
Indistinguishability Obfuscation
from DDH-like Assumptions

on Constant-Degree Graded Encodings∗

Huijia Lin†
UC Santa Barbara

Vinod Vaikuntanathan‡
MIT

Abstract

All constructions of general purpose indistinguishability obfuscation (IO) rely on either
meta-assumptions that encapsulate an exponential family of assumptions (e.g., Pass, Seth and
Telang, CRYPTO 2014 and Lin, EUROCRYPT 2016), or polynomial families of assumptions on
graded encoding schemes with a high polynomial degree/multilinearity (e.g., Gentry, Lewko,
Sahai and Waters, FOCS 2014).

We present a new construction of IO, with a security reduction based on two assumptions:
(a) a DDH-like assumption — called the joint-SXDH assumption — on constant degree graded en-
codings, and (b) the existence of polynomial-stretch pseudorandom generators (PRG) in NC0.
Our assumption on graded encodings is simple, has constant size, and does not require han-
dling composite-order rings. This narrows the gap between the mathematical objects that exist
(bilinear maps, from elliptic curve groups) and ones that suffice to construct general purpose
indistinguishability obfuscation.

∗A preliminary version of this paper appeared in the 57th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2016. This is the full version.
†rachel.lin@cs.ucsb.edu. Huijia Lin was partially supported by NSF grants CNS-1528178 and CNS-1514526.
‡vinodv@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred P.

Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and Renee Finn Career De-
velopment Chair from MIT. This work was also sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of theDARPA and ARO.

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Technical Overview . 6
1.3 Noisy Graded Encodings . 12
1.4 Local PRGs . 12
1.5 Organization . 13

2 Preliminaries 13
2.1 µ-Indistinguishability . 13
2.2 Indistinguishability Obfuscation . 14
2.3 Pseudorandom Generator . 14
2.4 Randomized Encodings . 15

2.4.1 Program-Decomposable Randomized Encodings 15
2.4.2 Linear Efficiency . 16

2.5 Functional Encryption . 16
2.5.1 Public-Key Functional Encryption . 16
2.5.2 FE Schemes for P/poly,NC1 and NC0 . 18
2.5.3 Compactness . 18

3 Indistinguishability Obfuscation from NC0-Functional Encryption 19
3.1 Proof of Theorem 5 . 20
3.2 The Construction . 21

3.2.1 Compactness of CFE . 22
3.2.2 Security of CFE . 23

3.3 IO from FE for Constant Degree Polynomials . 24

4 Graded Encoding with the Joint-SXDH Assumption 24
4.1 Clean Graded Encoding Schemes . 25
4.2 Noisy Graded Encoding Schemes . 26
4.3 The joint-SXDH Assumption . 27
4.4 Tree-GES: Graded Encoding for Depth-D 4-ary Trees 27
4.5 Connection with Set-based and Graph-based GES . 28

4.5.1 Set-based GES . 29
4.5.2 Graph-based GES . 31

5 Function-Hiding Secret-Key IPE 32
5.1 Secret-Key Inner Product Functional Encryption . 33

5.1.1 Function Hiding and Weak Function Hiding 34
5.2 Asymmetric Bilinear Groups . 35
5.3 BJK Weak Function Hiding Secret Key IPE . 36
5.4 Multi-Instance Function Hiding . 38
5.5 Multi-Instance Weak Function Hiding . 40
5.6 BJK is Multi-Instance Weak Function Hiding . 40
5.7 Our Multi-Instance (Strongly) Function-Hiding Secret-Key IPE 43

2

6 Slotted Public Key IPE 45
6.1 Public Key IPE . 45
6.2 ABDP Public Key IPE . 45
6.3 Definition of Output-Encoded Slotted-IPE . 47
6.4 Our Output-Encoded Slotted-IPE . 51
6.5 Security . 54
6.6 Output-Encoded Slotted-IPE using GES . 59

7 FE from the joint-SXDH Assumption on Graded Encodings 60
7.1 Affine Randomized Encoding for NC1 . 60

7.1.1 Additional Properties of the AIK Affine Randomized Encoding 63
7.2 Construction . 64
7.3 Security . 69

i

1 Introduction

Indistinguishability obfuscation (IO) is a probabilistic polynomial-time algorithm O that takes as
input a circuit C and outputs an (obfuscated) circuit C ′ = O(C) satisfying two properties:

(a) functionality: C and C ′ compute the same function; and

(b) security: for any two circuits C1 and C2 that compute the same function (and have the same
size), O(C1) and O(C2) are computationally indistinguishable.

IO is a surprisingly powerful cryptographic notion. Defined first in the seminal work of Barak,
Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [BGI+01a], it was largely unnoticed
(with the singular exception of [GR07]) until the recent work of Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13c] who demonstrated a candidate construction of indistinguishability
obfuscation, and the work of Sahai and Waters [SW14] who showed that despite appearing some-
what useless to an untrained eye, IO has enormous power, so much so that it is virtually “crypto-
complete”. Starting from [SW14], we now know that IO gives us a treasure-chest of cryptographic
constructions, solutions to a number of open problems (see, e.g., [SW14, GGH+13c, GGHR14,
GHRW14, CHN+15, GP15, BPW16, BGJ+16] and many more) and even has implications in com-
plexity theory [BPR15, HY16].

In the tradition of theoretical cryptography, one defines a useful cryptographic object (a defi-
nition involves a notion of functionality and one of security), demonstrates a construction of this
object using mathematics, and finally, proves its security from computational hardness assump-
tions (such as the hardness of factoring, discrete logarithms, or learning with errors). Garg et
al. [GGH+13c] showed a construction of IO using ideal lattices (which they abstracted into a
framework called cryptographic multilinear maps [GGH13a]) but the construction came as-is with
no security proof. There have since been a series of attempts at security proofs for IO under as-
sumptions of varying complexity (which we will review in detail in the sequel). This state of
affairs motivates one of the most important questions in cryptography today:

Does indistinguishability obfuscation exist, and under which cryptographic assumptions?

Let us cut to the chase: in this work, we show a construction of IO from the joint SXDH assump-
tion on prime-order multilinear maps with constant multi-linearity. This narrows the gap between
the mathematical objects that exist (bilinear maps) and ones that suffice for IO (O(1)-linear maps).
We now describe what each of these terms mean through the lens of existing IO constructions.

Constructions and Proofs of Indistinguishability Obfuscation Over the last three years, there
has been a great deal of work trying to construct IO schemes and prove their security. The math-
ematics underlying all IO constructions, broadly speaking, arises from the geometry of numbers
(or the theory of integer lattices), but this has been abstracted out into the framework of graded
encoding schemes (also called cryptographic multilinear maps) [BS02, GGH13a].1

In a nutshell, a graded encoding scheme for a ring R provides us with a (potentially expo-
nentially large) collection of groups (written multiplicatively) of order q together with a relation
pairable on them such that for any two groups Gi and Gj such that pairable(Gi, Gj) = Gk, we have
gαi ⊗ g

β
j = gαβk where ⊗ is a pairing function and α, β ∈ Zq are scalars. If pairable(Gi, Gj) = ⊥,

1 In reality, we do not have any instantiations of graded encoding schemes, but rather only noisy graded encodings
which turn out to suffice for functionality.

1

then we say that Gi and Gj are not pairable, and otherwise they are pairable. (In the literature,
such graded encoding schemes are referred to as clean graded encodings, and can be generalized
to noisy graded encodings. For most part of this introduction, we will use the interface of clean
graded encodings; see Section 1.3 for a discussion on noisy graded encodings towards the end of
the introduction.)

We can use these groups to compute multivariate polynomials in the exponent. That is, given
a sequence of elements gαjj , compute gp(α1,...,αn)

k where p is an n-variate polynomial and gk is an
element in the appropriate group, provided that p can be computed using a sequence of group op-
erations in the same group and pairing operations over different groups as specified by pairable.
The maximum degree of a multivariate polynomial that can be computed in the exponent is called
the multilinearity of the collection. We call the number of groups in the collection the universe size
(which could be constant, polynomial or exponential in the security parameter). The order of the
group is q, and we will differentiate between prime-order and composite-order groups. In this
language, the well-known bilinear maps have multilinearity 2 and universe size 2 (or 3 in the case
of asymmetric pairing groups).

• Proofs in Ideal Models: Several works [GGH+13c, CV13, BR14, BGK+14a, AB15, Zim15]
showed proofs of security for obfuscation in the so-called ideal multilinear group model.
Roughly speaking, these models postulate that the only way an adversary can operate on
group elements is through the legal group interface (namely, group operations between two
elements in the same group and the pairing operation between two elements in pairable
groups). Restricting the power of the adversary in such a way is unrealistic, and is un-
derscored by the fact that in this model, one can actually get virtual black-box obfuscation
(which by [BGI+01a] does not exist for general programs).

• Concrete Assumptions on Graded Encodings (GES): Pass, Seth and Telang [PST14] postu-
lated an uber-assumption on multilinear maps which, roughly speaking, say that any attack
on a collection of group elements can be translated into an attack in the ideal multilinear group
model. Gentry, Lewko, Sahai and Waters [GLSW15], following the work of Gentry, Lewko
and Waters [GLW14], took the first step in simplifying the assumption and came up with a
construction under the multilinear subgroup elimination assumption on composite-order groups.
Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15], showed how to convert
any functional encryption scheme into an IO scheme. Together with the FE construction of
Garg, Gentry, Halevi and Zhandry [GGHZ16], this gives us an IO scheme based on similar
assumptions on composite-order groups.

The main deficiency of all these constructions is that they require graded encoding schemes
with large multilinearity – either poly(|C|, n, λ) stand-alone, or at least poly(n, λ) after apply-
ing the bootstrapping theorem of Canetti, Lin, Tessaro and Vaikuntanathan [CLTV15].2 In
addition, they all either rely on a very complicated uber-assumption, or rely on composite-
order graded encodings. Furthermore, the universe size in all these cases is at least poly(n, λ).

• Towards Constant Multilinearity: The closest in spirit to this work is the recent result of
Lin [Lin16] who showed that constant-degree multilinear maps suffice for IO. (This is in
spite of recent implausibility results [PS16, MMN16a, BV15, MMN+16b] showing that con-
struction of IO in the ideal constant-degree multilinear map model, implies construction of IO

2There are other IO bootstrapping theorems in the literature, notably that of [GGH+13c]. However, they do not
appear to help in reducing the multilinearity.

2

in the plain model; in other words, constant-degree multilinear map does not “help” black-
box construction of IO. [Lin16] circumvents this by making non-black-box use of the graded
encodings.) Unfortunately, her work has the following drawbacks: First, the concrete com-
plexity assumption was a complicated über-assumption (borrowed from [PST14]); and sec-
ondly, her graded encoding collection has composite order and large, polynomial, universe
size, namely poly(n, λ).

Assumption Multilinearity Universe Composite Order?
[BR14]

ideal multilinear
poly(n, λ)‡ poly(n, λ)‡ no[BGK+14a, AGIS14]

model
[AB15, Zim15]

[PST14] über-multilinear poly(n, λ)‡ poly(n, λ)‡ no

[GLSW15]
multilinear subgroup

poly(n, λ)‡ poly(n, λ)‡ yes
elimination

[BV15, AJ15, AJS15] similar to multilinear
poly(n, λ) poly(n, λ) yes

+[GGHZ16] subgroup elimination
[Lin16] über-multilinear O(1) poly(λ) yes

This Work Joint SXDH O(1) O(1) no

Figure 1: A Summary of Known IO Constructions. ‡ denotes the fact that the complexity (multilin-
earity or universe size) was originally poly(|C|, n, λ) but can be brought down to poly(n, λ) using
bootstrapping.

See Figure 1 for a summary.
In short, all assumptions used in the construction of IO are either a complicated uber-assumption

that encodes the computation in the assumption itself, or an assumption on composite order
graded encodings (GES) with polynomial universe size. The gap between bilinear maps and
these objects is rather large. Even the construction of Lin [Lin16] requires a collection of poly(n, λ)
groups with a complex interaction between them (through the uber-assumption), even though the
multilinearity is constant.

With the aim of narrowing the gap between the mathematical objects that exist (bilinear maps)
and ones that suffice for IO, we seek to:

Construct IO from a simple assumption on prime-order GES with O(1) multilinearity and
universe size.

1.1 Our Results

Joint-SXDH Assumption on Graded Encodings. Our joint-SXDH assumption on graded en-
codings is a natural generalization of the standard symmetric external Diffie-Hellman (SXDH)
assumption on (asymmetric) bilinear pairing groups. In short, SXDH states that the decisional
Diffie-Hellman assumption holds in every source group. That is, let G0 and G1 be a pair of source
groups, whose elements can be paired to produce elements in a target group GT .

SXDH over bilinear maps: ∀l ∈ {0, 1},
{
g0, g1, gT , g

a
l , g

b
l , g

ab
l

}
≈
{
g0, g1, gT g

a
l , g

b
l , g

r
l

}
3

where gi is the generator for group Gi and a, b, r are random exponents. Note that SXDH possi-
bly holds in asymmetric bilinear groups because elements in the same source group do not pair;
otherwise, one can easily distinguish the above distributions by checking the equality e(gal , g

b
l) =

e(gabl , gl).
The SXDH assumption naturally generalizes to graded encodings with a collection of groups

{Gl}l: It postulates that the distribution of gal , g
b
l , g

ab
l in any group l should be indistinguishable

to that of gal , g
b
l , g

r
l , provided that elements in Gl cannot be paired with themselves. Here, because

graded encodings allow for a richer computation structure, it is not only necessary that elements
cannot be paired directly (i.e. pairable(Gl, Gl) = ⊥), but they also do not pair “indirectly”, via a
sequence of pairings with elements in other groups. This leads to the notion of the closure of the
pairable function, denoted as pairable∗, which roughly speaking indicates whether two groups
Gl1 , Gl2 can ever be paired via any sequence of pairing. More precisely, pairable∗(Gl1 , Gl2) = 1
if there are groups Gl3 and Gl4 such that pairable∗(Gl1 , Gl3) = 1, pairable∗(Gl2 , Gl4) = 1, and
pairable(Gl3 , Gl4) 6= ⊥; otherwise, pairable∗(Gl1 , Gl2) = 0. Then,

SXDH over graded encodings: ∀l s.t. pairable∗(Gl, Gl) = 0,{
{gi}, gal , gbl , gabl

}
≈
{
{gi}, gal , gbl , grl

}
where {gi} is the set of generators of all groups.

Finally, joint-SXDH further generalizes SXDH. It considers the joint distribution of elements
(gal , g

b
l , g

ab
l)l∈S in a set S of groups, with the same exponents a, b, ab. By the same argument above,

if any two groups Gl1 , Gl2 in the set are pairable, directly or indirectly, one can distinguish the
joint distribution from the distribution of (gal , g

b
l , g

r
l)l∈S with random exponents a, b, r. Otherwise,

in the same spirit as SXDH, the distributions are possibly indistinguishable — this is exactly our
joint-SXDH assumption.

Joint-SXDH over Graded Encodings:
∀ Set S satisfies ∀ l1, l2 ∈ S, pairable∗(Gl1 , Gl2) = 0,{

{gi},
{
gal , g

b
l , g

ab
l

}
l∈S

}
≈
{
{gi},

{
gal , g

b
l , g

r
l

}
l∈S

}
Furthermore, the subexponential joint-SXDH assumption requires the above distributions to

have subexponentially small distinguishing gap to all polynomial time distinguishers. (See Sec-
tion 4 for the precise statement of the assumption.)

IO from joint-SXDH on Constant-Degree Graded Encodings. We are now ready to state our
main theorem.

Theorem 1 (Main Theorem, Informal). Assume the existence of a sub-exponentially secure n1+α-stretch
pseudorandom generator (PRG) in NC0 for any positive constant α > 0. Then, IO for P/poly is implied
by the sub-exponential joint-SXDH assumption on a constant-degree graded encoding scheme, with prime
order and constant universe size.

Tree-GES: The graded encoding scheme that our main theorem relies on has a specific pairable
function that allows computing arithmatic circuits of layers of additions and multiplications; we
refer to such a scheme a tree-structured graded encoding scheme, or tree-GES for short. Roughly
speaking, a tree-GES consists of a set of groups arranged at the nodes of a 4-ary tree, together with
a pairable function defined in the following way. If Gl0 , Gl1 , Gl2 and Gl3 are the (groups in the)

4

four children of a node Gl, then pairable(Gl0 , Gl1) = pairable(Gl2 , Gl3) = Gl, whereas all other
combinations are not pairable (e.g., pairable(Gl0 , Gl2) = ⊥, and so on). Naturally, given gaili for
i ∈ {0, 1, 2, 3}, one can compute ga0a1+a2a3

l (one layer of multiplications followed by additions),
and cannot compute (via the honest interface) any quadratic polynomial containing monomials
aiaj for i = j or i ≤ 1 < j.

One of the nice features of this general interface is that it captures directly the computation
structure we need from GES, and it can be instantiated from both set-based and graph-based
(prime- as well as composite-order) multilinear maps, which gives it a great deal of flexibility. For
example, while none of the previous abstract constructions [PST14, GLSW15, GGHZ16, Lin16] can
be instantiated based on the graph-based multilinear maps of [GGH15], our IO scheme will admit
such an instantiation.

In the language of tree-GES, our IO construction relies on the joint-SXDH assumption on tree-
GES with a tree of constant depth. Carrying this over to the set-multilinear map setting, this
translates to constant multilinearity and constant universe size. Our main theorem also relies
on a sub-exponentially secure polynomial stretch PRG. See Section 2.3 for a discussion on this
assumption.

Our Approach via Bootstrapping FE for NC0 to IO: Our approach towards constructing IO from
constant-depth tree-GES is through a bootstrapping step showing that assuming the existence of
polynomial-stretch pseudorandom generators (PPRG) in NC0, a (collusion-resistant) Functional
Encryption (FE) scheme for NC0 implies indistinguishability obfuscation for all of P; the FE scheme
for NC0 needs to have linear efficiency, in the sense that, encryption time depends linearly in the
message length. Then, we use constant-depth tree-GES to implement a such FE scheme.

We invite the reader to pause for a moment and note that while common sense would dictate
that obfuscation is more powerful than functional encryption, obfuscation for NC0 circuits is com-
pletely trivial (namely, for each output bit of the circuit, publish the truth table of the circuit that
generates it, and the constant number of input bits that the output bit depends on) and yet, FE
for NC0 is far from trivial. Indeed, the theorem below says that FE for NC0 is powerful enough to
imply indistinguishability obfuscation for all of P.

Theorem 2 (Informal, following [BV15, AJS15, Lin16]). Assume the existence of a sub-exponentially
secure n1+α-stretch pseudorandom generator in NC0 for any positive constant α > 0. Then, IO for P/poly
is implied by FE schemes for NC0 with encryption time linear in the input length.

The theorem follows from combining observations in previous works [BV15, AJS15, Lin16],
in particular, combining randomized encoding in NC0 and PRG in NC0 to transform any NC1

computation into an NC0 computation. See Section 3 for more details.

Constructing FE for NC0 from Constant-Degree GES: Our main technical contribution is the
construction of an FE scheme for NC0 with linear efficiency under the joint-SXDH assumption on
tree-GES for constant-depth trees.

Theorem 3 (Informal). Assuming the existence of a prime-order tree-GES for depth-O(1) trees with the
joint-SXDH assumption, there is a (collusion-resistant) FE scheme for all NC0 circuits, with encryption
time linear in message length.

Thus, put together, we get IO for P/poly, assuming joint-SXDH and the existence of polynomial-
stretch PRGs in NC0. We now proceed to describe the techniques behind the FE construction.

5

1.2 Technical Overview

Since Theorem 2 follows from observations in previous works, we focus on the question:

How does one construct a collusion-resistant functional encryption scheme for NC0, with linear
efficiency?

The State-of-the-Art of Collusion Resistant FE. In the literature, the only constructions of collusion-
resistant FE from standard assumptions are for computing inner products, referred to as Inner
Product Encryption (IPE). Roughly speaking, a (public key or secret key) IPE scheme allows to
encode vectors y and x in a ring R, in a function key sky and ciphertext ctx respectively, and
decryption computes the inner product 〈y,x〉 ∈ R. Abdalla, Bourse, De Caro and Pointcheval
(ABCP) [ABDP15, ABCP16] came up with a public key IPE scheme based on one of a variety of
assumptions, such as the decisional Diffie-Hellman assumption, the Paillier assumption and the
learning with errors assumption. Following that, Bishop, Jain and Kowalczyk [BJK15] (BJK) con-
structed a secret-key scheme based on the SXDH assumption over asymmetric bilinear maps; their
scheme achieves the stronger security property of weak function-hiding (explained below). Both the
ABCP and BJK schemes do not compute the inner product 〈y,x〉 in the clear, but computes it in
the exponent g〈y,x〉; the BJK scheme in fact computes the inner product θ〈y,x〉masked by a scalar
θ in the exponent; see more discussion later.3

Given IPE schemes, it is trivial to implement FE for quadratic polynomials: Simply write a
quadratic function f as a linear function over quadratic monomials f(x) = Σi,jci,jxixj = 〈c,x⊗ x〉,
where ⊗ is tensor product. Then, use an IPE scheme to generate a ciphertext ctx⊗x and a function
key skc, which produce f(x). However, the ciphertext size scales quadratically in n = |x|. This idea
easily generalizes and gives a FE scheme for NC0 with encryption time nd, where d is the degree
of the computation. Unfortunately, improving these FE schemes to have encryption time linear in
the input length under standard assumptions (e.g. bilinear maps) has proved elusive.

Coming from the “other side”, Garg, Gentry, Halevi and Zhandry (GGHZ) [GGHZ16] pro-
posed a general-purpose FE scheme from polynomial-degree GES (with composite-order). A nat-
ural next attempt would be to try to specialize their FE scheme to NC0 circuits, in the hope that we
can pull off the construction using only constant-degree GES. This wishful thinking runs into trou-
ble. Very roughly speaking, the GGHZ construction works with a universal branching program
and requires GES with multilinearity that is O(`) where ` is the length of the branching program.
Now, even if we only want to handle NC0 circuits that take n bits of input, converting them into a
universal branching program results in a program of size Ω(n).

One might hope to get around this problem by representing the NC0 circuit for each output
bit as a constant-sized branching program; however, in this case, it is not clear how each function
key can “index” the right input bits in the n-bit input to compute on. This “indexing problem”
prevents us from tweaking the construction to support NC0 circuits with constant multilinearity.

In this work, we come up with a completely different FE construction that not only gives us
constant multilinearity, but also relies on GES with prime order and constant universe size, and
the simple joint-SXDH assumption.

3There has been a long line of work on “inner product testing functional encryption” or “zero-testing IPE” (see, e.g.,
[KSW08, LOS+10] and many others) which is different from what we need here. In IPE, we require that function key
sky and ciphertext ctx produce the inner product in R in the exponent. In contrast, in zero-testing IPE, one can only

compute whether 〈x,y〉 ?
= 0 in R. In particular, they do not produce the inner product in the exponent, in a way that

allows for further computation. Hence, they are insufficient for our construction of FE for NC0.

6

Overview Towards constructing FE for NC0 with linear efficiency from constant-degree GES, our
first observation is that functionality is easy to achieve, since NC0 circuits f can be represented as
constant-degree arithmetic circuits or polynomials, and constant-degree GES supports evaluating
constant-degree polynomials in the exponent. Once the output y = f(x) is computed in the ex-
ponent gy, it can be extracted as it is Boolean. Thus, the main challenge lies in achieving security,
ensuring that the input and all intermediate computation results are hidden.

To hide the input and computation, the first tool that comes in mind is Randomized Encodings
(RE). An RE scheme allows one to use randomness to encode a function f and an input x, Π

$←
RE(f, x; r), so that:

1. The encoding algorithm is simple: Each element of Π is of the form xπ(i) ·pi(r)+ qi(r), where
π is an input-mapping function, and pi, qi are polynomial functions of the randomness r.
That is, a linear function of a single input bit (and a polynomial function of the randomness
r);

2. The encoding Π reveals the output z = f(x) of the computation and nothing more.

The key difference of RE from FE in that RE cannot be reused, whereas the ciphertexts (respec-
tively, function keys) of a FE scheme can be reused across an unbounded number of function keys
(respectively, ciphertexts).

The First Idea and Challenges. Our first and foremost idea is to combine the re-usability of IPE schemes
with the capability of hiding inputs and computations of RE schemes, by designing techniques to use an
IPE scheme to compute randomized encodings. More specifically,

Outline of Our FE scheme

• Key Generation: To create a key skf for f ∈ NC0, first encode f in a set of vectors {uk}, and
then publish IPE function keys skf = {skkuk} for these vectors, using independently sampled
master keys.

• Encryption: Similarly, to encrypt an input x ∈ {0, 1}n, encode x in a set of vectors {vk}, and
encrypt them in IPE ciphertexts ctx = {ctkvk}with corresponding master keys.

The vectors uk and vk are set up in a way so that their inner products 〈uk,vk〉 = Πk produce
exactly the kth element Πk in the randomized encoding for f, x. Thus, the IPE scheme ensures that
evaluating skkuk and ctkvk produces Πk in the exponent gΠk

lk
in some group Glk .

In the literature, the idea of using FE for a weak function class, to compute the random-
ized encodings of a stronger function class has been used in bootstrapping FE for NC1 to FE for
P/poly [ABSV15]. In some sense, our construction can be viewed as bootstrapping FE for inner
products to FE for NC0. Here, unique challenges arise due to the fact that we can only compute
inner products.

• Challenge 1: How to generate randomized encodings using only inner products?

To do so, we crucially rely on affine randomized encodings, where each element Πk in the
encoding of a computation f, x depends linearly on each bit in x. The idea is then to represent
each element Πk as the inner product between some coefficient vectors (depending on f) and
input vectors (depending on x), so that, Πk can be computed using IPE.

In particular, we will use the arithmetic randomized encodings for NC1 of Applebaum, Ishai
and Kushilevitz [AIK14], which is affine and has many other useful properties.

7

• Challenge 2: How to generate the randomness for randomized encodings?

