (a multiple of bitrate, r bits).

f f f f f f
r

c
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Figure 2: The sponge construction

The f function consists of 24 rounds for 1600-bit opera-
tions, where each round has five sequential steps:

Si+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Si), i ∈ {0, 1, · · · , 23} (1)

in which S0 is the initial input. Details of each step are
described below:
− θ is a linear operation which involves 11 input bits and

outputs a single bit. Each output state bit is the XOR between
the input state bit and two intermediate bits produced by its
two neighbor columns. We denote the input to θ operation
as θi while the output as θo, and the operation is given as
follows:

θo(x, y, z) = θi(x, y, z)⊕ (⊕4
y=0θi(x− 1, y, z))

⊕ (⊕4
y=0θi(x+ 1, y, z − 1)). (2)

− ρ is a rotation over the state bits along z-axis (in
lanes), and the shift amount of bits depends on the (x, y)
coordinates.
− π is a rotation over the state bits within slices. Only

the corner bit (x = 0, y = 0) of the slice does not move.
All other bits are permuted to other positions depending on
their original coordinates. π can also be viewed as rotation
among lanes.
− χ is a non-linear step that contains mixed binary

operations over state bits in rows. Each bit of the output
state is the result of an XOR between the corresponding
input state bit and its two neighboring bits along the x-axis
(in a row):

χo(x, y, z) = χi(x, y, z)⊕ (χi(x+ 1, y, z) · χi(x+ 2, y, z)).

− ι is a binary XOR with a round constant which is
publicly known.

The SHA-3 family consists of four output lengths (d in
Keccak-f [1600, d]), called SHA3-224, SHA3-256, SHA3-
384, and SHA3-512 [1]. In this paper, we focus on SHA3-
224 and SHA3-256, which have shorter output digests (less
observable information) than SHA3-384 and SHA3-512, and
therefore are more challenging to break by DFA.

For Keccak based crypto systems with the input message
length smaller than the bitrate r, there will be only one f
permutation function for squeezing and absorption. For such
systems, if an internal state of the absorption phase (which is
also squeezing phase here) is recovered, the original message
and all the other internal states are recovered because the
absorption algorithm is reversible [31]. We set our DFA
target as recovering the entire internal state χ22

i (1,600
bits) for SHA3-224 and SHA3-256. We annotate the last
two rounds of SHA-3 operations and important intermediate
states in Figure 3, and use the notations in the rest of this
paper.
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Figure 3: Notations for operations and intermediate states

The DFA takes the observed fault at the output (H), traces
it back to certain intermediate state (comparison point) to
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have the intermediate fault, which is then compared against
all possible faults that are generated by propagation of
different original faults injected at θ22

i . In this paper, for
basic attacks which will be presented in Section III, the
fault injection point is θ22

i and the comparison point is χ23
i .

For improved attacks in Section IV, another fault injection
point θ23

i and comparison point χ23
o will be used to further

improve the attack efficiency.

B. Fault Models in This Paper

In the previous work of DFA on SHA-3 [2], the fault
model is single-bit. This is an unrealistic stringent model and
not feasible to attain with general fault injection methods,
including clock glitches and supply voltage variation. Faults
injected by these methods tend to fall on multiple bits at one
time, for example, on an 8-bit byte or a 32-bit word. Multiple
concurrent bit faults will interfere with each other during
operations in the hash algorithm, and considering individual
independent single-bit faults only does not address these
interactions. In this paper, we adopt relaxed and more
realistic fault models for different implementations, and
propose a generic fault propagation analysis method.

Different from DFA on block ciphers and stream ciphers
[3]–[9], multiple faults are injected for the same input
message in the attacks on hash functions. As different
message may have different impact on the attack process, for
all the simulation in this paper, we generate multiple random
messages (i.e., 103 random messages) and attack each input
message separately, and then combine their results to get
an average number as the final simulation result. All the
single-byte faults in this paper are randomly generated, with
random value (1-255) and random positions (200 bytes). To
illustrate our proposed method, we use the fault model of
single-byte faults as example:
• The attacker can inject faults into one byte of the last

two rounds input θ22
i and θ23

i ;
• The attacker has no control on either the position

(which byte) or the value of the injected faults;
• The attacker can only observe the correct and faulty

SHA-3 outputs, H and H
′
, which are d bits for mode

SHA3-d (where d is 224, 256, 384, and 512, for the
four modes, respectively), instead of the entire 1,600
bits;

• The attacker can inject random faults for the same input
message for multiple times.

For commonly used SHA-3 implementation examples,
data structures are organized along each lane [32], [33]. Thus
one byte is eight consecutive bits in one lane in this paper.
We refer to the source code provided online [32] for all
implementation and simulation in this paper. We note here
that our attack method only requires the faults injected at
θ22
i to recover the whole internal state χ22

i , and we propose
to inject faults at θ23

i to further improve the attack efficiency
in this paper.

III. BASIC DIFFERENTIAL FAULT ANALYSIS OF
SHA3-224 AND SHA3-256

Generally, because of confusion and diffusion properties
in crypto operations, any bit flip at the input message will
affect all the bits at the output under perfect randomness and
the fault analysis would not work. For SHA-3, the path from
the fault injection point (θ22

i ) to the observable output (H) is
not very long - only two rounds of operations, and therefore
different faults injected will cause different patterns at the
differential output ∆H = H⊕H ′

. We call such differential
patterns as Fault Signature in this paper. We next discuss
the observable information and the fault propagation process.

