
Tile-Based Modular Architecture for
Accelerating Homomorphic Function Evaluation

on FPGA

Mustafa Khairallah1 and Maged Ghoneima1

Ain Shams University, Cairo, Egypt
khairallah@ieee.org,m ghoneima@ieee.org

Abstract. In this paper, a new architecture for accelerating homomor-
phic function evaluation on FPGA is proposed. A parallel cached NTT
algorithm with an overall time complexity O(

√
N log

√
N) is presented.

The architecture has been implemented on Xilinx Virtex 7 XC7V1140T
FPGA. achieving a 60% utilization ratio. The implementation performs
32-bit 216-point NTT algorithm in 23.8µs, achieving speed-up of 2x over
the state of the art architectures. The architecture has been evaluated
by computing a block of each of the AES and SIMON-64/128 on the
LTV and YASHE schemes. The proposed architecture can evaluate the
AES circuit using the LTV scheme in 4 minutes, processing 2048 blocks
in parallel, which leads to an amortized performance of 117 ms/block,
which is the fastest performance reported to the best of our knowledge.

Keywords: FHE, Homomorphic, FPGA, Virtex, NTT, CRT

1 Introduction

Since Gentry [1] proposed the first FHE scheme based in 2009, a lot of ef-
forts have been directed towards constructing practical FHE schemes. The re-
cently proposed FHE schemes are either based on the Learning with Errors
(LWE)[2][3][4][5], Ring-LWE[6][7], N -th degree Truncated Polynomial Ring (NTRU)
[8][9] or the Approximate Greatest Common Divisor (AGCD)[10] problems.
Ring-based FHE schemes, such as BGV[6], FV[7], YASHE[8] and LTV[9], achieve
the best performance results, due to the possibility to use the Single-Instruction-
Multiple-Data (SIMD) technique[11], where you can process the same operation
on multiple plaintexts using only one operation on a ciphertext that packs these
plaintexts. Two comprehensive studies have been published comparing the differ-
ent ring-based SHE schemes. In [12], a comparison between the YASHE scheme
and the FV scheme has been presented. A more recent study[13] has expanded
the comparison to all the 4 ring-based schemes: BGV, LTV, YASHE and FV.
These studies has shown that NTRU schemes have better performance compared
to ring LWE schemes.

In 2015, three implementations, [14], [15] and [16], have been published tar-
geting the acceleration of the whole operation of homomorphic function evalua-
tion using FPGA. The design proposed in [16] uses an efficient double-buffered

memory access scheme and a polynomial multiplier based on the Number The-
oretic Transform (NTT). The implementation if presented for the parameter
set (n = 16384, dlog2(q)e = 512), which is only capable of evaluating 9 levels
of multiplication before bootstrapping is required. However, the authors failed
to implement the design for larger parameter sets. Despite its drawbacks, it
is the first design to use cached-NTT to enhance external memory access. In
[15], a hardware/software implementation is proposed, including a large NTT
based multiplier capable of multiplying very large degree polynomials. The de-
sign is highly optimized using numerous techniques to speedup the NTT com-
putations, and to reduce the burden on the PC/FPGA interface. On the other
hand, a modular implementation for all building blocks required in polynomial
ring based fully homomorphic schemes is presented in [14] and used to instantiate
the YASHE scheme. The implementation provides a fast polynomial operations
unit using CRT and NTT for multiplication combined with an optimized mem-
ory access scheme, a fast Barrett like polynomial reduction method, an efficient
division and rounding unit required in the multiplication of cipher-texts and an
efficient CRT unit. However, the complexity of the NTT algorithm for very large
polynomial degrees leads to routing congestion, limiting the butterfly cores that
can be used.

The main contribution in this paper is a modified version of the cached-FFT
algorithm suitable for multi-core environments with distributed memories, which
enables executing the NTT algorithm with time complexity of O(

√
N log

√
N)

(Section 3). This algorithm inspired the design of the multi-core processor ar-
chitecture presented in Section 4, which has been implemented on FPGA. The
AES-128 and SIMON-64/128 circuits have been homomorphically evaluated us-
ing the LTV and YASHE schemes (Section 5). The AES-128 circuit has been
evaluated in 4 minutes using the LTV scheme, with parameters that enable
processing 2048 blocks in parallel, leading to an amortized performance of 117
ms. To the best of our knowledge this is the fastest performance result for the
homomorphic evaluation of the AES circuit.