Consider a scenario where our FE for NC0 scheme is used to publish m function keys {skfj}
and m ciphertexts {ctxi}. Every pair of key and ciphertext skfj , ctxi computes a randomized
encoding Πj,i ∈ RE(fj , xi) (in the exponent), which requires using fresh (at least, “computa-
tionally fresh”) randomness rji. Note that we need in total m2 “pieces” of randomness, but
has only m function keys and ciphertexts — rji’s can only be pseudorandom.

In the case of bootstrapping FE for NC1 to FE for P/poly, this problem is easily resolved
using Pseudo Random Functions (PRFs): One can simply encrypt a PRF seed s together
with the input x, and the function keys evaluate the PRF on s to expand pseudorandomness
for computing the randomized encoding. However, in our case, the functionality of IPE does
not support PRF evaluation. Not even extremely strong local PRGs can help here, since any
quadratic-stretch PRGs (from O(m) bits to m2 bits) has at least degree 3.

We resolve this problem by, instead, relying on built-in pseudorandomness assumption,
namely joint-SXDH, in GES. Indeed, the SXDH assumption w.r.t. a group Gl guarantees that
given a set of 2m random elements in the exponent {gsjl , g

ti
l }j,l∈[m], the set of m2 products in

the exponent {gsjtil } are indistinguishable to elements {grjil } with truly random exponents.
The rji’s in the exponent will be the randomness for generating RE. They can be computed
from short, length-2m, seeds {sj , ti} in degree 2; just that they must reside in the exponent.

Before going into details on how to resolve the above two challenges, we first complete the con-
struction outline.

Achieving Functionality. Given that we can use IPE to compute randomized encodings in the expo-

nent {gΠk
lk
}, it is tempting to think that one can simply extract Π if the encodings are binary, and

compute the output y in the clear. If this could be done, we would have obtained FE for NC0 from
only bilinear maps, and thus IO from bilinear maps. The catch is that we have to use arithmetic
randomized encodings (where the elements that compose the randomized encoding, namely Πk,
live in a large field) and cannot use binary randomized encodings. Roughly speaking, the culprit
is our solution to Challenge 2. As mentioned above, the elements of the randomized encodings
are generated pseudo-randomly. The randomness used for generating the randomized encoding
lives in the exponent ring R, and can only produce pseudorandomness in the exponent through
the joint-SXDH assumption. In turn, as a result of this, we need to use arithmetic randomized
encodings (in particular, [AIK14]), which cannot be extracted from the exponent, unless discrete
logarithm is easy. In fact, extracting these arithmetic randomized encodings would lead to attacks
on the joint-SXDH assumption.

Therefore, we rely on constant-degree GES to achieve functionality, by evaluating the arithmetic
randomized encoding Π in the exponent. Evaluation produces the output y in the exponent, which
can be extracted since it is binary. More specifically, recall that we use a tree-structured GES that
supports evaluating arithmetic circuits with a constant number of layers of multiplications and
additions, in particular, the RE evaluation circuit for NC0 computation. We will carefully instanti-
ate different IPE instances (skkuk , ct

k
vk

) using different groups in the tree-GES so that IPE evaluation
produces the randomized encoding gΠk

lk
in appropriate groups lk, on which RE evaluation can be

performed.
With these insights, let’s now circle back and resolve challenges 1 and 2.

Resolving Challenge 1. Our key tool is the affine AIK arithmetic randomized encodings (ARE) [AIK14],
which depends linearly in the input. More specifically, the AIK arithmetic randomized encoding

8

for an (arithmetic) NC1 function f and input x ∈ Rn is computed using a set of m = poly(n) fixed
linear functions Lk as follows:{

Πk = Lk(x, r) = pk(r)xπ(k) + qk(r); π : [m]→ [n]

}
Here, each randomized encoding element Πk depends on a single input bit xπ(k), determined
by an input mapping function π. The coefficients of the linear functions pk(r) and qk(r) are fixed
multi-linear polynomials that act on the randomness r. The only part that depends on the function
f is the input mapping function.

To use IPE to compute such arithmetic randomized encodings, the idea is that the FE key
generation algorithm encodes the coefficients pk(r), qk(r) and the input mapping function π, and
the FE encryptor encrypts x; they together compute the affine functions Lk(x, r). More precisely,

Our FE scheme, version 1

• Key Generation: To generate a key skf for f , sample randomness r, and publish IPE keys
skf = {skkuk} for vectors uk = (pk(r)||qk(r)) ⊗ eπ(k) (using independently sampled master
keys).

• Encryption: To encrypt x, publish IPE ciphertexts ctx = {ctkvk} for vectors vk = (xi||1)i∈[n]

(using corresponding master keys).

It is easy to verify that 〈uk,vk〉 = Πk. In other words, we achieve the goal of computing AIK arith-
metic randomized encodings using IPE. The above scheme is, however, insecure: In particular, the
randomness r for generating randomized encodings is hardcoded in the secret key, meaning that
the randomized encodings for the same function f and different inputs x1, x2, · · · share the same
randomness, which renders them insecure. This leads us back to resolving the second challenge
of generating the randomness for randomized encodings.

Resolving Challenge 2. We rely on joint-SXDH to generate randomness. What we need is that
for every pair of key and ciphertext, the randomized encoding should use fresh (at least, “compu-
tationally fresh”) randomness. We accomplish this by (re-)writing the affine functions as{

Πk = Lk(x, r, s) = pk(rs)xπ(k) + qk(rs)

}
The randomness in use is the coordinate-wise multiplication of r and s. We will put one multi-
plicative “share” r in the key, and the other s in the ciphertext. To see how to compute such a
thing, note that if

pk(r) =
∑
j

Mkj(r) and qk(r) =
∑
j

M ′kj(r)

where the Mkj and M ′kj are monomials, then

pk(rs) =
∑
j

Mkj(r)Mkj(s) and qk(rs) =
∑
j

M ′kj(r)M ′kj(s)

We modify our FE scheme as below:

Our FE scheme, version 2

9

• Key Generation: To generate skf for f , sample r and publish IPE keys skf = {skkuk} for vectors

uk =

(
Mkj(r),M ′kj(r)

)
j

⊗ eπ(k) (1)

• Encryption: To encrypt x ∈ {0, 1}n, sample s and publish IPE ciphertexts ctx = {ctkvk} for
vectors

vk =

(
Mkj(s)x1,M

′
kj(s)

)
j

∣∣∣∣∣∣∣∣ · · ·(Mkj(s)xi,M
′
kj(s)

)
j

· · ·
∣∣∣∣∣∣∣∣(Mkj(s)xn,M

′
kj(s)

)
j

(2)

Now, the inner product 〈uk,vk〉 is the randomized encoding element Πk generated using ran-
domness rs. Moreover, the AIK randomized encoding has the property that the total number of
monomials Mk,j ,M

′
k,j is bounded by 2O(d), where d is the depth of the arithmetic circuit comput-

ing f . Thus for NC0 computations, the vectors uk,vk are of length O(n), linear in the input length,
giving us the desired linear efficiency property.

Overview of Security Proof FE security states that the ciphertexts ctx0 and ctx1 of inputs x0

and x1 should be indistinguishable, even in the presence of keys {skfj} as long as they satisfy
that fj(x0) = fj(x

1) for every j. We want to reduce this indistinguishability to the security of
randomized encodings — that encodings {Π0

j} for fj , x0, and encodings {Π1
j} for fj , x1 are indis-

tinguishable. But, before invoking RE security, we must first argue that the input xb is hidden, and
the randomness {rjs} for generating Πb

j is jointly pseudo-random. This is certainly not the case
w.r.t. honestly generated keys and ciphertexts: First xb is embeded in the ciphertext, and second
it seems impossible to argue that the products {rjs} are pseudorandom, when rj and s reside
respectively in IPE keys and ciphertexts that can be paired together.

To resolve this conundrum, our idea is leveraging the function hiding property of a secret-key
IPE scheme, in order to “move” the input xb and s into the function keys in security hybrids.
Let us explain. The function hiding property guarantees that IPE keys and ciphertexts for two
sets of vectors {ai,bi} and {a′i,b′i} are indistinguishable if they produce identical inner products
〈ai,bj〉 = 〈a′i,b′j〉. We now further modify the FE scheme to encode vectors with some trailing
zeros.

Our FE scheme, version 3

• Key Generation: To generate skf for f , sample r and publish IPE keys skf = {skkuk} for vectors
u′k = uk || 0, where uk is described in Equation (1).

• Encryption: To encrypt x ∈ {0, 1}n, sample s and publish IPE ciphertexts ctx = {ctkvk} for
vectors v′k = vk || 0, where vk is described in Equation (2).

The trailing zeros do not affect the functionality. But, in the security proof, they provide the crucial
“space” for hardwiring the randomized encoding Πb in the function key skf , without computing
it. More specifically, in the proof, we move to a hybrid, encoding vectors of form u′′k = uk||Πk,
and v′′k = 0||1. Since 〈u′′k,v′′k〉 = 〈u′k,v′k〉 = 〈uk,vk〉, by function hiding of IPE, this hybrid is
indistinguishable to the honest execution. Notice that in this hybrid, the ciphertext contains no
information of the input xb, and the key for a function fj has the corresponding randomized en-
coding Πb

j (for fj , xb) hardwired in. Furthermore, the fact that the randomness share s disappears

10

eventually allows us to argue that {rjs} used for generating {Πb
j} are pseudorandom. Then, we

can finally invoke the RE security, that {Π0
j} and {Π1

j} are indistinguishable, to argue that FE
security holds.

The proof strategy of using computational assumptions to reduce the FE security to RE security
resembles that of many FE and IO schemes in the literature in a high level (e.g., [GLSW15]), but
the details of how we make this approach go through are very different.

Additional Challenges Additional challenges must be addressed in order to make the above
security proof overview go through. First, applying joint-SXDH to argue the pseudorandomness
of {rs} is tricky. This is because we (have to) compute elements Πk in a randomized encoding
Π in different groups gΠk

lk
in order to further evaluate Π in the exponent. But, the collection of

elements {Πk} are correlated through shared randomness rs. An attacker can potentially leverage
this correlation, and through computation over different groups, distinguish Πk generated from
rs and that from true randomness. It turns out that the structure of the tree-GES, together with
the join-SXDH assumption is exactly what we need to prevent all attacks that arise out of such
correlations.

Second, the above proof relies on a secret key IPE that is fully function hiding. Looking back
into the literature, we see that the BJK secret key IPE [BJK15] is only weak function hiding. A
followup work [DDM16] constructed fully function hiding secret-key IPE. In this work, we show
how to generically transform any weak function hiding IPE to full function hiding IPE; our trans-
formation is black-box, extremely simple and of independent interest.

A further issue is that these function hiding secret-key IPE schemes do not produce the in-
ner product in the exponent directly g〈u,v〉, but produce the inner product masked by a scalar
(g〈u,v〉θ, gθ), where the scalar θ is determined by the randomness used in key generation and en-
cryption. This creates the problem that randomized encoding elements computed using different
IPE instances are masked by distinct scalars (gΠkθk

lk
, gθk), preventing RE evaluation in the exponent.

To resolve this, in our FE scheme, the secret-key IPE instances {skkuk , ct
k
vk
} are generated using dif-

ferent master secret keys, but the same randomness. Thus, they produce randomized encoding
elements masked by the same scalar (gΠkθ

lk
, gθ) and then evaluation can be done as before. As a

result, we need function hiding secret-key IPE that allows sharing randomness among instances
generated using different master secret keys. It turns out that our function hiding secret-key IPE
derived from the BJK scheme has this property.

Stitching all pieces together, we obtain a secret-key FE for NC0 with linear efficiency, from
constant-depth tree-GES.

Slotted IPE and Public-key FE. We have to go one step further to construct a public-key FE for
NC0 with linear efficiency. The natural first idea is to use, instead of a secret-key function-hiding
IPE scheme, a public-key function-hiding IPE. However, a moment’s reflection tells us that such
an object cannot possibly exist: that is, the properties of function-hiding and being public-key do
not play well with each other.

Our solution to this issue is to construct a “hybrid” encryption scheme that we call a slotted
inner product encryption (or slotted IPE) scheme. Roughly speaking, a slotted IPE scheme generates
keys for vectors ypub||ypriv, encrypts vectors xpub||xpriv, and given the functional secret key, com-
putes an inner product between them. Crucially, a slotted IPE scheme has the following seemingly
contradictory properties:

11

• Public Key for the first Slot: Anyone can encrypt vectors of the form xpub||0. (However, it is
computationally hard to encrypt any vector with a non-zero component in the second slot.)
The usual notion of semantic security holds, that is, encryption of xpub||xpriv and x′pub||x′priv
are indistinguishable if all published function keys do not separate them.

• Function Hiding for the second Slot: We require hiding for the second component of the vector
in the secret key. That is, the following two worlds are indistinguishable: In the first world,
one gets the secret key for ypub||ypriv and the ciphertext for 0||xpriv, and in the second world,
one gets the secret key for ypub||y′priv and the ciphertext for 0||x′priv such that 〈xpriv,ypriv〉 =
〈xpriv

′,ypriv
′〉.

It turns out that this notion is the right combination of public-key and function-hiding FE
which is both achievable and useful. Slotted IPE is similar in spirit to objects defined in [KSW08]
and also similar to (but simpler than) the slotted FE definition of [GGHZ16]. We refer the reader
to Section 6 for the definition and construction of the slotted IPE scheme. Replacing the secret-key
IPE with a slotted IPE in our construction yields a public-key FE for NC0 with linear efficiency.

Constructing Slotted IPE from Joint SXDH. The final piece of the puzzle is to construct a slotted IPE
scheme. We do this by combining our secret key function hiding IPE scheme, derived from the BJK
scheme [BJK15], and the public-key IPE scheme of Abdalla et al. [ABDP15]. We refer the reader to
Section 7 for the construction of the FE scheme.

1.3 Noisy Graded Encodings

So far, we described our constructions and security proof in the language of clean graded encod-
ings, however all the instantiations [GGH13a, CLT13, GGH15] are for noisy graded encodings.
(see Section 4 for more details). Our constructions of FE for NC0 and IO can be instantiated with
noisy graded encodings. However, the security reduction to the joint-SXDH assumption does not
go through, as the reduction performs scalar multiplication in order to “re-purpose” elements in
the joint-SXDH assumption, to elements in the security experiments of FE for NC0. Known noisy
instantiations, when modified to support scalar multiplication, succumb to attacks. Nevertheless,
our FE for NC0 scheme when instantiated with ideal noisy graded encodings is secure. We leave
it as an interesting open question whether our construction of FE or IO is secure (or can be made
secure) in the recently proposed weakly ideal multilinear model [MSZ16a, MSZ16b, GMS16] which
seems to capture all known attacks against noisy graded encodings.

1.4 Local PRGs

We briefly survey constructions of low depth PRGs. See Applebaum’s book [App14] for more
references and discussions. The existence of PRG in TC0 follows from a variety of hardness as-
sumption including intractability of factoring, discrete logarithm, or lattice problems (e.g. [NR95,
NR97, NRR00, BPR12]). More works focused on PRG in NC0. On the negative side, it was shown
that there is no PRG in NC0

4 (with output locality 4) achieving super-linear stretch [CM01, MST03].
On the positive side, Applebaum, Ishai, and Kushilevitz [AIK04] showed that any PRG in NC1 can
be efficiently “compiled” into a PRG in NC0 using randomized encodings, but with only sub-linear
stretch. Unfortunately, to the best of our knowledge, there is no construction of PRG in NC0 with
super-linear stretch from well-known assumptions. But, there are candidate constructions.

The authors of [AIK04] constructed a linear-stretch PRG in NC0 under a specific intractability
assumption related to the hardness of decoding “sparsely generated” linear codes [AIK08], previ-

12

ously conjectured by Alekhnovich [Ale03]. Goldreich’s one-way functions f : {0, 1}n → {0, 1}m
where each bit of output is a fixed predicate P of a constant number d of input bits chosen at
random, is also a candidate PRG when m > n. Several works investigated the (in)security of Gol-
dreich’s OWFs and PRGs: So far, there are no successful attacks when the choice of the predicate
P avoids certain degenerate cases [CEMT09, BQ12, OW14, AL15].

1.5 Organization

We show the construction of IO from FE for NC0 in Section 3. Section 5 shows a function-hiding
secret-key IPE scheme and Section 6 defines the notion of slotted IPE and uses it to construct
a public-key IPE scheme with the right notion of function hiding. In Section 4, we define our
notion of tree-structured GES schemes and the joint-SXDH assumption on them. We also show
how to use tree-GES to implement other common forms of graded encoding schemes such as
set-multilinear maps and graph-based multilinear maps. Finally, in Section 7, we put these com-
ponents together to construct our FE scheme.

2 Preliminaries

Let Z and N denote the set of integers, and positive integers, respectively. Let [n] denote the set
{1, 2, . . . , n},R denote a ring with 0 and 1 being the additive and multiplicative identities.

We denote by PPT probabilistic polynomial time Turing machines. The term negligible is used
for denoting functions that are (asymptotically) smaller than any inverse polynomial. More pre-
cisely, a function ν(?) from non-negative integers to reals is called negligible if for every constant
c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

2.1 µ-Indistinguishability

Definition 1 (µ-indistinguishability). Let µ : N → [0, 1] be a function. A pair of distribution en-
sembles {Xλ}λ∈N, {Yλ}λ∈N are µ-indistinguishable if for every non-uniform PPT distinguisher D, every
sufficiently large security parameter λ ∈ N, and auxiliary input z ∈ {0, 1}poly(λ), it holds that

|Pr[x
$← Xλ : D(1λ, x, z) = 1]− Pr[y

$← Yλ : D(1λ, y, z) = 1]| ≤ µ(λ)

Definition 2 (Computational and Sub-exponential Indistinguishability). A pair of distribution en-
sembles {Xλ}λ∈N, {Yλ}λ∈N are computationally indistinguishable if they are 1/p-indistinguishable for
every polynomial p, and are sub-exponentially indistinguishable if they are µ-indistinguishable for some
sub-exponentially small µ(λ) = 2λ

ε with a constant ε > 0.

Note that the above definition of sub-exponential indistinguishability is weaker than standard
sub-exponential hardness assumptions that consider distinguishers running in sub-exponential
time.

Below, we provide definitions of standard cryptographic primitives using the terminology
of µ-indistinguishability, which implicitly defines variants with polynomial or sub-exponential
security. As a matter of convention, we will drop µ when µ is a negligible function, and say sub-
exponential security when µ is a sub-exponentially small function.

13

2.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit defined by [BGI+01b],
adding the new dimension that the class of circuits may have restricted domains {Dλ}λ∈N.

Definition 3 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT machine iO
is an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N (with potentially restricted domains
{Dλ}λ∈N), if the following conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x (in Dλ), we have
that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

where the probability is taken over the coin-tosses of the obfuscator iO.

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying thatCb,λ ∈ Cλ,
|C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x (in Dλ), the following ensembles of distributions
are µ-indistinguishable: {

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ∈N{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ∈N

Definition 4 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability obfuscator
for P/poly if it is an indistinguishability obfuscator for the class {Cλ}λ∈N of circuits of size at most λ.

2.3 Pseudorandom Generator

Definition 5 (Pseudo-Random Generator (PRG)). Let ` be a polynomial-bounded function. A deter-
ministic polynomial-time uniform machine PRG is a `(λ)-stretch pseudorandom generator if the following
conditions are satisfied:

Syntax For every λ ∈ N and every r ∈ {0, 1}λ, PRG(r) outputs r′ ∈ {0, 1}`(λ)

µ-Indistinguishability: The following ensembles are µ-indistinguishable{
r

$← {0, 1}λ : PRG(r)
}
≈µ

{
r′

$← {0, 1}`(λ)
}

For every λ ∈ N, let PRGλ : {0, 1}λ → {0, 1}`(λ) denote the total Boolean function corresponding to
PRG for λ-bit inputs. We say that PRG has degree d (for a universal constant d), if for every λ, every
output bit of PRGλ is a degree d function of the input bits.

Since every PRGλ is a total function, by the Nisan-Szegedy result [NS94], a constant-degree
pseudorandom generator PRG must belong to NC0.

Claim 1. Every constant-degree PRG is in NC0.

14

2.4 Randomized Encodings

In this section, we recall the traditional definition of randomized encodings with simulation secu-
rity [IK02, AIK06].

Definition 6 (Randomized Encoding Scheme for Circuits). A Randomized Encoding scheme RE con-
sists of two PPT algorithms,

• (Ĉ, x̂)
$← REnc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, REnc generates

an encoding Ĉx.

• y = REval(Ĉx): On input Ĉx produced by REnc, REval outputs y.

Correctness: The two algorithms REnc and REval satisfy the following correctness condition: For all
security parameters λ ∈ N, circuit C, input x, it holds that,

Pr[Ĉx
$← REnc(1λ, C, x) : Eval(Ĉx) = C(x)] = 1

µ-Simulation Security: There exists a PPT algorithm RSim, such that, for every ensemble {Cλ, xλ}
where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for all λ ∈ N .{

Ĉx
$← REnc(1λ, C, x) : Ĉx

}
{
Ĉx

$← RSim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
where C = Cλ and x = xλ.

Furthermore, let C be a complexity class, we say that randomized encoding scheme RE is in C, if the
encoding algorithm REnc can be implemented in that complexity class.

2.4.1 Program-Decomposable Randomized Encodings

Roughly speaking, a program-decomposable randomized encoding (PDRE) scheme is a random-
ized encoding (RE) scheme with a special syntax, but the same security and correctness properties
(See Section 2.4 for a definition of randomized encoding schemes). Roughly speaking, a PDRE
scheme is an RE scheme whose encodings consist of many components — polynomial in the size
of the circuit— where each component can be generated in time independent of the complexity
of the computation. Perhaps the most famous example of a PDRE scheme is Yao’s garbled cir-
cuits [Yao86] where the components are the “garbled gates” which can each be generated very
quickly.

Formally, a program-decomposable randomized encoding scheme PDRE consists of three
algorithms (Decomp,REnc,REval). For any λ ∈ N, any function f ∈ Fλ,N,D,S described as (C, ρ),
and input x ∈ {0, 1}N , the algorithms proceed as follows. (We denote by ` = `(λ,N, S) the
upperbound on the length of the encodings as well as the number of random bits needed for
generating the encoding.)

• Program Decomposition: Decomp(1λ, f) “decomposes” f into ` components {(Fi, Si, Ii)}i∈[`],
where Fi describes a part of the function f , Si ⊆ [N(λ)] is a set of indices of input bits
(generated depending on ρ), and Ii ⊆ [`] is a set of indices of random bits.

15

• Encoding: REnc on input x ∈ {0, 1}N , and the “function decomposition” {(Fi, Si, Ii)}i∈[`]

samples a random string r
$← {0, 1}`, and produces each bit of the encoding {f̂(x)i}i∈[`]

independently using only a single function component:{
f̂(x)i = renc(Fi, x|Si , r|Ii)

}
i∈[`]

• Evaluation: REval on input f̂(x) outputs a value y = f(x).

2.4.2 Linear Efficiency

In [AJS15], it suffices to require that the upperbound ` on the size of the randomized encoding,
and the number of random bits needed for encoding to be poly(λ, S,N), and each output bit can be
computed in a fixed polynomial size poly(λ) independent of S and N . Here, we consider stronger
efficiency requirements:

• The upper bound ` is linear in the size of the circuit, and independent of the input length.
That is,

`(λ,N(λ), S(λ)) = p(λ) · S(λ)

Such a requirement makes sense for NC0 circuits where the input may be much longer than
the circuit description. This property is achieved by Yao’s garbled circuit, where the encoding can be
divided into exactly S(λ) parts, each depending on a single gate in the circuit, and can be computed
in a fixed polynomial time and in logarithmic depth, assuming PRG in NC1.

• Each output bit can be computed in constant size. That is, renc ∈ NC0.

This second property is achieved by the information theoretically secure randomized encoding for NC1

by [AIK04] (AIK), which is in NC0 with input locality 4 and depth 3.

By the composability of randomized encodings [AIK04], we can achieve achieve both efficiency
properties simultaneously, by encoding the computation of each part in Yao’s garbling of a com-
putation, using the AIK randomized encoding. We denote the composed scheme the Yao-AIK
scheme.

2.5 Functional Encryption

We provide the definition of a public-key functional encryption (FE) scheme with indistinguishability-
based security which originally appeared in [BSW12, O’N10]. Below we define public key func-
tional encryption first, and then note the difference with secret key functional encryption.

2.5.1 Public-Key Functional Encryption

Syntax. Let {Xλ}λ∈N and {Yλ}λ∈N be ensembles of sets. Let {Fλ}λ∈N, where every function in
the set Fλ maps inputs in Xλ to outputs in Yλ.

A public-key functional encryption (FE) scheme FE for {Fλ}λ∈N consists of four PPT algo-
rithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

• Setup: FE.Setup(1λ) is an algorithm that on input a security parameter outputs a master
public key and a master secret key (mpk,msk).

16

• Key Generation: FE.KeyGen(msk, f) on input the master secret key and the description of a
function f ∈ Fλ, outputs a functional secret key skf .

• Encryption: FE.Enc(mpk, x) on input the master public key and a message x ∈ Xλ, outputs
an encryption ct of x.

• Decryption: FE.Dec(sk, ct) on input the secret key associated with f and an encryption of x,
outputs y ∈ Yλ.

Correctness: We define perfect correctness here. For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (mpk,msk)
$← FE.Setup(1λ)

ct
$← FE.Enc(mpk, x)

sk
$← FE.KeyGen(msk, f)

: f(x) = FE.Dec(sk, ct)

 = 1

Indistinguishability Security. Indistinguishability security of a functional encryption requires
that no adversary can distinguish the FE encryption of one input x0 from that of another x1, if the
adversary only obtains secret keys skf for functions f that yield the same output on x0 and x1,
that is, f(x0) = f(x1). In the adaptive setting, the two challenge inputs (x0, x1) and all functions f
are chosen adaptively by the adversary. In the weaker selective setting, the adversary is restricted
to choose (x0, x1) and all functions f statically.

Definition 7 (IND-Security). A public-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
for {Fλ}λ∈N is µ-IND-secure, if for every PPT adversaryA, and every sufficiently large security parameter
λ ∈ N, the adversary’s advantage in the following games is bounded by µ(λ)

AdvtFE
A =

∣∣∣Pr[ExpFE
A (1λ, 0) = 1]− Pr[ExpFE

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

ExpFE
A (1λ, b) proceeds as follows:

1. Key Generation. The challenger CH samples (mpk,msk)
$← FE.Setup(1λ) and sends mpk to the

adversary.