A. Observable Hash Digest

In [2], the comparison point is picked at θ23
o for SHA3-

384 and SHA3-512 to identify the single-bit fault injected.
For SHA3-384 and SHA3-512, a whole plane of 320 bits
(y = 0, the bottom plane) at the output H is observable.
Because all the operations ρ, π, χ, and ι are reversible, the
attacker can make use of this plane to recover 320 bits of
χ23
i :

χ23
i (x, 0, Z) = χ−1 ◦ (ι23)−1

(
H(y = 0)).

Observable five lanes of the bottom plane of H will
be used by attackers to retrieve five lanes of θ23

o (x, y, Z)
(x = y ∈ {0, 1, 2, 3, 4}). By observing the original and
faulty hash output, H and H ′, the attacker can calculate
the corresponding five differential lanes of θ23

o (not in the
the same plane any more though, but on the diagonal of each
slice):

∆θ23
o (x, y = x, Z) = ρ−1 ◦ π−1

(
∆χ23

i (x, 0, Z)
)
. (3)

While ρ and π operations just rotate state bits to differ-
ent positions without changing their values, ∆χ23

i can be
directly used instead, and the comparison point will be χ23

i

correspondingly. Thus, we need to construct fault signatures
at χ23

i , FSχ23
i

, for attacks in this paper.
In this paper, we focus on SHA3-224 and SHA3-256,

which have not been targeted by DFA yet, and the method
proposed in [2] cannot be applied directly to them because of
limited number of observable digest bits. In Section III-C,
we will show methods to recover part of χ23

i in bottom
plane, and illustrate how to use ∆χ23

i instead of ∆θ23
o as

comparison point for DFA attacks in this work.

B. Fault Signature Generation

For the single-byte fault model, any internal state of
Keccak-f [1600, d] is composed of 200 bytes (0 ≤ P <
200), and the fault value (F , the fault dropped on one
input state byte of the penultimate round) ranges from 1
to 255, where F = 1 means to flip the lowest bit of
the corrupted byte while F = 255 means to flip all the
eight bits. For any possible fault (F ) at any one of the 200
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positions (P ), we denote the corresponding fault signature
at χ23

i as FSχ23
i

[P ][F ]. We note here that if without extra
specification, all fault signatures are 1,600 bits, standing for
the 1,600 differential bits of the state caused by the fault F
injected at P .

For faults injected at θ22
i , it will propagate to χ23

i through
the operations shown in Figure 3. We separate these opera-
tions into two categories:
• Operations that will not change bit values of fault

signatures, including bit rotation operations ρ and π
that only change the bit positions, and constant number
addition operation ι.

• Operations that will change the bit values of fault
signatures, which involve multiple bits to generate
a single output bit, namely θ and χ. There is also
difference between these two operations, θ is linear
(only consisting of exclusive OR operations) while χ
is non-linear (consisting of binary operations AND and
NOT).

In the first kind of operations, for ρ and π, faults at the
input will go through the operation (position permutation)
directly to propagate to the output, i.e., ∆ρo = ρ(∆ρi) and
∆πo = π(∆πi). For operation ι, the fault does not change
at all, i.e., ∆ιo = ∆ιi.

For the second kind of operations, one output bit is gener-
ated from multiple input bits. For θ22 operation, one single-
bit fault ∆θ22

i (x, y, z) will propagate to 11 bits of θ22
o , with

their differential denoted as ∆θ22
o (x, y, z), ∆θ22

o (x+1, Y, z)
and ∆θ22

o (x−1, Y, z+1), which are on three different sheets,
respectively. For the single-byte fault model, all the faulty
bits are in the same lane of θ22

i . With θ operation, no θ22
o

bit will involve more than one faulty bit. Thus, for θ22, we
have ∆θ22

o = θ(∆θ22
i ).

In this paper, we use a single-bit fault at θ22
i (0, 0, 0)

(∆θ22
i (0, 0, 0) = 1 while all other bits of ∆θ22

i are 0) as
example to demonstrate the fault propagation in SHA-3,
and use it to explain the construction of fault signatures.
According to the above analysis of fault propagation through
different operations, the single-bit fault will be diffused to 11
bits after θ22 operations, and then rotated into different lanes
and rows through ρ and π. The fault signature FSχ22

i
at the

input of χ22 for this single-bit fault is shown in Figure 4.
It is direct forward to construct the fault signatures at χ22

i

because of the linear properties of θ, ρ and π operations.
Each bit of FSχ22

i
will be either 0 or 1, depending on the

value and position of the injected faults only.
To construct the fault signature FSχ23

i
, we need to ex-

amine the fault propagation process of χ22 and θ23. If we
denote the fault propagation of χ22 as FPχ, and the fault
propagation of θ23 as FPθ, the corresponding fault signature
at χ23

i can be denoted as follows (note that operation ι does
not change the fault):

FSχ23
i

= π ◦ ρ ◦ FPθ ◦ FPχ(∆χ22
i ). (4)

x=0:

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00001000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

x=1:

00000000 00000000 00000000 00000000 00000000 00001000 00000000 00000000 

00000000 00000000 00000100 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

x=2:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00100000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 10000000 00000000 00000000 

x=3:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000100 00000000 00000000 

00000000 01000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

x=4:

00000000 00000001 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
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Figure 4: Fault signature at χ22
i for the example single-bit fault

injected

We next analyze fault propagation of χ22 and θ23.
1) Fault Propagation in χ22: χ is the only nonlinear

operation in Keccak, and its bit-wise AND operation leaks
information of its input state bits if fault(s) happen in χi.
Under the single-bit fault model in [2], no more than one bit
will be polluted in each row of χ22

i , as also shown in Figure 4
for vectors ∆χ22

i (X, y, z). For the relaxed models used in
this paper, multiple bits may be polluted in one row of χ22

i .
In this section, we present the general fault propagation of
multi-bit faults in χ operation.

