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ABSTRACT

The amount of digital data that requires long-term pro-
tection of integrity, authenticity, and confidentiality grows
rapidly. Examples include electronic health records, genome
data, and tax data. In this paper we present the secure
storage system LINCOS, which provides protection of in-
tegrity, authenticity, and confidentiality in the long-term
(e.g., decades, centuries). It is the first such system. It
uses the long-term integrity scheme COPRIS, which is also
presented here and is the first such scheme that does not
leak any information about the protected data. COPRIS uses
information-theoretic hiding commitments for confidentiality-
preserving integrity and authenticity protection. LINCOS
uses proactive secret sharing for confidential storage of se-
cret data. We also present implementations of COPRIS and
LINCOS. A special feature of our LINCOS implementation
is the use of quantum key distribution and one-time pad en-
cryption for information-theoretic private channels within
the proactive secret sharing protocol. The technological
platform for this is the Tokyo QKD Network, which is one
of worlds most advanced networks of its kind. Our experi-
mental evaluation establishes the feasibility of LINCOS and
shows that in view of the expected progress in quantum com-
munication technology, LINCOS is a promising solution for
protecting very sensitive data in the cloud.

1. INTRODUCTION

1.1 Motivation and problem statement

Today large amounts of data are digitally stored, increas-
ingly in cloud-based data centers, and this amount will mas-
sively grow in the future. For example, Japanese hospitals
use redundant cloud storage to protect sensitive medical
data from loss due to natural catastrophes [23, 24]. Also,
in his state of the union address 2015, the U.S. President
Barack Obama announced a Precision Medicine Initiative
which will require to digitally store the health data of vir-
tually all U.S. citizens.

Protection requirements. Digitally stored data require pro-
tection throughout their whole lifetime which may be very
long. Important protection goals are integrity, authenticity,
and confidentiality. Integrity means that illegitimate and ac-
cidental changes of the data can be discovered. Authenticity
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refers to the origin of the data being identifiable. Confiden-
tiality guarantees that only authorized parties are able to ac-
cess the data. For example, consider medical data. Their in-
tegrity is extremely important because changes may lead to
incorrect treatment with serious health consequences. Au-
thenticity is required for liability reasons and confidentiality
protects the privacy of the involved individuals. Medical
data may have to be kept as long as the respective patients
are alive or even beyond this time. So the required protec-
tion period may be more than 100 years. Other examples
for sensitive long-lived data are genome data, governmental
secrets, and tax data.

Current cryptography is unsuitable. Unfortunately, cur-
rent technology does not provide integrity, authenticity, and
confidentiality protection over such a long time. The cryp-
tographic algorithms used today for such protection, such
as AES encryption and RSA signatures, fail to provide suffi-
cient security guarantees. They are complexity-based which
means that their security relies on the intractability of cer-
tain algorithmic problems, e.g., integer factorization. How-
ever, cryptanalytic power is steadily increasing. Accord-
ing to Moore’s law, the computing speed doubles every 18
months. Also, there is algorithmic progress. Hence, keys
chosen today will be too short in the future. For exam-
ple, in their original RSA paper [32], the authors estimate
the required RSA modulus size: “using 200 digits provides
a margin of safety against future developments.” However
less than 30 years later factoring 200 decimal digit numbers
became feasible [3]. This situation is very critical. Adver-
saries may store encrypted data now and decrypt them later
when the encryption algorithm becomes broken which may
happen during the lifetime of the protected data. Techno-
logically, this appears to be quite feasible. For instance, the
Utah Data Center of the NSA has an estimated capacity of
4 to 12 Exabytes (10'® bytes) which allows to store huge
amounts of encrypted data for a long time.

The question arises whether it is possible and feasible to
provide long-term protection of integrity, authenticity, and
confidentiality of digital data over decades or even centuries.

There exist several partial solutions to this problem. For
overviews of confidentiality and integrity/authenticity re-
lated solutions see [6] and [38], respectively. These surveys
also contain the relevant references.

Confidentiality of data in transit. In 1949 Claude Shan-
non presented his model of information-theoretic confiden-
tiality protection and proved that one-time-pad encryption



(OTP) provides such protection for transmitted data (data
wn transit). However, OTP keys are as long as the pro-
tected data, can only be used once, and are required to
be exchanged in an information-theoretically secure fashion.
Therefore, OTP encryption has been only used for special
applications such as military applications with key exchange
by trusted couriers. In the past decades, other methods of
such key exchange have been developed, including schemes
based on the bounded storage, noisy channel, or limited ac-
cess models, and quantum key distribution (QKD). Among
these options, QKD is by far the most advanced, both the-
oretically and experimentally. For example, many countries
such as Austria, China, Japan, Switzerland, and the USA
are currently deploying QKD-protected backbones. For ex-
ample, they use QKD to protect keys for complexity-based
symmetric encryption. However, in this case no information-
theoretic security is achieved.

Confidentiality of data at rest. Unfortunately, OTP en-
cryption is unsuitable for stored data. This is because OTP
requires using and protecting one-time keys that are as long
as the original data. Hence, nothing is gained by using OTP.
Instead, proactive secret sharing can be used to provide
information-theoretic confidentiality protection of stored data.
Proactive secret sharing decomposes the secret into n shares
in such a way that a threshold number k& < n of shares is re-
quired to reconstruct the secret while any smaller number of
shares reveals no information about the secret. The shares
are renewed on a regular basis in order to prevent attacks
of mobile adversaries who may be able to learn more and
more shares over time. Such solutions are well suited for
cloud storage systems and are already used in this context
[27]. However, as in currently used secret sharing solutions
communication protection is only complexity-based, they do
not provide information-theoretic confidentiality.

Integrity and authenticity. There are standardized solu-
tions for long-term integrity and authenticity protection (see
[18]) which are already used in practice. They utilize time-
stamp chains to prolong the validity of complexity-based dig-
ital signatures thereby protecting integrity and authenticity
for any length of time. However, these solutions prohibit
long-term confidentiality protection. This is because they
submit hashes of the protected data to timestamp authori-
ties. As cryptographic hash functions only offer complexity-
based security, they may leak information over time. This
is also why the solutions in [22] and [31] do not support
long-term confidentiality protection.