2. Function Queries. Repeat the following for an arbitrary number of times determined by A: Upon
A choosing a function query f ∈ Fλ, CH sends A a function key skf

$← FE.KeyGen(msk, f).

3. Message Queries. Upon A choosing a pair of messages (x0, x1), CH sends A a ciphertext ct $←
FE.Enc(mpk, xb).

4. Function Queries Repeat the second step, again for an arbitrary number of times determined by A.

5. Finally A outputs a bit b′ which is also the output of the experiment.

Restriction: Every function query f must satisfy that f(x0) = f(x1).

Definition 8 (Selective Security). We say that FE is µ-selectively secure if the condition in Definition 7
holds for modified experiments Sel.ExpFE

A (1λ, b) where the adversaries choose challenge messages (x0, x1)
immediately after receiving the master public key and before requesting any function keys.

17

Note that our notion of selective security is stronger than other notions in the literature, which
requires the adversaries to choose x0, x1 at the beginning of the experiments before receiving the
master public key, or even requiring the adversaries to choose all function queries also at the
beginning of the experiment. Our construction of FE scheme later achieves this stronger form of
selective security.

Definition 9 (1-Key FE). We say that FE is a µ-secure (or µ-selectively secure) 1-key FE scheme if it
satisfies the security requirements in Definition 7 (or, respectively, Definition 8) against adversaries that
ask for at most one function key query.

2.5.2 FE Schemes for P/poly,NC1 and NC0

Consider the following function class parameterized by (efficiently computable) polynomials N ,
D, and S, which denote upper bounds on, respectively, the length of the inputs, the depth of the
circuits, and the size of the circuits computing the function class.

Function Class {Fλ,N,D,S}. The domain is the set of all N(λ)-bit strings Xλ = {0, 1}N(λ). Every
function f in set Fλ,N,D,S is described by a tuple (C, ρ): C is a circuit of depth at most D(λ)
and size at most S(λ), and ρ is a subset of indexes of [N(λ)]. (C, ρ) satisfies that for every
x ∈ {0, 1}N(λ), f(x) = C(x|ρ), where x|ρ is the projection of the bits of x in the subset ρ.

Note that f(x) = C(x|ρ) effectively means that f depends only on a subset of the input bits.
Therefore, the size S(λ) of the circuit C may be much smaller than the input length N(λ). This
allows us to consider, for example, NC0 functions that computes over a constant number of bits in
a polynomal length input. Additionally, the pair (C, ρ) can be described in poly(S(λ), N(λ)) bits.

Definition 10 (Families of FE schemes). Let N ,D,S be subsets of polynomial functions. We say that
FE = {FEN,D,S} is a family of (1-key) FE schemes for N ,D,S with µ-security (or µ-selective security)
if for every polynomials N ∈ N , D ∈ D, S ∈ S , FEN,D,S is a µ-secure (or µ-selectively secure, resp.)
(1-key) FE scheme for the function class {Fλ,N,D,S}.

Moreover, define the following special cases:

• When N ,D,S are the sets of all polynomials, FE is a family of FE schemes for P/poly.

• WhenN ,S are the sets of all polynomials andD is the set of all logarithmic functions, FE is a family
of FE schemes for NC1.

• WhenN ,S are the sets of all polynomials and D is the set of all constant functions, FE is a family of
FE schemes for NC0.

2.5.3 Compactness

In the above definition of families of FE schemes, algorithms in scheme FEN,D,S could run in poly-
nomial time depending on polynomialsN,D, S. In the literature, stronger efficiency requirements
have been considered. In particular, the works of [AJ15, BV15] defined compact FE schemes for
NC1, which requires the encryption time to be independent of the circuit size S of the functions.

Definition 11 (Compactness of FE schemes for NC1). Let FE = {FEN,D,S} be a family of FE schemes
for NC1.

18

Many-key FE

[AJS15, BV15]

[LM16, GS16]
Single-key Compact FE

IO

[A
J1

5,
BV15

]

(as
su

m
in

g su
bex

p.)(assum
ing subexp.)

[GGH
+

13c, W
at15]

Figure 2: Solid lines indicate direct implications, and dotted lines indicate implications that follow
as corollaries by combining the solid lines. By default, all FE schemes referred to here are selec-
tively secure. Whenever there is an implication of the form X → Y , the reader should interpret
that as X for P/poly implies Y for P/poly. However, the actual theorems are somewhat stronger.
For example, we know that assuming the existence of weak PRFs in NC1, many-key FE for NC1

implies single-key compact FE for all of P/poly [AJS15, BV15].

Compactness: We say that the functional encryption scheme FE is compact if for every logarithmic func-
tion D, there is a polynomial p, such that, for every polynomials N,S, the encryption algorithm of
FEN,D,S runs in time p(λ,N(λ), logS(λ)).

(1− ε)-Sublinear Compactness: We say thatFE is (1−ε)-sublinearly compact, if for every logarithmic
function D, there is a polynomial p, such that, for every polynomials N,S, the encryption algorithm
of FEN,D,S runs in time p(λ,N(λ)) · S(λ)1−ε.

3 Indistinguishability Obfuscation from NC0-Functional Encryption

Recent results show a strong connection between Indistinguishability obfuscation (IO) and Func-
tional encryption (FE). Here, as before, we distinguish between two different notions of functional
encryption: the standard notion of many-key secure (or, collusion-resistant) functional encryption
and single-key secure compact functional encryption.4 On the one hand, [GGH+13c] showed that
IO for NC1 implies many-key FE for P/poly. On the other hand, [AJ15, BV15] showed that (sub-
exponentially secure) single-key compact FE for NC1 implies IO for P/poly. Finally, [BV15, AJS15]
showed that many-key FE for NC1 implies single-key compact FE for P/poly. Put together, this
shows that all three notions – IO, single-key compact FE, and many-key FE – are equivalent upto
subexponential security considerations. See Figure 2 for a detailed description of these connec-
tions.

Theorem 4. Assume the existence of a weak PRF in NC1. Then:

4In the rest of our exposition, when we talk of the security of functional encryption, we will mean selective security.
Ananth, Brakerski, Segev and Vaikuntanathan [ABSV15] have recently showed how to transform selectively secure
many-key FE schemes into adaptively (fully) secure many-key FE schemes.

19

• [AJ15, BV15] For any constant ε > 0, the existence of a single-key FE scheme FE = {FEN,D,S}
for NC1 with sub-exponential, selective, security and (1 − ε)-sublinear-compactness implies IO for
P/poly.

• [AJS15, BV15] The existence of a many-key FE scheme FE ′ = {FE′N ′,D′,S′} for NC1 with sub-
exponential, selective, security implies the existence of a single-key FE scheme FE = {FEN,D,S} for
NC1 with sub-exponential, selective, security and (1− ε)-sublinear-compactness.

Put together, if there is a many-key secure (but not necessarily compact) FE scheme for NC1, then there is
an IO scheme for P/poly.

The authors of [AJS15] further noted that it suffices to use a PRG instead of a PRF in their con-
struction, which still suffices for constructing compact 1-key FE scheme for polynomially bounded
computations.

In this section, we show that by carefully instantiating the cryptographic primitives underlying
the construction of [BV15, AJS15], we obtain that IO for P/poly is implied by FE for NC0 functions,
assuming the existence of subexponentially secure PRG in NC0.

Theorem 5 (From NC0-FE to IO). Let α > 0 be a positive constant, and let PRG be a sub-exponentially
secure n1+α-stretch pseudo-random generator computable by circuits of depth d = d(λ). Let FE =
{FEN,D,S} be a many-key functional encryption scheme for circuits of depth D(λ) = d(λ) + 5 with
sub-exponential selective security and the following encryption efficiency:

Encryption efficiency: the encryption time of FEN,D,S is linear in the length of the input, that
is, bounded by p(λ, S(λ)) ·N(λ) for a fixed polynomial p.

Then, there exists an indistinguishability obfuscator IO for P/poly.
In particular, if PRG is in NC0, then FE schemes for NC0 with encryption time linear in the input

length imply IO for P/poly.

The proof of the theorem is essentially identical to that of Theorem 4 by [AJS15]. Below we pro-
vide a proof sketch, and focus only on showing how carefully choosing the primitives underlying
the result [BV15, AJS15] affects the parameters of the FE scheme needed for IO.

3.1 Proof of Theorem 5

To construct an indistinguishability obfuscator (IO) for all functions in P/poly starting from a
many-key functional encryption (FE) scheme, Bitansky and Vaikuntanathan [BV15] and Ananth,
Jain and Sahai [AJS15] proceed in two steps.

Step 1. Construct sub-exponentially secure single-key FE schemes CFE = {CFEN,D,S}with (1−
ε)-sublinear compactness for NC1 circuits; and

Step 2. Invoke the result of [AJ15, BV15] (resp. [BNPW16] in the case of secret-key FE).

We recall the transformation of [BV15, AJS15] below, and instantiate their components care-
fully to obtain Theorem 5.

20

Tools Used for Obtaining Theorem 5 We will choose the following instantiations of the three
tools used in [AJS15]:

• A pseudorandom generator PRG computable in depth d = d(λ) with n1+α-stretch for any
constant α. We assume implicitly that d = O(log λ).

• Selectively secure (collusion resistant) FE schemes CRFE = {CRFEN
′,D′,S′} for circuits

with fixed depth D′ = D′(λ) = d(λ) + 5 and encryption time linear in input length, namely
poly(λ, S′) ·N ′.

• A specific PDRE scheme PDRE = (Decomp,REnc,REval) which is the composition of Yao’s
garbling scheme and the AIK randomized encoding scheme in NC0. This scheme satisfies
what we call linear efficiency (described below), and each output bit is computable in depth
3.

3.2 The Construction

For any polynomial functions N,D, S, the scheme

CFEN,D,S = (CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec)

invokes PRG, PDRE and the CRFEN ′,D′,S′ for N ′, D′, S′ set below. For any λ and any function
f ∈ Fλ,N,D,S and input x ∈ {0, 1}N , the algorithms proceed as follows:

Single-key Compact FE Scheme CFE

• Setup: CFE.Setup(1λ) samples (mpk,msk)
$← CRFE.Setup(1λ).

• Key Generation: CFE.KeyGen(msk, f) does the following:

– Decompose function f to {(Fi, Si, Ii)}i∈[`] ← Decomp(1λ, f).

– For each index i ∈ [`], sample a uniformly random bit CTi and generate a key ski
$←

CRFE.KeyGen(msk, fi) for fi defined as: On input x of lengthN , two PRG seeds s1, s2
each of length `1/(1+α) and a bit b.

fi(x, s1, s2, b) =

{
renc(Fi, x|Si ,PRG(s1)|Ii) if b = 0

CTi ⊕PRG(s2)|i if b = 1

(We show below in Claim 2 how to represent fi as a circuit and index-set pair (Ci, ρi) such
that fi(x, s1, s2, b) = Ci((x, s1, s2, b)|ρi), and analyze various bounds N ′, D′, S′ related to
fi.)

• Encryption: CFE.Enc(mpk, x) samples s1, s2
$← {0, 1}`1/(1+α)

, and generates

ct
$← CRFE.Enc(mpk, (x, s1, s2, 0))

• Decryption: CFE.Dec(sk, ct) computes for each i ∈ [`] the ith bit of the encoding f̂(x)i =

CRFE.Dec(ski, ct), and then evaluates the output f(x) = REval(f̂(x)).

Figure 3: Caption

21

3.2.1 Compactness of CFE

We show that CFE is a compact FE scheme, which requires a new analysis different from [AJS15,
BV15], since we use tools with different parameters. In particular, our PRG has only n(1+α)-stretch,
as opposed to large polynomial stretch; to compensate for this, the Yao-AIK PDRE has linear
efficiency.

We start by showing that each of the component functions fi (see Figure 3) can be computed
by circuits whose depth and size are completely independent of those of the original function f .
Then, in Lemma 1, we show that CFE is compact.

Claim 2. For every λ ∈ N, the functions fi used in CFE.Enc (Figure 3) belong to the function class
Fλ,N ′,D′,S′ , where

N ′(λ) = N(λ) + 2`(λ) + 1 D′(λ) = d(λ) + 5, S′(λ) = O(2D
′(λ))

Proof. To analyze the bounds N ′, D′, S′ on the input length, circuit depth, and circuit size of fi, we
first show how to present it as (Ci, ρi), such that, fi(x, s1, s2, b) = Ci((x, s1, s2, b)|ρi).

Towards this, let (PRGj , πj) be the pair describing the function PRG(s)j that computes the
jth bit of the output of PRG, that is, PRGj(s|πj) = PRG(s)|j . We first describe ρi and then the
circuit Ci.

To compute fi, the following bits in the entire input X = (x, s1, s2, b) are needed.

• Si contains the indexes of bits in x needed for computing fi; let x′ = X|Si .

• For every j ∈ Ii, Ki,j contains the indexes of bits in s1 needed for computing PRG(s1)|j .

Ki,j = {N + k | k ∈ πj}

Let s′1,j = X|Ki,j .

• Li contains the indexes of bits in s2 needed for computing PRG(s2)|i.

Li =
{
N + `1/(1+α) + k | k ∈ πi

}
Let s′2 = X|Li
• The bit b has index N + 2`1/(1+α) + 1.

Therefore, we set
ρi = Si ∪

(
∪j∈[Ii]Ki,j

)
∪ Li ∪ {N + 2`1/(1+α) + 1}

The circuit Ci on inputX ′ = X|ρi can parse the input as (x′, {s′1,j}j∈Ii , s′2, b), and compute fi(x)

by computing the relevant PRG output bits, and the ith bit of the encoding. To do so, the circuit
Ci contains the circuits PRGj for every j ∈ Ii and j = i, and the circuit for computing renc. The
procedure of Ci is described in Figure 4.

Parameters N ′, D′, S′ Clearly, the input (x, s1, s2, b) of fi has length N ′ = N + 2`1/(1+α) + 1. The
depth D′ of the circuit Ci is dominated by the depth d of PRG. Once the relevant PRG output
bits are computed, the rest of the computation, namely, computing renc of the Yao-AIK scheme
and branching depending on the mode b can be performed in depth 5 (the former can be done
in depth 3, and the latter in 2). Therefore D′ = d + 5. Finally, the size S′ of Ci is again domi-
nated by size of the circuits PRGj computing individual output bits of PRG, since the rest of
computation (renc and branching depending on the mode) can be done in constant size. Hence,
S′ = O(maxj |PRGj |). Since PRG ∈ NC1, |PRGj | ≤ 2d for all j, and we can set S′ = O(2d).

22

Circuit C[{PRGj},PRGi, renc, F, CT](X ′)

Hardwired Content: A set of circuits {PRGj}j∈J , PRGi for computing a subset J ∪ {i} of
output bits through PRG (in a valid circuit J = Ii), and the circuit for computing renc. A
string F and a bit CT .

Input: A string X ′. (A valid input X ′ = X|ρi for some input X = (x, s1, s2, b) and i ∈ [`].)

Procedure:

• Parse X ′ = (x′, {s′1,j}j∈J , s′2, b)). (Note that parsing can be done trivally through
wiring the input bits appropriately)

• If b = 0

1. For every j ∈ J , compute rj = PRGj(s
′
1,j).

2. Compute z = renc(F, x′, {rj}).

• If b = 1

1. Compute σ = PRGi(s
′
2).

2. Compute z = CT ⊕ σ.

Output: The bit z.

Figure 4: Circuit C

Lemma 1. Let α > 0 be a constant and let ε := α/(1 + α). If PRG has n1+α-stretch and PDRE has
linear efficiency, then the functional encryption scheme CFE is (1− ε)-sublinearly compact.

Proof. The efficiency of CRFEN ′,D′,S′ guarantees that when encrypting a string X = (x, s1, s2, b)
of length N ′ the encryption time is bounded by

TimeCRFE.Enc(mpk, X) = poly(λ, S′) ·N ′ .

By the fact that N ′ = N + 2`1/(1+α) + 1, S′ = O(2d) and d = O(log λ), and that the encryption time
of CFEN,D,S is dominated by the encryption time of CRFEN ′,D′,S′ , we have

TimeCFE.Enc = poly(λ,N) · `1/(1+α) .

Recall that ` = `(λ,N, S) is an upperbound on the length of the randomized encoding (and
the number of random bits needed for generating it) for a computation with input length N , and
circuit size S. By the linear efficiency of the Yao-AIK scheme, `(λ,N, S) = poly(λ)S. Plugging this
into the above equation for TimeCFE.Enc,

TimeCFE.Enc = poly(λ,N)(poly(λ)S)1/(1+α) = poly(λ,N)S1/(1+α)

Therefore, CFE is (1− α/(1 + α))-sublinearly compact.

3.2.2 Security of CFE

Since the above construction of CFE can be viewed as a special case of that in [AJS15], using
specific tools, it follows from their analysis that.

Lemma 2. CFE defined above is a single-key selectively secure FE scheme for NC1.

23

3.3 IO from FE for Constant Degree Polynomials

As an interesting corollary of the bootstrapping technique, we can show how to get IO starting
from FE for constant degree polynomials. We will not pursue this direction further in this paper,
but offer this section as an observation of independent interest.

Theorem 5 directly implies that assuming the existence of subexponentially secure n1+α-stretch
PRG in NC0, it suffices to construct FE for Boolean NC0, or equivalently, FE for constant degree
polynomials. In this section, we give a more refinded analysis, and show that if the underlying
PRG can be computed in degree deg, then it suffice to have FE for degree (2 deg +2) polynomials.
In particular, if there exists a n1+α-stretch PRG with degree 2 over GF (2), then FE for degree 6
polynomials over GF (2) suffices.

Corollary 1 (IO from FE for Constant-Degree Polynomials). Assume the existence of a sub-exponentially
secure n1+α-stretch PRG PRG computable in degree deg for any positive constant α. Then, IO for P/poly
is implied by (collusion resistant) FE schemes FE for degree (2 deg +2) polynomials over GF (2) with
subexponential selective security and encryption time linear in the input length.

Proof. Towards the corollary, we need to show that the function fi used in the encryption algo-
rithm CFE.Enc can be computed in degree 2 deg +2. This follows since the computation in mode
0 has degree 2 deg +1, and the computation in mode 1 has degree deg +1. Then since branching
based on mode can be done in degree 1, the overall degree is 2 deg +2. In mode 0, one bit in the
randomized encoding of the Yao-AIK scheme is computed. Since every encoding bit of Yao-AIK
scheme has degree 2 in the random bits and degree 1 in the input bit, the degree of the output bit
is exactly 2 deg +2. In mode 1, it essentially computes a random bit using PRG and XOR it with a
hardwired bit CT , and hence the degree is bounded by deg +1.

4 Graded Encoding with the Joint-SXDH Assumption

Our definition of Graded Encoding (GE) schemes for prime order rings (namely, rings whose
additive group has prime order) is based on the definition of GE schemes from [GGH13b] and
follow-up works. In a nutshell, a GES for a ring R consists of a collection of encodings that we
denote [a]`, where a ∈ R is a ring element, and ` is a “label” that comes from a label space L.
One can efficiently perform constrained homomorphic computation on these encodings. That is, (1)
Encodings with the same label can be homomorphically added; and (2) Encodings with labels that
satisfy certain “pairable” constraints can be homomorphically multiplied.

We also consider Noisy Graded Encoding (NGE) schemes which work as above except that
there is a set of encodings of a ring element a ∈ R under a label ` ∈ L, and not a single one as
with GE schemes. Correspondingly, an NGE scheme also comes with a zero-testing procedure that
checks whether encodings with a special zero-testing label `? belong to the set [0]`? .

In the literature, there are many variants of GE (and NGE) schemes. Different variants use
different types of labels (e.g., integers, sets, paths in a graph), and correspondingly different criteria
of being “pairable”.

In Section 4.1, we first present a general formalization of GES that uses a generic label set
L, and a general function “pairable” to determine which two labels l1, l2 ∈ L can be paired to-
gether. Previous variants of GESs are special cases of this general formulation. In Section 4.4,
we define the concrete label set L and the concrete function pairable used in this work, for
the construction of FE schemes. We call this a tree-GES scheme. Additionally, we show that

24

tree-GES can be implemented using either the graph-based or the set-based GESs from the lit-
erature [GGH13b, BGK+13, GGH15]. However, we prefer to use the tree-GES formulation as it
expresses directly the properties we need in the construction. That is, we decouple the construc-
tion of FE schemes from our new GES variant, namely tree-GES, from the implementation of the
new GES variant from more standard versions.

In Section 4.3, we consider a simple and concrete hardness assumption over GES, namely
the joint-SXDH assumption. (It naturally corresponds to the joint-SXDH assumption over jointly
sampled asymmetric bilinear maps in Section 5.5.)

Finally, looking ahead, we remark that in addition to homomorphic addition and multiplica-
tion, we also require efficient homomorphic scalar multiplication (in both our clean and noisy en-
coding definitions). Scalar multiplication is important for reducing the security of our FE scheme
to the simple, instance independent, joint-SXDH assumption. The need for efficient homomor-
phic scalar multiplication is shared by other IO and FE constructions from simple assumptions
such as [GLSW15, GLW14, GGHZ16].

4.1 Clean Graded Encoding Schemes

We first define (clean) graded encoding schemes and then generalize to define noisy ones.

Definition 12 (Clean Graded Encoding). LetR be a ring, L ⊆ {0, 1}∗ be a set of labels, and pairable :
L × L → L ∪ {⊥} be a function. A graded encoding scheme GES for (R,L,pairable) is associated with
a tuple of PPT algorithms (InstGen,Encode,Add,SMult,Mult) which behave as follows:

• (pp, ep)
$← InstGen(1λ). The p.p.t. instance generation algorithm InstGen outputs a public parame-

ter pp and and encoding parameter ep that describe an (R,L,pairable)-graded encoding scheme.

• A ← Encode(ep, α ∈ R, l ∈ L). The deterministic encoding algorithm Encode takes as input
the encoding parameter ep, a ring element α and a label l and outputs an encoding A. We will also
use the shorthand [α]l for the unique encoding of α ∈ R under label l ∈ L, namely the output of
Encode(pp, α ∈ R, l ∈ L).

• B ← Add(pp, A1, A2). The p.p.t. addition algorithm takes as input the public parameters, encodings
A1 = [α1]l1 and A2 = [α2]l2 , and outputs

B = A1 ⊕A2 = [α1 + α2]l

if l1 = l2 = l and ⊥ otherwise.

• B ← SMult(pp, β ∈ R, A). The p.p.t. scalar multiplication algorithm takes as input the public
parameters, an encoding A = [α]l and a scalar β ∈ R, and outputs

B = β �A = [βα]l

• B ← Mult(pp, A1, A2). The p.p.t. multiplication algorithm takes as input the public parameters,
encodings A1 = [α1]l1 and A2 = [α2]l2 , and outputs

B = A1 ⊗A2 = [α1α2]l3

if pairable(l1, l2) = l3 ∈ L and ⊥ otherwise.

25

Note that in the above definition, the ring R, the label set L, and the function pairable are
fixed, independent of the security parameter. We can also consider a stronger version of GES for
an ensemble of triples {(Rλ,Lλ,pairableλ)}λ∈N depending on the security parameters.

Definition 13. A graded encoding scheme GES for {(Rλ,Lλ,pairableλ)}λ is defined identically as
in Definition 12, except that for every λ ∈ N, the p.p.t. algorithm InstGen outputs a description of
(Rλ,Lλ,pairableλ) and the algorithms (InstGen,Encode,Add, SMult,Mult) behaves w.r.t. the ringR =
Rλ, the label set L = Lλ, and function pairable = pairableλ.

For convenience of notation, in the rest of the paper, we will simply use binary operators ⊕, �
and ⊗ in place of the efficient algorithms Add, SMult and Mult.

4.2 Noisy Graded Encoding Schemes

We generalize the definition above to consider noisy encodings, where there are multiple encod-
ings for the same ring element and label. This necessitates two changes to the definition, providing
additional capabilities that were implicit in the definition of clean graded encodings.

Definition 14 (Noisy Graded Encoding). A noisy graded encoding scheme GES for (R,L, l?,pairable)
where l? ∈ L is associated with the PPT algorithms (InstGen,Encode,Add, SMult,Mult,Eq) just as in the
clean graded encoding from Definition 12, with the addition of the equality testing algorithm Eq. We de-
scribe the additional properties of a noisy graded encoding (on top of what Definition 12 requires) below.

• Probabilistic Encoding Algorithm: The encoding algorithm Encode(ep, α, l) is a probabilistic
algorithm (as opposed to deterministic in the definition of clean encodings). Consequently, we define
[α]l to be the set of all encodings of α ∈ R under label l ∈ L produced by Encode.

• Disjoint Encodings: The sets of encodings of different ring elements under different labels are
disjoint. That is, for every α, α′ ∈ R and l, l′ ∈ L, if (α, l) 6= (α′, l′), [α]l ∩ [α′]l′ = ∅.
When there is no cause for confusion, we will slightly abuse notation and denote A = [α]l when
instead we should be writing A ∈ [α]l.

• Equality Testing: There is an additional p.p.t. algorithm Eq(pp, A1, A2) that takes as input the
public parameter pp, encodings A1 = [α1]l? and A2 = [α2]l? , outputs 1 iff α1 = α2. We call l? the
equality-testing label. Note that for clean graded encoding structures, equality testing can be done
efficiently for every label, by simply testing the equality of the encodings as strings.

• µ-Indistinguishable Linear-homomorphic Operations: For a linear function L : Rn → R, we
abuse notation and denote by L([x]l) the operation of applying the linear function L to the encodings
[x1]l, [x2]l, . . . , [xn]l. This can be done using a combination of Add and SMult.

The indistinguishable-linear homomorphic operations guarantee that performing linear operations to
the encodings of a vector produce indistinguishable encodings as directly encoding the outputs of the
linear operations. In the case of clean graded encoding schemes, since encodings are unique, this
property is automatically fulfilled. With this property, a noisy graded encoding scheme behaves like
a clean graded encoding scheme. In the rest of the paper, for convenience, we abuse notation to write
L([x]l) = [L(x)]l.

Formally, for every PPT adversary A, we require the following games for b = 0 or 1 to be µ-
indistinguishable.