Denote five bits in one row of χ input as {ai, bi, ci, di, ei},
then five bits of corresponding χo output row can be denoted
as ao = ai ⊕ (b̄i · ci), bo = bi ⊕ (c̄i · di), co = ci ⊕ (d̄i · ei),
do = di ⊕ (ēi · ai) and eo = ei ⊕ (āi · bi).

We take ao as an example to demonstrate the fault
propagation in χ operation. Bit ao is affected by bits ai,
bi and ci:

1) With a single-bit fault on ai (∆ai = 1), ∆ao = ∆ai =
1.

2) With a single-bit fault on bi (∆bi = 1), a′o = ai⊕ (b̄′i ·
ci), and then ∆ao = ∆bi · ci = ci, which leaks the
internal state ci information.

3) With a single-bit fault on ci (∆ci = 1), a′o = ai⊕ (b̄i ·
c′i), and then ∆ao = (1⊕ bi) ·∆ci = bi.

4) With a two-bit fault on ai and bi (∆ai = ∆bi = 1),
a′o = a′i ⊕ (b̄′i · ci), and then ∆ao = ci.

5) With a two-bit fault on bi and ci (∆bi = ∆ci = 1),
a′o = ai ⊕ (b̄′i · c′i), and then ∆ao = ∆bi · ci ⊕ (1 ⊕
bi) ·∆ci ⊕∆bi ·∆ci = bi ⊕ ci.

6) With a two-bit fault on ai and ci (∆ai = ∆ci = 1),
a′o = a′i ⊕ (b̄i · c′i), and then ∆ao = ∆ai ⊕ (1⊕ bi) ·
∆ci = bi.
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Table I: Fault propagation of operation χ22

Fault at χ input Fault signature at χ output
∆χ22

i ([x : x+ 2], y, z) FSχ22
o

(x, y, z)

[1,0,0] 1
[0,1,0] χ22

i (x+ 2, y, z)

[0,0,1] 1⊕ χ22
i (x+ 1, y, z)

[1,1,0] 1⊕ χ22
i (x+ 2, y, z)

[0,1,1] χ22
i (x+ 1, y, z)⊕ χ22

i (x+ 2, y, z)

[1,0,1] χ22
i (x+ 1, y, z)

[1,1,1] 1⊕ χ22
i (x+ 1, y, z)⊕ χ22

i (x+ 2, y, z)

7) With a three-bit fault (∆ci = ∆bi = ∆ci = 1), a′o =
a′i ⊕ (b̄′i · c′i), and thus ∆ao = ∆ai ⊕∆bi · ci ⊕ (1⊕
bi) ·∆ci ⊕∆bi ·∆ci = bi ⊕ ci.

In summary, we can denote the fault signature for bit
χ22
o (x, y, z) as in Table I. According to the above analysis,

we present the whole fault patterns at χ22
o as in Figure 5, in

which ∆χ22
o (x, y, z) is denoted as C(x, y, z) for simplicity,

and the same single-bit fault ∆θ22
i (0, 0, 0) = 1 example is

assumed.

10000000 00000000 00000000 00000000 00000000 0000x000 00000000 00000000 

00000000 00000000 00000x00 00000000 00000000 00000000 00000000 00000000 

01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00x00000 00000000 00001000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 x0000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00001000 00000000 00000000 

00000000 00000000 00000100 00000000 00000000 00000x00 00000000 00000000 

00000000 0x000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00x00000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 x0000000 00000000 00000000 

00000000 0000000x 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000x00 00000000 00000000 

00000000 0x000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00100000 00000000 00000000 00000000 00000000 00000000 00000000 

00x00000 00000000 00000000 00000000 00000000 10000000 00000000 00000000 

x0000000 0000000x 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000100 00000000 00000000 

0x000000 01000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 0000x000 00000000 00000000 00000000 00000000 

00x00000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

x0000000 00000001 00000000 00000000 00000000 0000x000 00000000 00000000 

00000000 00000000 00000x00 00000000 00000000 00000000 00000000 00000000 

0x000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 0000x000 00000000 00000000 00000000 00000000 

00100000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 

)40,4,1(1)40,4,0();10,3,1(1)10,3,0();21,1,2()21,1,0();44,0,2()44,0,0( 22222222

iiii CCCC  

)3,4,2(1)2,4,2();9,2,4()9,2,2();4,1,45()2,1,45();15,0,3(1)15,0,2( 22222222

iiii CCCC  

)40,4,3()40,4,1();10,3,3()10,3,1();9,2,2(1)9,2,1();45,1,2(1)45,1,1( 22222222

iiii CCCC  

)0,4,2()3,4,2();4,3,28(1)3,3,28(

);4,2,1(1)3,2,1();0,0,15()3,0,15();0,0,4(1)0,0,3(
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222222

ii

iii

CC

CCC









)28,3,1()28,3,4();1,2,1()1,2,4(

);1,21,0(1)4,1,21();0,44,0(1)4,0,44();0,0,1()0,0,4(

2222

222222
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iii

CC
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Figure 5: Fault signature at the output of χ22

In Figure 5, each differential bit ∆χ22
o (x, y, z) takes

a value of ‘0’, ‘1’ or ‘x’, in which 1 (0) means this
corresponding output bit flips (does not flip) with the specific
fault injected, respectively, regardless of the internal states.
However, ‘x’ at a bit position means that the corresponding
∆χ22

o bit value depends on some χ22
i bit(s), and it can

be ‘0’ or ‘1’. For example, we denote ∆χ22
o (0, 0, 44) as

’x,’ because ∆χ22
o (0, 0, 44) = χ22

i (2, 0, 44) under the fault
injected (∆θ22

i (0, 0, 0) = 1), and χ22
o (0, 0, 44) would flip

if χ22
i (2, 0, 44) = 1, otherwise it remains unchanged if

χ22
i (2, 0, 44) = 0. Thus, if the attacker has knowledge

of ∆χ22
o (0, 0, 44) and the injected fault, he can construct

the corresponding fault signature and then recover bit
χ22
i (2, 0, 44).
2) Fault Propagation in θ23: Each bit of θo is the XOR

of itself with two near columns. As shown in Section III-B1,
each bit of ∆χ23

o can be denoted as 0, 1 or the XOR of χ22
i

bits. While θ involves only XOR operation for the 11 input
bits, we can denote ∆θ23

o (x, y, z) as follows:

∆θ23
o (x, y, z) =∆θ23

i (x, y, z)⊕ (⊕4
y=0∆θ23

i (x− 1, y, z))

⊕ (⊕4
y=0∆θ23

i (x+ 1, y, z − 1)). (5)

Thus the fault propagation function FPθ can be denoted
as follows:

FSθ23o = θ(FSχ22
o

). (6)

For each bit of ∆θ23
o , some of the corresponding 11 ∆θ23

i

bits may depend on the same χ22
i bits, and therefore with

the operation of XOR some dependencies will be eliminated.
This is a key insight for our fault propagation analysis. For
example, in the interleaved implementation [34], when fault
F = 65 is injected at P = 16, ∆θ23

i (4, 4, 3) = χ22
i (0, 4, 3)

and ∆θ23
i (3, 4, 3) = χ22

i (0, 4, 3). ∆θ23
o (4, 4, 3), which in-

volves the two input bits θ23
i (4, 4, 3) and θ23

i (3, 4, 3), will
not depend on χ22

i (0, 4, 3) anymore because the dependen-
cies get canceled out by XOR between the two input bits.
Eventually, the fault signature at the θ23 output, FSθ23o , has
a similar format as FSχ22

o
, with each bit being 0, 1, or an

odd or even function (XOR) over some χ22
i bits and constant

one.
As ∆χ23

i = π ◦ ρ(∆θ23
o ), it is easy for us to build the

fault signature at χ23
i with FSθ23o constructed based on

the above analysis, thus we show FSχ23
i

directly here. We
use the same example to show how the single-bit fault at
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θ22
i (0, 0, 0) propagates to χ23

i . For SHA3-224 and SHA3-
256, only partial bottom plane (less than 320 bits) of the
output state H will be observable. Nevertheless Figure 6
presents the fault signature in the whole bottom plane of
FSχ23

i
, in which we denote ∆χ23

i (x, 0, z) as E(x, z) for
simplicity.
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Figure 6: Fault signature at χ23
i (Bottom plane)

With the observed bits of ∆χ23
i and the fault signatures,

attackers can work on equations which involve only one bit
of χ22

i to recover the χ22
i bits, and then plug them back into

equations which involve more than one χ22
i bit to recover the

remaining χ22
i bits. For example, as shown in Figure 6, with

the single-bit fault injected at θ22
i (0, 0, 0), attackers can use

FSχ23
i

(1, 0, 24) to recover χ22
i (2, 0, 44) first. Then replace

χ22
i (2, 0, 44) in FSχ23

i
(0, 0, 44) to recover χ22

i (0, 0, 44).

C. χ23
i Bits Recovery from the Observable Digest

For SHA3-224 and SHA3-256, only partial bottom plane
of the hash output is observable, i.e., no more than four bits
in each row of χ23

o on the bottom plane are known. The
χ operation is reversible, and therefore each χi bit can be
expressed in below formula which involves all five bits of
χo [31], [35]:

χi(x, y, z) = χo(x, y, z)⊕ χo(x+ 1, y, z) ·
(
χo(x− 1, y, z)

⊕χo(x+ 2, y, z)⊕ χo(x− 1, y, z) · χo(x+ 3, y, z)
)
. (7)

Since not all the χo bits are know, the attacker cannot
get the corresponding χ23

i bits for SHA3-224 and SHA3-
256 directly. In this section, we show that with limited
information, part of χ23

i on the bottom plan can still be
recovered from the observable output.

1) Recover χ23
i Bits in Theory: For simplicity, we use

one row in χ23 operation as an example here. We express
the input bits (ai, bi, ci, di, ei) as functions over the output

bits (ao, bo, co, do, eo) as:
ai = ao ⊕ bo ·

(
eo ⊕ co ⊕ eo · do

)
bi = bo ⊕ co ·

(
ao ⊕ do ⊕ ao · eo

)
ci = co ⊕ do ·

(
bo ⊕ eo ⊕ bo · ao

)
di = do ⊕ eo ·

(
co ⊕ ao ⊕ co · bo

)
ei = eo ⊕ ao ·

(
do ⊕ bo ⊕ do · co

) . (8)

For SHA3-256, for each row, bit eo is unknown while
(ao, bo, co, do) are observable by attackers; for SHA3-224,
bit eo is unknown for the first 32 rows while both do and eo
are unknown for the remaining 32 rows. For the equations
in (8), we have the following observations for SHA3-256:

• For ai, if do = 1, ai = ao⊕ bo · co; if bo = 1, ai = ao.
For both situations, the value of ai is independent of
the unknown eo, and attackers can retrieve ai without
knowledge of eo. The probability of do = 1 and the
probability of bo = 1 are 0.5 respectively, and thus the
total probability of do = 1 or bo = 1 is 0.75, which
means that the value of ai can be recovered with a
probability of 75%.

• For bi, if ao = 0, bi = bo ⊕ co · do; if co = 1,
bi = bo. Similarly, the probability of recovering bi with
unknown eo is also 0.75.

• For ci, if do = 1, ci = co, thus the probability of
recovering ci is 0.5.