In summary, the problem of long-term protection of in-
tegrity, authenticity, and confidentiality of digital data is
urgent and a comprehensive solution that provides such pro-
tection is not known so far.

1.2 Contribution

In this paper we present the first storage solution that can
simultaneously protect integrity, authenticity, and confiden-
tiality of digital data potentially over decades and centuries.
We analyze its security and experimentally study its feasi-
bility. As our solution uses a distributed storage system, it
is suitable for cloud applications.

Confidentiality-preserving long-term integrity protec-
tion. Our first contribution is the new scheme COPRIS. It

is the first long-term integrity scheme that is confidentiality
preserving, i.e., it does not leak any information about the
protected data to third party services. It also provides au-
thenticity protection if the protected data is signed and the
signature is protected together with the data. COPRIS is
inspired by existing long-term integrity schemes, e.g., ERS
[18]. The idea in COPRIS is to no longer timestamp the pro-
tected documents. Instead, information-theoretically hiding
commitments to these documents are timestamped. These
commitments never leak any information about the docu-
ments. Information-theoretically hiding commitments can
only be computationally binding [5]. Therefore, commit-
ments are renewed on a regular basis. Timestamps are also
renewed. In this way, we obtain an evidence record: a se-
quence of timestamps of commitments. In order to verify the
integrity of a document, this document and the secret de-
commitment values are revealed. Then the evidence record
is used to recursively prove the existence of the commitments
at their respective generation times. Also, the commitments
are recursively opened proving eventually, that the first com-
mitment opens to the data and therefore, these data existed
at the asserted time.

Long-term integrity, authenticity, and confidentiality
protection. Our second contribution is the secure storage
system LINCOS. It is the first storage system that simultane-
ously protects integrity, authenticity, and confidentiality of
stored data in the long-term. We present a security analysis
and report on our implementation and thorough experimen-
tal evaluation of LINCOS.

In LINCOS, a document owner communicates with an in-
tegrity system and a confidentiality system. The integrity
system is based on COPRIS which we implemented as a
Java application. For any document, it maintains an evi-
dence record that can be used to verify document integrity.
Document authenticity can be enabled by an initial digital
signature on the document. The confidentiality system pro-
tects the document and the decommitment values. It uses
proactive secret sharing to protect the confidentiality of the
data at rest. In our experiments we use four shareholders
and a threshold of three. Our implementation is based on
Shamir’s secret sharing and we make it proactive by requir-
ing the document owner to renew the shares. In order to
achieve information-theoretic confidentiality, private chan-
nels are used. Our implementation realizes them via QKD
and OTP. We choose QKD because compared to the other
candidates it is the theoretically most clear cut and practi-
cally most promising solution for information-theoretic key
exchange. We use the Tokyo QKD Network to implement
these channels. This network is one of worlds most advanced
QKD networks and allows for a reliable feasibility study. It
provides private channels between the four shareholders and
the document owner.

We report on an experiment that simulates protecting
documents of different sizes for 100 years. The size of the
evidence records generated over this time period is at most
a few hundred kilobytes and is independent of the size of
the protected document. Also, the time for generating and
verifying integrity and authenticity is almost independent of
the document size and grows from a few milliseconds to at
most 10 seconds. This shows that the performance of the
integrity system is very acceptable, in particular as comput-
ing speed is expected to increase considerably over the next



Instance RSA-1024 | RSA-2048 | RSA-4096
Security until 2006 2040 2085

Table 1: Instances of the RS A signature scheme with
estimated security time frame according to Lenstra
[25].

100 years. As for confidentiality protection, the limiting fac-
tor turns out to be the speed of QKD key generation. The
average key supply that we currently achieve is 40 kb/s. So
transmitting 1 GB of data requires 2.3 days of prior key ac-
cumulation. This allows for proactive secret sharing of 158
GB with a share renewal period of 2 years. However, in the
near future key rates of 1 Mb/s can be expected which will
reduce the time for distributing a 1 GB key to 2.2 hours.
Thus it will be possible to protect 4 TB with a share re-
newal period of 2 years. For example, 4 TB is the size of the
genomes of roughly 5000 persons.

LINCOS is well suited for long-term storage systems. Avail-
ability requirements in such systems, in particular in case of
natural or other catastrophes, suggest to redundantly store
the data in multiple locations which are far apart from each
other. In fact, redundant storage is already common prac-
tice in many scenarios (e.g., [23, 24]). LINCOS can be used
in these scenarios and additionally achieves long-term in-
tegrity, authenticity, and confidentiality protection.

1.3 Organization

Our paper is organized as follows. Section 2 introduces
the cryptographic components that are used in COPRIS and
LINCOS and also discusses their security. Section 3 presents
the long-term integrity and authenticity scheme COPRIS and
its security analysis. Section 4 describes the comprehen-
sive solution LINCOS for simultaneous integrity, authentic-
ity, and confidentiality protection and also includes the se-
curity analysis of LINCOS. Our implementation of COPRIS
and LINCOS is described in Section 5. The experimental
results are discussed in Section 6. Finally, in Section 7 we
draw conclusions and sketch future work.

2. CRYPTOGRAPHIC COMPONENTS

In this section we give an overview of the cryptographic
components that are used in COPRIS and LINCOS. Such
a cryptographic component may provide computational se-
curity or information-theoretic security. Some components,
such as commitment schemes, may even have both proper-
ties for different functionalities. Computational security is
based on the intractability of a computational problem, e.g.,
integer factorization. Information-theoretic security is based
on the principles of information theory and does not require
such an assumption (see [36]).

A computationally secure component is usually parame-
trized with a security parameter which determines the hard-
ness of the underlying computational problem. The security
parameter is chosen such that the cryptographic component
remains secure for the intended usage period. Lenstra [25]
presents heuristics for choosing security parameters appro-
priately. A variety of parameter suggestions tables can be
found at [1]. As an example, Table 1 shows security esti-
mates for the RSA signature scheme.