2 Background

2.1 Homomorphic Encryption Schemes (LTV/YASHE)

In this section, the two encryption schemes used to evaluate the architecture
proposed in this paper are briefly discussed. The LTV scheme (Lopez-Tromer-
Vaikuntanathan Leveled Fully Homomorphic Encryption Scheme) [9] was intro-
duced in 2012 as the first fully-fledged FHE scheme based on NTRU. It works
in the ring R = Z[x]/f(x), where f(x) is the d-th cyclotomic polynomial. The
plain-text space is Rt, where t is small (typically, t = 2) and the cipher-text space
is Rq, where q is a large integer (a more than 1000-bit integer). On the other
hand, the YASHE scheme (Yet Another Somewhat Homomorphic Encryption
Scheme) [8] was introduced in 2013. It works in the ring R = Z[x]/f(x), where
f(x) is the d-th cyclotomic polynomial. The plain-text space is Rt, where t is
small (typically, t = 2) and the cipher-text space is Rq, where q is a large integer

2

(a more than 1000-bit integer). Table 1 includes the routines related to homo-
morphic function evaluation of each of those two schemes and the parameters
used to implement them.

LTV YASHE

ADD c
(i)
add = c

(i)
1 + c

(i)
2 c1 + c2

MULT c
(i−1)
mult = ModSwitch (Relinearize

(c
(i)
1 ∗ c(i)2)) is computed. To re-

linearize a ciphertext, c(i) =
Στζ

(i)
τ c

(i−1)
τ is computed, where

c(i−1) = Στ2τc
(i−1)
τ . To per-

form modulus switching, c(i) =
b qi
qi−1

c(i)e2 is computed, where b·e2
means matching parity bits.

c = KeySwitch(c0, evk) with
c0 = b t

q
c1c2e ∈ Rq. The

KeySwitch operation returns
〈WordDecompw,q(c), evk〉 ∈ Rq,
where 〈·, ·〉 is the inner
product of two vectors and
WordDecompw,q(a) means decom-
posing a into its base w components
(ai)

u
i=0) such that a =

∑u
i=0 aiw

i.

Parameters The parameter set used in this pa-
per to evaluate the LTV scheme
is the same parameter set used in
[15]. These parameters are d =
65536, n = Φ(d) = 32768, log2(q) =
1271, r = 16a and l = 41b.

In [12] a group of parameters for
the YASHE scheme have been pre-
sented with the results of their
software implementations and se-
curity analysis. In this paper,
we use the same parameter set
used in [14], which is parameter
set III in [12]. These parameters
are d = 65536, n = Φ(d) =
32768, log2(q=1225 and log2(w) =
205.

Table 1: Homomorphic Evaluation Operations of the LTV and YASHE schemes

a The relinearization window[15]
b Number of levels

2.2 Chinese Remainder Theorem

During a homomorphic operation, computations are performed on polynomials
of degree 215 or 216, and coefficients consisting of thousands of bits. Implementing
a multiplier that can multiply coefficients of more than 1000 bits will lead to
low performance an is impractical. In order to overcome this issue, the Chinese
Remainder Theorem and Residue Number System are used. CRT has proven to
be efficient in several FPGA implementations, such as [14], [15], [17], [18] and
[19].

In [14], the authors showed how to apply the CRT in a similar way to how it
is used in RSA cryptosystems. Two moduli are chosen, q and Q as the product of
many small prime moduli qi, such that q =

∏l−1
i=0 qi and Q =

∏L−1
i=0 qi, l < L. Any

computation in Rq can be converted into l computations in Rqi . Additionally,

3

if Q ≥ q2, then an operation in R can be regarded as an operation in RQ as
long as the coefficients of the inputs are less than q. Hence, the polynomial
multiplication step in the YASHE.MULT operation, which is performed in R,
can be performed as L polynomial multiplications in Rqi . The moduli q used in
this paper for modular operations of both the YASHE and LTV schemes are the
product of 41 30-bit and 32-bit primes, respectively. In addition, the polynomial
multiplication in YASHE is performed in R instead of Rq. In order to make use
of the NTT algorithm for polynomial multiplication, it is performed in RQ where
log (Q) ≥ 2 log (q). In this paper, Q is a product of 84 30-bit primes.