HomGES
A (1λ, b) proceeds as follows:

26

– Public Parameter. The challengerCH sendsA the public and encoding parameters (pp, ep)
$←

InstGen(1λ), which describe a (R,L, l?,pairable)-noisy GES structure.
– Linear Function Query. Repeat the following for an arbitrary number of times determined by
A. Upon A choosing a linear function L and a vector x ∈ Rm of arbitrary length, and a label
l ∈ L, CH does:
∗ If b = 0, sample [x]l

$← Encode(ep,x, l) and send A the encoding X0 = L([x]l).

∗ If b = 1, send A the encoding X1
$← Encode(ep, L(x), l).

– Finally A outputs a bit b′.

4.3 The joint-SXDH Assumption

We observe that encodings of different ring elements under the same label l “acts” as a group:
Gl = {[α]l : α ∈ R} with operation ⊕ that achieves [α1]l ⊕ [α2]l = [α1 + α2]l. (In the case of
clean GES schemes, Gl is actually a group). Moreover, encodings under different labels l1, l2 can
be paired together whenever pairable(l1, l2) = l3 6= ⊥. Therefore, it is natural to view encodings
under labels l1, l2 that are pairable as a noisy generalization of the classical asymmetric bilinear
groups, and GES as a further generalization that enables “a richer computation structure”. We
now naturally generalize the symmetric external Diffie-Hellman (SXDH) assumption over jointly
sampled asymmetric bilinear groups to the setting of (noisy) GES.

Before we define the joint-SXDH assumption, we need to define the notion of the closure of
the pairable relation, which we denote pairable∗. pairable∗(l1, l2) = 1 if there are labels l3 and
l4 such that pairable∗(l1, l3) = 1, pairable∗(l2, l4) = 1, and pairable(l3, l4) 6= ⊥. Otherwise,
pairable∗(l1, l2) = 0.

The joint-SXDH Assumption The joint-SXDH assumption over GES requires that encodings of
the same DDH tuple (a, b, ab) under a set S of labels to be indistinguishable to that of (a, b, r)
under the same set, as long as no two labels in S are in pairable∗, the cloure of the pairable
relation. Formally, for every ensemble {Sλ} of polynomial-sized sets satisfying that for every λ
and every i, j ∈ Sλ, pairable∗λ(li, lj) = ⊥, the following two ensembles are µ-indistinguishable:{

(pp, ep)
$← InstGen(1λ), a, b

$← R : pp, {[a]l, [b]l, [ab]l}l∈Sλ
}
λ{

(pp, ep)
$← InstGen(1λ), a, b, r

$← R : pp, {[a]l, [b]l, [r]l}l∈Sλ
}
λ

When |Sλ| = 1, the above gives the SXDH assumption over GES. When |Sλ| > 1, clearly if any two
labels li, lj are pairable, the above ensembles are distinguishable. In a similar vein, if two labels li, lj
are in the closure of pairable, then again the above ensembles are distinguishable. However, when
no pairs of labels are in the closure of pairable, the joint-SXDH assumption possibly holds.

4.4 Tree-GES: Graded Encoding for Depth-D 4-ary Trees

We now specify the parameters, {(Rλ,Lλ, l?λ,pairableλ)}λ∈N, of the GES we use. Roughly speak-
ing, we require the GES scheme to support a “computation structure” that corresponds to a depth-
D (complete) 4-ary tree. When D is a constant, such a scheme can be instantiated with a GES for a
fixed tuple (L, l?,pairable), and whenD is a logarithmic function, it can be instantiated with GES
for an ensemble {(Lλ, l?λ,pairableλ)}λ∈N. In both cases, we consider arbitrary prime order rings
R ∼= Zp.

27

For convenience, we call such GES schemes, tree-GES schemes. The reason that we consider
GES for both constant and logarithmic depth 4-ary tree is that the former suffices for our FE con-
struction later if assuming the existence of a sub-exponentially secure PRG in NC0, and the latter
is needed if assuming sub-exponentially secure PRG in NC1.

GES for Constant-Depth 4-ary Tree. Let D be a constant. Consider a 4-ary tree T of depth D,
where the root is at layer 0 and the leaves are at layer D. Every node in layer 0 ≤ d ≤ D is labeled
with a length-d 4-ary string, l ∈ {0, 1, 2, 3}d. In particular, the root is labeled with the empty string
ε. A GES scheme for depth-D 4-ary tree is a GES scheme for a fixed tuple (L, l?,pairable) defined
as follows:

• The label set L = {0, 1, 2, 3}≤D is the set of nodes in a depth D 4-ary tree.

Note: It will be instructive to think of encodings with label l ∈ {0, 1, 2, 3}≤D as being associated with
node l in T .

• The equality testing label l? = ε, corresponding to the root of T .

• The function pairable is defined as follows: we allow the first two children l||0 and l||1, or
the second two children l||2 and l||3 of any node l, to be paired together and produce output
label l. That is,

pairable?(l1, l2) =

{
l if (l1, l2) = (l||0, l||1) or (l||2, l||3)

⊥ otherwise

We will let pairable∗ to be the closure of pairable, as defined in Section 4.3. That is, we
allow labels l1, l2 that are descendants of such two children to be paired together, still pro-
ducing label l. Without loss of generality, assume that l1 ≤ l2.

pairable∗(l1, l2) =

{
l if l1, l2 are descendants of l′1, l

′
2 s.t. (l′1, l

′
2) = (l||0, l||1) or (l||2, l||3)

⊥ otherwise

GES for Logarithmic-Depth 4-ary Tree Let D be a logarithmic function. GES for Depth-D 4-ary
Tree is a GES for the ensemble {(L, l?,pairable)} defined as follows: For every λ ∈ N,

• The label set L = Lλ {0, 1, 2, 3}≤D is the set of labels of all nodes in the depth D = D(λ) =
c log λ 4-ary tree.

• The equality testing label l? = l?λ = ε.

• The function pairable is defined identically as above, over the bigger set of labels.

4.5 Connection with Set-based and Graph-based GES

We show that our GES for depth-D 4-ary trees can be implemented using both set-based and
graph-based GES. Towards this, we first express set-based and graph-based GES in our frame-
work, as GES for (L, l?,pairable). Then, we say that GES for (L, l?,pairable) is implemented by
GES for (L′, l?′,pairable′), if there exists a mapping function κ : L → L′, such that,

∀l1, l2 ∈ L, pairablet(l1, l2) 6= ⊥ iff pairableg(κ(l1), κ(l2)) 6= ⊥ (3)

28

In this case, we say that pairable and pairable′ are consistent under mapping κ.

4.5.1 Set-based GES

Set-based graded encodings [GGH13b, BR14, BGK+14b] consider a label set L ⊆ 2U that consists
of subsets of a universe set U . Zero testing can be done at the special label l? = U that is exactly
the universe set (U ∈ L). Finally, for any two sets s0, s1 ∈ L, they can be paired iff they are disjont;
the output label is their union. More precisely,

pairables(s0, s1) =

{
s0 ∪ s1 if s0 ∩ s1 = ∅
⊥ otherwise

Implementing GES for Depth-D 4-ary Trees using Set-based GES To implement GES for depth-
D 4-ary tree using set-based GES, we need to specify: 1) the universe set UD, 2) a mapping κD that
maps every label l ∈ {0, 1, 2, 3}≤D to a subset of UD. Then we need to show that under κD, the
pairable function pairables of the set-based GES and the pairable function pairablet for depth-D
4-ary tree are consistent. We do so via induction over depth d. For all depth d, the universe Ud
contains alphanumeric strings.

• Base case when d = 1: The universe U1 = {a, b, c, d}. The mapping function κ1 is defined as

κ1(ε) = U1, κ1(0) = {a, c} , κ1(1) = {b, d} , κ1(2) = {a, d} , κ1(3) = {b, c}

It is easy to verify that the sets corresponding to labels 0 and 1 are disjoint, as well as the
sets to labels 2 and 3. But, the sets for any other pair of labels are not disjoint. Therefore,
pairables and pairablet are consistent under κ1.

We additionally keep the invariant that for every d, any element in the universe Ud appears
at most in the sets of two distinct leaves l1, l2 ∈ {0, 1, 2, 3}d. This holds for d = 1.

• Induction case from d to d + 1: The induction hypothesis states that for depth d, there is a
universeUd and mapping function κd from {0, 1, 2, 3}≤d to subsets ofUd, such that, pairablet
is consistent with pairables and the above invariant holds. We establish the same for depth
d+ 1.

Define the following extend function that on input an alphanumeric string A outputs a set
of strings that appends to A different suffixes,

extend(A) = A||0|| {a, b, c, d} ∪A||1|| {a, b, c, d} ∪ A||2|| {e, f, g, h} || {a, b, c, d}

where S|| {a, b, c, d} = {Xa,Xb,Xc,Xd : X ∈ S} is the set of strings obtained by append-
ing every string in set S with one of the 4 letters a, b, c, d, and for a single stingX|| {a, b, c, d} =
{X} || {a, b, c, d}. Moreover, let extend(S) on input a set S outputs the union of the strings
obtained by extending each string in S, that is, extend(S) = ∪A∈S extend(A). We observe
that for any sets S1, S2, extend(S1) and extend(S2) are disjoint iff S1 and S2 are.

The universe Ud+1 = extend(Ud). The mapping function κd+1 is defined as follows:

– For l ∈ {0, 1, 2, 3}≤d, κd+1(l) = extend(κd(l)).

29

By the observation above, for any l1, l2 ∈ {0, 1, 2, 3}≤d,

pairables(κ
d+1(l1), κd+1(l2)) 6= ⊥ iff pairables(κ

d(l1), κd(l2)) 6= ⊥ iff pairablet(l1, l2)

where the second iff follows from the induction hypothesis. Therefore, pairables and
pairablet are consistent under κd+1 for these labels of length no longer than d.

– For l ∈ {0, 1, 2, 3}d+1, let l = l′||x for l′ ∈ {0, 1, 2, 3}d. Starting from the empty set, we
grow the set κd+1(l) by add multiple strings corresponding to each A ∈ κd(l′). For each
A ∈ κd(l′), the strings we add are different in two cases: Recall that by the invariant,
A ∈ κd appears at most in the sets of two labels l′0 < l′1 of length d. If l′ = l′0 set the flag
β = 0, and otherwise β = 1. (In the case A appears in only one set, set β = 0). We now
specify the strings B1, · · ·B6 to be added corresponding to A depending on the flag β.

∗ Add B1, B2 as

B1, B2 =


Aβa,Aβc If x = 0

Aβb,Aβd If x = 1

Aβa,Aβd If x = 2

Aβb,Aβc If x = 3

(4)

∗ If β = 0, add B3 · · ·B6 as

B3, B4, B5, B6 =


(Ae,Ag)× (a, c) If x = 0

(Ae,Ag)× (b, d) If x = 1

(Af,Ah)× (a, c) If x = 2

(Af,Ah)× (b, d) If x = 3

(5)

where (A,B)× (C,D) are the four strings A||C, A||D, B||C, B||D.
On the other hand, if β = 1, add B3 · · ·B6 as

B3, B4, B5, B6 =


(Ae,Ah)× (a, d) If x = 0

(Ag,Af)× (b, c) If x = 1

(Ae,Ah)× (a, d) If x = 2

(Ag,Af)× (b, c) If x = 3

(6)

Note that the above are all the strings related to A to be added to sets κd+1(l′0||x) and
κd+1(l′1||x) for any x ∈ {0, 1, 2, 3}. Observe that the invariant holds — every string
appears at most twice.

It remains to show that for any l0, l1 such that one of them, say l0, has length d+1, pairables
and pairablet are consistent under the above defined κd+1. We again consider cases:

– Case 1: l0 and l1 are both children of l′ ∈ {0, 1, 2, 3}d. Locally among the four children of l′,
for everyA ∈ κd(l′) with flag β, the stringsB0, B1 added to different children according
to equation (4) allows children 0 and 1, as well as 2 and 3, to be paired together, while
preventing all other pairs of children from being paired (like in the base case). On the
other hand, strings B3, · · · , B6 in both case β = 0 and β = 1 still permits children 0 and
1, as well as 2 and 3 to be paired. Therefore, pairables and pairablet are consistent
locally for the 4 children of every node l′ at layer d.

30

– Case 2: If l0 = l′0||x0 and l1 = l′1||x1 for different l′0, l
′
1 ∈ {0, 1, 2, 3}

d. Under pairablet, l0
and l1 are pairable iff l′0 and l′1 are. We show that under pairables, κd+1(l0) and κd+1(l1)
are pairable iff κd(l′0) and κd(l′1) are. Then by the induction hypothesis, pairablet and
pairables are consistent for such l0, l1.
First, if κd(l′0) and κd(l′1) are disjoint, then so are κd+1(l0) and κd+1(l1).
It remains to show that if the former two sets are not disjoint, then neither are the latter
two. LetA be a string in both κd(l′0) and κd(l′1). Assume w.l.o.g. that l′0 < l′1. Thus, l′0||x0

is associated with flag 0 and l′1||x1 with flag 1. No matter what x0 and x1 are, there is a
letter y ∈ {e, f, g, h} and a letter z ∈ {a, b, c, d}, such that, string Ayz is added to both
κd+1(l0) and κd+1(l1), which are hence not disjoint.

– Case 3: If l0 = l′0||x0 and l1 = l′1 ∈ {0, 1}≤d. Under pairablet, l0 and l1 are pairable iff l′0
and l′1 are. By induction hypothesis, pairables(κd(l′0), κd(l′1)) = ⊥ iff pairablet(l′0, l

′
1) =

⊥. It suffices to show that pairables(κd+1(l0), κd+1(l1)) = ⊥ iff pairables(κd(l′0), κd(l′1)) =
⊥. First, if κd(l′0) and κdl′1 are disjoint, then so are κd+1(l0) and κd+1(l1). If κd(l′0) and
κd(l′1) are not disjoint, letA be a string in both sets. Then all the strings extenasded from
A in κd+1(l0) are contained in κd+1(l1). Thus they are not disjoint either.

In summary, we conclude that pairables and pairablet are consistent under κd+1.

4.5.2 Graph-based GES

Graph-based graded encodings [GGH15] are associated with an underlying directed graph G =
(V,E). They have a label set L that consists of all paths p = u v in G, denoted as L = path(G).
Zero testing can be done at any path. Finally, for any two paths p0, p1 ∈ L, they can be paired
iff they are consecutive paths like p0 = u v and p1 = v w and the output label is the
concatenation of the two paths p = u w. More precisely,

pairableg(p0, p1) =

{
u w if ∃b, pb = u v, p1+b = v w

⊥ otherwise

We note that the graph-based GES scheme can be extended to work with the following more
permissive pairableg function, when encodings of 1 under every label is released.

pairableg(p0, p1) =

{
u w if ∃b, pb = u v, p1−b = v′ w and v v′ ∈ path(G)

⊥ otherwise

Below, we work with this pairableg function.

Implementing GES for Depth-D 4-ary Trees using Graph-based GES To implement GES for
depth-D 4-ary tree using graph-based GES, we need to specify: 1) the underlying graph GD, 2)
a mapping κD that maps every lable l ∈ {0, 1, 2, 3}≤D to a path p in GD. Then we need to show
that under κD, the pairable function pairableg of the graph-based GES and the pairable function
pairablet for depth-D 4-ary tree are consistent. We do so via induction over depth d.

• Base case when d = 1: The graphG1 contains two paths p0 = s→ v0 → t and p1 = s→ v1 → t.
The mapping function κ1 is defined as

κ1(ε) = s t, κ1(0) = s→ v0, κ1(1) = v0 → t, κ1(2) = s→ v1, κ1(3) = v1 → t

31

It is easy to verify that under mapping κ1, pairablet and pairableg are consistent.

We additionally keep the invariant that for every d, labels l of length exactly d are mapped
to a direct edge in Gd. This invariant clearly holds for d = 1.

• Induction case from d to d + 1: The induction hypothesis states that for depth d, there is a
graph Gd and mapping function κd from {0, 1, 2, 3}≤d to paths in Gd, such that, pairablet is
consistent with pairableg and the above invariant holds. We want to establish the same for
depth d+ 1.

Gd+1 is constructed by replacing every edge u→ v in Gd with the graph G1, that is, two new
nodes ν0 and ν1 are added and edge u → v is replaced with edges u → ν0, ν0 → v, u → ν1

and ν1 → v. Note that every node and path in Gd is still a node and path in Gd+1, and if
there is no path from u to v in Gd, there is no such path in Gd+1 either.

The new mapping function κd+1 from {0, 1, 2, 3}≤d+1 to paths inGd+1 are defined identically
as κd on the sub-domain {0, 1, 2, 3}≤d. We now define its output on labels in {0, 1, 2, 3}d+1.
Let l be such a label of length d, and κd+1(l) = κd(l) = u→ v.

κd+1(l||0) = u→ ν0, κd+1(l||1) = ν0 → v, κd+1(l||2) = u→ ν1, κd+1(l||3) = ν1 → v

Note that the above invarant holds w.r.t. κd+1.

We show that pairablet and pairableg are consistent with each other through κd+1. Since
κd+1 and κd agrees on every label of length no larger than d, it suffices to argue that pairablet
and pairableg are consistent for two labels l1, l2 where at least one of them has length d+ 1.
Consider the following cases:

– |l1| = d + 1 and |l2| ≤ d (or the other way around). In this case, l1 = l′1||c1 for some
length-d label l′1, and pairablet(l1, l2) = pairablet(l

′
1, l2). Next we show that

pairableg(κ
d+1(l1), κd+1(l2)) = pairableg(κ

d(l′1), κd(l2)) 6= ⊥ iff pairablet(l
′
1, l2) 6= ⊥

The iff follows from the induction hypothesis. To see the first equation, consider the
example c1 = 0. In this case, if κd(l′1) = u → v, then κd+1(l) = u → ν0. Let (u′, v′) =
κd(l′2) = κd+1(l2). By construction of Gd+1, if u→ v and u′ v′ are connected via some
path v u′ (or via some path v′ u) in Gd, then u→ ν0 and u′ v′ are connected via
path ν0 → v u′ (or via v′ u) in Gd+1, and vice versa. Similarly, the first equation
holds for any other value of c1.

– |l1| = |l2| = d + 1. In this case, l1 = l′1||c1 and l2 = l′2||c2. 1) If l′1 = l′2, it fol-
lows from the same analysis as in the base case that pairablet and pairableg are
consistent for such l1, l2. 2) If l′1 6= l′2, it follows from similar analysis as above that
pairableg(κ

d+1(l1), κd+1(l2)) = pairableg(κ
d(l′1), κd(l′2)). The latter equals to pairablet(l

′
1, l
′
2)

by the induction hypothesis, which in turn equals to pairablet(l1, l2) in the setting for
tree.

5 Function-Hiding Secret-Key IPE

In this section, we construct a function-hiding secret-key inner-product functional encryption
(IPE) scheme. We first recall in Section 5.3 the IPE scheme proposed by Bishop, Jain and Kowal-
czyk (BJK) [BJK15] which is based on the SXDH assumption on asymmetric bilinear groups and
satisfies a weak notion of function-hiding. We build on the BJK scheme in two important ways.

32

First, we require our scheme to be secure even when the randomness for generating the func-
tion keys and ciphertexts are “shared” between different instances of the IPE scheme. This strength-
ened notion called multi-instance function hiding (with shared randomness) is introduced in Sec-
tion 5.4. We observe in Section 5.5 that the weak function-hiding property of the BJK scheme is
robust to sharing randomness as required in the multi-instance setting.

Second, in Section 5.7, we generically (without making any other assumptions) bootstrap any
weak function-hiding IPE scheme that is multi-instance secure to a (strong) function-hiding IPE
scheme that is multi-instance secure. We remark that even setting aside the multi-instance aspect
of the IPE scheme, our scheme gives a construction of function-hiding IPE secure under the SXDH
assumption on asymmetric bilinear groups. As we described in the introduction, strong function-
hiding IPE was previously constructed in the work of Datta, Dutta and Mukhopadhyay [DDM16];
however, their construction is complex and non-generic, whereas we show a general transforma-
tion from any weak function-hiding IPE scheme.

We start by introducing secret-key IPE in Section 5.1 and asymmetric bilinear groups in Sec-
tion 5.2.

5.1 Secret-Key Inner Product Functional Encryption

A secret-key inner product functional encryption (SKIPE) scheme for length-N inner products is a
secret key FE scheme for the function class of computing inner products of length-N vectors over
some ring R. In this work, we consider a slight generalization, and allow the setup algorithm
of the secret key IPE scheme to receive as input some public parameter pp, which in particular
specifies the ring R over which inner products are computed. This generalization allows us to
flexibly consider running the same scheme with different public parameters. For example, both
the BJK IPE scheme and our secret key IPE scheme use a public parameter pp that describes a pair
of asymmetric bilinear groups of prime order p, and computes inner products over R = Zp. Due
to our generalization, we can consider instantiating these schemes with different distributions of
asymmetric bilinear groups. In particular, in our FE construction later, we will instantiate them
with graded encodings with different labels that behave like asymmetric bilinear groups.

Syntax Let G be a public parameter generator and N = N(λ). A secret-key inner product func-
tional encryption (IPE) scheme skIPE for length-N inner products consists of four PPT algorithms
(skIPE.Setup, skIPE.KeyGen, skIPE.Enc, skIPE.Dec). When instantiated with G, the algorithms pro-
ceed as follows:

• Setup: skIPE.Setup(1λ, pp) is an algorithm that on input a security parameter 1λ and a pub-
lic parameter pp in the support of G(1λ) outputs a master secret key msk. pp contains the
description of a ringR.

• Key Generation: skIPE.KeyGen(msk,y) on input the master secret key and the description of a
vector y ∈ RN , outputs a secret key sk.

• Encryption: skIPE.Enc(msk,x) on input the master secret key and a message x ∈ RN , outputs
an encryption ct of x.

• Decryption: skIPE.Dec(sk, ct) computes x · y overR.

33

Correctness: We define perfect correctness of decryption here, although our definition can be
generalized to allow a negligible decryption error. For every λ, every pp, and every x,y ∈ RN , the
following holds

Pr

 msk
$← skIPE.Setup(1λ, pp)

ct
$← skIPE.Enc(msk,x)

sk
$← skIPE.KeyGen(msk,y)

: skIPE.Dec(sk, ct) = x · y overR

 = 1

5.1.1 Function Hiding and Weak Function Hiding

In the secret-key setting, researchers have considered a very strong security property of functional
encryption, namely input- and function-hiding. The combination of input- and function-hiding
provides privacy guarantees not only for the encrypted inputs but also for the encoded functions.
More specifically, in the setting of inner product encryption, the security definition requires that
the function keys and ciphertexts of vectors {y0

j} and {x0
i } are indistinguishable from that of {y1

j}
and {x1

i }, as long as the inner products of every input and function pair are identical. Namely,

x0
i · y0

j = x1
i · y1

j

Definition 15 (Function Hiding for Secret Key IPE). Let G be a public parameter generator and N a
polynomial. We say that a secret key IPE skIPE = (skIPE.Setup, skIPE.KeyGen, skIPE.Enc, skIPE.Dec)
for computing length-N inner products is µ-function hiding w.r.t. G, if for every PPT adversary A, and
every sufficiently large security parameter λ ∈ N, the adversary’s advantage in the following games is
bounded by µ(λ):

AdvtskIPEA,G =
∣∣∣Pr[FH.ExpskIPEA,G (1λ, 0) = 1]− Pr[FH.ExpskIPEA,G (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

The game FH.ExpskIPEA,G (1λ, b) proceeds as follows:

• Public Parameter and Key Generation. The challenger CH samples a public parameter pp $← G,
which contains the description of a ringR, and a master secret key msk

$← skIPE.Setup(1λ, pp).

• Function and Message Queries. Repeat the following for an arbitrary number of times determined
by A: In iteration i,

– Upon A choosing a pair of challenge functions y0
i ,y

1
i ∈ RN(λ). CH sends A a function key

ski
$← skIPE.KeyGen(msk,ybi).

– Upon A choosing a pair of challenge messages x0
i ,x

1
i ∈ RN(λ). CH sends A a ciphertext

cti
$← skIPE.Enc(msk,xbi).

• Finally A outputs a bit b′.

Restriction R: Every message query x0
i ,x

1
i and every function query y0

j ,y
1
j must satisfy that x0

i · y0
j =

x1
i · y1

j .

We call the above definition of security function-hiding security, or sometimes strong function-
hiding security, to distinguish from the weaker security guarantee below.

34

Definition 16 (Weak Function Hiding for Secret Key IPE). We say that a secret key IPE skIPE for
computing length-N inner products is µ-weak function hiding w.r.t. G, if the condition in Definition 15
holds for a modified experiment wFH.ExpskIPEA,G (1λ, b) which is identical to FH.ExpskIPEA,G (1λ, b) except that
the restriction R is replaced with the restriction R′ below.

Restriction R′: Every message query x0
i ,x

1
i and every function query y0

j ,y
1
j must satisfy that x0

i · y0
j =

x0
i · y1

j = x1
i · y1

j .

5.2 Asymmetric Bilinear Groups

Let G denote a group generator that on input 1λ outputs (p,G0, G1, GT ,⊗), where G0, G1, GT are
groups with prime order p. G0 and G1 are referred to as the source groups and GT as the tar-
get group. Assume without loss of generality that the description of the source groups contain
generators g0, g1 of G0, G1. In addition, the following properties hold.

• Admissible: ⊗ : G0 ×G1 → GT is efficiently computable and gT = g0 ⊗ g1 generates GT .

• Bilinear: For any a, b ∈ Zp, ga0 ⊗ gb1 = (g0 ⊗ g1)ab = gabT .

The Bracket Notation To be consistent with the notations for graded encodings later, we use the
following bracket notations to denote group elements.