Timestamps. Timestamps are issued by timestamp services
using timestamp schemes [20, 2]. A timestamp scheme in-
volves a protocol Stamp and an algorithm Verify. In the
protocol Stamp a client sends the hash h(d) of a document
d, which may be any data object, to a timestamp service and
obtains a timestamp 7' = (t,s,V). Here ¢ is the time when
the timestamp was issued, s is a signature by the timestamp
service on (t,h(d)), and V is a certificate chain required to
verify s. Such a timestamp can be verified using algorithm
Verify. Input to Verify is a trust anchor, the document d,
the timestamp 7', a timestamp time ¢, and a validation ref-
erence time t.f. Typically, the trust anchor is the public
key of the certificate authority that issued the first certifi-
cate in V. The algorithm verifies the signature s for (¢, h(d))
using the trust anchor and the certificate chain V. It out-
puts 1 if the signature is valid relative to time t.f and 0
otherwise. Output 1 means that the document d existed at
time t. More details regarding timestamp verification can be
found in [2]. The security notion for signature-based time-
stamp schemes is unforgeability which is defined analogous
to signature unforgeability [17, 14].

Authenticated channels. An authenticated channel is a mu-
tually authenticated connection between a sender and a re-
ceiver. In protocol Setup, the sender and receiver agree on
channel parameters, for example session keys. After execut-
ing Setup, the sender uses protocol Send to send data d to
the receiver. We require an authenticated channel to guar-
antee computationally secure mutual authentication of the
sender and the receiver. For details see [4, 12].

Private channels. In addition to authenticated channels
we also use private channels. Like authenticated channels,
private channels also support the protocols Setup and Send.
However, the security guarantees are stronger. In addition
to computationally secure mutual authentication, private
channels also provide information-theoretic confidentiality
of the transmitted data [37, 36].

Commitment schemes. A commitment scheme allows a
party to commit to some document without revealing it.
Such a scheme consists of the algorithms Commit and Verify.
Input to Commit is a document. Output is a pair (c,7)
where c is a commitment value and a r is a decommitment
value. Input to Verify is a trust anchor, a document, a
commitment value, a decommitment value, and a valida-
tion reference time tf. The trust anchor is used to verify
that the commitment scheme was correctly instantiated by
some trusted authority. Output is 1 or 0, where 1 means
that the commitment is valid relative to time t.f. We re-
quire commitment schemes to be computationally binding
and information-theoretically hiding. For details see [30, 16].

Proactive secret sharing. The participants of a proactive
secret sharing scheme are a dealer, several shareholders, and
a retriever. Such schemes allow information-theoretic con-
fidentiality protection of data at rest and are suitable for
secure cloud storage as they involve a set of data storage
servers. Proactive secret sharing schemes support the pro-
tocols Setup, Share, Reshare, and Retrieve. In the Setup pro-
tocol the dealer and an initial set of shareholders agree on
sharing parameters, e.g., the size of the shares. In the Share



protocol, the dealer generates one share for each shareholder
and sends it to the respective shareholder through a private
channel. The Reshare protocol involves a current set S and
a new set S’ of shareholders. Initially, the shareholders in S
have their individual shares. After the protocol has termi-
nated, all the shareholders in S have deleted their shares and
the shareholders in S’ have new shares. Finally, the Retrieve
protocol involves a retriever and a set of shareholders. The
retriever obtains one share from each shareholder through a
private channel. From these shares, he reconstructs the ini-
tial data of the dealer. One way of implementing protocol
Reshare is to let the dealer reconstruct the secret document
using protocol Retrieve and then distribute new shares to the
potentially new shareholders using protocol Share. An alter-
native is to use resharing protocols that do not reconstruct
the secret data, e.g., [21, 11, 40, 19].

We require proactive secret sharing schemes to provide
information-theoretic confidentiality in the mobile adversary
model [21]. In this model, adversaries may learn some shares
over time. However, before the number of learned shares
exceeds the selected threshold k, the shares are renewed via
Reshare. Also, up to k shares provide no information about
the shared secret.

Another useful security property of secret sharing schemes
is verifiability [10, 30]. It prevents the dealer from distribut-
ing inconsistent shares. However, this property is not essen-
tial in our context and may be added as a further property
of our storage solution later.

3. COPRIS: CONFIDENTIALITY-
PRESERVING LONG-TERM
INTEGRITY SCHEME

In this section we present the scheme COPRIS which en-
sures long-term integrity protection and is long-term confi-
dentiality preserving, i.e., it does not leak any information
about the protected data. The scheme also provides long-
term authenticity if the protected data is signed and the in-
tegrity of the signature is protected together with the signed
data.

3.1 Scheme

COPRIS works as follows. A document owner stores a
document d at some time ¢t. He keeps d secret and uses
COPRIS to construct a proof of integrity Pl for d. Later he
may choose to reveal d to another party. This party then
uses Pl to verify that d existed at time t. To preserve the
confidentiality of d, the proof of integrity Pl is constructed
in such a way that no information about d is revealed to
any third party. Confidential storage of the secret data is
out of the scope of COPRIS and is dealt with in LINCOS
(Section 4).

We now explain the construction of the proof of integrity
and its verification and we show that this construction has
the desired security properties. The integrity proof is a pair
(E,R), where E is an evidence record and R is a list of
decommitment values. The evidence record is constructed
interactively between the document owner and an evidence
service which, in turn, interacts with a timestamp service.
The list of decommitment values is constructed and kept
secret by the document owner. The document owner may
decide to reveal the decommitment values together with the
document to a third party verifier.

In the following we describe COPRIS in detail. Figure 1
illustrates the functionality of COPRIS. Figure 2 lists the
algorithms used in COPRIS.

Initial protection. The initial integrity proof is constructed
as follows. The document owner runs algorithm Protect.
Input is the document d and the (initially empty) list of
decommitment values R. He selects a commitment scheme
CS and computes a commitment (c,r) < CS.Commit(d).
He sets R = (r) and sends the commitment value ¢ to the
evidence service. When the evidence service receives c, it
runs algorithm AddEv. Input is ¢ and the (initially empty)
evidence record E. It requests a timestamp 7' on c¢ from
a timestamp service TS using protocol TS.Stamp at time t.
The evidence record is initialized as E = (¢, T, t).