2.3 Cached Number Theoretic Transform

The bottleneck of NTT hardware design is the external memory access fre-
quency. It ranges from loading and storing coefficients in the external memory
after each butterfly operation to loading the entire polynomial inside the on-chip
data cache, and computing the whole operation at once, which leads to routing
congestion due to the increasing gap between addresses accessed simultaneously
by the NTT algorithm. In order to overcome this problem, the cached-FFT al-
gorithm presented in [20] is used. It was proposed to enhance FFT performance
on devices with hierarchical memory systems. In this paper, the 2-epoch imple-
mentation of the cached-FFT algorithm [20] is chosen, where the N -point NTT
is computed using a series of

√
N -point NTTs.

3 Parallel Cached NTTN

In [15] and [14], the authors tried to adapt the iterative NTT algorithm to a
multi-core environment. However, the performance gain was not as expected
due to bottlenecks in memory access. In this paper, a parallel cached-NTT al-
gorithm is proposed in order to compute a complete NTT operation with only
one memory access. The algorithm runs on an environment that consists of

√
N

processing tiles. Each tile includes:

1. A 3
2

√
N -location data cache.

2. A
√
N -location twiddle factors cache.

3. A butterfly data path (a modular multiplier, modular adder and modular
subtractor).

The idea behind the proposed algorithm, Algorithm 1, is to treat each tile as
a separate 2-epoch cached-NTT processing element (For a complete description
of the cached NTT algorithm, refer to [16], [20] and [21]). However, instead of
writing the coefficients back to the external memory, a simple 4

√
N -channel ring

network on chip with 2 4
√
N switches is used to reorder the coefficients in time

O(
√
N).

4

Algorithm 1 Parallel NTTN

Input: Polynomial a(x) ∈ Zq[x] of degree N − 1, Array ω[N/2 ∗ log (N) − 1 : 0] of
pre-computed twiddle factors

Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
A(x)← bit reverse(a(x))
for i = 0 to 1 do

for j = 0 to
√
N − 1 do

NTT√N (a[(j + 1) ∗
√
N − 1 : j ∗

√
N], w[i ∗

√
N + (j + 1) ∗

√
N/2 − 1 :

i ∗
√
N + j ∗

√
N/2]);

end for
Reorder;

end for

3.1
√
N-point NTT (NTT√

N)

Algorithm 2 is a slightly modified version of the compact memory efficient NTT
algorithm proposed in [17]. The main contribution in [17] is an advanced memory
addressing scheme that enables packing the two coefficients related to the same
butterfly into one memory location, such that there is only one read and one
write memory accesses during a butterfly.

3.2 Coefficient Reordering

In this section, the structure and operation of the NoC used for coefficient re-
ordering is described. The 2-epoch N-point cached-NTT the reordering function
works as follows: coefficient i in group j of the first epoch becomes coefficient j
in group i, where i, j ∈ [0 :

√
N−1]. In order to implement this function, the

√
N

are divided into 2
√
N clusters, each contains 1

2

√
N tiles. Each cluster is respon-

sible for performing reordering in two steps. The first step is reordering between
tiles of the same cluster, while the second step is reordering between different
clusters. The algorithm responsible for reordering coefficients between tiles of the
same cluster should read the pair of coefficients stored Data CacheT [12

4
√
I + j],

which are A[
√
N(T + 1

2I
4
√
N)+2∗j] and A[

√
N(T + 1

2I
4
√
N)+2∗j+1] and store

these coefficients in Data Cache(2j)[
1
2

4
√
I + T] and Data Cache(2j+1)[

1
2

4
√
I + T],

where I is the cluster id ∈ [0, 2 4
√
N − 1] and T is the tile id ∈ [0, 1

2
4
√
N − 1].

If T is even, then the loaded coefficients are stored in the lower part of target
memory location, and vice versa. Since the NoC consists of 4

√
N channels, 4

√
N

can be ordered in parallel. First, a reordering square matrix O 1
4

4√
N∗ 1

4
4√
N is pre-

computed. This matrix is not a unique matrix but it must satisfy the following
properties:

1. oij ∈ [0, 1
4

4
√
N − 1].

2. oij 6= oik∀j 6= k.
3. oik 6= ojk∀i 6= j.
4. If oik = j, then oij = k.