[a]0 = ga0 , [b]1 = gb0, [c]T = gcT

Under this notation, the generators in group x ∈ {0, 1, T} is represented as [1]x = gx. We also
use the following vector notation to represent vectors of group elements succinctly: For any v =
(v1, · · · , vm) ∈ Zmp , and x ∈ {0, 1, T}:

[v]x = [v1]x · · · [vm]x

Homomorphic Operations Informally, [a]x can be viewed as an encoding of a in group Gx.
Then, using multiplication and exponentiation in each group, we can perform addition “⊕” and
scalor multiplication “�” to vectors encoded in the same group x. Formally, for any v,w ∈ Zmp ,
and α ∈ Zp,

[v]x ⊕ [w]x := [v + w]x = ([v1 + w1]x · · · [vm + wm]x)

α� [v]x := ([v]x)α = [αv]x = ([αv1]x · · · [αvm]x)

In particular, this means we can homomorphically evaluate any linear function L in Zp, over
encoded vectors. We conveniently write

L([v]x) = [L(v)]x

Using pairing, we can compute inner product “·” of two vectors encoded in different source
groups.

[v]0 · [w]1 :=
⊕
i∈[m]

[vi]0 ⊗ [wi]1 = [v ·w]T

35

The SXDH Assumption The SXDH assumption states that the standard DDH assumption holds
in each of the source groups. Formally, for each source group Gx for x ∈ {0, 1}, the following two
ensembles are µ-indistinguishable.{

(p,G0, G1, GT ,⊗)
$← G(1λ), a, b

$← Zp : (p,G0, G1, GT ,⊗), [a]x, [b]x, [ab]x

}
λ{

(p,G0, G1, GT ,⊗)
$← G(1λ), a, b, r

$← Zp : (p,G0, G1, GT ,⊗), [a]x, [b]x, [r]x

}
λ

5.3 BJK Weak Function Hiding Secret Key IPE

Bishop, Jain and Kowalczyk constructed a secret key IPE with the weak function hiding property
using asymmetric bilinear groups in which the SXDH assumption holds. We recall their scheme.

Dual Pairing Vector Space The BJK construction employs the concept of dual pairing vector
space of Okamoto and Takashima [OT08, OT09]. The algorithm Dual(Zmp) samples two random
sets of vectors B = {b1, · · ·bm} and B? = {b?1 · · ·b?m} of Zmp , subject to the constraint that they are
“dual orthonormal” meaning that B? = (BT)−1, that is,

bi · b?i = 1 (mod p) for all i
bi · b?j = 0 (mod p) for all i 6= j

For convenience, we will denote by B1 = [b1‖ · · · ‖bm/2] and B2 = [bm/2+1‖ · · · ‖bm] in Zm×(m/2)
p

the first and the second halves of columns in B, when m is even.

Overview of the BJK Scheme Fix any input length polynomial N = N(λ). The BJK scheme for
computing length-N inner products, which we will denote as skIPE

N , treats the plaintext vector
x and the key vector y completely symmetrically. To achieve weak function hiding, they encode
x in source group G0 and y in source group G1. The inner product can then be computed using
pairing between G0 and G1. The scheme cannot directly publish [x]0 and [y]1, since the SXDH
assumption does not imply that encoded (non-random) vectors would be hidden. Instead, x,y
are first “embedded” into dual orthonormal spaces, like B?x and By, before encoding. The dual
orthonormal spaces are sampled at random, and hence the embeddings are random, subject to
preserving the inner product x · y. For the proof to go through, another key ingredient in the
scheme is embedding the vectors twice and additionally masking the embedding with random
scalars. More specifically, the scheme samples B,B? $← Dual(Z2m

p) and α, α?, β, β?
$← Zp, and

embeds x,y as follows:

vx = α?B?
1x + β?B?

2x vy = αB1y + βB2y

Clearly, vx · vy = (αα? + ββ?)x · y

(To remove the effect of θ = (αα? + ββ?) from the final output, the scheme separately embeds the
scalars in smaller dual orthonormal spaces D,D? $← Dual(Z2

p).) We refer to the first embedding
using B1, B

?
1 as the first slot, and that using B2, B

?
2 the second slot. The use of double embedding

and random scalar masks provide enough ambiguity, so that, in a hybrid security proof, vx (or vy)
can be information theoretically “repurposed” to embed a different x? in one of the two slots, w.r.t.
a different dual orthonormal space F, F ?. This allows us to gradually change the embedded vec-
tors in different slots of different function keys and ciphertexts one by one in the hybrid security
proof.

36

Because of the importance of this double embedding, we will explicitly write it as:

dE(B,v;α, β) = αB1v + βB2v , and
dE(B,v;α, β) · dE(B?,w;α?, β?) = θ(v ·w) , where θ = αα? + ββ?

Remark 1 (Linearity of the Double Embedding Function). We remark that the double embedding func-
tion dE is lineally homomorphic in the sense that, for any w1 = dE(B,v1;α, β) and w2 = dE(B,v2;α, β),
the following holds:

w1 + w2 = dE(B,v1 + v2;α, β)

γw1 = dE(B, γv1;α, β)

This linearity will be very useful later when constructing our slotted public-key IPE scheme.

The BJK Schemes We now formally describe the BJK scheme skIPE
N for computing length-

N inner products. Let pp = (p,G0, G1, GT ,⊗) be the public parameters describing asymmetric
bilinear groups with order p.

• Setup: skIPE.Setup(1λ, pp) samples (B,B?)
$← Dual(Z2N

p) and (D,D?)
$← Dual(Z2

p). It sets
msk = (B,B?, D,D?).

• Key Generation: skIPE.KeyGen(msk,y) on input the master secret key msk = (B,B?, D,D?)

and vector y ∈ ZNp . It samples two random scalars α, β $← Zp, and then computes

sk[1] = [c]1 = [dE(B,y;α, β)]1

sk[2] = [e]1 = [dE(D, 1;α, β)]1

It outputs sk = [c]1, [e]1.

• Encryption: skIPE.Enc(msk,x) on input the master secret key msk = (B,B?, D,D?) and vector
x ∈ Zmp , samples two random scalars α?, β? $← Zp, and then computes

ct[1] = [c?]0 = [dE(B?,x;α?, β?)]0

ct[2] = [e?]0 = [dE(D?, 1;α?, β?)]0

It outputs ct = [c?]0, [e
?]0.

• Decryption: skIPE.Dec(sk, ct) on input sk = [c]1, [e]1 and ct = [c?]0, [e
?]0 computes

[e?]0 ⊗ [e]1 = [αα? + ββ?]T = [θ]T

[c?]0 ⊗ [c]1 = [dE(B?,x;α?, β?) · dE(B,y;α, β)]T

= [(αα? + ββ?)(x · y)]T

= [θ(x · y)]T

If z = x·y is bounded by some polynomial bound Γ = Γ(λ). Then z can be extracted through
trying all possible values i ∈ [Γ], and outputting the value i satisfying

[θ(x · y)]T = i� [θ]T

It is easy to verify that the BJK scheme is correct for computing inner products whose value fall
into a polynomial range.

37

Weak Function Hiding In [BJK15], it is shown that their scheme guarantees the indistinguisha-
bility of experiments FH.Exp(1λ, 0) and FH.Exp(1λ, 1) if the adversaries choose only message and
function queries {(x0

i ,x
1
i)} and {(y0

j ,y
1
j)}, such that,

x0
i · y0

j = x0
i · y1

j = x1
i · y0

j = x1
i · y1

j

This restriction is even more stringent than the restriction in our weak function hiding definition.
However, a careful examination of their security proof reveals that either the second or the third
equation (they are symmetric) is redundant (namely, their security proof goes through without it).
In other words, the BJK scheme satisfies the weak function-hiding security definition.

Lemma 3 ([BJK15]). Assume that the SXDH assumption holds in the asymmetric bilinear groups gener-
ated by G. Then, for any polynomial N , the BJK secret key IPE scheme skIPE

N is weak function hiding
w.r.t. G.

Proof Idea. The proof of this lemma appears in the work of Bishop, Jain and Kowalczyk [BJK15].
Here, we describe the intuition behind the proof, highlighting the reason why they only achieve
weak function-hiding.

The BJK proof strategy uses two sequence of hybrids to show the indistinguishability of the
two experiments, wFH.ExpIPEA,G(1λ, 0) and wFH.ExpIPEA,G(1λ, 1), where the former generates function
keys and ciphertexts for vectors {y0

j} and {x0
i }, and the latter generates keys and ciphertexts for

{y1
j} and {x1

i }. The first sequence of hybrids switches the ciphertexts from encrypting {x0
i } to

encrypting {x1
i } one by one, while keeping the function keys always the same, encoding vectors

{y0
j}. The indistinguishability of neighboring hybrids in this sequence relies on the fact that

x0
i · y0

j = x1
i · y0

j (7)

for all i, j. (In fact, y1
j never appears in these hybrids and cannot play any role in their indistin-

guishbability proof.)
Following the first sequence, the second sequence switches the function keys from encoding

{y0
j} to encoding {y1

j}, while keeping the ciphertexts the same, encrypting {x1
i }. For the same

reason, the indistinguishability of neighboring hybrids in the second sequence only relies on the
fact that

x1
i · y0

j = x1
i · y1

j (8)

for all i, j. Therefore, the indistinguishability of wFH.ExpIPEA,G(1λ, b) for b = 0, 1 holds as long as
x0
i · y0

j = x1
i · y0

j = x1
i · y1

j . In other words, the BJK scheme satisfies weak function hiding. Indeed,
this particular way of proving security seems to require both conditions 7 and 8 above, resulting
in weak function-hiding.

We will show in the sequel a general transformation that takes any weak function-hiding
scheme (in particular, the BJK scheme) for length-2N inner products and converts it into a strong
function-hiding scheme for length-N inner products.

For completeness, we give the full proof of security of the [BJK15] scheme in Appendix ??.

5.4 Multi-Instance Function Hiding

In this work, as we noted above, we need (and will construct) secret key IPE schemes with the
full function hiding property, as opposed to weak function hiding achieved by the BJK scheme.
Furthermore, we strengthen the security property to consider multi-instance function hiding. By an

38

instance of the IPE scheme, we refer to a master secret key generated w.r.t. some public parameter,
and the function keys and ciphertexts generated using this master secret key. We require func-
tion hiding to hold even when an adversary sees the functional keys and ciphertexts of multiple
instances. Clearly, if all instances are independent, then multi-instance function hiding follows
from the function hiding of each instance via a simple hybrid argument. We here consider a two-
fold correlation between different instances: First, the function keys and ciphertexts of different
instances are generated using shared randomness. Second, different instances are w.r.t. public pa-
rameters sampled jointly by a multi-parameter generator. These two features will be important
for our construction of FE from graded encoding schemes later.

Multi-Parameter Generator: LetMG denote a multi-parameter generator that on input 1λ out-
puts a set of polynomial number m = m(λ) of public parameters {ppi}i∈[m]. We consider the
restricted case where all public parameters specify the same ringR for computing inner products.
An example of such a generator we consider is a multi-group generator that samples parameters
ppi = (p,G0,i, G1,i, GT,i,⊗i) describing asymmetric bilinear groups where ⊗i : G0,i ×G1,i → GT,i.

Definition 17 (Multi-Instance Function Hiding). Let MG be a multi-parameter generator, and N =
N(λ) and m = m(λ) be polynomial functions. We say that a secret key IPE skIPE for computing length-N
inner products is m-multi-instance µ-function hiding w.r.t. MG, if for every PPT adversary A, and
every sufficiently large security parameter λ ∈ N, the adversary’s advantage in the following games is
bounded by µ(λ):

AdvtskIPEA,MG =
∣∣∣Pr[MFHskIPE

A,MG(1λ, 0) = 1]− Pr[MFHskIPE
A,MG(1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

The experiment MFHskIPE
A,MG(1λ, b) proceeds as follows:

• Public Parameter and Key Generation. Public parameters (pp1, · · · , ppm)
$←MG(1λ) are sam-

pled, which contain the description of a ring R. The challenger CH samples master secret keys
{mskk

$← skIPE.Setup(1λ, ppk)}k∈[m].

• Function and Message Queries. Interact with A in an arbitrary number of iterations, where in
each iteration, A has four options.

Below every r?i and rj are random coins shared across the generation of multiple function keys and
ciphertexts, sampled independently and randomly by CH .

– Upon A sending message query (mesg (x0
k,i or x1

k,i), k, i) for k ≤ m, CH sends A ciphertexts

ctk,i
$← skIPE.Enc(mskk,x

b
k,i; r

?
i).

– Upon A sending function query (func (y0
k,j or y1

k,j), k, j) for k ≤ m, CH sends A function

keys skk,i
$← skIPE.KeyGen(mskk,y

b
k,i; ri).

– Upon A sending auxiliary message query (aux-mesg {xl,k,i}l, k, i) for k > m, CH sends A
ciphertexts {ctl,k,i

$← skIPE.Enc(mskk,xl,k,i; r
?
i)}l.

– Upon A sending auxiliary function query (aux-func {y1,k,j}l, k, j) for k > m, CH sends A
function keys {skl,k,j

$← skIPE.KeyGen(mskk,yl,k,j ; rj)}l.

For every k, i, j, queries of form (?, k, i) can only be submitted once.

39

• Finally A outputs a bit b′.

Restriction: For every k ∈ [m], challenge message query x0
k,i,x

1
k,i and function query y0

k,j ,y
1
k,j must

satisfy that x0
k,i · y0

k,j = x1
k,i · y1

k,j .

Note that the in the above definition, there are two types of quries, the challenge ones (mesg (x0
k,i or x1

k,i), k, i)

and (func (y0
k,j or y1

k,j), k, j), and the auxilary ones (aux-mesg {xl,k,i}l, k, i) and (aux-func {y1,k,j}l, k, j).
For the challenge queries, the information which message or function vectors are encoded must
be hidden. In this case, the same randomness r?i , ri can not be reused within the same instance.
On the other hand, for the auxiliary queries, no hiding guarantees are required and r?i , ri can be
reused even within the same instance.

5.5 Multi-Instance Weak Function Hiding

We can similarly consider weak function hiding in the multi-instance setting.

Definition 18 (Multi-Instance Weak Function Hiding). LetMG be a multi-parameter generator and
N a polynomial. We say that a secret key IPE skIPE for computing length-N inner products is µ-multi-
instance weak function hiding w.r.t.MG if the condition in Definition 17 holds with a more stringent
restriction.

• Restriction: For every k ∈ [m], every challenge message query x0
k,i,x

1
k,i and challenge function query

(y0
k,j ,y

1
k,j) must satisfy that x0

k,i · y0
k,j = x1

k,i · y0
k,j = x1

k,i · y1
k,j .

As discussed above, the BJK scheme is function hiding w.r.t. a G that samples asymmetric bi-
linear groups where SXDH holds. In the multi-instance setting, when different instances share the
random coins for generating function keys and ciphertexts, we show that the BJK scheme is multi-
instance function hiding w.r.t. any multi-group generatorMG that genenrates many asymmetric
bilinear groups where SXDH holds jointly, formalized below.

The Joint-SXDH Assumption Consider (pp1, · · · , ppm)
$← MG(1λ) generated by MG, where

ppi = (p,Gi,0, Gi,1, Gi,T ,pairi) describes the ith pair of asymmetric bilinear groups. Like before,
we denote elements in Gi,x using the braket notation [a]ix. The joint-SXDH assumption states
that for any x, encodings of the same DDH tuple a, b, ab in all xth source group {Gi,x} are indis-
tinguishable from that of a, b, r. Formally, for each x ∈ {0, 1}, the following two ensembles are
µ-indistinguishable.{

(pp1, · · · , ppm)
$←MG(1λ), a, b

$← Zp : (pp1, · · · , ppm), {[a]ix, [b]ix, [ab]ix}i∈[m]

}
λ{

(pp1, · · · , ppm)
$←MG(1λ), a, b, r

$← Zp : (pp1, · · · , ppm), {[a]ix, [b]ix, [r]ix}i∈[m]

}
λ

When m = 1, the joint-SXDH assumption is exactly the SXDH assumption.

5.6 BJK is Multi-Instance Weak Function Hiding

Lemma 4. Assume that the joint-SXDH assumption holds in the asymmetric bilinear groups generated by
MG. Then, for any polynomial N , the BJK secret key IPE scheme skIPEN is multi-instance weak function
hiding w.r.t.MG.

40

Proof Sketch. Towards showing the indistinguishability of MFHsIPE
A,MG(1λ, 0) and MFHsIPE

A,MG(1λ, 1)
for any PPT A, it suffices to show their indistinguishability against a class of weaker adversaries
that only send challenge queries (mesg (x0

k?,i or x1
k?,i), k

?, i) and (func (y0
k?,j or y1

k?,j), k
?, j) in a

single instance k? ≤ m, and in all other instances k 6= k? it only asks for auxiliary queries
(aux-mesg {xl,k,i}l, k, i) and (aux-func {y1,k,j}l, k, j) where the inputs and functions do not change.
This holds since security against all PPT adversaries is implied by security against the weaker ad-
versaries via a simple hybrid argument, where the kth hybrid (for j ≤ m) is identical to MFHsIPE

A,MG(1λ, 0),
except that input and function vectors encoded in the first k instance are x1

k′,i,y
1
k′,j (as opposed to

x0
k′,i,y

0
k′,j) for k′ ≤ k.

Fix such a weaker adversaryA, and security parameter λ. Assume w.l.o.g. thatA submits chal-
lenge queires only in the first instance k = 1 and submits auxiliary queries in all other instances
k > 1. Call k the challenge instance and all others auxiliary instances. Security against A is almost
the same as single-instance weak function hiding, except from the following differences:

• the random scalars used in generating the challenge function keys and ciphertexts—αj , βj
for sk1,j and α?i , β

?
i for ct1,i, are also used for generating many auxiliary function keys skl,k,j

and ciphertexts ctl,k,i in auxiliary instances k > 1.

Therefore, security againstA follows from essentially the same proof of single-instance weak func-
tion hiding in BJK, except from the need to simulate the auxiliary instances forA. Below, we briefly
review the BJK proof and show how to adapt it to simulate auxiliary instances.

Let Q1, Q2 be respectively upper bounds on the number of ciphertexts and function keys that
A obtains in each instance. The BJK proof calls a normal ciphertext of x a type-(x,x) ciphertext,
since x is embedded twice. It also uses the notion of a type-(x, 0) and type-(0,x) ciphertext, where
x is only embedded once as α?B?

1x or β?B?
2x. Similarly, there are type-(y,y), type-(y, 0) and

type-(0,y) function keys.
The BJK proof goes through two sequences of hybrids:

• Sequence Game0,Z · · ·GameQ1,Z changes the input vectors being encoded. In Gamej,z the
first j ciphertexts in the challenge instance are of type-(x1

j ,x
1
j) and the rest ciphertexts are of

type-(x0
j ,x

0
j), while all keys are of type-(y0

j ,y
0
j).

• Sequence GameO,0 = GameQ1,Z · · ·GameO,j changes the function vectors being encoded.
In GameO,j the first j function keys in the challenge instance are of type-(y1

j ,y
1
j) and the

rest are of type-(y0
j ,y

0
j), while all ciphertexts are of type-(x1

j ,x
1
j).

In our context, each hybrid additionally generates function keys of type-(yl,k,j ,yl,k,j) and cipher-
texts of type-(xl,k,j ,xl,k,j) in auxiliary instances. Note that they remain the same in all hybrids.

Since in the BJK IPE scheme, the function key and ciphertexts are completely symmetric, the in-
distinguishability proof for the neighboring hybrids in the first and second sequences are identical.
Therefore it suffice to prove the indistinguishability between Gamej−1,Z and Gamej,Z , which in
turn is proven using another sequence of hybrids Game0

j,Z = Gamej−1,z,Game1
j,Z , · · · ,Game7

j,Z =
Gamej,Z as follows.

• Game1
j,Z is the same as Game0

j,Z except that all challenge ciphertexts i < j are of type-
(0,x1

i), the jth is of type-(0,x0
j), and all others i > j are of type-(0,x0

i). And every auxiliary-
ciphertexts ctl,k,i is of type-(0,xl,k,i).

• Game2
j,Z is the same as Game1

j,Z , except that the jth challenge ciphertext is of type-(x0
j ,x

0
j).

And all auxiliary-ciphertexts ctl,k,j for the same j are of type-(xl,k,j ,xl,k,j).

41

• Game3
j,Z is the same as Game2

j,Z , except that the jth challenge ciphertext is of type-(x0
j ,x

1
j).

• Game4
j,Z is the same as Game3

j,Z , except that all challenge ciphertexts i < j are of type-
(x1
i ,x

1
i), and all others i > j are of type-(x0

i ,x
0
i). And all auxiliary-ciphertexts ctl,k,i for the

i 6= j are of type-(xl,k,i,xl,k,i).

• Game5
j,Z is the same as Game4

j,Z , except that all challenge ciphertexts i < j are of type-
(x1
i , 0), and all others i > j are of type-(x0

i , 0). And all auxiliary-ciphertexts ctl,k,i for the
i 6= j are of type-(xl,k,i, 0).

• Game6
j,Z is the same as Game5

j,Z , except that the jth challenge ciphertext is of type-(x1
j ,x

1
j).

• Game7
j,Z is the same as Game6

j,Z , except that all challenge ciphertexts i < j are of type-
(x1
i ,x

1
i), and all others i > j are of type-(x0

i ,x
0
i). And all auxiliary-ciphertexts ctl,k,i for the

i 6= j are of type-(xl,k,i,xl,k,i).

To show the indistinguishability of neighboring hybrids, BJK uses two types of arguments.
We argue that these arguments work even at the presence of auxiliary instances of types defined
above.

• Game2
j,Z ≈ Game3

j,Z and Game5
j,Z ≈ Game6

j,Z follow from the an information theoretic
argument. This means the marginal distributionsD2 andD3 of function keys and ciphertexts
in the challenge instance in Game2

j,Z and Game3
j,Z are statistically close. Furthermore, given

a sample from D2 or D3, the auxiliary instances in Game2
j,Z or Game3

j,Z respectively can be
sampled (using unbounded time) conditioned on sharing the random scalars used in the
challenge instance appropriately. Therefore, Game2

j,Z and Game3
j,Z are statistically close

even when there are auxiliary instances. The same holds for Game5
j,Z and Game6

j,Z .

• In BJK, the indistinguishability of other neighboring hybrids follows from the SXDH as-
sumption of the 0th source groupG0 of the asymmetric bilinear groups. Consider Game0

j,z ≈
Game1

j,z for example (other indistinguishability follows from similar arguments). We claim
that when there are auxiliary instances, it suffices to replace the SXDH assumption with the
joint-SXDH assumption over the 0th source groups of all instances.

The BJK proof provides a reduction from the indistinguishability of the challenge instance
in Game0

j,z and Game1
j,z to the indistinguishability of the DDH tuple [a]1,0, [b]1,0, [ab+ r]1,0

where r is random or zero. (Recall that the ciphertexts of the challenge instance exist in group
G1,0.) The reduction provides a way to generate from [a]1,0, [b]1,0, [ab+ r]1,0 any ciphertext
ct1,i or any function keys sk1,j in the challenge instance, using correlated randomness that
determines the master secret key msk1. The resulting ciphertext ct1,i uses random scalar
α?i = α′ir, β?i = β′i+α

′
ib, and the function key sk1,j uses random scalar αj = α′′j , βj = α′′ja+β′′j ,

where α′i, β
′
i, α
′′
j , β
′′
j are random scalars sampled by the reduction.

We can use the BJK reduction to simulate any auxiliary ciphertext ctl,k,i or function key
skl,k,j in instance k, which share α?i , β

?
i and αj , βj . Simple use the method provided by the

BJK reduction to generate from [a]k,0, [b]k,0, [ab+ r]k,0 (now in groupGk,0) ciphertext ctl,k,i or
key skl,k,j using correlated randomness that determines mskk. As long as the same random
scalars α′i, β

′
i, α
′′
j , β
′′
j are used, the resulting ciphertext and function key use exactly scalars

α?i , β
?
i and αj , βj as desired. Therefore, by the joint-SXDH assumption over groups {Gk,0}k,

Game0
j,z ≈ Game1

j,z .

Finally, we note that when proving the indistinguishability of GameO,j−1 and GameO,j , the joint-
SXDH assumption over groups {Gk,1}k is needed.

42

5.7 Our Multi-Instance (Strongly) Function-Hiding Secret-Key IPE

We show how to generically construct a multi-instance strongly function-hiding secret-key IPE
skIPEN for computing inner products of length-N vectors, starting from any multi-instance weakly
function-hiding secret-key IPE scheme skIPE

2N for computing the inner product of length-2N
vectors. The idea enabling this bootstrapping is (extremely) simple.

A function key sk(y) for a vector y (respectively, ciphertext ct(x) for x) of skIPEN is simply a
function key sk(y||0N) for the vector y||0N (respectively, ciphertext ct(x||0N) for the vector x||0N)
of skIPEN . That is,

∀y ∈ ZNp , sk(y0) = sk(y0||0N) and ∀x ∈ ZNp , ct(x0) = ct(x0||0N)

To see why this simple idea works, consider showing the function hiding property w.r.t. a
single challenge function and message query (y0,y1) and (x0,x1) satisfying y0 · x0 = y1 · x1

(6= x0 · y1 and 6= x1 · y0). We want to show that:{
ct(x0), sk(y0)

}
≈
{
ct(x1), sk(y1)

}
That is, we want to show that:{

ct(x0||0N), sk(y0||0N)
}
≈
{
ct(x1||0N), sk(y1||0N)

}
Because of the redundancy in the encoded vectors, we can go through the following sequence of
hybrids, encoding using skIPE

2N intermediate vectors Xi,Yi satisfying the more stringent condi-
tion that Xi · Yi = Xi · Yi+1 = Xi+1 · Yi+1. By weak function hiding, neighboring hybrids are
indistinguishable, which concludes the function hiding of skIPEN . In particular, we show that:{

ct(x0||0N), sk(y0||0N)
}

≈
{
ct(0N ||x1), sk(y0||y1)

}
≈
{
ct(x1||0N), sk(y1||y1)

}
≈
{
ct(x1||0N), sk(y1||0N)

}
The reader can easily verify that the indistinguishability of each adjacent pair of hybrids follows
from weak function-hiding of skIPE together with the fact that y0 · x0 = y1 · x1. For example,
referring to the first and second hybrids, note that

(x0||0N) · (y0||0N) = (x0||0N) · (y0||y1) = (0N ||x1) · (y0||y1)

which satisfies the pre-condition necessary to invoke weak function-hiding. (Here, as usual, ·
refers to the inner product operation and || refers to the concatenation of two vectors.)