Timestamp renewal. Before the last timestamp becomes
insecure it must be renewed. In this case, the evidence ser-
vice executes algorithm RenewTs, where the input is the cur-
rent evidence record E. It selects a new timestamp scheme
TS and obtains a timestamp T on E at time ¢ using protocol
TS.Stamp. Then, it appends (L,T,t) to E, where L indi-
cates that there is no commitment generated at timestamp
renewal.

Commitment renewal. Before the last commitment cre-
ated by the document owner becomes insecure, it must be re-
newed. The document owner runs the algorithm RenewCom.
Input is the document d and the decommitment value list
R. The document owner selects a new commitment scheme
CS and computes (¢,7) < CS.Commit(d, R). He add r to
the list R at position |E| and sends c to the evidence ser-
vice. When the evidence service receives c, it runs algorithm
AddEv. Input is ¢ and the evidence record E.

Verification. When the document owner reveals d to the
verifier, he also transmits the asserted existence time ¢ and
the integrity proof (E, R). Using this information, the veri-
fier can validate the existence of d at time ¢ as follows. Let
R=(ro,...,rn) and E = (co,To,t0,- -, CnyTn,tn).

We describe the verification procedure. We define t,4+1 to
be the time of verification and for i € {0,...,n} we set E; =
(co,To,to,- -, ci, Ty, t;) and R; = (ro,...,7r;). Furthermore,
for ¢ € {0,...,n} let TS; the timestamp scheme associated
with T; and if ¢; # L, let CS; denote the commitment scheme
associated with c¢;. Also, let txrc(;) denote the time of the
next recommitment after c;, i.e., the minimum ¢;; with i’ > i
and ¢ # L or t,41 if i = n. The verifier uses his trust
anchor TA, which must contain the necessary certificates for
the public parameters of the signatures and commitments,
and for ¢ € {0, ...,n} verifies that

if c; £ L:

CSi.Verify( TA, (d, Ri_1), Ciy Ti5 tNRC(i)) =1
TSi.Verify( TA, (Eifl, Ci), TZ‘, ti; ti+1) =1

else:

TSi.Verify( TA, Ei717 Ti, ti; ti+1) =1.
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Figure 1: Functionality of COPRIS.

Protect(d, R):
1. Select commitment scheme CS
2. (¢, r) < CS.Commit(d)

3. Send c¢ to evidence service, set R = (r)

AddEv(c, E):
1. Select timestamp scheme TS
2. (T,t) «+ TS.Stamp(E, ¢)
3. Append (¢, T,t) to E

RenewTs(E):
1. Select timestamp scheme TS
2. (T,t) «+ TS.Stamp(E)
3. Append (L,T,t) to E

RenewCom(d, R):

1. Select commitment scheme CS
2. (¢,r) + CS.Commit(d, R)

3. Send c to evidence service, append r to R

Verify(TA,d, t, R, E):

1. Let R = (ro,...,mn) and E = (co, To,t0, .- Cny Tnytn)
such that r; corresponds to ¢;. For i € {0,...,n}, let
Ei = (Co,To,to, . .,Ci,Ti,ti) and R1 = (7”07 ce ,1”1'), let

TS, be the timestamp scheme associated with T;, and if
¢; # L, let CS; be the commitment scheme associated
with ¢;. Furthermore let to = ¢ and t,,4+1 be the current
time.

2. For ¢+ € {0,...,n}, if ¢ = L1, verify that
TSi.Verify(TA7Eifl,Ti,ti;tiH) = 17 and if ¢; ;ﬁ J_7
verify that CS;.Verify(TA, (d, Ri—1), ¢i, Ti; txre@)) = 1
and TSi,Verify(TA, (Eifl,ci),Ti,ti;tiJrl) =1.

Figure 2: Algorithms used in COPRIS for initial pro-
tection, adding evidence, timestamp renewal, com-
mitment renewal, and verification.

3.2 Security

In the following, we provide a security analysis of COPRIS.
We show that COPRIS provides long-term integrity and au-
thenticity protection and that no confidential data is leaked
to the evidence and timestamp service.

We consider adversaries that may be active for an un-
bounded period of time while being computationally bounded
per unit of time. We refer to [15, 8, 7] for more details
regarding this adversary model. It reflects the indefinite
lifetime of long-lived systems and of the data processed by
them. The fact that adversaries have limited capabilities
per unit of real time allows for the usage of computationally
secure cryptographic primitives in long-lived systems.

Our security analysis is based on the results of [15, 8, 7],
where it is shown that (under certain computational assump-
tions) extractable commitments and timestamps can be used
to argue about the knowledge of an adversary at an earlier
point in time based on its current knowledge and the history
of interactions. Here, we use the following notation to argue
about the knowledge of an adversary A. For a data object d
and a time ¢, we write d € K4[t] to denote that A knew d at
time t. We remark that adversaries do not forget knowledge
once they obtained it. That is, for any data object d and
any two points in time ¢ and #’, it holds that if d € K4[t]
and ¢’ > t, then also d € K 4[t']. We also use the convention
that for verification of timestamps and commitments a trust
anchor TA is provided by a PKI that certifies the verifica-
tion keys of the used timestamp and commitment scheme
instances and specifies the corresponding instance validity
periods.

We state two lemmas that we will use for proving long-
term unforgeability of COPRIS. These lemmas resemble re-
sults of [15, 8, 7] about extractable timestamps and commit-
ments. The first lemma states that if an adversary A knows
a timestamp (7, t) and a data object d at a time ¢, and (T, t)
is valid for d at ¢, then A has already known d at time t
(with high probability). The second lemma states that if
an adversary A knows a commitment value ¢ at a time ¢, a
message d and a decommitment r are known at time ¢’ > ¢,
and r is a valid decommitment from c to d at time t’, then A
has already known the message d at the commitment time ¢
(with high probability).

LEMMA 1. For any data object d, timestamp (T,t), and
time t':
(d,(T,t)) € Ka[t'|A\VerTsra(d, T, t;t) =1 = d € Kalt] .