5

Algorithm 2 Memory Efficient Iterative NTT√N

Input: Polynomial a(x) ∈ Zq[x] of degree
√
N−1, Array ω[(

√
N/2)∗(log (

√
N))−1 : 0]

of pre-computed twiddle factors
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
A← bit reverse(a(x)) or a(x); /*According to whether the first of second epoch*/
i = 0 or 1/2 ∗

√
N ; /*According to whether the first of second epoch*/

for m = 2 to
√
N/2 by m = 2m do

for j = 0 to m/2− 1 do
for k = 0 to

√
N/2− 1 do

(t1, u1)← (A[k + j +m/2], A[k + j]); /*Stored in Data Cache[k + j]*/
(t2, u2)← (A[k+j+3∗m/2], A[k+j+m]); /*[Data Cache[k+j+m/2]*/
t1 ← t1 ∗ ω[i];
t2 ← t2 ∗ ω[i+ 1];
(A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1);
(A[k + j + 3 ∗m/2], A[k + j +m])← (u2 − t2, u2 + t2);
Data Cache[k + j]← (A[k + j +m], A[k + j]);
Data Cache[k + j +m/2]← (A[k + j + 3 ∗m/], A[k + j +m/2]);
i = i+ 2;

end for
end for

end for
m←

√
N ;

k ← 0;
for j = 0 to m/2− 1 do

(t1, u1)← (A[k + j +m/2], A[k + j]); /*Stored in Data Cache[k + j]*/
(t2, u2)← (A[k + j +m/2 + 1], A[k + j + 1]); /*[Data Cache[k + j + 1]*/
t1 ← t1 ∗ ω[i];
t2 ← t2 ∗ ω[i+ 1];
(A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1);
(A[k + j +m/2 + 1], A[k + j + 1])← (u1 − t1, u1 + t1);
Data Cache[k + j +

√
N/2]← (A[k + j + 1], A[k + j]);

Data Cache[k + j +m/2 +
√
N/2]← (A[k + j +m/2 + 1], A[k + j +m/2]);

i = i+ 2;
end for

The row index i represents the reordering step, while the column index
j = T/2. Each values of j is associated, with two tiles: 2T and 2T + 1. Al-
gorithm 3 describes how this matrix is used to reorder coefficients within the
same cluster I, where CHx represents channel number x of the NoC. The prop-
erties of O ensure that reordering is performed correctly and that the maximum
bandwidth of the NoC is used. After executing Algorithm 3 by all clusters in
parallel, 1

2

√
N 4
√
N coefficients are in their correct place, while the algorithm

consumes time 1
2

4
√
N (The outer loop consumes two steps, as the iterations of

the inner loops are executed in parallel). Algorithm 4 describes how inter-cluster
reordering is performed. Clusters need to exchange (1

2
4
√
N)2 = 1

4

√
N coefficients

between each two of them. However, in order to maximize the throughput of the

6

NoC, at each step of the algorithm each cluster needs to send a packet of 4
√
N

coefficients. Thus, the communication is organized as follows: at iteration i of
the outermost loop of Algorithm 4, cluster I sends 1

4
4
√
N packets to cluster I + i

and receives 1
4

4
√
N packets from cluster I + (32 − i). Each packet takes 1 step

to be loaded into the NoC, i steps inside the network and 1
4

4
√
N steps to store

in the correct locations. Notice that each packet can be loaded into the NoC in
parallel as each pair of coefficients is loaded from a different tile. However, each
packet is stored in a single tile.

Algorithm 3 Intra-cluster NTTN Coefficient Reordering

Input: Reordering Matrix O
for i in 0 to 1

4
4
√
N − 1 do

for j in 0 to 1
4

4
√
N − 1 do

CH4j ← Data Cache2j [
1
4

4
√
NI +Oij][0];

CH4j+1 ← Data Cache2j [
1
4

4
√
NI +Oij][1];

CH4j+2 ← Data Cache2j+1[1
4

4
√
NI +Oij][0];

CH4j+3 ← Data Cache2j+1[1
4

4
√
NI +Oij][1];

end for
for j in 0 to 1

4
4
√
N − 1 do

Data Cache2Oij [1
4

4
√
NI + j]← (CH4j+2, CH4j);

Data Cache2Oij+1[1
4

4
√
NI + j]← (CH4j+3, CH4j+1);

end for
end for

3.3 Time Complexity Analysis

Algorithm 1, NTTN consists of three main parts, repeated twice:

1. NTT√N : has time complexity of O(
√
N log

√
N).