We now formally present our multi-instance function hiding IPE scheme skIPEN , using a multi-
instance weak function hiding IPE scheme skIPE

2N .

The Scheme skIPEN . Let pp = (p,G0, G1, GT ,⊗) be the public parameter that describes a pair of
asymmetric bilinear groups with order p.

• Setup: skIPE.Setup(1λ, 1N , pp) samples msk
$← skIPE.Setup(1λ, 12N , pp).

• Key Generation: skIPE.KeyGen(msk,y) samples sk $← skIPE.KeyGen(msk,y||0N).

43

• Encryption: skIPE.Enc(msk,x) samples ct $← skIPE.Enc(msk,x||0N).

• Decryption: skIPE.Dec(sk, ct) outputs z = skIPE.Dec(sk, ct).

The correctness of skIPEN follows directly from that of skIPE2N and the fact that (x||0N) ·(y||0N) =
x · y. Next we analyze its security.

Lemma 5. LetMG be a multi-group generator andN a polynomial. If skIPE2N is µ-multi-instance weakly
function hiding w.r.t.MG, then skIPEN is 3µ-multi-instance function hiding w.r.t.MG.

Proof. We want to show that for every PPT adversary A, and every sufficiently large security
parameter λ ∈ N, the adversary’s advantage is bounded by 3µ(λ).

AdvtskIPEA,MG =
∣∣∣Pr[MFHskIPE

A,MG(1λ, 0) = 1]− Pr[MFHskIPE
A,MG(1λ, 1) = 1]

∣∣∣ ≤ 3µ(λ)

Towards this, we consider a sequence of hybrids, H0, · · · , H3, where H0 and H3 are identical to
experiments MFHskIPE

A,MG(1λ, 0) and MFHskIPE
A,MG(1λ, 1) respectively, and show that the probabilities

that A outputs 1 in neighboring hybrids differ at most by µ(λ).

• Hybrid H1 proceeds identically to H0 except that the challenger CH generates challenge
function keys and ciphertexts as follows:

– For every (mesg (x0
k,i,x

1
k,i), k, i) query, it returns ctk,i

$← skIPE.Enc(msk, 0N ||x1
k,i; r

?
i), as

opposed to ctk,i
$← skIPE.Enc(msk,x0

k,i||0N ; r?i) in H0.

– For every (func (y0
k,i,y

1
k,i), k, i) query, it returns skk,i

$← skIPE.KeyGen(msk,y0
k,i||y1

k,i; ri),

as opposed to skk,i
$← skIPE.KeyGen(msk,y0

k,i||0N ; ri) in H0.

For every k ∈ [m], every pair of challenge function key and ciphertext satisfies,

∀i, j, x0
k,i||0N · y0

k,j ||0N = x0
k,i||0N · y0

k,j ||y1
k,j = 0N ||x1

k,i · y0
k,j ||y1

k,j ,

since x0
k,i · y0

k,j = x1
k,i · y1

k,j . Then it follows directly from the µ-multi-instance weak function

hiding of skIPE2N that H0 and H1 are µ-indistinguishable to A.

• Hybrid H2 proceeds identically to H1 except that the challenger CH generates challenge
function keys and ciphertexts as follows:

– For every (mesg (x0
k,i,x

1
k,i), k, i) query, it returns ctk,i

$← skIPE.Enc(msk,x1
k,i||0N ; r?i), as

opposed to ctk,i
$← skIPE.Enc(msk, 0N ||x1

k,i; r
?
i) in H1.

– For every (func (y0
k,i,y

1
k,i), k, i) query, it returns skk,i

$← skIPE.KeyGen(msk,y1
k,i||y1

k,i; ri),

as opposed to skk,i
$← skIPE.KeyGen(msk,y0

k,i||y1
k,i; ri) in H1.

For every k ∈ [m], every pair of challenge function key and ciphertext satisfies,

∀i, j, 0N ||x1
k,i · y0

k,j ||y1
k,j = 0N ||x1

k,i · y1
k,j ||y1

k,j = x1
k,i||0N · y1

k,j ||y1
k,j ,

since x0
k,i · y0

k,j = x1
k,i · y1

k,j . Then it follows directly from the µ-multi-instance weak function

hiding of skIPE2N that H1 and H2 are µ-indistinguishable to A.

44

• (The final) HybridH3 = MFHskIPE
A,MG(1λ, 1) proceeds identically toH2 except that the challenge

ciphertexts and function keys are generated as follows:

– For every (mesg (x0
k,i,x

1
k,i), k, i) query, it returns ctk,i

$← skIPE.Enc(msk,x1
k,i||0N ; r?i),

identical to H2.

– For every (func (y0
k,i,y

1
k,i), k, i) query, it returns skk,i

$← skIPE.KeyGen(msk,y1
k,i||0N ; ri),

as opposed to skk,i
$← skIPE.KeyGen(msk,y1

k,i||y1
k,i; ri) in H2.

For every k ∈ [m], every pair of challenge function key and ciphertext satisfies,

∀i, j, x1
k,i||0N · y1

k,j ||y1
k,j = x1

k,i||0N · y1
k,j ||0N ,

It follows again from the µ-multi-instance weak function hiding of skIPE2N that H2 and H3

are µ-indistinguishable to A.

Therefore, by a hybrid argument, H0 and H3 are 3µ-indistinguishable to A, which concludes the
lemma.

6 Slotted Public Key IPE

6.1 Public Key IPE

A public-key IPE scheme IPEN for computing length-N inner products consists of four PPT algo-
rithms (IPE.Setup, IPE.KeyGen, IPE.Enc, IPE.Dec) that have the same syntax as that of a secret-key
IPE scheme skIPE except that (i) the setup algorithm IPE.Setup(1λ, pp) outputs a master public key
mpk and a master secret key msk, and (ii) the encryption algorithm IPE.Enc(mpk,x) on input the
master public key mpk and vector x outputs a ciphertext ct. Like in the secret key setting, the
public parameter pp specifies the ringR over which inner products are computed.

The security of a public key IPE is simply the indistinguishability security of public key FE
scheme, restricted to inner product computations. Note that this notion refers to hiding the input
that is encrypted, and not the function for which keys are generated.

Definition 19. Let G be a public parameter generator and N be any polynomial. We say that a public-key
IPE scheme IPEN for computing length-N inner products is µ-secure w.r.t. G, if it satisfies the condition in
Definition 7 with the setup algorithm IPE.Setup(1λ, pp) for pp $← G(1λ), and function class Fλ consisting
of all inner product function fy(x) = y · x overR specified by pp.

6.2 ABDP Public Key IPE

In [ABDP15], Abdalla, Bourse, De Caro, and Pointcheval constructed public key IPE schemes with
indistinguishability security, based on the DDH assumption. We recall their scheme, which is very
similar to the ElGamal encryption scheme.

The Decisional Diffie-Hellman (DDH) Assumption Let G denote a group generator that on
input 1λ outputs (p,G), where G is a group of prime order p, and g is a generator of G contained
in its description. As above, we use the bracket notation to denote elements in G: [v] = gv and

45

[x] = gx = gx1 , · · · , gxm for v ∈ Zp,x ∈ Zmp . The DDH assumption states that the following two
ensembles are µ-indistinguishable for a negligible function µ:{

(p,G)
$← G(1λ), a, b

$← Zp : (p,G), [a], [b], [ab]
}
λ{

(p,G)
$← G(1λ), a, b, r

$← Zp : (p,G), [a], [b], [r]
}
λ

Overview of the ABDP Scheme Recall that the basic ElGamal encryption scheme for message
space Zp is as follows:

sk
$← Zp, pk = gsk, ct = (gr, pkrgm) = (gr, g(r sk+x)) for r $← Zp

Note that in this scheme, decryption can be done when x is small.
Under our bracket notation this is written as:

sk
$← Zp, pk = [sk], ct = [r], (r � pk)⊕ [x] = [r || (r sk + x)]

(Recall that “�” and “⊕” are respectively the homomorphic scalar multiplication and addition
operations over encodings.) The ElGamal encryption can be easily modified to encrypt vectors
x ∈ ZNp , while sharing the random scalar r, and maintaining security under the same (DDH)
assumption.

msk
$← ZNp , mpk = [msk], ct = [−r], (r �mpk)⊕ [x] = [(−r || r msk + x)]

(We encode −r instead of r for convenience.) To turn the above scheme into an IPE scheme,
observe that given a vector y ∈ ZNp and the inner product y ·msk in the clear, one can homomor-
phically evaluate,

(y ·msk || y) · ct = (y ·msk || y) · [−r || (r(msk + x))] = [−ry ·msk + ry ·msk + x · y] = [(x · y)] .

Therefore, it suffice to release y ·msk || y as the function key for computing the inner product.

The ABDP Scheme We now formally describe the ABDP public key IPE scheme IPEN . Let pp =
(p,G) be a public parameter that describes a prime order group G; the inner product is computed
over ZNp .

• Setup: IPE.Setup(1λ, pp) samples s
$← ZNp , and outputs master public key mpk = [s] and

master secret key msk = s.

• Key Generation: IPE.KeyGen(msk,y) on input the master secret key msk = s and vector y both
in ZNp , simply outputs sk = y · s || y.

• Encryption: IPE.Enc(mpk,x) on input the master public key mpk = [s] and vector x ∈ ZNp ,

samples a random scalar r $← Zp and outputs

ct = [−r] || (r �mpk)⊕ [x] = [−r || rs + x]

46

• Decryption: IPE.Dec(sk, ct) on input sk = (y · s || y) and ct = [−r || rs + x] homomorphically
computes the inner product between sk and ct.

sk · ct = [(y · s || y) · (−r || rs + x)] = [x · y]

If the output value z = x · y is bounded by some polynomial bound Γ = Γ(λ). Then z
can be extracted by trying all possible values i ∈ [Γ], and outputting the value i satisfying
[(x · y)] = i� [1].

Correctness of the scheme is easy to see. The security proof is, however, non-trivial. Abdalla et
al. [ABDP15] showed that the scheme in fact satisfies simulation-based security, which implies the
notion of indistinguishability-based security considered in this work.

Lemma 6. Assume that the DDH assumption holds in the groups generated by G. Then, for any polynomial
N , the ABDP public key IPE scheme IPEN is secure w.r.t. G.

Remark 2 (Linearity of the ABDP Schemes). We note that the algorithms of the ABDP schemes are
“linear” in the following sense.

• Key Generation is deterministic, and the algorithm IPE.KeyGen(msk,y) is linear over y.

• Encryption uses a random scalar r, and the algorithm IPE.Enc(mpk,x; r) is linear over x, and
elements in mpk and x are never multiplied together.

• Decryption is deterministic, and the algorithm IPE.Dec(sk, ct) is linear over sk, as well as over the
vector encoded in ct.

Jumping ahead, later when constructing a slotted public key IPE, we will replace y and x with their encoded
versions, and thanks to the linearity properties, the above algorithms can still be evaluated homomorphically.

6.3 Definition of Output-Encoded Slotted-IPE

Syntax An output-encoded slotted IPE scheme sIPEN for computing length-N inner products
consists of the following six PPT algorithms, and is associated with an output encoding function
OEnc. When instantiated with a public parameter generator G, the algorithms proceed as follows:

• Setup: sIPE.Setup(1λ, pp; rS) is an algorithm that on input a security parameter, a public
parameter pp in the support of G that contains the descrption of a ring R, and (partial)
random coins rS , outputs a master public key mpk and a master secret key msk.

Note: sIPE.Setup could sample additional random coins besides rS . When we write directly (mpk,msk)
$←

sIPE.Setup(1λ, pp), we mean rS is randomly sampled. The same applies to following algorithms.

• Key Generation: sIPE.KeyGen(msk,y1,y2; rK) on input the master secret key, two vectors
y1,y2 ∈ RN(λ) and (partial) random coins rK , outputs a secret key sk = sk(y1,y2) with
y1 in the first slot and y2 in the second slot.

• Secret Encryption: sIPE.sEnc(msk,x1,x2; rE) on input the master secret key, two messages
x1,x2 ∈ RN(λ) and (partial) random coins rE , outputs an encryption ct = ct(x1,x2) with x1

in the first slot and x2 in the second slot.

• Public Encryption: sIPE.Enc(mpk,x; rE) on input the master public key a message x ∈ RN(λ)

and (partial) random coins rE , outputs an encryption ct = ct(x, 0N) of x in the first slot.

47

• Decryption: sIPE.Dec(sk, ct) outputs an encoding Z = OEnc(z, pp, rS , rK , rE) of the actual
output z via OEnc. The encoding also depends on the partial random coins rS , rK , rE and
the public parameter pp.

Note: In some cases, the actual output z can be extracted from the encodingZ. For example, in the BJK
secret key IPE, our secret key IPE, and the ABDP public key IPE schemes, the decryption algorithms
first produce an encoding of the output in some groups, and then the output can be extracted if its
value falls in some polynomial-sized range.

Normal Public Key Mode In the normal public key mode, only the first slot in the ciphertexts and
function keys are needed, meaning that only the public encryption algorithm sIPE.Enc is used, and
the second vector y2 to the algorithm sIPE.KeyGen is always set to an arbitrary non-zero vector say
1N .

Correctness: There is a negligible function µ, such that, for every λ, pp in the support of G, and
x1,x2,y1,y2 ∈ RN , the following holds conditions holds.

Pr

 (mpk,msk)
$← sIPE.Setup(1λ, pp; rS)

ct
$← sIPE.sEnc(mpk,x1,x2; rE)

sk
$← sIPE.KeyGen(msk,y1,y2; rK)

:
z = x1 · y1 + x2 · y2

OEnc(z, pp, rS , rE , rK) = sIPE.Dec(sk, ct)

 ≥ 1− µ(λ)

Statistically Indistinguishable Public Encryption. We require that ciphertexts produced by the
public encryption to be statistically close to ciphertexts produced by the secret encryption when
the second slot is set to 0N . That is, there is a negligible function µ, such that, for every λ, pp,x,
the following two distributions are at most µ(λ) far.(

(mpk,msk)
$← sIPE.Setup(1λ, pp)

ct
$← sIPE.Enc(mpk,x)

: mpk, ct

)
,

(
(mpk,msk)

$← sIPE.Setup(1λ, pp)

ct
$← sIPE.sEnc(mpk,x, 0N)

: mpk, ct

)

Input Indistinguishability This security property corresponds to the basic IND-security of pub-
lic key IPE, that is, encryption of vectors x0

1,x
0
2 in the first and second slots is indistinguishable

from encryption of vectors x1
1,x

1
2, as long as, all function keys correspond to functions {yi,1,yi,2}

that have the same output on these inputs (yi,1||yi,2) · (x0
1||x0

2) = (yi,1||yi,2) · (x1
1||x1

2). Here again,
we consider multi-instance security as in the definition of multi-instance function hiding of secret
key IPE (Definition 17), where the adversary sees ciphertexts and function keys of different in-
stances, that are correlated through shared randomness and the public parameters. Like before,
the public parameters are sampled jointly via a multi-parameter generator MG. Different from
before, the function keys and ciphertexts of different instances do not share all random coins, but
rather only share (partial) random coins rS , {rK,i}, rE that affects the output encoding at decryp-
tion time. Formally,

Definition 20 (Multi-Instance Input Indistinguishability). An output-encoded slotted IPE scheme
sIPEN for computing length-N inner products has µ-multi-instance input indistinguishability w.r.t.
MG, if for every PPT adversaryA, the following games IntsIPEA,MG(1λ, 0) and IntsIPEA,MG(1λ, 1) are µ-indistinguishable.

IntsIPEA,MG(1λ, b) proceeds as follow:

• Public Parameter and Key Generation. The challenger does:

48

– sample public parameters (pp1, · · · , ppm)
$←MG(1λ), which contain the description of a ring

R,

– sample (partial) randomness rS ,

– sample m master public and secret key {(mpkk,mskk)
$← sIPE.Setup(1λ, ppk; rS)}k∈[m], and

sends A all master public keys {mpkk}.

• Function Queries. Repeat the following for an arbitrary number of times determined by A: In
iteration i, upon A choosing challenge functions {y1,k,i,y2,k,i}k∈[m] inRN(λ), CH does:

– sample (shared) random string rK,i; and

– send A challenge function keys {skk,i
$← sIPE.KeyGen(mskk,y1,k,i,y2,k,i; rK,i)}k;

• Message Queries: UponA choosing challenge messages {(x0
1,k,x

0
2,k), (x

1
1,k,x

1
2,k)}k inRN(λ), CH

does:

– sample (shared) random string rE ; and

– send A ciphertexts {ctk
$← sIPE.sEnc(mskk,x

b
1,k,x

b
2,k; rE)}k;

• Function Queries Again: Repeat the “function queries” stage above.

• Finally A outputs a bit b′.

Restriction: For every k ∈ [m], every function query y1,k,i,y2,k,i from A must satisfy that (y1,k,i||y2,k,i) ·
(x0

1,k||x0
1,k) = (y1,k,i||y2,k,i) · (x1

1,k||x1
2,k).

Input Indistinguishability in Normal Mode. We note that the above input indistinguishability directly
implies that in the normal public key mode, where x2,k and y2,k,i are all set to 0N , the usual input
indistinguishability property of public key functional encryption schemes holds.

Second-Slot Function Hiding One can encrypt any value in the first slot using the master public
key, whereas can only encrypt in the second slot using the master secret key. Therefore, the second
slot acts like a secret key IPE. We require that the stronger function hiding property to hold w.r.t.
the second slot, (again) in the multi-instance setting.

Definition 21 (Multi-Instance Second Slot Function Hiding). An output-encoded slotted IPE scheme
sIPEN for computing length-N inner products has µ-multi-instance second-slot function hiding w.r.t.
MG, if for every PPT adversary A, the following games SdFHsIPE

A,MG(1λ, 0) and SdFHsIPE
A,MG(1λ, 1) are µ-

indistinguishable.

SdFHsIPE
A,MG(1λ, b) proceeds as follow:

• Public Parameter and Key Generation. The same as in experiment ExpsIPEA,MG(1λ, b) of Defini-
tion 20.

• Function Queries. Repeat the following for an arbitrary number of times determined by A: In
iteration i, upon A choosing challenge functions {y1,k,i,y

0
2,k,i,y

1
2,k,i}k inRN(λ), CH does:

– sample (shared) random string rK,i; and

– send A challenge function keys skk,i
$← sIPE.KeyGen(mskk,y1,k,i, y

b
2,k,i ; rK,i);

49

• Message Queries: Upon A choosing challenge messages {x1,k,x
0
2,k,x

1
2,k}k inRN(λ), CH does:

– sample (shared) random string rE , and

– send A challenge ciphertexts {ctk
$← sIPE.sEnc(mskk,x1,k, x

b
2,k ; rE)}k.

• Function Queries Again: Repeat the “function queries” stage above.

• Finally A outputs a bit b′.

Restriction: For every k ∈ [m], every function query y1,k,i,y
0
2,k,i,y

1
2,k,i from A must satisfy that y0

2,k,i ·
x0

2,k = y1
2,k,i · x1

2,k.

Joint Indistinguishability We show that combining input indistinguishability and second-slot
function hiding gives a stronger security property, called joint indistinguishability, defined below.
We will use this security property in our construction of FE schemes later.

Definition 22 (Multi-Instance Joint Indistinguishability). An output-encoded slotted IPE scheme sIPEN

for computing length-N inner products satisfies µ-multi-instance joint-indistinguishability w.r.t.MG,
if for every PPT adversaryA, the following games JIndsIPEA,MG(1λ, 0) and JIndsIPEA,MG(1λ, 1) are µ-indistinguishable.

JIndsIPEA,MG(1λ, b) proceeds as follow:

• Public Parameter and Key Generation. The same as in experiment ExpsIPEA,MG(1λ, b) of Defini-
tion 20.

• Function Queries. Repeat the following for an arbitrary number of times determined by A: In
iteration i, upon A choosing challenge functions {y1,k,i,y

0
2,k,i,y

1
2,k,i}k inRN(λ), CH does:

– sample (shared) random string rK,i, and

– send A challenge function keys {skk,i
$← sIPE.KeyGen(mskk,y1,k,i,y

b
2,k,i; rK,i)}k.

• Message Queries: Upon A choosing challenge messages {(x0
1,k,x

0
2,k = 0N), (x1

1,k = 0N ,x1
2,k)}k

inRN(λ), CH does:

– sample (shared) random string rE , and

– send A challenge ciphertext {ctk
$← sIPE.sEnc(mskk,x

b
1,k,x

b
2,k; rE)}k.

• Function Queries Again: Repeat the “function queries” stage above.

• Finally A outputs a bit b′.

Restriction: For every k ∈ [m], every function query y1,k,i,y
0
2,k,i,y

1
2,k,i from A must satisfy that y1,k,i ·

x0
1,k = y1

2,k,i · x1
2,k. (Note that x0

2,k = x1
1,k = 0N)

Lemma 7. LetMG be a multi-parameter generator and N any polynomial. If an output-encoded slotted
IPE scheme sIPEN satisfies both multi-instance input indistinguishability and second-slot function hiding
w.r.t.MG, then it also satisfies multi-instance joint indistinguishability w.r.t.MG.

Proof of Lemma 2. Fix any PPT adversary A, and security parameter λ. Let m = m(λ) be an upper
bound on the number of public parameters sampled byMG. We show the indistinguishability of
experiments JIndsIPEA,MG(1λ, 0) and JIndsIPEA,MG(1λ, 1) through a sequence of hybrids H0 to H3, where
the former is identical to JIndsIPEA,MG(1λ, 0) and the latter to JIndsIPEA,MG(1λ, 1). Recall that

50

Hybrid H1: H1 proceeds identically to H0 except that,

• uponA choosing a function query {y1,k,i,y
0
1,k,i,y

1
2,k,i}k∈[m], sendA function keys {skk,i}k

that encode vector (y1,k,i,y1,k,i) as opposed to (y1,k,i,y
0
2,k,i) as in H0.

Note that because the only difference between H0 and H1 is the vectors encoded in the
second slot of the function keys, and it holds that:

∀k, i, 0N · y0
2,k,i = 0N · y1,k,i

It follows from the multi-instance second-slot function hiding property of sIPE that H0 and
H1 are indistinguishable.

Hybrid H2: H2 proceeds identically to H1 except that,

• upon A choosing a message query {(x0
1,k, 0

N), (0N ,x1
2,k}k∈[m], send A ciphertext {ctk}k

that encodes vector (0N ,x0
1,k) as opposed to (x0

1,k, 0
N) as in H1.

Note that because the only difference between H1 and H2 is the vector encoded in the ci-
phertext, and it holds that:

∀k, i, (x0
1,k, 0

N) · (y1,k,i,y1,k,i) = (0N ,x0
1,k) · (y1,k,i,y1,k,i)

It follows from the multi-instance input indistinguishability property of sIPE thatH1 andH2

are indistinguishable.

Hybrid H3: H3 proceeds identically to H2 except that,

• uponA choosing a function query {y1,k,i,y
0
1,k,i,y

1
2,k,i}k∈[m], sendA function keys {skk,i}k

that encodes vector (y1,k,i,y
1
2,k,i) as opposed to (y1,k,i,y1,k,i) as in H2.

• upon A choosing a message query {(x0
1,k, 0

N), (0N ,x1
2,k}k∈[m], send A ciphertext {ctk}k

that encodes vector (0N ,x1
2,k) as opposed to (0N ,x0

1,k) as in H2.

Note that because the only difference between H2 and H3 is the vectors encoded in the
second slots of the function keys and ciphertext, and it holds that:

∀k, i, x0
1,k · y1,k,i = x1

2,k · y1
2,k,i

It follows from the multi-instance second-slot function hiding property of sIPE that H2 and
H3 are indistinguishable.

6.4 Our Output-Encoded Slotted-IPE

We construct output-encoded slotted-IPE schemes sIPEN using asymmetric bilinear groups. Scheme
sIPEN combines our function hiding secret-key IPE scheme skIPEN in Section 5.7 and the ABDP
public-key IPE scheme IPEM for some polynomial M related to N that is specified below. We
in-line the construction with correctness analysis in italic font. Let pp = (p,G0, G1, GT ,pair) be a
public parameter that describes asymmetric bilinear groups.

51

• Setup: sIPE.Setup(1λ, pp) samples

– first-slot secret key m̂sk = (B̂, B̂?, D̂, D̂?) where (B̂, B̂?)
$← Dual(Z4N

p) and (D̂, D̂?)
$←

Dual(Z2
p) as skIPE.Setup(1λ) samples.

– second-slot secret key m̃sk = (B̃, B̃?, D̃, D̃?) sampled as above.

– first-component IPE keys (mpk1,msk1) where s1
$← ZNp , msk1 = s1 and mpk1 = [s1]0 as

IPE.Setup(1λ) samples.

– second-component IPE keys (mpk2,msk2) where s2
$← ZNp , and msk2 = s2 and mpk2 = [s2]0

as above.

– random scalars rE = α?, β?
$← Z2

p.

– first-slot seed ciphertexts {ĉti
$← skIPE.Enc(m̂sk,ui; α

?, β?)}i∈[M] for all “unit” vectors ui ∈
ZNp that has 1 at the ith location and 0 everywhere else.

It sets sl.msk = (m̂sk, m̃sk,msk1,msk2, α
?, β?), sl.mpk = (mpk1,mpk2, {ĉti}i∈[M]).

• Key Generation: sIPE.KeyGen(sl.msk,y1,y2) on input the master secret key sl.msk and vec-
tors y1,y2 ∈ ZNp samples

– random scalars rK = (α, β)
$← Z2

p;

– first-slot and second-slot function keys of skIPE, ŝk $← skIPE.KeyGen(m̂sk,y1; α, β) and s̃k
$←

skIPE.KeyGen(m̃sk,y2; α, β), where

FIRST COMPONENTS SECOND COMPONENTS

FIRST SLOT ŝk[1] = [ĉ]1 = [dE(B̂,y1||0N ;α, β)]1 ŝk[2] = [ê]1 = [dE(D̂, 1;α, β)]1

SECOND SLOT s̃k[1] = [c̃]1 = [dE(B̃,y2||0N ;α, β)]1 s̃k[2] = [ẽ]1 = [dE(D̃, 1;α, β)]1

Discard s̃k[2].
Note: By the construction of skIPEN , ĉ, c̃ ∈ Z4N

p and ê ∈ Z2
p.