LEMMA 2. For any commitment value ¢, time t, data ob-
ject d, decommitment value r, and time t' > t:

c€Kalt] A (d,7) € Ka[t'] AVerCompa(d, c,r;t') =1
= deKalt] .

By long-term unforgeability of COPRIS we mean that for
any adversary A as described above it is feasible to construct
a valid integrity proof for a document d and a time ¢ if A
did not know d at time ¢.

It is essential for the security of COPRIS that the following
assumptions hold.

I1. The commitment schemes used in the proof of integrity
are computationally binding in their usage period.

12. The timestamp schemes used in the proof of integrity
are computationally unforgeable in their usage period.



13. The verifier has a valid trust anchor.

Here, by usage period of the cryptographic schemes we
mean the time interval that begins when the cryptographic
scheme is chosen and ends when it is replaced by a new
scheme. Also, by a valid trust anchor we mean a trust an-
chor that allows for the verification of all timestamps and
commitments.

THEOREM 3.1. Under Assumptions 11, 12, and 13, COPRIS
is long-term unforgeable.

PROOF. Assume that an adversary A outputs (d, ¢, E, R)
such that (E, R) is a valid integrity proof for d and time ¢.
We show that in this case A knew d at time t (with high
probability).

We write R = (ro,...,m) and E = (co, To,to, - - Cny Tnytn).
For ¢ € {0,...,n} let E; = (co,To,t0,...,¢i,Ti,t;) and
R; = (ro,...,7:). Furthermore, we denote by CS; the com-
mitment scheme corresponding to ¢;, for ¢; # L, and by TS;
the timestamp scheme corresponding to T;. Also, denote by
tn+1 the time at which the adversary outputs (d, ¢, F, R). Fi-
nally, let txrc(;) denote the time of the next recommitment
after ¢; or tp41 if i = n.

We show that for ¢ € {n,...,0} the following holds:

e Aknew (ci, Ti, t;) at time t;41.
o If ¢; # L, then A knew (d, Ey, R;) at time tnrc(i)-

We prove the first two statements recursively. We observe
that for ¢ = n both statements are obviously true as A out-
puts (d,t, E, R) at time t,11 = tNre(n) and E = E, contains
(¢n,Tn,tn) and R = R,. Next, we prove that if the state-
ments are true for 4, then they must also be true for i—1. We
observe that if ¢; = 1, then by the validity of the integrity
proof we have TS;.Verify(TA, E;—1,T;,t;;ti41) = 1 and by
assumptions 12 and I3 and Lemma 1 we have that F;_; was
known at time t;, which implies that (c;—1, Ti—1,ti—1) was
also known at time ¢;. Furthermore, we observe that if ¢; #
L, then we have CSi.Verify(TA, (d, Ri_1), Ciy T4, tNRC(i)) =1
and TS;.Verify(TA, (Ei-1,¢), Ti, ti; tiv1) = 1. By assump-
tions I2 and I3 and Lemma 1 it follows that (E;—1,c;) was
known at time t;, which implies that (¢;—1, T5—1,ti—1) was
also known at time ¢;, and by assumptions I1 and I3 and
Lemma 2 it follows that (d, R;—1) was known at time ¢; =
INrC(i—1)- We observe that, in particular for 4 = 0, this
means that A knew d at time ¢t; = ¢ (with high probabil-
ity). O

We remark that the concrete security level of the protec-
tion degrades slowly over time based on the chosen schemes
and parameters. For more details, we refer to [15, 8, 7).

Next, we show that COPRIS is confidentiality preserving in
the long-term, i.e., no information is leaked to the evidence
and timestamp service (in an information-theoretic sense).
This fact relies on the following assumption.

C1. The commitment schemes are information-theoretically
hiding.

THEOREM 3.2. Under assumption C1, COPRIS is infor-
mation-theoretic confidentiality preserving.

PrOOF. The only data that is sent by the document owner
to the evidence service and from there to the timestamp ser-
vice are information-theoretically hiding commitments. By
assumption C1, these commitments do not leak any infor-
mation about the committed data. [J

4. LINCOS: LONG-TERM INTEGRITY,
AUTHENTICITY, AND CONFIDEN-
TIALITY SYSTEM

In this section we describe our new long-term storage sys-
tem LINCOS which allows for information-theoretic confi-
dentiality and long-term integrity and authenticity protec-
tion. The situation is similar as in COPRIS. A document
owner stores a document d at time ¢. He uses an integrity
system, which is based on COPRIS, to construct an integrity
proof Pl. Additionally, he uses a confidentiality system for
information-theoretic confidential storage of the secret doc-
ument. The confidentiality system is also used for confiden-
tial storage of the secret decommitment values, which are
generated during integrity proof construction.

4.1 System specification

An overview of LINCOS is shown in Figure 3. The involved
parties are the document owner, the evidence service, a time-
stamp service, a set of shareholders, and a verifier. These
parties are connected by private or authenticated channels
as shown in Figure 3. While LINCOS is running, the respec-
tive channels are instantiated securely whenever a connec-
tion needs to be established. When referring to the evidence
service, we use the same notation as in the description of
COPRIS. That is, the document owner maintains a list of
decommitment values R and the evidence service maintains
an evidence record E. Both are initially empty.

Initial document protection. For initial protection of a
document d, the document owner runs COPRIS.Protect. In-
put is a document d and the (initially empty) list of decom-
mitment values R. The document owner chooses a confi-
dentiality system involving several shareholders. The docu-
ment owner uses protocol Share to distribute (d, R) among
the shareholders.

Renewal of timestamps. In COPRIS, timestamps are re-
newed on a regular basis. For this, the evidence service uses
COPRIS.RenewTs.

Renewal of commitments. In COPRIS also the commit-
ments are renewed regularly. For this, the document owner
does the following. First, he retrieves d and the sequence
of decommitment values R from the confidentiality system
by running protocol Retrieve. Then, he runs the algorithm
COPRIS.RenewCom, thereby updating the list of decommit-
ment values R and the evidence record E. Finally, the docu-
ment owner selects a potentially new confidentiality system
and runs protocol Share to distribute the document d and
the updated sequence of decommitment values R among the
shareholders in the confidentiality system.

