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Abstract. This paper proposes a public-key cryptosystem and a short
password encryption mode, where traditional hardness assumptions are re-
placed by specific refinements of the CAPTCHA concept called Decisional
and Existential CAPTCHAs.
The public-key encryption method, achieving 128-bit security, typically
requires from the sender to solve one CAPTCHA. The receiver does not
need to resort to any human aid.
A second symmetric encryption method allows to encrypt messages using
very short passwords shared between the sender and the receiver. Here, a
simple 5-character alphanumeric password provides sufficient security for
all practical purposes.
We conjecture that the automatic construction of Decisional and Ex-
istential CAPTCHAs is possible and provide candidate ideas for their
implementation.

Introduction

CAPTCHAs1 [vABHL03] are problems that are hard to solve by computers, while
being at the reach of most untrained humans. There might be many reasons why,
at a particular time, a given type of CAPTCHA is considered hard for computers.
The automated solving of CAPTCHAs may either require more computational
power than is available, or algorithms have yet to be invented. It might well be
that computers are inherently less efficient, or even incapable, at some tasks than
human beings. Whichever the cause, several candidate CAPTCHAs are widely
used throughout the Internet to keep robots at bay, or at least slow them down
(e.g. [EDHS07,CGJ+08,vAMM+07,CB03,NASK14,SHL+10]).

Most CAPTCHAs are used as human-interaction proofs [BL05] but their
full potential as cryptographic primitives has not been leveraged so far despite
a few exploratory papers. Early attempts [Dzi10, CHS06, vABHL03, CHS05]
faced the inherent difficulty of malleability: given a CAPTCHA Q, an adversary
could generate Q′, whose solution gives a solution to Q. Thus the security of
such constructions could only be evaluated against unrealistic “conservative
adversaries” [KOPW13]. All in all, we propose to fill the gap by providing a finer
1 “Completely Automated Public Turing test to Tell Computers and Humans Apart”.



taxonomy of CAPTCHAs as well as cryptosystems based on them, which can
reach real-life security standards.

The organisation of this paper is as follows: Section 1 defines the classes of
problems we are interested in, and estimates how many of those problems can
be solved per time unit. We then refine the classical CAPTCHA concept into
Decisional and Existential CAPTCHAs. Section 2 describes how to implement
public-key encryption using Decisional CAPTCHAs; Section 3 describes a short
password-based encryption mode that uses Existential CAPTCHAs to wrap
high-entropy keys. Section 4 presents Decisional and Existential CAPTCHA
candidates.

1 Preliminaries and Definitions

1.1 CAPTCHA Problems

Let Q be a class of problem instances, A a class of answers, and S a relation such
that S(Q,A) expresses the fact that “A ∈ A is a solution of Q ∈ Q”. Solving
an instance Q of problem Q means exhibiting an A ∈ A such that S(Q,A). We
assume that for each problem there is one and only one solution, i.e. that S is
bijective. This formal setting (similar to [KOPW13,CHS06]) allows us to provide
more precise definitions.

Because CAPTCHAs involve humans and considerations about the state of
technology, we do not pretend to provide formal mathematical definitions but
rather clarifying definitional statements.

Definition 1 (Informal). A given problem Q ∈ CP (CAPTCHA Problem) if
no known algorithm can solve a generic instance Q ∈ Q with non-negligible
advantage over 1/|A|, which is the probability to answer Q correctly at random;
yet most humans can provide the solution A to a random Q ∈R Q with very high
probability in reasonable time.

In Definition 1, it is worth pointing out that future algorithms might turn out to
solve efficiently some problems that evade today’s computers’ reach. As such, CP
is not so much a complexity class as it is a statement about technology at any
given point in time.

There exist today several approaches to building CAPTCHAs, based for
instance on deformed word recognition, verbal tests, logic tests or image-based
tasks. We are chiefly interested in those tests that can be automatically generated.