• For di, if co ⊕ ao ⊕ co · bo = 0, di = do, thus the
probability of recovering di is 0.5.

• The value of ei always depends on eo, thus the attackers
cannot retrieve ei without knowledge of eo.

In conclusion, for SHA3-256, the attacker can recover
the bits in the first and second lanes of the bottom plan
of χ23

i with 0.75 probability, and the bits in the third and
fourth lane with 0.5 probability. In total, the attackers can
recover 160 bits of χ23

i theoretically. Similarly, for SHA3-
224, attackers can use the same method to recover 112 bits
of χ23

i theoretically.
2) A Practical Method to Recover χ23

i Bits: In the pre-
vious section, we analyze that the attacker can recover 160
bits of χ23

i for SHA3-256 and 112 bits of χ23
i for SHA3-224

theoretically. In this section, we present a practical method
to recover χ23

i bits which can be easily implemented.
We still use the row with input (ai, bi, ci, di, ei) and

output (ao, bo, co, do, eo) in SHA3-256 as an example here.
While ao, bo, co, do are observable by attackers, eo can only
be either 0 or 1, then we can make assumptions of both
situations and write them as row0

o = {ao, bo, co, do, 0}
and row1

o = {ao, bo, co, do, 1}. For both situations, we can
calculate the input row0

i , row1
i using χ inversion operation:{

{a0
i , b

0
i , c

0
i , d

0
i , e

0
i } = χ−1({ao, bo, co, do, 0})

{a1
i , b

1
i , c

1
i , d

1
i , e

1
i } = χ−1({ao, bo, co, do, 1})

. (9)

Take bit ai as an example here, the value of ai can only
be a0

i or a1
i :
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1) If a0
i = a1

i , then the value of ai does not depend on
the value of eo and this is the correct recovered value
for ai;

2) If a0
i 6= a1

i , then the value of ai depends on the value
of eo, and attacker cannot recover ai in this situation.

To verify the above algorithm, we implement both SHA3-
224 and SHA3-256 in C++ and randomly generate 105 input
messages for each of them. We use the proposed algorithm
to recover the χ23

i bits for both SHA3-224 and SHA3-
256. Results show that the proposed algorithm can correctly
recover 160.12 bits of χ23

i for SHA3-256 and 111.84 bits
of χ23

i for SHA3-224 on average for these 105 trials, which
are the same as the theoretical results given in the previous
section.

Using the above method, the attacker can recover part of
the χ23

i bits in the bottom plane from the original digest H ,
and faulty χ′23

i bits for faulty digest H ′. Using the recovered
χ23
i (X, 0, Z) and χ′23

i (X, 0, Z), the attacker can calculate
the corresponding ∆χ23

i (X, 0, Z) bits. Note that here the
attacker can recover 160 (112) bits of both χ23

i (X, 0, Z)
and χ′23

i (X, 0, Z) for SHA3-256 (SHA3-224) on average,
but the recovered χ23

i and χ′23
i may have different locations,

and therefore the attackers will recover fewer than 160 (112)
bits of ∆χ23

i (X, 0, Z) instead. The simulation results show
that attacker can recover 136.42 bits of ∆χ23

i for SHA3-256,
and 93.68 bits for SHA3-224 on average for 105 trials.

D. Injected Fault Identification and χ22
i Bits Recovery

Using the previous algorithms, the attacker can construct
fault signatures FSχ23

i
for all injected faults, and recover

some bits of ∆χ23
i (X, 0, Z) from the observable output.

In this section, we present the algorithms to use the above
information to identify the injected faults and recover χ22

i

bits.
For the recovered ∆χ23

i (X, 0, Z) bits, we separate them
into two groups:
• ∆χ23

i .white contains the recovered bit positions
(x, y, z) of ∆χ23

i with ∆χ23
i (x, y, z) = 0, which means

the bits at these positions are not flipped;
• ∆χ23

i .black contains the recovered bit positions
(x, y, z) of ∆χ23

i with ∆χ23
i (x, y, z) = 1, which means

the bits at these positions are flipped.
For these recovered bit positions, we check the corre-

sponding fault signatures at FSχ23
i

[P ][F ](x, y, z) for fault
F injected at position P at the penultimate round input. We
can separate them into three groups:
• FS∆χ23

i
[P ][F ].white contains the bit positions

(x, y, z) with ∆χ23
i (x, y, z) recovered and

FSχ23
i

[P ][F ](x, y, z) = 0, i.e., the injected fault
does not affect these output bits.

• FSχ23
i

[P ][F ].black contains the bit positions
(x, y, z) with ∆χ23

i (x, y, z) recovered and
FSχ23

i
[P ][F ](x, y, z) = 1, which are for sure to

flip when the fault is injected.

• FSχ23
i

[P ][F ].grey contains the bit positions (x, y, z)

with ∆χ23
i (x, y, z) recovered and FSχ23

i
[P ][F ](x, y, z)

is a function dependent on some bits of χ22
i , i.e., they

can leak some internal state bits information.
For the correct fault F0 injected at the correct position

P0, the following relations should hold:
• For bit in FSχ23

i
[P0][F0].white, this bit should not flip

for sure, then this bit should be in ∆χ23
i .white;

• For bit in FSχ23
i

[P0][F0].black, this bit should flip for
sure, then this bit should be in ∆χ23

i .black;
• For any bit in FSχ23

i
[P0][F0].grey, it can be in

∆χ23
i .white or ∆χ23

i .black, depending on some inter-
nal state bits.

We can summarize the above relations as follows:
FSχ23

i
[P ][F ].white ⊆ ∆χ23

i .white

FSχ23
i

[P ][F ].black ⊆ ∆χ23
i .black

∆χ23
i .white ⊆ {FSχ23

i
[P ][F ].white ∪ FSχ23

i
[P ][F ].grey}

∆χ23
i .black ⊆ {FSχ23

i
[P ][F ].black ∪ FSχ23

i
[P ][F ].grey}

.