Renewal of secret shares. The shares stored by the share-
holders are renewed on a regular basis. This prevents a mo-
bile adversary to take advantage of shares he may have been
able to obtain in the past. In this process, the current set
of shareholders of the confidentiality system may also be re-
placed by a new set of shareholders operated by the same
confidentiality system. This resharing is done by running
protocol Reshare.
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Figure 3: Overview of the long-term secure storage system LINCOS.

Verification. When the document owner decides to reveal
the document d to a verifier and prove that it existed at
time ¢, he executes the following steps. He requests the
current evidence record E from the evidence service. He
also retrieves the document d and the list of decommitment
values R from the confidentiality system by running the pro-
tocol Retrieve. He sends the document d, time ¢, evidence
record F, and the list of decommitment values R to the ver-
ifier through a private channel. The verifier uses the data
that he received and his trust anchor TA and checks that
COPRIS.Verify(TA,d,t,E,R) = 1. This proves that d ex-
isted at time ¢ and has not been changed.

4.2 Security

We show that under appropriate assumptions, LINCOS
provides integrity protection for an indefinite period of time
and information-theoretic confidentiality protection.

Adversaries are assumed to have the capabilities described
in Section 3.2. They run forever but are computationally
bounded per unit of time. In addition, to analyze confi-
dentiality, adversaries are assumed to be active and mobile.
This means that adversaries may eavesdrop on channels or
corrupt shareholders. A more detailed discussion of this
model can be found in [29, 9, 21].

Integrity. Theorem 3.1 states that in this adversary model,
LINCOS provides long-term integrity and authenticity pro-
tection if Assumptions I1, 12, and I3 from Section 3.2 are
satisfied.

Confidentiality. We say that LINCOS provides information-
theoretic confidentiality protection if an adversary with ca-
pabilities as described above cannot recover any informa-
tion about the stored document in an information-theoretic
sense.

For information-theoretic confidentiality we require As-

sumption C1 from Section 3.2 and the following assumptions
to hold.

C2. The private channels used in LINCOS provide information-
theoretic confidentiality and computational authentic-
ity at the time of data transmission.

C3. The proactive secret sharing schemes used in LINCOS
provide information-theoretic confidentiality.

C4. During their usage periods, the secret sharing services
used in LINCOS prevent mobile adversaries from learn-
ing k or more shares.

THEOREM 4.1. Under assumptions C1, C2, C3, and C/
the system LINCOS provides information-theoretic confiden-
tiality protection.

PRrROOF. LINCOS is based on COPRIS, which is information-
theoretic confidentiality preserving under Assumption Cl1.
Hence, an adversary cannot obtain any information about
the confidential document by eavesdropping on the authen-
ticated channel from the document owner to the evidence
service or from the evidence service to the timestamp ser-
vice.

Information-theoretic confidentiality of data sent through
the private channels from the document owner to the share-
holders or between the shareholders is guaranteed by As-
sumption C2. Information-theoretic confidentiality of data
stored at the shareholders is guaranteed by Assumptions C3
and C4. [

S. IMPLEMENTATION

In this section we describe our implementation of the stor-
age system LINCOS, which we presented in Section 4.

LINCOS uses COPRIS for its integrity system and proac-
tive secret sharing combined with appropriate private chan-
nels for its confidentiality system. We describe the imple-
mentation of these two systems. One important feature of



our implementation is the possibility of replacing crypto-
graphic components. This is required because of Assump-
tions I1 and I2. Another feature is the realization of private
channels using the Tokyo QKD Network [33].

5.1 Implementation of COPRIS

The parties involved in COPRIS are the document owner,
the evidence service, and a timestamp service. As crypto-
graphic componentes they use commitment and timestamp
schemes. We implemented COPRIS in Java following the
specification given in Section 3. Here we describe the imple-
mentation of the components.

Commitment scheme. As the commitment scheme, which
is used by the document owner to generate commitments to
documents, we use the scheme proposed by Pedersen [30].
It is computationally binding and information-theoretically
hiding (Assumptions I1 and C1) and is parametrized by two
prime numbers p and ¢. The binary length of g determines
the size of the data that can be committed to. Bindingness
of Pedersen’s commitment scheme is based on the discrete
logarithm problem in a subgroup of order ¢ of the multi-
plicative group of the finite field of order p.

To allow committing to data of arbitrary length, data
are first hashed, using a cryptographic hash function, and
then committed to. Our implementation supports the SHA-
2 hash function family which contains the hash functions
SHA-224, SHA-256, SHA-384, and SHA-512. They have in-
creasing security levels.

The hash function and the parameters of the commitment
scheme are chosen such that computational bindingness is
achieved during the intended usage period as required by
Assumption I1. In practice, these choices can be made on
the basis of trustworthy recommendations. For an overview
of recommendations see [1].

Timestamp scheme. The timestamp service used by the
evidence service is implemented in accordance with stan-
dard RFC 3161 [2]. Implementing it requires choosing a
hash function and a digital signature scheme. We use the
SHA-2 hash function family and the RSA digital signature
scheme. The security of the used RSA instance depends
on the bitlength of the RSA-modulus. Hash function and
RSA-modulus are chosen such that they remain secure dur-
ing their usage period as required by Assumption [2. Again,
see [1] for an overview of recommendations on how to choose
hash functions and security parameters in practice.

Authenticated channels. Authenticated channels are real-
ized using TLS [12]. This protocol is state of the art and
provides mutual authentication in a computational sense.
Authenticated channels are important for the robustness of
our system. They guarantee that the document owner con-
nects with the intended evidence service. However, our se-
curity analysis does not require security properties of these
channels. Therefore, we do not discuss the schemes and pa-
rameters chosen for TLS.

5.2 Secret sharing and private channels

In the following we describe the implementation of the
confidentiality system in LINCOS which uses private chan-
nels and proactive secret sharing.