We extend CP in two ways:

Definition 2 (Informal). A given problem Q ∈ DCP (Decisional CP) if Q ∈ CP
and, given a random instance Q ∈R Q and a purported solution A to Q, no known
algorithm can decide whether A is a solution to Q, i.e. evaluate S(Q,A), with non-
negligible advantage over 1/|A|; while humans can determine with high probability
S(Q,A) in reasonable time.

Finally, we introduce a further class of problems:



Definition 3 (Informal). Let Q /∈ CP be a set of “decoy data” which are not
CAPTCHAs. A given problem Q ∈ ECP (Existential CP) if Q ∈ CP and, given
a generic instance Q ∈ Q or a decoy Q ∈ Q, no known algorithm can decide
whether Q ∈ Q with non-negligible advantage over |Q|/|Q ∪ Q|; while humans
can decide correctly if Q ∈ Q or Q ∈ Q in reasonable time with high probability.

Remark 1. Definition 3 depends on the set Q. We silently assume that, for a
given problem Q, an appropriate Q is chosen. This choice makes no difference.

When Q is not exhaustively searchable, Definition 3 means that a computer
cannot decide whether a given Q is a CAPTCHA or not, let alone solve Q if Q
is indeed a CAPTCHA.

Remark 2. Definition 3 can be reformulated similarly to the IND-CPA [NY90]
security game: we pick a random bit b and provide the adversary with Qb, where
Q0 ∈ Q and Q1 ∈ Q. The adversary is expected to guess b no better than at
random unless it resorts to human aid.

Remark 3. ECP,DCP ⊆ CP, but there is no inclusion of ECP in DCP or vice
versa. Informally, CP is about finding an answer, DCP is about checking an
answer, and ECP is about recognizing a question.

Remark 4. Solving a problem Q ∈ CP is either done using computers which by
definition provide unreliable answers at best; or by asking a human to solve Q –
effectively an oracle. However, there is a limit on the number of solutions humans
can provide and on the rate at which humans can solve CAPTCHAs.

Consider a given Q ∈ CP whose generic instances can be solved by a human
in reasonable time. Let us estimate an upper bound b on the number of instances
of Q that a human may solve during a lifetime. Assuming a solving rate of 10
instances per minute, and working age of 15–75 years, spent exclusively solving
such problems, we get b ∼ 108. Taking into account sleep and minimal life support
activities, b can be brought down to ∼ 107.

There should be no measurable difference between solving a problem in CP or
in DCP, however it might be slightly simpler (and therefore quicker) for humans
to identify whether a problem is a CAPTCHA without actually solving it. For
simplicity we can assume that CAPTCHA recognition is ten times faster than
CAPTCHA resolution.

There are various estimations on the cost of having humans solve CAPTCHAs.
Some websites offer to solve 1000 CAPTCHAs for a dollar2. Of course, the
oracle may employ more than one human, and be proportionally faster, but also
proportionally more expensive.
2 At a first glance, the previous figures imply that breaking a public-key (as defined in
the next section) would only cost $104. We make the economic nonlinearity conjecture
there are no $104 service suppliers allowing the scaling-up of this attack. In other
words, if the solving demand d increases so will the price. We have no data allowing
to quantify price(d).



2 Human Public-Key Encryption

We now describe a public-key cryptosystem using problems in DCP. Let Q ∈ DCP.
We denote by H(m) a cryptographic hash function (e.g. SHA-3) and by Ek(m)
a block cipher (e.g. AES-128). Here, m is the plaintext sent by Bob to Alice.

– Key-pair generation: The public key pk is a list of b instances of Q

pk = {Q1, . . . , Qb}

The private key is the set of solutions (in the CP sense) to the Qi:

sk = {A1, . . . , Ab}

i.e. for 1 ≤ i ≤ b, S(Qi, Ai) holds true.
– Encryption: Bob wants to send m to Alice. Bob picks k random problems
{Qi1 , . . . , Qik} from Alice’s pk, and solves them3. Let σ ← {Ai1 , . . . , Aik}
and α← {i1, . . . , ik}. Bob computes κ← H(α) and c← Eκ(m), and sends
(σ, c) to Alice.