2. Intra-cluster Reordering: has time complexity of O(4
√
N).

3. Inter-cluster Reordering: The number of steps in this part is
∑ 1

4
4√
N

i=0 i +
1
4

4
√
N =

1
4

4√
N−1
2 (2(1

4
4
√
N + 1) + 1

4
4
√
N − 2). Thus, this part of the algorithm

has time complexity of O(
√
N).

Therefore, the overall time complexity of the proposed algorithm is O(
√
N

log
√
N). The dominant part of the algorithm is the NTT√N . When the initial

load and final store operations are added, the complexity becomes O(N).

3.4 Valid values of N

The proposed algorithm works only for N = 24k+8 and needs modifications to
work for any value of N . However, for k = 2, N = 216, which is suitable for the
target applications of FHE.

7

Algorithm 4 Inter-cluster NTTN Coefficient Reordering

for i in 0 to 2 4
√
N − 1 do

for K in 0 to 1
4

4
√
N − 1 do

for j in 0 to 1
4

4
√
N − 1 do

CH4j ← Data Cache2j [
1
4

4
√
N(I + i) + k][0];

CH4j+1 ← Data Cache2j [
1
4

4
√
N(I + i) + k][1];

CH4j+2 ← Data Cache2j+1[1
4

4
√
N(I + i) + k][0];

CH4j+3 ← Data Cache2j+1[1
4

4
√
N(I + i) + k][1];

end for
for s in 1 to i do

advance ring;
end for
for j in 0 to 1

4
4
√
N − 1 do

Data Cache2k[1
4

4
√
N(I − i+ 32) + j]← (CH4j+2, CH4j);

Data Cache2k+1[1
4

4
√
N(I − i+ 32) + j]← (CH4j+3, CH4j+1);

end for
end for

end for

4 Hardware Architecture

The proposed architecture targets evaluating FHE schemes based on Rings of
dimension, i.e. the degree of polynomials involved in the NTT operation is N =
216−1. In compliance with Algorithm 1, the architecture consists of 32 clusters,
each cluster consists of 8 tiles. Each tile performs Algorithm 2. Each tile is
also capable of performing polynomial addition/subtraction and coefficient-wise
multiplication, in addition to the small CRT, large CRT and Divide-and-Round
operations described in [14]. The external memory is assumed to be a dual-port
RAM. Thus, the clusters are divided into two groups of 16 clusters each. The
128 tiles in each group share the same memory bus that is connected to one of
the RAM ports. It is the responsibility of the main CPU to organize data inside
the RAM into blocks to be read by the tiles. This simplifies the amount of logic
required by the architecture in order to interface with the external memory. Each
tile consists of the following components:

1. Configurable Arithmetic Unit (CAU): responsible for performing the
arithmetic operations used in the evaluated encryption schemes. These op-
erations are:

(a) Modular multiplication, based on Barrett reduction.
(b) Barrett reduction.
(c) Modular addition/subtraction.
(d) The butterfly operation of the NTT algorithm.
(e) Modular multiply-and-accumulate (MAC) operations.
(f) Serial integer multiplication.

8

Fig. 1: Configurable Arithmetic Unit (CAU)

To perform these operations, the CAU unit includes three 32-bit integer
multipliers, two 64-bit integer adders/subtractors and four 32-bit integer
adders/subtractors, in addition to a group of registers. The CAU unit is
organized as shown in Figure 1. A group of comparators and multiplexers
are used to select the outputs, which are not shown in Figure 1. Additionally,
the signal named barret out refers to the output of the Barrett reducer.

2. Data Cache: Each tile includes two dual port 64-bit 256 RAMs. The overall
size of the available data cache in the architecture is enough to store four
polynomials of degree 216. This makes it possible to perform more than one
instruction with reduced memory overhead. For example, it is possible to
perform one complete polynomial multiplication operation, which consists
of 2 NTTN , 1 point-wise multiplication and 1 INTTN , with only 2 load and
1 store operations, minimizing the memory overhead.

3. Precomputed Constants: The architecture uses two types of constants:
(a) Full width large constants: The constant of the Divide-and-Round oper-

ations (2
q) - The constants of the large CRT operations for both q (41

residues) and Q (84 residues). They are stored as 32 bit words in a 256
word ROM in each tile.

(b) 32-bit constants: The NTT operation twiddle factors - The CRT moduli
qi - The Barrett reduction constants xi corresponding to each qi - The
INTT scaling factors N−1modqi - The small CRT constants: 41 ∗ 84 to
convert from q to Q. Each tile includes a 32-bit 1024 word RAM that is
loaded with the constants currently being used.