– first-components and second-components function keys of IPE, [sk1]1
$← IPE.KeyGen(msk1, [ĉ]1||[c̃]1)

and [sk2]1
$← IPE.KeyGen(msk2, [ê]1).

We note that the key generation can be done despite of the fact that the vectors ĉ||c̃
and ê are already encoded in G1 is because the key generation algorithm IPE.KeyGen
is linear in the encoded vector (see Remark 2) and we can homomorphically compute
linear functions over encodings in G1.

[sk1]1 = [(s1 · (ĉ||c̃)) || (ĉ||c̃)]1 [sk2]1 = [(s2 · ê) || ê]1

Note: Since ĉ||c̃ ∈ Z8N
p and ê ∈ Z2

p, it suffices to set the length of the vectors that IPE handles
to M = 8N .

It outputs sl.sk = ([sk1]1, [sk2]1).

• Secret Encryption: sIPE.sEnc(msk,x1,x2) on input the master secret key sl.msk and vectors
x1,x2 ∈ ZNp does:

52

– Set random scalars rE = rS = (α?, β?);

– Generate the first-slot and second-slot ciphertexts of skIPE: ĉt[1] = ⊕i∈[N](xi� ĉti[1]) where

{ĉti} are the ciphertexts in sl.mpk, ĉt[2] = ĉt1[2], and c̃t
$← skIPE.Enc(m̃sk,x2; α?, β?).

We have (analysis of ĉt is below):

FIRST COMPONENTS SECOND COMPONENTS

FIRST SLOT ĉt[1] = ⊕i∈[N](x1,i � ĉti[1]) ĉt[2] = ĉt1[2]

= [ĉ?]0 = [dE(B̂?,x1||0N ;α?, β?)]0 = [ê?]0 = [dE(D̂?, 1;α?, β?)]0

SECOND SLOT c̃t[1] = [c̃?]0 = [dE(B̃?,x2||0N ;α?, β?)]0 c̃t[2] = [ẽ?]0 = [dE(D̃?, 1;α?, β?)]0

Discard c̃t[2].

Analysis of ĉt: Recall that {ĉti} in sl.mpk are encryption of the unit vectors {ui} sharing the
same random scalars α?, β?.

ĉti[1] = [ĉ?i]0 = [dE(B̂?,ui||0N ;α?, β?)]0 ĉti[2] = [ê?]0 = [dE(D̂?, 1;α?, β?)]0

Note that all the second components are identical. Hence, ĉt[2] = [dE(D̂?, 1;α?, β?)]0.
On the other hand, expand the computation of ĉt[1]:

ĉt[1] = ⊕i∈[N](x1,i � ĉti[1]) = ⊕i∈[N](x1,i � [dE(B̂?,ui||0N ;α?, β?)]0)

= ⊕i∈[N][dE(B̂?, x1,iui||0N ;α?, β?)]0 = [dE(B̂?,Σi∈[N]x1,iui||0N ;α?, β?)]0

= [dE(B̂?,x1||0N ;α?, β?)]0

where the third and fourth equalities follow from the linearity of the double embedding dE func-
tion (see Remark 1). Therefore ĉt = ĉt[1], ĉt[2] is an skIPE encryption of x1.

– Generate first-components and second-components function encryptions of IPE, [ct1]0
$←

IPE.Enc(mpk1, [ĉ
?]0||[c̃?]0) and [ct2]0

$← IPE.Enc(mpk2, [ê
?]0).

We note that the encryption can be done despite of the fact that the vectors ĉ?||c̃? and
ê? are already encoded in G1, because the key generation algorithm IPE.Enc is multilin-
ear, and it never multiples elements in the master public key with that in the plaintext
vectors (see Remark 2).

[ct1]0 = [−r1 || (r1s1 + (ĉ?||c̃?))]0 [ct2]0 = [−r2 || (r2s2 + ê?)]0

It outputs sl.ct = ([ct1]0, [ct2]0).

• Public Encryption: sIPE.Enc(sl.mpk,x) on input the master public key sl.mpk = (mpk1,mpk2, {ĉti})
and vector x ∈ ZNp proceeds identically as sIPE.sEnc(sl.msk,x, 0N). This can be done since
the only secret information used in sIPE.sEnc is the second slot master secret key m̃sk and the
scalars α?, β? for generating second slot ciphertext, when the second vector is set to x2 = 0N ,
c̃t[1] = [c̃?]0 = [04N]0 and m̃sk, α?, β? are not needed. All other steps rely only on public in-
formation.

Note: By construction, the output of public encryption is identical to sIPE.sEnc(sl.msk,x, 0N).

53

Note: The above algorithm requires the capability to encode zero in groupG0. We can modify it so that
the algorithm does not need to generate encoding of zero. Since c̃? = 0N , instead of encoding it and
then homomorphically generate the first-components ciphertext, we can generate the first-components
ciphertext as follows:

[ct1]0 = [−r1]0 || [r1(s1,1···N) + ĉ?]0 || [r1(s1,N+1···2N)]0

The middle part is still produced homomorphically over ĉt[1], while the last part can be produced by
directly encoding r1s1,N+1···2N , which is non-zero with overwhelming probability.

• Decryption: sIPE.Dec(sl.sk, sl.ct) on input sl.sk = ([sk1]1, [sk2]1) and sl.ct = ([ct1]0, [ct2]0)
does:

– Decrypt the first-components and second-components ciphertexts: [zb]T = IPE.Dec([skb]1, [ctb]0)
for b ∈ {1, 2}. Note that IPE.Dec can be evaluated despite that skb is encoded in G1 be-
cause the algorithm requires taking inner product between skb and [ctb]0, which can be
done homomorphically over [skb]1 using pairing. More specifically

[z1]T = [sk1]1 · [ct1]0 = [(ĉ||c̃) · (ĉ?||c̃?)]T = [ĉ · ĉ? + c̃ · c̃?]T
[z2]T = [sk2]1 · [ct2]0 = [ê · ê?]T

It outputs [z1]T , [z2]T

– The output encoding function is OEnc(z,mpk, rS , rK , rE) = OEnc(z,mpk, α, α?, β, β?) =
[θz]T , [θ]T , where θ = αα? + ββ?.

Note: Here again if z is a value in a polynomially sized range, then it can be extracted by trying all
possible values.

Correctness of Computation: Note that [ĉ]1 · [ĉ?]0 = [ĉ · ĉ?]T corresponds exactly to decrypting the
first-slot ciphertext with the first-slot function key of skIPE, and [c̃]1 · [c̃?]0 = [c̃ · c̃?]T corresponds
to decrypting the second-slot ciphertext and key. Therefore, this gives

[z1]T = [(αα? + ββ?)(x1 · y1) + (αα? + ββ?)(x2 · y2)]T = [θ(x1 · y1 + x2 · y2)]T

[z2]T = [(αα? + ββ?)]T = [θ]T

Thus, for any λ, x1,x2,y1,y2 ∈ RN , the probability that decryption of sl.sk, sl.ct yields OEnc((x1 ·
y1+x2·y2),mpk, α, α?, β, β?) is 1 (over the randomness of the scalars, the generation of sl.mpk, sl.msk,
sl.sk and sl.ct).

6.5 Security

We next proceed to analyze the security of the scheme sIPEN . At a high-level, it follows from
the input indistinguishability of the public key IPE scheme IPEM that sIPEN also satisfies input
indistinguishability, and it follows from the function hiding property of the secret key IPE scheme
skIPEN (and the fact that the second-slot master secret key is completely hidden) that sIPEN is
second-slot function hiding. Note that in sIPEN , the random coins rS , rK , rE that affect the output
encoding are exactly the random scalars α, α?, β, β? used by invocations of skIPEN . On the other

54

hand, the random coins used by invocations of IPEM are independently and randomly sampled in
different instances. Therefore, the input indistinguishability property of sIPEM holds in the multi-
instance setting since all invocations of IPEM are independent, assuming that the SXDH assump-
tion holds in every asymmetric bilinear group sampled byMG. The second-slot function hiding
property also holds in the multi-instance setting because the scheme skIPEN is multi-instance func-
tion hiding, assuming that the joint-SXDH assumption holds in asymmetric bilinear groupsMG.
Formally,

Lemma 8. Assume that the joint-SXDH assumption holds in the asymmetric bilinear groups generated by
MG. Then, for any polynomial N , the ouput-encoded slotted IPE scheme sIPEN satisfies multi-instance
input indistinguishability w.r.t.MG.

Lemma 9. Assume that the joint-SXDH assumption holds in the asymmetric bilinear groups generated by
MG. Then, for any polynomial N , the ouput-encoded slotted IPE scheme sIPEN satisfies multi-instance
second-slot function hiding w.r.t.MG.

As a corollary of Lemma 2, we obtain that sIPEN also satisfies multi-instance joint indistin-
guishability.

Corollary 2. Assume that the joint-SXDH assumption holds in the asymmetric bilinear groups generated
byMG. Then, for any polynomial N , the ouput-encoded slotted IPE scheme sIPEN satisfies multi-instance
joint indistinguishability w.r.t.MG.

Proof of Lemma 8. Fix any PPT adversary A, and security parameter λ. Let m = m(λ) be an upper
bound on the number of public parameters sampled byMG. We show the indistinguishability of
experiments IntsIPEA,MG(1λ, 0) and IntsIPEA,MG(1λ, 1) through a sequence of hybrids H0 to Hm, where the
former is identical to IntsIPEA,MG(1λ, 0) and the latter to IntsIPEA,MG(1λ, 1). By definition of experiment
Int, in both H0 and Hm, A sees m instances of the scheme sIPEN . In each instance, A receives the
master secret key mpkk, an arbitrary number of function keys {skk,i} of vectors y1,k,i,y2,k,i, and a
ciphertext ctk of vectors x0

1,k,x
0
2,k in H0 and x1

1,k,x
1
2,k in Hm. Then, the intermediate hybrid Hj for

j ∈ [m] is defined as follows:

• Hybrid Hj proceeds identically to H0 except that, in the first j instances, A receives cipher-
texts ctk of x1

1,k,x
1
2,k, as opposed to x0

1,k,x
0
2,k, for k ≤ j. The only difference between Hj−1

and Hj is that the ciphertext ctj of the jth instance switches from encrypting x0
1,j ,x

0
2,j to

encrypting x1
1,j ,x

1
2,j .

Next, we reduce the indistinguishability of Hj−1 and Hi to the (single-instance) input indistin-
guishability of the ABDP public key IPE scheme IPE. Then, by a hybrid, we obtain the lemma.

Formally, suppose for contradiction that for infinitely many λ ∈ N, A distinguishesH0 andHm

with advantage ν(λ), then for every such λ, there exists a j ∈ [m], such that,A distinguishes hybrid
Hj−1 and Hj with advantage ν(λ)/m(λ). Then we can build another adversary B that violates the
input indistinguishability of IPE when instantiated with the jth public parameter ppj sampled by
MG, which contradicts with the fact the SXDH assumption holds w.r.t. the asymmetric bilinear
groups described by ppj , generated byMG.

The adversary B interacts with the challenger CH in experiment ExpIPEB (1λ, b) for b ∈ {0, 1},
and internally emulates the execution of hybrid Hj−1+b with A, as follows:

• Public Parameter Generation: Public Parameters (pp1, · · · , ppm)
$←MG are sampled.

55

• Key Generation: Upon receiving an IPE master public key mpk∗ from CH generated w.r.t. the
jth public parameter ppj , B generates the master public and secret keys {sl.mpkk, sl.mskk} of
m sIPE instances as follows:

– sample (shared) random string rS = α?, β?,

– generate m instances (sl.mpkk, sl.mskk)
$← {sIPE.Setup(1λ, ppk; rS)}k∈[m],

– replace the first-component IPE master public key of the jth instance with mpk∗ from
CH , and replace the corresponding first-component IPE master secret key with ⊥, un-
known. That is, sl.mpkj = (mpk∗,mpk2,j , {ĉtl,j}l∈[M]) and sl.mskj = (m̂skj , m̃skj ,⊥,msk2,j , α

?, β?).

It sends A master public keys {sl.mpkk}.

• Function Queries: Repeat the following for an arbitrary number of times determined by A: In
iteration i, upon A choosing challenge functions {y1,k,i,y2,k,i}k, B does:

– sample (shared) random string rK,i = αi, βi,

– for the every instance k 6= j, generate function key skk,i
$← sIPE.KeyGen(sl.mskk,y1,k,i,y2,k,i; rK,i).

– for the jth instance, B is missing the first-component IPE master secret key in sl.mskj =

(m̂skj , m̃skj ,⊥,msk2,j , α
?, β?). Thus, to generate the secret key skj,i of y1,j,i,y2,j,i, B

simulates the steps sIPE.KeyGen(sl.mskj ,y1,j,i,y2,j,i; rK,i) does, and obtains the first-
component secret key using its challenger CH .
More precisely, B computes first the vectors to be encoded in the first- and second-slot
function keys ŝkj,i, s̃kj,i of skIPE.

FIRST COMPONENTS SECOND COMPONENTS

FIRST SLOT ĉj,i = dE(B̂j ,y1,j,i||0N ;αi, βi) êj,i = dE(D̂j , 1;αi, βi)

SECOND SLOT c̃j,i = dE(B̃j ,y2,j,i||0N ;αi, βi)

where m̂skj = (B̂j , B̂
?
j , D̂j , D̂

?
j) and m̃skj = (B̃j , B̃

?
j , D̃j , D̃

?
j).

To obtain the first-component IPE function key under key mpk∗, B sends CH the func-
tion query y∗i = ĉj,i||c̃j,i and receives back an IPE function key sk∗i of y∗i under mpk∗. It
sets the first-component function key to [sk1,j,i]j,1 = [sk∗i]j,1 and generates the second-
component function key itself [sk2,j,i]j,1

$← IPE.KeyGen(msk2,j , [êj,i]j,1).
This yields the function key skj,i = [sk∗i]j,1, [sk2,j,i]j,1.

It sends A function keys {skk,i}.

• Message Queries: Upon A choosing challenge messages {x0
1,k,x

0
1,k,x

1
2,k,x

1
1,k}k, B does:

– (the (shared) random string rE is empty.)

– for every instance k < j, generate ciphertext ctk
$← sIPE.sEnc(sl.mskk,x

1
1,k,x

1
2,k).

– for every instance k > j, generate ciphertext ctk
$← sIPE.sEnc(sl.mskk,x

0
1,k,x

0
2,k).

– for the jth instance, B generates the ciphertext ctj of xb1,j ,x
b
2,j , by simulating the steps

sIPE.sEnc(sl.mskj ,x
b
1,j ,x

b
2,j) does, obtaining the first-component ciphertext using CH .

56

More precisely,B computes first the vectors to be encoded in the skIPE first- and second-
slot ciphertexts ĉtbj , c̃t

b
j of vectors xb1,j ,x

b
2,j for both b = 0, 1.

FIRST COMPONENTS SECOND COMPONENTS

FIRST SLOT ĉ?bj = dE(B̂?
j ,x

b
1,j ||0N ;α?j , β

?
j) ê?j = dE(D̂?

j , 1;α?j , β
?
j)

SECOND SLOT c̃?bj = dE(B̃?
j ,x

b
2,j ||0N ;α?j , β

?
j)

To obtain the first-component IPE ciphertext under key mpk∗, B sends CH the message
query x∗,0 = ĉ?0j ||c̃?0j and x∗,1 = ĉ?1j ||c̃?1j , and receives back an IPE ciphertext ct∗ of x∗,b

under mpk∗. It sets the first-component function key to [ct1,j]j,0 = [ct∗]j,0 and generates
the second-component ciphertext itself [ct2,j]j,0

$← IPE.Enc(mpk2,j , [ê
?
j]j,0).

This yields the function key ctj = [ct∗]j,0, [ct2,j]j,0.

It sends A challenge ciphertext {ctk}.

• Function Queries Again: Repeat the “function queries” stage above.

• Finally B outputs what A outputs.

We argue that whenB participates in ExpIPEB (1λ, b), it internally emulates forA hybridHj−1+b per-
fectly. By construction, all instances other than j are generated exactly as the challenger in both
hybrid Hj−1 and Hi does. Thus it suffices to show that B emulates the jth instance perfectly for
A. B embeds the external IPE master public key mpk∗ as the first-component public key in the jth

instance, which is correctly distributed. Then to generate the first-component function key and ci-
phertexts correctly, B generates the vectors {ĉj,i, c̃j,i} and {ĉ?bj , c̃?bj } to be encoded in the first- and
second-slot function keys and ciphertexts of skIPE correctly. In the key generation and encryption
algorithms sIPE.KeyGen and sIPE.sEnc, the first-component function key and ciphertext are eval-
uated homomorphically over the first- and second-slot function keys and ciphertexts, which are
[y∗i]j,1 for y∗i = ĉj,i||c̃j,i and [x∗,b]j,0 for x∗,b = ĉ?bj ||c̃?bj .

[sk∗i]j,1
$← IPE.KeyGen(msk∗, [y∗i]j,1) [ct∗,b]j,0

$← IPE.Enc(mpk∗, [x∗,b]j,0)

Instead, B sends the plaintext vectors {y∗i } and x∗,0,x∗,1 as function and message queries to its
challenger, obtaining {sk∗i } and ct∗,b in the plaintext. It then internally encodes them to obtain
{[sk∗i]j,1} and [ct∗,b]j,0. Therefore, it generates the first-component function key and ciphertext
perfectly as in sIPE.KeyGen and sIPE.sEnc. Furthermore, B also generates the second-component
function key and ciphertext perfectly. Overall, B emulates the generation of the jth instance per-
fectly. This concludes the lemma.

Remark 3. We remark that in the proof above, we rely on the fact that for any vector x and linear function
L. The following two procedures produce the same encoding: 1) generate the encoding of x first in some
group Gl, and then apply the linear function L homomorphically over the encodings and 2) evaluate L(x)
first, and then encode the output in Gl. That is, [L(x)]l = L([x]l). This is true in asymmetric bilinear
groups since encodings of any element is unique.

We stress that the property of unique encoding is sufficient but not necessary. Even if encodings are
not unique, as long as they satisfy that the distribution of [L(x)]l and that of L([x]l) are computationally
indistinguishable, the above proof still go through, as well as the security proof of the ABDP public key IPE
IPE and our secret key IPE skIPE. Thus, the above lemmas still hold. As we will see later, this fact helps us
to instantiate the slotted IPE scheme sIPE using graded encoding schemes with noisy encodings.

57

Proof of Lemma 9. Suppose for contradiction that there exists a PPT adversary A, that for infinitely
many λ ∈ N distinguishes SdFHsIPE

A,MG(1λ, 0) and SdFHsIPE
A,MG(1λ, 1) with advantage ν(λ). Then we

show that there is a another adversary B that violates the multi-instance function hiding property
of skIPE w.r.t. a related group generatorMG∗.

• MG∗(1λ) samples (pp1, · · · , ppm)
$←MG outputs (pp1, · · · , ppm), (pp1, · · · , ppm).

By that joint-SXDH holds w.r.t.MG, joint-SXDH also holds w.r.t.MG∗. The first m public param-
eters corresponds to the second-slot skIPE function keys and ciphertexts in the m instances, while
the second m parameters corresponds to the first-slot skIPE function keys and ciphertexts.

Fix a security parameter λ. The adversary B interacts with the challenger CH in experiment
MFHskIPE

B,MG∗(1
λ, b) for b ∈ {0, 1}, and internally emulates the execution of SdFHsIPE

A,MG(1λ, b) as fol-
lows. Steps that belong to the MFH experiment are underlined.

• Public Parameter Generation: Public Parameters (pp1, · · · , ppm), (pp1, · · · , ppm)
$←MG∗ are

sampled in the MFH experiment. B uses (pp1, · · · , ppm) as the public parameters for A.

• Key Generation: The challenger CH samples 2m master secret keys of skIPE. The the first
m corresponds to the m second-slot master secret keys m̃sk1, · · · m̃skm, and second m cor-
responds to the m first-slot master secret keys m̂sk1, · · · m̂skm, in the m instances of sIPE
emulated by B internally for A.

B receives nothing from CH , and needs to emulate for A the m sIPE master public keys
{sl.mpkk}, where each sl.mpkk = (mpk1,k,mpk2,k, {ĉtl,k}). It does:

– Generate the first-component and second-component keys (mpk1,k,msk1,k)
$← IPE.Setup(1λ)

and (mpk2,k,msk2,k)
$← IPE.Setup(1λ).

– For every k ∈ [m], to obtain the first-slot ciphertexts {ĉtl,k}l of skIPE that encrypt
the unit vectors {ul}, B sends query (aux-mesg {ul},m+ k, 1) to its challenger CH ,
who replies with ciphertexts {ĉtl,k

$← skIPE.Enc(m̂skk,ul;α
?
1, β

?
1)}l, where α?1, β

?
1 are the

shared randomness corresponding to r?1 (in the MFH experiment).

B sends A master public keys {sl.mpkk}.

• Function Queries: Repeat the following for an arbitrary number of times determined by A:
In iteration i, upon A choosing challenge functions {y1,k,i,y

0
2,k,i,y

1
2,k,i}k∈[m], B needs to gen-

erate the sIPE function keys {skk,i}k of vector {y1,k,i,y
b
2,k,i}k for A. For every k, it does the

following:

– To generate the first-slot function key ŝkk,i,B sends query (aux-func y1,k,i,m+ k, i) to its
challenger CH , who replies with function key ŝkk,i

$← skIPE.KeyGen(m̂skk,y1,k,i;αi, βi),
where αi, βi are the shared randomness corresponding to ri.

– To generate the second-slot function key s̃kk,i, B sends query (func (y0
2,k,i or y1

2,k,i), k, i)

to its challengerCH , who replies with function key s̃kk,i
$← skIPE.KeyGen(m̃skk,y

b
2,k,i;αi, βi).

– Complete the key generation by computing the first- and second-component function
keys using msk1,k and msk2,k as in sIPE.KeyGen, obtaining skk,i.

Send A function keys {skk,i}k.

58

• Message Queries: UponA choosing challenge messages {x1,k,x
0
2,k,x

1
1,k}k,B needs to generate

the sIPE ciphertexts {ctk}k of vector {x1,k,x
b
2,k}k for A. For every k, it does the following:

– Generate the first-slot ciphertext ĉtk of vector x1,k using {ĉtl,k}k exactly as in sIPE.Enc.

– To generate the second-slot ciphertext c̃tk, B sends query (mesg (x0
2,k or x1

2,k), k, 1) to

its challenger CH , who replies with ciphertext c̃tk
$← skIPE.KeyGen(m̃skk,x

b
2,k;α

?
1, β

?
1)

(using random scalars α?1, β
?
1 corresponding to r?1.)

– Complete the key generation by computing the first- and second-component cipher-
texts using mpk1,k and mpk2,k as in sIPE.Enc, obtaining ctk.

Send A ciphertexts {ctk}k.

• Function Queries Again: Repeat the “function queries” stage above.

• Finally B outputs what A outputs.

We argue that when B participates in MFHskIPE
B,MG∗(1

λ, b), it internally emulates SdFHsIPE
A,MG(1λ, b)

perfectly. To see this, observe that the first- and second-slot function keys and ciphertexts that
B obtains from CH are all correctly distributed. Furthermore, given them, B generates the first-
and second-components keys and ciphertexts exactly as algorithms sIPE.KeyGen and sIPE.Enc do.
Therefore, if A distinguishes the two SdFH experiments with advantage ν(λ), so does B.

6.6 Output-Encoded Slotted-IPE using GES

In this section, we instantiate the output-encoded slotted-IPE sIPEN in Section 6.4 using GES for
depth-D 4-ary tree. (The instantiation is the same for constant or logarithmic D.)

Recall that sIPEN is built upon asymmetric bilinear maps. As discussed before, encodings
under each label Gl′ = {[α]l′ : α ∈ R} “acts” as a group under the ⊕ operator. In particular, for
any label l in the second last layerD−1 of the tree T ,Gl||0 andGl||1 act as groups. By the definition
of pairable, encodings in Gl||0 and Gl||1 are pairable producing encodings in Gl. Therefore, Gl||0
and Gl||1 “act” as the source groups of asymmetric bilinear groups and Gl “acts” as the target
group. We can use them to instantiate our output-encoded slotted IPE. More precisely, forR ∼= Zp,
consider a public parameter pp = (p,Gl||0, Gl||1, Gl,pair) that describes encodings under label
l||0, l||1, l.

• The sIPE.Setup(1λ, pp) on input the security parameter and such a public parameter pp out-
puts sl.mpk, sl.msk as before.

• In all algorithms, every encoding [a]0 in G0 of the asymmetric bilinear groups is replaced
with an encoding of the same value under label l||0 using GES, [a]l||0, and every encoding
[a]1 in G1 is replaced with encodings under label l||1, [a]l||1. Correspondingly, addition and
scalar multiplication in Gb for b ∈ {0, 1} are replaced with addition and scalar multiplication
between encodings with label l||b, and pairing between G0 and G1 to GT is replaced with
pairing between encodings with label l||0 and l||1, to encodings with label l.

Security When instantiated with encodings of GES, the scheme sIPEN satisfies the same secu-
rity property, multi-instance joint-indistinguishability, provided that the joint-SXDH assumption
holds w.r.t. these encodings used to instantiate the scheme. We define a multi-group generatorMG
w.r.t. GES.

59

• MG(1λ) samples pp′
$← InstGen(1λ), which describes a graded encoding structure for ring

R ∼= Zp, and outputs {ppi = (p,Gli||0, Gli||1, Gli ,pair)}i∈[m] satisfying that for every i, j ∈
[m], li ∈ {0, 1, 2, 3}D−1, and pairable(li, lj) = ⊥.

Lemma 10. Let GES be a GES scheme for depth-D 4-ary tree andMG a multi-group generator w.r.t. it.
Assume that the joint-SXDH assumption holds for GES. Then, for any polynomial N , the ouput-encoded
slotted IPE scheme sIPEN satisfies multi-instance joint-indistinguishability w.r.t.MG.