(10)

By checking relationships in (10), attackers can exclude
many positions and fault values. If only one position with
one fault value satisfies these relationship, the injected fault
is discovered. All the FSχ23

i
[P0][F0].grey bits now are

mapped to either zero (white) or one (black) in the observed
differentials, and therefore the internal state bits can be
recovered.

We simulate the injected fault identification algorithm for
both SHA3-224 and SHA3-256. We randomly generate 104

input messages and randomly inject 103 single-byte faults
into the penultimate round input θ22

i for each message.
Results show that for SHA3-256, with a probability of
66.61% the attacker can find a unique fault that satisfies
the above relations. With the rest 33.39% probability, more
than one faults satisfy the above relations and the attacker
cannot precisely identify the injected fault. The results are
shown in Table II.

Table II: Simulation results for SHA3-224 and SHA3-256 with fault
injected at θ22i

Number of Recovered Probability of
χ23
i ∆χ23

i unique fault
SHA3-224 111.84 93.68 30.67%
SHA3-256 160.12 136.42 66.61%

In this paper, we only make use of the injected faults
which can be identified uniquely based on the proposed al-
gorithm, and discard those faults that attacker has ambiguity
- recovering more than one faults that satisfy the relationship
in (10). We define such unique faults as effective faults, and
a higher percentage of effective faults will make the attacks
more efficient.

With the injected fault identified, including the fault value
F and injected position P , we next show the results of
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FSχ23
o

(x, y, z) =FSχ23
i

(x, y, z)⊕ FSχ23
i

(x+ 1, y, z) · χ23
i (x+ 2, y, z)

⊕ (1⊕ χ23
i (x+ 1, y, z)) · FSχ23

i
(x+ 2, y, z)⊕ FSχ23

i
(x+ 1, y, z) · FSχ23

i
(x+ 2, y, z) (11)

recovering χ22
i bits in this section. Once the unique fault

value at a certain position is identified, all the bits in the
FSχ23

i
are known to be zero or one. Using the method

described in Section III-B2, we can recover all the χ22
i bits

based on the equations constructed on the x bits of FSχ23
i

.
We use similar simulation settings as previous section,

and we simulate not only SHA3-224 and SHA3-256, but
also compare their results with SHA3-384/512. The results
for attacking four SHA-3 modes are shown in Figure 7,
where the x-axis is the number of effective injected faults
that attackers can identify a unique fault, while the y-axis
is the total number of recovered χ22

i bits. Results show that
the proposed scheme can recover the χ22

i bits, but the attack
is much less efficient than the attack on SHA3-384/512.
This is because much fewer bits of FSχ23

i
and ∆χ23

i are
available for SHA3-224 and SHA3-256 than SHA3-384/512.
In next section, we propose effective methods to improve the
proposed attacks.
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Figure 7: Number of recovered χ22
i bits for different number of

injected faults

IV. IMPROVED ATTACKS

In previous section, we present how to use fault signatures
at state χ23

i to recover internal state χ22
i bits for SHA3-

224 and SHA3-256, with much less efficiency than SHA3-
384/512. In this section, we propose two methods to improve
the efficiency of the attacks:
• Propagate the faults further to generate fault signatures
FSχ23

o
, and use them in addition to FSχ23

i
to improve

the attack. This method does not need any extra infor-
mation (like state bits etc.) from the target system.

• Inject faults at the last round input θ23
i to recover more

bits of χ23
i on the bottom plane, and thus to improve

the number of available ∆χ23
i and FSχ23

o
bits.

We note here that without using the second improvement
method, the attacker can extract the whole internal state of
χ22
i by using the method proposed in Section III, and the

attack efficiency can be further improved by applying the
first improvement method mentioned above. We present the
second improvement method here which requires to inject
faults at the beginning of the last round input θ23

i to show the
vulnerability of SHA-3 based systems more thoroughly, and
give attackers another choice to improve differential fault
analysis. Next we present these two methods in detail in
following sections.

A. Attacks Using both FSχ23
i

and FSχ23
o

Fault signature at χ23
o , FSχ23

o
, can leak information not

contained in FSχ23
i

. Combining FSχ23
o

with FSχ23
i

, the
attacker should be able to extract more information than
using only FSχ23

i
.

1) Fault Signature FSχ23
o

Generation: For any fault on
the three bits ai, bi, and ci, the χ23 operation propagates it
onto the output bit, ao = ai⊕(b̄i ·ci). Similar to the χ22 fault
propagation, there are several types of possible faults on the
three input bits. However, for any χ22

i , it can only be 0 or 1
(independent of the internal state bits but only dependent on
the fault) when faults are injected at the penultimate round
input. While for any χ23

i bit, it can be 0, 1 or x (as a function
over certain χ22

i bits).
While ai, bi and ci can be all faulty, we can denote a′o as

a′i ⊕ (b̄′i · c′i), then:

∆ao = ∆ai ⊕∆bi · c⊕ (1⊕ bi) ·∆ci ⊕∆bi ·∆ci. (12)

Thus FSχ23
o

(x, y, z) can be denoted as (11). Each bit of
FSχ23

i
can be denoted as 0, 1 or the operations of χ22

i bits,
thus FSχ23

o
(x, y, z) can also be denoted as either 0, 1 or the

operations of χ22
i bits. There are some special case for the

construction of ∆ao in (12). When there are two faulty bits:
1) If ∆ci = 0, ∆ai 6= 0 and ∆bi 6= 0, then ∆ao =

∆ai ⊕∆bi · ci.
2) If ∆ai = 0, ∆bi 6= 0 and ∆ci 6= 0, then ∆ao =

∆bi · ci ⊕ (1⊕ bi) ·∆ci ⊕∆bi ·∆ci.
3) If ∆bi = 0, ∆ai 6= 0 and ∆ci 6= 0, then ∆ao =

∆ai ⊕ (1⊕ bi) ·∆ci.
If only one bit is faulty for ai, bi and ci, the construction

of ∆ai can be further simplified as follows:
1) If ∆bi = ∆ci = 0 and ∆ai 6= 0 (∆ai = 1 or ∆ai =x),

∆ao = ∆ai, and the construction of ∆ao does not
require knowledge of bi and ci.