Cluster NoC Switch each cluster includes a ring NoC switch (shown in Figure
2) and a switch controller. The switch consists of 16 channels, each of 32 bits.
It is responsible accessing the data caches of its tiles and passing coefficients to
the adjacent switches.

9

Fig. 2: The ring NoC switch

5 Results and Comparison

The proposed design has been implemented using Xilinx ISE 14.2 Design Suite,
with the target device Virtex-7 XC7VX1140T-2 which is the largest device in the
Virtex-7 FPGA family. The design achieves an overall utilization ratio of 60%.
The amount of resources used is presented in Table 2. Due to the regularity of
the proposed architecture, 61.6% of the registers used are in the form of fully
used LUT-FF pairs, which simplifies placement and routing, which was the main
problem preventing increasing the utilization ratio in [14].

Clock Fre-
quency

Registers LUTs Fully used
LUT-FF
pairs

BRAMs DSP48E1

Value 209 MHz 324736 678368 200032 1600 3072

Percentage 22% 95% 61.6%a 85% 91%

Table 2: The implementation results on Xilinx Virtex-7

a Percentage of LUT-FF paired registers out of all the registers used.

Table 3 shows the time consumed by each of the primitive operations per-
formed by the design. All operations have been accelerated in comparison to [14]
due to two reasons; the increased clock frequency (e.g. 209 MHz vs. 143 MHz)
and the increased number of processing cores (256 vs. 128). While the design in
[15] consists of 256 cores, the architecture proposed in this paper achieves a 2x
speed up. Table 4 includes the evaluation results of the YASHE scheme and the
time consumed to evaluate 1 block of the SIMON-64/128. In order to multiply
two cipher-texts using YASHE.MULT, first the input polynomials are lifted from
Rq to RQ using the small-CRT operation. Second, polynomial multiplication is
computed, using Barrett reduction, which needs 4 NTT operations, 3 INTT op-
erations, 3 point-wise multiplications and 1 polynomial subtraction operation.

10

Finally, large-CRT operation for (l = 84) and divide-and-round operations are
performed, followed by key switching. Key switching consists of 22 NTT oper-
ations, 22 point-wise multiplications, 21 polynomial additions and 1 INTT are
performed, in addition to 2 NTT, 2 INTT and 2 point-wise multiplications and
1 polynomial subtraction for Barrett reduction.

Operation Clock Cycles Time Time[14] Time[15]

ADD/SUB(na=215) 133 0.63µs 15µs

ADD/SUB(n=216) 261 1.3µs 29µs

Point-wise MULT 273 1.31µs 29µs

NTT 4,964 23.8µs 334µs 50µs

INTT 5,237 25.1µs 363µs

Small-CRT 209,920 1ms 0.8ms

Large-CRT(l = 41) 1,178,368 5.65ms N/Ab 89ms

Large-CRT(l = 84) 2,414,218 11.5ms 19.248ms

Divide-and-Round 3,666,304 17.6ms 19.678ms

Table 3: Timing Results

a Polynomial degree.
b This operation is needed for the LTV scheme, which is not evaluated in [14].

The SIMON-64/128 block cipher consists of 44 Rounds, each includes 32
AND Gates and 96 XOR Gates. For comparison purposes, the results in Table 4
exclude the time consumed to load and store coefficients in the external memory.
The proposed architecture is 1.5x faster than the estimates in [14] for evaluating
one block of the SIMON-64/128 faster.

Operation Time Time[14]

YASHE.ADD 25.83µs 172µs

YASHE.MULT 74.51ms 112.025ms

SIMON-64/128 105s 157.731s

Table 4: Evaluation results of the YASHE Scheme and homomorphic evaluation
of the SIMON-64/128 block cipher

The other scheme that is used to evaluate this architecture is the LTV scheme,
which used to evaluate 1 block of the AES block cipher. Table 5 includes the
evaluation results of the LTV scheme. The LTV.ModSwitch operation consists
of one large CRT operation, where l = 41, followed by a group of polynomial
additions whose number is l− 1, depending on the level of the computation. For
l = 41 the relinearization operation consists of one large CRT operation, 80 NTT
operations, 41 INTT operations and 3280 point-wise addition and multiplication
operations.