Private channels. LINCOS uses private channels to con-
nect the document owner with the shareholders. By As-
sumption C2, these channels are required to provide infor-
mation-theoretic confidentiality and computational authen-
ticity. For establishing such private channels we use the
Tokyo QKD Network [33], which is shown in Figure 4. A
combination of Wegman-Carter authentication, QKD, and
OTP encryption is used to achieve information-theoretic pri-
vate and authenticated channels [26, 28, 34]. The network
consists of three layers; the quantum layer, the key manage-
ment layer, and the application layer. Secret sharing is run
on the application layer. Parties on the application layer
request and receive key material from the key management
layer. The key management layer establishes an interface
to the quantum layer where the raw key material is gener-
ated using QKD technology. To improve the capabilities of
the network, keys are relayed on the key management layer
by key management agents. In order to allow for Assump-
tion C2 to hold, further technical protection measures are in
place as explained below. In the following, we explain the
functionality of the network in more detail.

Wegman-Carter authentication [39] is used to guarantee
authenticity of the channels. The initial authentication is
done using a preshared key. Further key material for this
authentication is generated using QKD.

We explain the key exchange mechanism. On the quantum
layer, nodes that are directly connected via a QKD link can
generate raw key material. QKD transmitters and receivers
are assumed to be located in the trusted nodes. The exact
configurations of the QKD links and protocols in use are
shown in Table 2 with achieved key generation rates.

Once keys have been generated in the quantum layer, they
are pushed up to the key management layer and then stored
and managed by the key management agents (KMAs). All
the KMAs are placed in the trusted nodes. The KMAs are
connected by authenticated channels, and execute key re-
lays by key encapsulation in a hop-by-hop fashion. Thus a
key pair can be shared between two terminal nodes even if
they are not directly connected by a QKD link. A reliable
key management server (KMS) is also located at one of the
trusted nodes, gathers link information (bit error rates, key
rates, amounts of accumulated keys, etc.) from the KMAs,
organizes a routing table, and provisions secure paths to the
KMAs. Secure key transfer is made on request from the
KMA to the document owner/shareholder via a protected
classical channel, e.g., a tamper resistant cable of short dis-
tance. This guarantees non-interceptable key transfer from
the QKD platform to the document owner/shareholder lo-
cated outside the trusted nodes. Furthermore, the trusted
nodes are protected by one-way firewalls to prevent attack-
ers from sending malicious commands from the application
layer to the QKD platform. Once supplied with the keys, the
document owner and the shareholders are in charge of key
management. Thus the boundary of responsibility (point-
of-interface) is set between the QKD platform and the ap-
plication layer. For further details we refer to [33, 13].

Secret sharing. Our implementation of secret sharing is
based on the secret sharing scheme proposed by Shamir [35].
The scheme provides information-theoretic confidentiality as
required by Assumption C3. We use a (3,4)-threshold se-
cret sharing, which suits the network structure of the Tokyo
QKD Network. This means that the document owner dis-
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Figure 4: The secret sharing scheme supported by the Tokyo QKD Network.

Name Protocol | Length | Key rate
km kb/s
NEC-0 BB84 50 200
NEC-1 BB84 22 200
Toshiba BB8&84 45 300
NTT-NICT | DPS-QKD 90 10
Gakushuin | CV-QKD 2 100
SeQureNet | CV-QKD 2 10

Table 2: Specifications of the QKD links.

tributes shares to 4 shareholders and 3 shareholders are
needed for the reconstruction of the data. To allow for shar-
ing data of arbitrary size, these data are decomposed into
parts of appropriate size. Our implementation supports the
resharing protocol described in Section 2. For resharing, the
document owner first retrieves and reconstructs the data and
then generates and distributes new shares. As required by
Assumption C4 we assume that resharing happens before the
adversary corrupts more than 2 shareholders. In the future
we plan to implement proactive secret sharing as suggested
n [21]. It allows for taking the document owner out of the
loop when resharing happens. Furthermore, it is desirable
to have a system that does not involve the document owner
in the commitment renewal process. However, this requires
more research.

6. EXPERIMENTAL EVALUATION

In the following, we present a performance analysis of
LINCOS. We estimate the storage space required by the
system and investigate data transmission limits imposed by
QKD. We also measure the time required for integrity ver-
ification. To do so, we run the following experiment. A
document is stored and protected using LINCOS over a pe-
riod of 100 years, starting in 2016 and ending in 2116. Share

Security | SHA-2 RSA Pedersen
year instance | log,(n) | logy(p), log,(q)
2040 SHA-224 2048 2048, 224
2065 SHA-224 3072 3072, 224
2085 SHA-256 4096 4096, 256
2103 SHA-384 5120 5120, 384
2116 SHA-384 6144 6144, 384

Table 3:
Lenstra [25].

Parameter selection according to

and timestamp renewal happen every two years. The share
renewal period is to be chosen such that mobile adversaries
are unable to recover more shares than permissible. Also,
the typical storage hardware maintenance service interval
is two years. The timestamp renewal period is chosen in
accordance with typical certificate renewal periods. Such
certificates are required to verify the timestamps. Finally,
commitment renewal happens every ten years. This is in
accordance with the heuristic security assumptions for the
commitment scheme parameters.

Parameter choice for the complexity-based cryptographic
components is done according to the heuristics in [25]. The
corresponding expected protection periods are presented in
Table 3.

6.1 Storage space

We analyze the storage space required by the various par-
ties of LINCOS. It is analyzed as a function of the bitlength
sizeq of the protected document d.

Shareholders. Each shareholder stores one share s per doc-
ument. Its size is sizes = sizeq + sizer. Here R is the list
of decommitment values accumulated over time. Its size is
independent of the document size. The size of a single de-
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commitment value equals the size of the parameter ¢ of the
commitment scheme. At present, a secure instantiation of
the Pedersen commitment scheme requires a decommitment
value size of 224 bit. The growth of sizegr over 100 years is
shown in Figure 5. The experiments show that it is at most
1 kB.

Evidence service. The evidence service stores one evidence
record E per document. The size of the evidence record sizeg
is independent of the document size. It depends on the size
and number of timestamps and commitments contained in
the evidence record. It grows over time because a new time-
stamp and a new commitment are added with each renewal.
The growth of sizeg over time is shown in Figure 6. Our
experiments show that the size of the evidence record accu-
mulates over 100 years to sizeg ~ 500 kB.