2) If ∆ai = ∆ci = 0 and ∆bi 6= 0, ∆ao = ∆bi · ci, and
the construction of ∆ao requires knowledge of ci.
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3) If ∆ai = ∆bi = 0 and ∆ci 6= 0, ∆ao = (1⊕ bi) ·∆ci.
As demonstrated in Section III-C, we can recover some

bits of χ23
i using the observable digest H , thus we can

construct fault signatures for some bits of χ23
o based on the

above analysis.
Use the same method as Section III-D, we can separate the

constructed fault signature FSχ23
o

[P ][F ] into three groups,
definitely 0 (white), definitely 1 (black), or dependent on
some input bits and/or input faults (grey). For SHA3-224,
224 bits of ∆χ23

o are available, 256 bits of ∆χ23
o are

available for SHA3-256. We can use the same relationships
for ∆χ23

i and FSχ23
i

as shown in (10) to build relationships
for ∆χ23

o and FSχ23
o

, and combine it with (10) to improve
the effective fault identification rate.

2) Simulation Results: We run simulations for the im-
proved attacks, and results show that the probability of
identifying the unique injected faults rises significantly for
both SHA3-224 and SHA3-256, from 30.67% to 49.12% for
SHA3-224 and from 53.28% to 78.73% for SHA3-256.

We inject multiple random single-byte faults to extract all
the 1, 600 χ22

i bits for SHA3-224 and SHA3-256 using the
proposed improved attacks, still comparing with the attack
result of SHA3-384/512. The results are shown in Figure 8.
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Figure 8: Number of recovered χ22
i bits for different number of

injected faults

Compared with the original attack and its results in
Figure 7, the proposed method in this section improves
the attack efficiency significantly for both SHA3-224 and
SHA3-256. For SHA3-224, the attack method in Section
III needs about 200 faults to recover 1, 300 bits of χ22

i ,
while the improved method in this section only needs 82
faults. Similarly, for SHA3-256, the number of faults needed
reduces from 200 to 80 to recover about 1, 510 bits of χ22

i .
Note this improvement method does not need any extra

information extracted from the target system, and generating
fault signature FSχ23

o
does not require much computation

effort, making it suitable for real attacks.

B. Improved Attacks by Injecting Faults in θ23
i

For the method proposed in Section IV-A, the unique fault
identification rate and the number of recovered χ22

i bits by

using the same number of effective injected faults are still
lower than attacks on SHA3-384/512. The reason lies in the
fact that attackers can recover less number of χ23

i and ∆χ23
i

bits for SHA3-224 and SHA3-256 than SHA3-384/512. In
this section, we propose to improve the attacks on SHA3-224
and SHA3-256 by injecting faults into the last round input
to recover more χ23

i bits from the correct hash digest, and
thus to improve the number of available ∆χ23

i and FSχ23
o

bits for attack.
1) Recovering more χ23

i by Injecting Faults into θ23
i :

To recover χ23
i bits by injecting faults at θ23

i , we need to
calculate the fault propagation from θ23

i to χ23
o . These faults

will propagate through θ23, ρ, π and χ operations. The fault
propagation process is exactly the same as in the penultimate
round (from θ22

i to χ22
o ) as presented in Section III-B1. We

denote the fault signature at χ23
o for faults injected at θ23

i as
FS′χ23

o
in this section.

Using the faults injected at θ23
i , attackers can recover some

bits of χ23
i with a shorter distance between the hash digest

and the comparison point (χ23
o ) for differential fault analysis.

Note here that for SHA3-256 and the first 32 rows of SHA3-
224 (with four bits out of five bits of each output row on
the bottom plane known), if the attacker recovers one bit
χ23
i (x, 0, z) that has not been recovered using the algorithm

in Section III-C, he can recover all the other unknown bits
in this row. For example, we assume a0

i 6= a1
i in (9) and

this bit has been recovered by injecting faults at θ23
i , then

the attackers can know which assumption of eo is correct,
and then recover all the five bits in this row. This method
can be used for all 64 rows in the bottom plane of SHA3-
256 and the first 32 rows of SHA3-224. In SHA3-224, for
the remaining rows with two bits unknown, χ23

i (X, 0, z),
32 ≤ z < 63, these two bits can only be recovered by
injecting faults at θ23

i separately.
To identify the injected faults, we use both fault signatures

at χ23
i and χ23

o , denoted as FS′
χ23
i

and FS′χ23
o

. We randomly
generate 103 messages, and for each message randomly
inject 1000 faults at θ23

i for attacks. For both SHA3-224
and SHA3-256, we can identify the correct fault injected at
θ23
i with about 20% probability. After identifying the correct

fault injected at θ23
i , we can recover all bits in the bottom

plane of χ23
i , and we present the results in Figure 9.

It shows that for SHA3-256, the attacker can recover about
244 bits of χ23

i using only five effective faults, compared
with 160 bits recovered when no faults injected at θ23

i . We
note here that the attacker does not need to recover all the
bits of χ23

i in the bottom plane for attacks, he can recover
part of χ23

i to improve the efficiency of attacking χ22
i . We

will show how the attacks on χ22
i change with the number

of χ23
i bits recovered in next section.