11

Operation LTV.ADD LTV.Relinearize LTV.ModSwitch LTV.MULT

Time 4.55ms 36.34ms 7.86ms 72.3ms

Time[15] 526ms 89ms

Table 5: Evaluation results of the LTV Scheme

The AES circuit evaluated in this paper includes the S-Box design proposed
in [22] and consists of 18448 XOR gates and 5440 AND gates. The homomorphic
evaluation of the AES circuit takes 4 minutes (3.7x faster than the estimates in
[15]), at an amortized AES evaluation time of 117 ms/block. The overall results
for evaluating AES and SIMON-64/128 on both YASHE and LTV scheme is
presented in Table 6.

Algorithm NTT INTT Add Mult lCRT (41) lCRT(84) sCRT DIV Execution Time

YASHE/
AND Gate

1320 375 986 1236 0 1 1 1 461.06 ms

YASHE/
XOR Gate

0 0 41 0 0 0 0 0 4.55 ms

YASHE/ SIMON-64/128 11.14 minutes

YASHE/ AES-128 43.2 minutes

LTV/ AND
Gate (Level
0)

244 164 3280 3280 2 0 0 0 72.3 ms

LTV/ XOR
Gate (Level
0)

0 0 41 0 0 0 0 0 4.55 ms

LTV/ SIMON-64/128 1 minutes

LTV/ AES-128 4 minutes

Table 6: The overall results for evaluating AES and SIMON-64/128 on both
YASHE and LTV schemes using the proposed architecture

6 Conclusion

In this paper, a new algorithm for executing the NTT operation in distributed-
memory multi-core environments in time O(

√
N log (

√
N)) has been proposed.

An architecture for homomorphic function evaluation using this algorithm has
also been presented. The architecture has been implemented on Virtex 7 FPGA
and has been studied using both the YASHE and LTV FHE schemes.

The future work includes evaluating the proposed architecture using ASIC
and/or a multi-FPGA environment. On the other hand, the study of performance
of FHE schemes presented in section 5 has to be extended to other schemes, such
as BGV and FV.

12

References

1. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC.
Volume 9. (2009) 169–178

2. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013. Springer (2013) 75–92

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43 (2014) 831–871

4. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Public Key Cryptography–PKC 2012. Springer (2012) 1–16

5. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Advances in Cryptology–EUROCRYPT 2012. Springer (2012) 465–
482

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ACM (2012) 309–325

7. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012 (2012) 144

8. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Cryptography and Coding. Springer
(2013) 45–64

9. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, ACM (2012) 1219–
1234

10. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in cryptology–EUROCRYPT 2010.
Springer (2010) 24–43

11. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes
and cryptography 71 (2014) 57–81

12. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
fv and yashe. In: Progress in Cryptology–AFRICACRYPT 2014. Springer (2014)
318–335

13. Costache, A., Smart, N.P.: (Which ring based somewhat homomorphic encryption
scheme is best?)

14. Dimitrov, V., Verbauwhede, I.: Modular hardware architecture for somewhat
homomorphic function evaluation. In: Cryptographic Hardware and Embedded
Systems–CHES 2015: 17th International Workshop, Saint-Malo, France, Septem-
ber 13-16, 2015, Proceedings. Volume 9293., Springer (2015) 164

15. Öztürk, E., Doröz, Y., Sunar, B., Savaş, E.: Accelerating somewhat homomor-
phic evaluation using fpgas. Technical report, Cryptology ePrint Archive, Report
2015/294 (2015)

16. Putnam, A., Macias, A.: Accelerating homomorphic evaluation on reconfigurable
hardware. In: Cryptographic Hardware and Embedded Systems–CHES 2015: 17th
International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings.
Volume 9293., Springer (2015) 143

17. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: (Compact
ring-lwe based cryptoprocessor)

13

18. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Selected Areas in Cryptography–SAC 2013.
Springer (2013) 68–85

19. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient fpga implemen-
tations of lattice-based cryptography. In: Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on, IEEE (2013) 81–86

20. Baas, B.M.: A generalized cached-fft algorithm. In: Acoustics, Speech, and Signal
Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on.
Volume 5., IEEE (2005) v–89

21. Baas, B.M.: An approach to low-power, high-performance, fast Fourier transform
processor design. PhD thesis, Citeseer (1999)

22. Boyar, J., Peralta, R.: A depth-16 circuit for the aes s-box. IACR Cryptology
ePrint Archive 2011 (2011) 332

14