6.2 Data transmission

Our system uses authenticated and private channels. Au-
thenticated channels easily allow for data rate of 1 Gb/s,
while they are used for sending only a few hundred kB of
evidence data. So the cost for data transmission via authen-
ticated channels is negligible.

Private channels are realized using OTP and QKD. The
transmission rate of these channels is limited by the key
generation rate of QKD. Therefore, in our analysis we focus
on the QKD part.

Data rate of private channels. The QKD performance
in the Tokyo QKD Network differs from link to link be-
cause fiber channel lengths as well as specifications of QKD

10
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appropriate key relays in the key management layer

G

200kbps

100kbps
Key generation rates in the quantum layer

Figure 7: Key generation rates of the QKD links,
and key supply throughputs to the private channels
after appropriate key relays in the key management
layer.

sizes Sharing Resharing
1kB | 02s 04s

1 MB | 3 min 20 s | 6 min 40 s
1 GB | 2.3 days 4.6 days

Table 4: Key exchange time for sharing and reshar-
ing with keyRateqkp = 40 kb/s.

devices are different from each other. Furthermore, some
nodes are directly connected by a QKD link, others have to
use key relay. The achieved secret key rates of the QKD
links are summarized in Table 2. They range from 10 kb/s
to 300 kb/s depending on the specification of the respective
QKD link. To prevent being limited by the slowest QKD
links (10 kb/s), keys are relayed between appropriate KMAs
such that OTP keys can be supplied at a reasonable key sup-
ply throughput, which is denoted as keyRateqkp. Such key
relaying balances the key material across the network. The
resulting throughput lies between the slowest and fastest key
generation rates of the QKD links. In our current configu-
ration of the QKD platform, this key relay allows to raise
the minimum throughput of key supply for each pair of four
shareholders to keyRateqkp = 40 kb/s, as shown in Figure 7.

Storage and retrieval. When the document owner stores
data in the confidentiality system, he sends one share to
each shareholder. Likewise, when retrieving the data, the
document owner receives one share per shareholder. Since
sizes = sizeq + sizer, the time required for generating the
necessary OTP key material per share transfer in a private
channel is ts = sizes/keyRateqkp seconds. Table 4 shows tim-
ings for shares of different sizes with keyRateqkp = 40 kb/s.

Share renewal. For share renewal, the document owner re-
trieves the current set of shares and distributes new shares
to the shareholders. So the time for communicating the key
material required for resharing is 2 x t;. Table 4 also lists
timings for shares of different sizes.

The data that can be protected when resharing happens
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every two years as in our experiment has maximum size
sizes = 2 years * keyRateqkp/2 = 1 year x keyRateqkp. For
the current key supply throughput of 40 kb/s we obtain
sizes = 158 GB. This data size approximately corresponds
to human genomic data of 195 persons. In the near future (4
to 5 years), QKD technology with key rates of 1 Mb/s over
50 km is expected to be available. Then, data of size up to
3942 GB can be protected, which is roughly 4 TB or the size
of the genomes of 4926 persons. If the key supply through-
put can be increased to 1 Gb/s, data of size 4 PB can be
handled, which corresponds to human genomic data of 4.9
million persons. Such a QKD performance can be expected
to be realizable using dense wavelength division multiplex-
ing of 1000 quantum channels as well as fast key distillation
processing. This is a challenge, but will be feasible by em-
ploying integrated photonic technologies and dedicated key
distillation engines on semiconductor chips.

6.3 Evidence verification

Figure 8 shows timings for verification of an integrity
proof. The timings were measured on a machine with an
2.9GHz Intel Core i5 CPU and 8GB RAM running our Java
implementation of the verification algorithm. As the evi-
dence record and the list of decommitment values grow over
time, the verification time increases. Verification of evi-
dence accumulated over 100 years takes approximately 10
seconds. It can be expected that, because computers are
getting faster, in a hundred years from now integrity proof
verification will only take a fraction of this time.

6.4 Summary

Our experimental evaluation shows the following situa-
tion. The long-term integrity system based on COPRIS has
very good performance, in particular in view of the expected
growth of computing power. So the time and space cost
for time-stamping commitments instead of hash values and
for renewing these commitments is negligible. As expected,
information-theoretic confidentiality protection is expensive.
One limiting factor is the additional space required by secret
sharing. However, it does not exceed the additional storage
space required by cloud storage solutions that use secret
sharing for robustness reasons. The second limiting factor
is QKD. It is technically complex and transmission rates are
not yet fully satisfactory. But, as we have explained above,
the development in this area is promising so that practical
solutions can be expected in the future.
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7. CONCLUSION

We have presented the system LINCOS. It is the first
storage system that, under appropriate assumptions, simul-
taneously provides integrity, authenticity, and confidential-
ity protection in the long-term (e.g., decades, centuries).
LINCOS builds on the newly developed long-term integrity
scheme COPRIS, which is the first such scheme that pre-
serves information-theoretic confidentiality of the protected
data. We have presented an implementation and an exper-
imental evaluation of LINCOS. One of the special features
of this implementation is that it uses QKD for establish-
ing private channels for secret sharing. With current QKD
technology our LINCOS implementation allows to store and
protect data of size up to approximately 150 GB. Current
performance is limited by QKD key transmission rates. We
have reported about predictions of future developments that
will improve QKD transmission rates considerably.

There are two main directions of further research. The
first concerns improvement of QKD performance. As men-
tioned in Section 6.2 dense wavelength division multiplexing
of many quantum channels combined with fast key distilla-
tion processing is promising. This requires employing inte-
grated photonic technologies and dedicated key distillation
engines on semiconductor chips.

The second research direction concerns the performance of
the commitment renewal and resharing process. Currently,
in both processes the document owner is required to retrieve
the document regularly. However, it is desirable to take the
document owner out of the loop and let the confidentiality
and integrity systems deal with these issues independently.
For proactive secret sharing, we will use a more advanced re-
sharing protocol, e.g., [19]. It allows for renewing the shares
without the help of the document owner. We also aim at
developing a commitment renewal protocol that does not
involve the document owner.
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