– Decryption: Given σ, Alice identifies the set of indices α and computes
κ← H(α). Alice then uses κ to decrypt c and retrieve m. Decryption does
not require any human help.

The general idea of this cryptosystem is somewhat similar to Merkle’s puzzles
[Mer78], however unlike Merkle’s puzzle here security is not quadratic, thanks to
problems in CP not being automatically solvable. We may assume that the Ais
are pairwise different to simplify analysis.

Remark 5. Indeed if Q ∈ CP it might be the case that a machine could decide if
given A,Q the relation S(A,Q) holds without solving Q. Hence Q must belong
to DCP.

Remark 6. A brute-force attacker will exhaust all
(
b
k

)
possible values of α. Hence(

b
k

)
should be large enough. Given that b ∼ 107 or b ∼ 108, it appears that k = 6

provides at least 128-bit security.

Remark 7. The main drawback of the proposed protocol is the size of pk. Assum-
ing that each Qi can be stored in 20 bytes, a pk corresponding to b ∼ 108 would
require 2GB. However, given that CAPTCHAs are usually visual problems, it is
reasonable to assume that pk might turn out to be compressible.

Remark 8. Instead of sending back the solutions σ in clear, Bob could hash them
individually. Hashing would only make sense as long as solutions have enough
entropy to resist exhaustive search.
3 Here Bob must resort to human aid to solve {Qi1 , . . . , Qik}.



Remark 9. It is possible to leverage the DCP nature of the Qis in the following
way: instead of sending a random permutation of solutions, Bob could interleave
into the permutation d random values (decoy answers). Alice would spot the
positions of these decoy answers and both Alice and Bob would generate α =
{i1, . . . , ik, j1, . . . , jd} where jd are the positions of decoys. Subsequently, security
will grow to

(
b

k+d
)
/d!. This is particularly interesting since for b = 107, k = 1

and d = 6 we exceed 128-bit security. In other words, all the sender has to do is
to solve one CAPTCHA.

Entropy can be further increased by allowing d to vary between two small
bounds. In that case the precise (per session) value of d is unknown to the
attacker.

3 Short Password-Based Encryption

In the following scenario Alice and Bob share a short password w. We will show
how a message m can be securely sent from Alice to Bob using only w. This is
particularly suited to mobile devices in which storing keys is risky.

Let Q ∈ ECP ∩ DCP.

– Alice generates a full size4 key R and uses it to encrypt m, yielding c0 ←
E0|R(m). She generates an instance Q ∈ Q, such that S(P,R). Alice computes
c1 ← E1|w(P ) and sends (c0, c1) to Bob.

– Bob uses w to decrypt c1, and solves P . He thus gets the key R that decrypts
c0.

An adversary therefore faces the choice of either “attacking Shannon” or
“attacking Turing”, i.e. either automatically exhaust R, or humanly exhaust w.
Each candidate w yields a corresponding P that cannot be computationally
identified as a CAPTCHA. The adversary must hence resort to humans to deal
with every possible candidate password.

Assuming that CAPTCHA identification by humans is ten times faster than
CAPTCHA resolution, it appears that w can be a 5-character alphanumeric
code5.

Remark 10. R must have enough entropy bits to provide an acceptable security
level. R can be generated automatically on the user’s behalf. As we write these
lines we do now know if there exists Q ∈ ECP ∩DCP admitting 128-bits answers.
If such Qs do not exist, R could be assembled from several problem instances.

Remark 11. In the above we assume that R is generated first, and then embedded
into the solution of a problem instance P . All we require from R is to provide
sufficient entropy for secure block cipher encryption. Hence, it might be easier to
generate P first, and collect R afterwards.
4 e.g. 128-bit.
5 There are 64 alphanumeric characters, and 645 > 10× b.



Remark 12. The main burden resting on Bob’s shoulders might not be the solving
on P but the keying of the answer R. 128 bits are encoded as 22 alphanumeric
characters. Inputting R is hence approximately equivalent to the typing effort
required to input a credit card information into e-commerce website interfaces6.
Alternatively, Bob may as well read the solution R to a speech-to-text interface
that would convert R into digital form.