2) Attack Results: With more fault-free χ23
i bits, attackers

can construct more bits of ∆χ23
i and FSχ23

o
and use them for

attacks. For simplicity, we make the following assumptions
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Figure 9: Reovery of χ23
i bits by injecting faults at θ23i

for attackers:
• Attackers can recover part of χ23

i bits using algorithm
presented in Section III-C (with no fault injected at
θ23
i ).

• Attackers can inject faults at θ23
i to recover the remain-

ing bits of χ23
i , and we assume that the attackers can

recover one row using the recovered bits in this row
for all the rows of both SHA3-224 and SHA3-256 for
simplicity.

We randomly generate 103 input message, for each mes-
sage, we use the algorithm in Section III-C to recover part of
χ23
i bits first. For each message, we randomly recover from

0 to 64 rows of χ23
i for 103 trials. In each trial, we inject

1000 random faults at θ22
i to calculate the fault identification

rate and show the results in Figure 10.

0 10 20 30 40 50 60
50

60

70

80

90

100

Number of recovered rows

P
e
rc

e
n
ta

g
e
 o

f 
e
ff
e
c
ti
v
e
 f
a
u
lt
 (

%
)

 

 

SHA3−224
SHA3−256

Figure 10: Percentage of unique faults identification with different
number of χ23

i rows recovered

Figure 10 shows that with more rows of χ23
i recovered,

attackers can identify the randomly injected faults at θ22
i

with higher rates. For example, for SHA3-224, the fault
identification rate is 53.28% when no rows are recovered
by injecting faults at θ23

i , and it rises to 88.34% when all
64 rows (320 bits) are recovered. Similarly, for SHA3-256,
this rate rises from 78.73% to 93.67%.

It means that by recovering extra χ23
i bits, the faults in-

jected at θ22
i can be identified with much higher probability.

Take SHA3-224 for an example, the attacker may need to
inject about 375 faults at θ22

i to get only 200 effective faults
which can be uniquely identified, but he will need only to
inject about 226 faults instead after he has knowledge of all
the bits of θ23

i in the bottom plane.
With knowledge of more χ23

i bits, the attacker can build
more equations like in Figure 6 with more ∆χ23

i and FSχ23
o

bits, then attacker can recover more χ22
i bits for each injected

fault on average. To verify the assumption, we assume the
attacker can recover from 0 to 64 rows of χ23

i , and we run
attacks on SHA3-224 and SHA3-256 to recover all the bits
of χ22

i . We present the attack results on SHA3-224 with
different numbers of rows recovered in Figure 11.
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Figure 11: Number of recovered χ22
i bits for different number of

injected faults with a number of χ23
i rows recovered

Figure 11 shows that attacker needs smaller number of
effective faults to recover all the bits of χ22

i if he has
recovered more rows of χ23

i . For example, if he has full
knowledge of the bottom plane of χ23

i , he can recover 1590
bits of χ22

i using 110 random faults on average. For attacker
who cannot inject fault into the last round input, using the
improved method in Section IV-A1, he can recover about
only 1, 412 bits using 110 injected faults. For SHA3-256,
the results are similar, and we will not present the details
here.

C. Discussions and Future Work

In this paper, we propose a method to use differential
fault analysis to break SHA3-224 and SHA3-256, and
then present two methods to improve the attacks. The
first improved method in Section IV-A requires no extra
knowledge of the target system, while the method proposed
in Section IV-B requires to inject faults into θ23

i to recover
extra χ23

i bits in the bottom plane.
Take SHA3-224 as an example here, the fault identifi-

cation rate is about 49% if no extra rows recovered, and
this rate rises to about 75% with about 30 extra rows
recovered (needs about five effective faults, thus 25 faults
in total at θ23

i ). Then if the attacker needs about 200 faults
at θ22

i to recover the whole state of χ22
i , he needs to inject
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about 408 faults (fault identification rate about 49%) without
knowledge of extra rows of χ23

i , and about 267 faults (fault
identification rate about 75%) with knowledge of the extra
rows of χ23

i . In this case, injecting faults at θ23
i to recover

extra rows of χ23
i will improve the efficiency of the attack

significantly.
Actually, the proposed method used in the attacks of

SHA3-224 and SHA3-256 can be applied to improve the
attacks of SHA3-512. For SHA3-512, the digest size is
512 bits, and 192 bits will be observable on the plane
χ23
o (X, 1, Z). Thus using the method in Section III-C, some

bits on the plane χ23
i (X, 1, Z) can be recovered for attacks.

Comparing with using only the 320 bits in the bottom plane
of χ23

i , this method can be used to improve the effective
fault rate for the injected faults.

This work shows that DFA on SHA3-224 and SHA3-
256 are more difficult than SHA3-384 and SHA3-512, while
SHA3-224 is more difficult to conquer than SHA3-256, and
this is different from their security level under other attack
methods such as collision attacks [31]. Thus different kinds
of attacks should be taken into consideration at the design
stage of SHA-3 systems.

As the protection of SHA-3 against fault injection attacks
has not been discussed thoroughly [36], [37], future work
will include the protections of SHA-3 systems against fault
injection attacks.

V. CONCLUSION

In this paper, we propose efficient methods to conquer
SHA3-224 and SHA3-256 using differential fault analysis.
Comparing with previous work, we extend the DFA on SHA-
3 to SHA3-224 and SHA3-256 under relaxed fault model.
Results show that the proposed methods in this paper can
efficiently identify the randomly injected single-byte fault,
and then use the recovered fault information to recover χ22

i

bits.
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