Remark 13. Q ∈ ECP ∩ DCP is necessary because the adversary may partially
solve Q and continue using exhaustive search. Under such circumstances, c0 serves
as a clue helping the attacker to solve Q. If Q ∈ ECP ∩ DCP, such a scenario is
avoided.

4 DCP and ECP Candidate Instances

The above constructions assume that ECP and DCP instances exist and are easy
to generate. Because ECP and DCP depend both on humans and on the status
of technology, it is difficult to “prove” the feasibility of the proposed protocols.

We hence propose a DCP candidate an ECP candidates and submit them to
public scrutiny.

4.1 DCP candidate

Fig. 1. A DCP candidate constructed from an existing CP.

As a simple way to generate DCPs, we propose to start from a standard
CP (e.g. a number recognition problem) and ask a further question about the
answer. The further question should be such that its answer may correspond to
numerous potential contents. For instance, the further question could be whether
two sequences of digits recognised in an image Q sum up to A = 91173 or not
(see Figure 1).

4.2 ECP candidates

This section proposes a few candidate Q that we conjecture to belong to ECP.
6 PAN (16 characters), expiry date (4 characters) and a CVV (4 characters).



?
Fig. 2. An instance of a visual-logical task ECP problem. Recognizing objects in this
image is insufficient to tell whether there is a solution, nor to compute the solution
should there be one.

The first step is to design a task that we think is challenging for computers.
Despite recent progress (see e.g. [GBI+13]), computer vision is still expensive
and limited. Most computer vision algorithms have to be trained specifically to
recognise objects or features of a given kind (dog breeds, handwritten charac-
ters, etc.), and fail whenever the task at hand requires more than mere object
identification. Even in that case, occlusion, distortion and noise cause drastic
performance loss for most techniques. Many CAPTCHAs ideas rely on this to
generate problem instances [CLSC05].

Even if image contents can be detected, we can still pose a hard challenge.
Indeed, while computers excel at solving logical reasoning questions when those
questions are encoded manually as logical formulae, state of the art algorithms
fail at even the most basic questions when challenges are presented in visual form.
Therefore, solving for instance a visual-logical task is a problem that is at least
in DCP (see Figure 2).

Good ECP candidates for cryptographic purposes should be easy to generate,
they should have enough possible solutions to thwart exhaustive search attempts,
and it should be hard to tell automatically whether there is a solution at all.

Temporal Sequence ECP. The intuition for this candidate is that although
computer vision algorithms may reach human accuracy (and even beat it), humans
can make use of external knowledge, which provides additional understanding of
what is under scrutiny. Here the external knowledge is that real-life events abide
by causality.

We provide k images (e.g. k = 5), each of which is a snapshot of some situation:
buying goods, driving a car, dressing up, etc. The order of images is scrambled
(some random images may be inserted as decoys) and the problem is to put
images back in the correct order. This task, which we call temporal sequence,
requires the contextual knowledge that some events can only happen after (or
before) others. This is illustrated in Figure 3.

We conjecture that the temporal sequence task is both in DCP and in ECP.



Fig. 3. Three instances of the temporal sequence ECP problem. The problem consists
in temporally arranging the pictures.

One drawback of this approach is that to reach an 80-bit security level we
need k = 40 images7 which can be unwieldy. This may be solved by using `
collections of κ images, and tune `, κ so that (κ!)` > 280.

Temporal sequences may be automatically generated from videos, although
it is not obvious how to ensure that sequences generated like this are always
meaningful to humans.

Visual Letter Recognition ECP. Assume we have a CP problem Q, whose
instances can successfully conceal letters (a “one-letter” CAPTCHA). We provide
k instances of Q1, . . . , Qk corresponding to answer letters A1, . . . , Ak, and ask
for the alphabetically sorted list of these Ai.

As an example, we would generate instances ofQ for the letters {A,M, T,O,B,R},
and ask for the solution ABMORT. Under the assumption that Q ∈ CP, deter-
mining whether a solution exists requires human aid. Therefore we conjecture
that this problem belongs to ECP.

A further variant of this idea is illustrated in Figure 4. Note that the visual
letter recognition problem is DCP if an only if Q ∈ DCP.
7 There are k! combinations, and 40! > 280.



Fig. 4. Visual Letter Recognition ECP: letters are concealed using an existing CP, and
one digit is inserted into each sequence of letters. The ECP problem is to reorder the
CAPTCHAs in increasing digit order, discarding all non-digit symbols. Here the solution
consists in selecting the 4th, 5th, 2nd, 3rd, and 1st images, in that order.

Fig. 5. A honey image ECP. Left: original image; right: Q`OK , the transformed image
for `OK.

Honey Images ECP. Another candidate problem is inspired by honey encryp-
tion [JR14,YKJ+15]. The idea is that any integer 1 ≤ ` ≤ k would generate an



Fig. 6. All values of ` other than `OK produce decoys whose statistical properties are
conjectured to be indistinguishable from the correct image, with salient features but no
real meaning.

image, but that only one value `OK generates a meaningful image8. All values
` 6= `OK generate images in a way that makes them indistinguishable from mean-
ingful images. The problem would then be to identify `OK, which we conjecture
only humans can do reliably.

The main difficulty is that the notion of indistinguishability is tricky to define
for images, and even harder to enforce: humans and computers alike use very
specific visual cues to try and perform object recognition, which are hard to
capture statistically. Following [YKJ+15], we may try and learn from a dataset
how to properly encode images, but this is cumbersome in our context, especially
when dealing with a large number of instances.

Our candidate is a simpler embodiment based on the following intuition: using
biased noise (i.e. noise that is not random), we can elicit pareidolia in computer
vision programs. Each candidate value of ` would then correspond to some object
being recognised – but only one of those is really relevant. We conjecture that
only humans are able to pick this relevant object apart.

The authors implemented this idea. We start from a black and white picture
of a clearly identifiable object (Figure 5 left, here A = “rabbit”), turn it into a
collection of black dots9 (1). The picture is then cut into blocks which are shuffled
and rotated (2). Finally, noise is added, under the form of black dots whose size
is distributed as the size of black dots in the original picture (3). The image is
then rotated back in place (Figure 5 right) to provide the challenge Q`OK .

8 In the specific case of Figure 5, translation, rotation, mirroring as well as border
cropping may also generate the meaningful image corresponding to `OK, but the
overall proportion of such images remains negligible.

9 For instance using an iteratively reweighted Voronoi diagram.



The motivation for this approach is as follows: (1) guarantees that individ-
ual pixels contain no information on luminance, and geometric features (lines,
gradients and corners) – each dot being circular destroys information about
orientation; the shuffling and rotation of blocks in (2) is encoded as an integer
`; and (3) inserts decoy features, so that any shuffling/rotation would make
geometric features appear (to lure a computer vision algorithm into detecting
something).

Now, many decoys Q` ∈ Q, ` 6= `OK can be generated easily from this image
by shuffling and rotating blocks (Figure 6). Each decoy shares the same statistical
properties as the correct (unshuffled) image, but has no recognizable content.

Our conjecture is that the human brain can perceive structures very efficiently
and assign meaning to them. Many such structures are irrelevant and inserted
so as to fool computer vision algorithms, but the familiar ones are immediately
and intuitively grasped by humans. Consequently, although the original picture
is severely deteriorated, we conjecture that it should still be possible for humans
to tell noise and signal apart and identify correctly the contents of this image.

5 Further Applications

Fig. 7. Credit card PAN and expiry date, stored as a DCP instance.

Beyond their cryptographic interest, DCP and ECP tasks may have interesting
applications in their own right.

One such application is the following: users may wish to store sensitive data
as a DCP instance, for instance credit card information, instead of plaintext.
Indeed, attackers often browse their victims’ computers looking for credit card
information, which is easy to recognize automatically. By storing credentials in
an ECP the attacker’s task can be made harder.
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