Proof. We show that if joint-SXDH holds w.r.t. GES, then joint-SXDH holds w.r.t.MG. This follows
because for every x ∈ {0, 1}, no two “groups” Gli||x and Glj ||x in the collection of xth “source
groups” {Gli||x} can be paired together, that is pairable(li||x, lj ||x) = ⊥, because pairable(li, lj) =
⊥. It follows from the joint-SXDH assumption w.r.t. GES, that the following two ensembles are
indistinguishable.{

(pp1, · · · , ppm)
$←MG(1λ), a, b

$← Zp : (pp1, · · · , ppm),
{
[a]li||x, [b]li||x, [ab]li||x

}
i∈[m]

}
λ{

(pp1, · · · , ppm)
$←MG(1λ), a, b, r

$← Zp : (pp1, · · · , ppm),
{
[a]li||x, [b]li||x, [r]li||x

}
i∈[m]

}
λ

This is exactly the joint-SXDH assumption w.r.t.MG. Then by corollary 2, sIPEN satisfies multi-
instance joint-indistinguishability w.r.t.MG.

7 FE from the joint-SXDH Assumption on Graded Encodings

We finally describe our functional encryption scheme for NC0 which is secure under the joint-
SXDH assumption on tree-graded encodings. We start in Section 7.1 by introducing our central
information-theoretic tool, namely the notion and construction of (affine) arithmetic randomized
encodings (ARE) by Applebaum, Ishai and Kushilevitz [AIK14]. In Section 7.2, we use AREs
and all the machinery developed in the previous sections to construct our FE scheme, and in
Section 7.3, we provide a proof of security.

7.1 Affine Randomized Encoding for NC1

Syntax An (affine) Arithmetic Randomized Encoding (ARE) scheme produces randomized en-
codings that depend linearly on the input bits; more specifically, the encodings consist of the
outputs of a set of linear functions

f̂(x) =

{
Li(xπ(i); r)

}
i∈[`]

over a ring R, each evaluated on a single input bit specified by an input mapping function π
and shared randomness r. The encoding procedure first evaluates a program encoding algorithm
RPenc that depends only on f (but not x) and outputs the function π, and then evaluates an input
encoding algorithm RIenc that evaluates the set of linear functions on appropriate input bits to
obtain f̂(x).

Formally, an ARE scheme AREN,D,S for the class of functions Fλ,N,D,S is associated with the
following:

• an ensemble of rings {Rλ}λ∈N, and

60

• an ensemble of sets of functions
{
{Li}i∈[`]

}
λ∈N

and a polynomial M , such that for every λ,

` = `(λ), M = M(λ), and i ∈ [`], Li : {0, 1} ×RM → R is linear in its first input.

Li(b, r) = bpi(r) + qi(r) where pi : RM → R, qi : RM → R

The scheme AREN,D,S consists of three PPT algorithms (RPenc,RIenc,REval). For any λ, function
f ∈ FN,D,Sλ described as (C, ρ), and input x ∈ {0, 1}N , the algorithms proceed as follows:

• Encoding: REnc(1λ, f,x) runs the following two algorithms in sequence and outputs what
RIenc outputs.

1. Program Encoding: RPenc(1λ, f) outputs an input mapping function π : [`] → [N] that
specifies which input bit xπ(i) the ith linear function Li should be applied to.

2. Input Encoding: RIenc(1λ,x, π) samples r $← RM , and evaluates Li on input bit xπ(i) and
r to obtain the ith element in the randomized encoding Π[i] = Li(xπ(i); r). It outputs

f̂(x) = Π.

• Evaluation: REval(f̂(x)) on input an encoding f̂(x) outputs a value y = f(x).

The correctness and security requirements are identical to regular randomized encoding schemes
as in Definition 6.

The AIK Affine Randomized Encoding Schemes for NC1 In [AIK11] (AIK), a very simple affine
randomized encoding scheme for Boolean NC1 is proposed, whose time complexity grows ex-
ponentially in the depth of the functions. Their main novelty is extending this basic scheme to
work with P/poly. For our purpose, the simple scheme for NC1 suffices. At a high-level, the AIK
schemes for NC1 generates randomized encodings inductively depending on the depth of the cir-
cuit. From randomized encodings of depth d circuits to that of depth d + 1 circuits, the following
simple Π randomized encoding for quadratic functions of form f(x1, x2) = c1x1x2 + c2 is used.(

Π[0]
Π[2]

)
=

(
1
−r1

)
x1 +

(
r0

r2

) (
Π[1]
Π[3]

)
=

(
1
−r0

)
c1x2 +

(
r1

−r2 − r0r1 + c2

)
(9)

The above randomized encoding Π can be evalutate as Π[0]Π[1] + Π[2] + Π[3] = f(x1, x2).
Below we recall their scheme. Fix any polynomials N,S, and a logarithmic function D. The

AIK ARE scheme AREN,D,S for the class of Boolean functions in FN,D,Sλ works with arbitrary rings
{R}λ, and a sets of functions {{Li}i∈[`]}λ specified below. For any Boolean function f = (C, ρ) ∈
FN,D,Sλ , we assume w.l.o.g. that C containsD = D(λ) layers of NAND gates. We use the following
notations:

• Cd represents the circuit consisting of the first d layers of C, with a set of wd input wires
xd (i.e., output wires of layer d + 1). In particular, when d = 0, C0 is a circuit with no gate
and simply output the input bit x0. When d = D, CD = C and xD = x|ρ. (Recall that C is
evaluated on the subset ρ of the bits of x.)

Using the above notations, we now describe the algorithms in the AIK ARE scheme AREN,D,S :

61

• Program Encoding: RPenc(1λ, f = (C, ρ)) inductively define the randomized encoding Πd(xd)
for Cd treating xd as formal variables, from d = 0 to D. We denote by {Ldi }i∈[`d] the set
of linear functions for computing the randomized encoding of depth d circuits, and `d the
number of these functions.

– BASE CASE d = 0: The randomized encoding for C0(x0
1) = x0

1 is simply Π0(x0
1) = x0

1.
The corresponding linear function and input mapping function are:

∗ the set of functions
{
L0

1

}
contains a single function L0

1(b, r0 = ε) = b, and
∗ the input mapping function π0 : [1]→ [1] is π0(1) = 1.

This way, {
Π0(x0)[1] = L0

1(x0
1, r

0) = x0
1

}
– INDUCTIVE CASE FROM d TO d+ 1: Given the randomized encoding for Cd,{

Πd(xd)[i] = Ldi (x
d
ki
, r≤d) = pdi (r

≤d)xdki + qdi (r≤d)
}
i∈[`d]

where ki = πd(i).

Towards defining the randomized encoding for Cd+1, observe that every bit xdk equals
to the NAND of two input bits xd+1

τ(k,1), x
d+1
τ(k,2) for layer d + 1, where τ is determined

by the wiring in layer d + 1 of C. Then, every element Πd(xd)[i] in the randomized
encoding Πd is a quadratic function over two input bits in xd+1.

Πd(xd)[i] = pdi (r
≤d)

(
1− xd+1

τ(ki,1)x
d+1
τ(ki,2)

)
+ qdi (r≤d)

= −pdi (r≤d)
(
xd+1
τ(ki,1)x

d+1
τ(ki,2)

)
+
(
pdi (r

≤d) + qdi (r≤d)
)
, where ki = πd(i).

Compute the randomized encoding for this quadratic function, as described in equa-
tion (9).(

Πd+1(xd+1)[4i+ 0]
Πd+1(xd+1)[4i+ 2]

)
=

(
1

−rd+1
i,1

)
xd+1
τ(ki,1) +

(
rd+1
i,0

rd+1
i,2

)
(

Πd+1(xd+1)[4i+ 1]
Πd+1(xd+1)[4i+ 3]

)
=

(
1

−rd+1
i,0

)
− pdi (r≤d)xd+1

τ(ki,2) +

(
rd+1
i,1

ν

)
where ν = −rd+1

i,2 − r
d+1
i,0 rd+1

i,1 +
(
pdi (r

≤d) + qdi (r≤d)
)

Then, the randomized encoding of Cd+1(xd+1) is the collection of randomized encod-
ings of every quadratic function, each corresponding to an element in the randomized
encoding of Cd(xd), that is, Πd+1(xd+1) =

{
Πd+1(xd+1)[4i+ c]

}
i∈[`d],c∈{0,1,2,3}. In total,

there are `d+1 = 4`d = 4d+1 elements in Πd+1 and the corresponding linear functions
{L4i+c} and πd+1 are:

πd+1(4i+ 0) = πd+1(4i+ 2) = τ(ki, 1) = τ(πd(i), 1)

πd+1(4i+ 1) = πd+1(4i+ 3) = τ(ki, 2) = τ(πd(i), 2)

62

Ld+1
4i+0(xd+1

τ(ki,1), r
≤d+1) = xd+1

τ(ki,1) + rd+1
i,0

Ld+1
4i+2(xd+1

τ(ki,1), r
≤d+1) = −rdi,1xd+1

τ(ki,1) + rd+1
i,2

Ld+1
4i+1(xd+1

τ(ki,2), r
≤d+1) = −pdi (r≤d)xd+1

τ(ki,2) + rd+1
i,1

Ld+1
4i+3(xd+1

τ(ki,2), r
≤d+1) = rd+1

i,0 pdi (r
≤d)xd+1

τ(ki,2) +
(
−rd+1

i,2 − r
d+1
i,0 rd+1

i,1 + pdi (r
≤d) + qdi (r≤d)

)
where r≤d+1 consists of r≤d and all the new random elements {rd+1

i,t }i∈[`d],t∈{0,1,2}.

The induction ends at d = D, procuring the randomized encoding for CD(xD) = C(x|ρ):{
ΠD(xD)[i] = LDi (xDki , r

≤D)
}
i∈[`D]

where ki = πD(i) and `D = 4D

To transform the input mapping function from working with domain xD to domain x, RPenc
sets the final input mapping function π so that

∀i ∈ [`D], xπ(i) = (x|ρ)πD(i)

It outputs π.

• Input Encoding: RIenc(1λ, x, π) samples random r≤D and outputs
{

Π[i] = LDi (xπ(i); r
≤D)

}
i∈[`D]

.

• Evaluation: REval(Π) on input an encoding Π of f(x) inductively computes the randomized
encoding Πd for Cd(xd) from d = D to 0. The final output is exactly y = Π0.

– Base Case d = D: ΠD for CD(xD) is exactly Π, and has length `D = 4D.

– Inductive step from d + 1 to d: Given the randomized encoding Πd+1 for Cd+1(xd+1),
compute the randomized encoding Πd for Cd(xd) as follows:
Since every element i ∈ [`d] in Πd is encoded by Πd+1[4i+ 0, · · · , 4i+ 3], we obtain

Πd[i] = Πd+1[4i+ 0]Πd+1[4i+ 1] + Πd+1[4i+ 2] + Πd+1[4i+ 3]

Lemma 11 ([AIK11]). For every polynomials N and S and logarithmic function D, the AIK scheme
AREN,D,S is a perfectly secure affine randomized encoding for Boolean functions in the class FN,D,S .

7.1.1 Additional Properties of the AIK Affine Randomized Encoding

We observe the following properties of the AIK ARE scheme AREN,D,S , which will be instrumental
for our construction of FE scheme later. Let {LDi }i∈[`D] be the set of linear functions associated with
AREN,D,S , where each function LDi (b, r) = pDi (r)b+ qDi (r).

• Multilinear coefficient functions: All the coefficient functions {qDi , pDi } are multilinear in ele-
ments of r.

• Bounded number of monomials: Let Mnml({qDi , pDi }) be the set of monomials (over elements of
r) in pDi ’s and qDi ’s. The total number of monomials is bounded by a fixed polynomial, in
particular, |Mnml({qDi , pDi })| = O(λ2).

This can be shown via the following recurrence relation: LetMd = |Mnml({qdi , pdi })|. Md+1 =
Md + 5`d, and thus MD = O(λ2).

63

• Multiplication with independent randomness: For every d+1 ≤ D, evaluation of the randomized
encoding Πd+1 forCd+1(xd+1) involves computing Πd[i] = Πd+1[4i+0]Πd+1[4i+1]+Πd+1[4i+
2] + Πd+1[4i+ 3] for every i ∈ [`d]. Note that, the two elements Πd+1[4i+ 0] and Πd+1[4i+ 1]
that are multiplied together depend on completely independent random coins, the former
on rd+1

i,0 and the latter on r≤d and rd+1
i,1 . They both share random coins with the other two

terms, which however are only added together.

These property are crucial for our FE construction next.

7.2 Construction

We now construct a FE scheme FEN,D,S for the class of functions FN,D,S , where N,S are any
polynomials and D is any logarithmic function. The construction uses the following building
blocks:

• a GES scheme GES for depth-(D(λ) + 1) 4-ary tree T . Let R and {(L, l?,pairable)} be the
parameters associated with GES. (WhenD is a constant, the ensemble is replace with a single
tuple (L, l?,pairable)),

• the ouput-encoded slotted IPE scheme sIPEM instantiated with GES of Lemma 12, and

• the AIK affine randomized encoding scheme AREN,D,S .

Overview Recall the following facts about our GES scheme associated with a depth-(D(λ)+1) 4-
ary tree T . It has a label set L = {0, 1, 2, 3}≤D+1 consisting of the labels of all nodes in T . Equality
testing can be performed over encodings labeled with the root ε, and pairing can be done between
descendants (l1, l2) of two labels (l′1, l

′
2) that are either the first two children (l||0, l||1) of a node l,

or the second two (l||2, l||3).
To compute f(x), our FE scheme generates a secret key sk of f and an encryption ct of x using

multiple instances {sl.ski, sl.cti} (under different master public and secret keys) of the slotted IPE
scheme sIPE. Different instances of sIPE are instantiated with encodings labeled with different
leaves l||0, l||1 ∈ {0, 1, 2, 3}D+1 of T , and the vectors encoded in {sl.ski, sl.cti} are set up carefully
so that their inner products produce exactly the randomized encoding f̂(x) = Π of f(x) (up to
some technicality discussed below). Here, we crucially rely on the fact that the randomized en-
coding is affine in order to compute it using only inner product. Then, evaluating sk and ct yields
GES-encodings of Π labeled with different nodes at (the second last) layer D. Using the tree com-
putation structure of GES, GES-encodings of Π can be homomorphically evaluated, eventually
yielding a GES-encoding of the output y = f(x) at the root. Since the final output is Boolean, y
can be extracted using equality testing at the root.

Two technical challenges need to be addressed for the above high-level plan to go through.
First, where does the random coins for generating the randomized encoding Π come from? One
naive attempt is embedding some fixed random elements r≤D in either the secret key sk or the
ciphertext ct. But, this would lead to reusing the same random elements across all randomized en-
codings produced using that secret key or that ciphertext, rendering these randomized encodings
insecure. To overcome this problem, we embed independent random elements r≤Dsk and r≤Dct in
sk and ct respectively, so that, the randomized encoding Π produced by sk, ct corresponds to ran-
dom elements r≤D = r≤Dsk r≤Dct (where multiplication is coordinate-wise). This way, randomized
encodings produced using different pairs of secret key and ciphertext would not have identical

64

random elements, but still correlated random elements. Then, in the security proof, we first move
to a hybrid experiment where the randomized encodings Π for f(x) is hardwired in the function
key sk for f , and Π is generated using r≤Dr≤Dsk r≤Dct . Then, we move to another hybrid experi-
ment where the random elements r≤D are randomly and independently sampled, by relying on
the joint-SXDH assumption of GES. Finally, in this hybrid, we can leverage the perfect security
of the randomized encoding scheme ARE to argue that it is indistinguishable to switch from one
challenge input x0 to another x1, since they produce the same outputs w.r.t. f .

One technicality is that our slotted IPE scheme sIPE when evaluated does not directly produce
an encoding of the output [Π]l. Instead, for each element Π[i], it produces encodings [Π[i]θi]l and
[θi]l w.r.t. some mask θi (which depends on the random scalars α, α?, β, β? used in key generation
and encryption of sIPE). If different elements Π[i]’s are masked with distinct θi’s, Π can no longer
be evaluated. To see this, consider the simple randomized encoding Π[0, · · · , 3] for the quadratic
function q(x1, x2) = c1x1x2 + c2. The evaluation involves computing y = Π[0]Π[1] + Π[2] + Π[3],
which cannot be done if each Π[c] is masked with a different θc. One naive fix is to mask all
Π[i] with the same θ. This however is insecure for the following reason. Sharing the mask θ
corresponds to sharing the same random scalars α, α?, β, β? across all instances of sIPE. Though
our slotted IPE satisfies multi-instance security with shared random scalars, this only holds for
instances instantiated with encodings that cannot be paired together (otherwise, the joint-SXDH
assumption does not hold). Thus, we cannot use a universal mask θ. Instead, we design a way to
partition elements in Π into groups, such that, it is secure to share the same mask θ within each
group, and Π can still be evaluated though different groups use different masks.

Formal Construction Fix a security parameter λ, a function f = (C, ρ) ∈ FN,D,S and an input
x ∈ {0, 1}N . The scheme FEN,D,S associates every layer d ∈ {0, · · · , D} of the three T with the
randomized encoding Πd of Cd(xd). In particular, the root is associated with the output y = Π0

and the second last layer D is associated with the randomized encoding ΠD of CD(xD), which is
the randomized encoding of f(x). The last layer D + 1 is used to instantiate different instances
of sIPE, which when evaluated produce the encodings of ΠD at layer D. Within each layer d ∈
{0, · · · , D}, different nodes l ∈ {0, 1, 2, 3}d are associated with different disjoint subsets Sdl ⊆ [`d]
of the elements in Πd, such that, ∪lSdl = [`d]. The scheme guarantees that for all element Πd[i]
associated with a node l (i.e., i ∈ Sdl), evaluation would produce their encodings masked by some
value θl under the label l, that is, [Πd[i]θl]l and [θl]l.

We first specify inductively the assignment of subsets {Sdl }.

• Base Case for d = 0: S0
ε = {1}, that is, the root corresponds to Π0

1.

• Inductive Case from d to d + 1: For every l ∈ {0, 1, 2, 3}d in layer d associated with subset Sdl ,
its four children at layer d+ 1 are associated with subsets:

Sd+1
l||0 = {4i | ∀i ∈ Sdl } , Sd+1

l||1 = {4i+ 1 | ∀i ∈ Sdl } , Sd+1
l||2 = {4i+ 2, 4i+ 3 | ∀i ∈ Sdl } , Sd+1

l||3 = ∅

That is, if element Πd[i] is assigned to node l, then the four elements Πd+1[4i+ 0, · · · 4i+ 3] in
Πd+1 that computes Πd[i] are assigned to l’s four children: Πd[4i + 0] to child l||0, Πd[4i + 1]
to l||1, and (Πd[4i+ 2],Πd[4i+ 3]) to l||2. Node l||3 is not assigned with any element of Πd+1,
but is used for computing encoding of the mask.

With the above assignment of Sdl , we now describe the algorithms of FEN,D,S .

• Setup: FE.Setup(1λ) does the following:

65

– Sample the public parameter pp
$← InstGen(1λ) which describes a (R,L,pairable)-GES

withR ∼= Zp for some prime p.
For every l ∈ {0, 1, 2, 3}D, let ppl = (p,Gl||0, Gl||1, Gl,pair) be the public parameter that
describes encodings under label l||0, l||1, l.

– Jointly sample a pair of scalars for every node in layer D {α?l , β?l }l∈{0,1,2,3}D from the
scalar distribution D(R, D):

∗ For every l ∈ {0, 1}D, sample α?l , β
?
l

$← R at random.

∗ For every l ∈ {0, 1, 2, 3}D \ {0, 1}D, α?l , β
?
l = α?τ(l), β

?
τ(l), where τ(l) replaces every

letter li ∈ {0, 1, 2, 3}with li mod 2 ∈ {0, 1}.
– for every node in the second last layer l ∈ {0, 1, 2, 3}D and every i ∈ SDl ∪ {0}, sample

a pair of master public and secret keys of sIPE, using public parameter ppl and random
scalars α?l , β

?
l .{

(sl.mpkl,i, sl.mskl,i)
$← sIPE.Setup(1λ, ppl; α

?
l , β

?
l)
}
l∈{0,1,2,3}D,i∈SDl ∪{0}

Each sl.mpkl,i, sl.mskl,i defines an instance of sIPE instantiated with encodings under
labels l||0, l||1 and l.

It outputs master public key mpk = {sl.mpkl,i} and master secret key msk = {sl.mskl,i}.

• Key Generation: FE.KeyGen(msk, f = (C, ρ)) does the following:

– Jointly sample a pair of scalars for every leaf {αl, βl}l∈{0,1,2,3}D from the distribution
D(R, D) described in FE.Setup.

– Sample elements of r≤Dk randomly fromR.

– Let
{
LDi = pDi (r≤D)b+ qDi (r≤D)

}
i∈[`D]

be the set of functions associated with AREN,D,S ,
and Mn = Mnml({qDi , pDi }) = {mj}j∈[Q] the set of monomials in the coefficient polyno-
mials (recall that Q = |Mn| = O(λ2)). Then, pDi , q

D
i can be decomposed to:

qDi (r≤D) = Σj∈[Q] γi,jmj(r
≤D) pDi (r≤D) = Σj∈[Q] δi,jmj(r

≤D)

For every i ∈ [`D], set Vi to the following length-2Q vector:

Vi = γi,1m1(r≤Dsk)|| · · · ||γi,jmj(r
≤D
sk)|| · · · ||γi,QmQ(r≤Dsk)

||δi,1m1(r≤Dsk)|| · · · ||δi,jmj(r
≤D
sk)|| · · · ||δi,QmQ(r≤Dsk)

– Generate the input mapping function π $← RPenc(1λ, f = (C, ρ)). For every i ∈ [`D] ∪
{0}, set Yi to the following length-M vector where M = 2QN .

Yi =

{
Vi ⊗ uπ(i) = (02Q)π(i)−1||Vi||(02Q)N−π(i) if i ∈ [`D]

0M−11 if i = 0

where uπ(i) is the unit vector of length-N that has a single 1 at position π(i).

66

– for every l ∈ {0, 1, 2, 3}D and i ∈ SDl ∪ {0}, sample a sIPE function key sl.skl,i of Yi,
using sl.mskl,i and the random scalars αl, βl:

sl.skl,i
$← sIPE.KeyGen(sl.mskl,i, Yi, 1M ; αl, βl)

where the second slot is set to a dummy value 1M .

Output sk = {sl.skl,i}.

• Encryption: FE.Enc(mpk, x) does the following:

– Sample elements of r≤Dct randomly fromR.

– Set U and X to the following length-Q and length-2N vectors

U = m1(r≤Dct)||mj(r
≤D
ct)|| · · · ||mQ(r≤Dct)

X = x1||1||x2||1 · · · ||xN ||1

– for every l ∈ {0, 1, 2, 3}D and i ∈ SDl ∪ {0}, set Xi to the following length M = 2QN
vector.

Xi =

{
U ⊗X = x1U ||U ||x2U ||U · · · ||xnU ||U if i ∈ [`D]

0M−11 if i = 0

– for every l ∈ {0, 1, 2, 3}D and i ∈ SDl ∪{0}, sample a sIPE ciphertext sl.ctl,i using sl.mpkl,i:

sl.ctl,i
$← sIPE.Enc(sl.mpkl,i, Xi).

It outputs ct = {sl.ctl,i}.

• Decryption: FE.Dec(sk, ct) does the following:

– Evaluate the IPE secret keys and ciphertexts: For every l ∈ {0, 1, 2, 3}D and i ∈ SDl ∪ {0},
evaluate sl.skl,i and sl.ctl,i to obtain ZDl,i = sIPE.Dec(sl.skl,i, sl.ctl,i).

By the correctness of sIPE,

ZDl,i = OEnc((Xi · Yi), sl.mpkl,i, αl, α
?
l , βl, β

?
l) = [(Xi · Yi)θl]l, [θl]l where θl = αlα

?
l + βlβ

?
l

By definition of Xi and Yi,

X0 · Y0 = (0M−11) · (0M−11) = 1

Xi · Yi = (Vi ⊗ uπ(i)) · (U ⊗X) = Vi ·
(
xπ(i)U ||U

)
=
(

Σj∈[Q]γi,jmj(r
≤D
sk)mj(r

≤D
ct)

)
xπ(i) +

(
Σj∈[Q]δi,jmj(r

≤D
sk)mj(r

≤D
ct)

)
(*)

=
(

Σj∈[Q]γi,jmj(r
≤D
sk r≤Dct)

)
xπ(i) +

(
Σj∈[Q]δi,jmj(r

≤D
sk r≤Dct)

)
= pDi (r≤D)xπ(i) + qDi (r≤D) where r≤D = r≤Dsk r≤Dct

= ΠD[i](r≤D) = ΠD[i]

67

We note that equality (*) holds because all {pDi , qDi } are multiplier and hence so are all mono-
mials {mj}. (See Section 7.1.1.)
For convenience of notation, we think of Πd being pre-pended with a 1, that is, Πd[0] = 1 for all
d ∈ [D]. Then, evaluating sl.skl,i and sl.ctl,i gives GES-encodings of the randomized encoding
ΠD of f(x), more precisely,{

ZDl,i[1] = [ΠD[i]θl]l
}
l∈[`D],i∈[SDl]∪{0} where ΠD[0] = 1 (10)

– Evaluate the randomized encoding ΠD homomorphically: Starting from the encodings in
Equation 10 at layer D − 1, inductively evaluate the encodings to obtain encodings of
Πd at higher layers: {

[Πd[i]θl]l

}
l∈[`d],i∈[Sdl]∪{0}

where θl = θl||0θl||1

while maintaining the invariant that θl = θτ(l).

The inductive step from encodings at layer d + 1, {[Πd+1[i]θl]l} for l ∈ {0, 1, 2, 3}d+1,
i ∈ [Sd+1

l] ∪ {0}, to encodings at layer d, {[Πd[i]θl]l} for l ∈ {0, 1, 2, 3}d , i ∈ [Sdl] ∪ {0},
proceeds as follows:

∗ For every l ∈ {0, 1, 2, 3}d and i = 0,

[Πd[0]θl]l = [θl]l = pair([θl||0]l||0, [θl||1]l||1)

= pair([Πd+1[0]θl||0]l||0, [Π
d+1[0]θl||1]l||1) (11)

Invariant: By the induction hypothesis, θl||0 = θτ(l)||0 and θl||1 = θτ(l)||1, and thus
θl = θτ(l).
∗ For every l ∈ [`d] and i ∈ Sdl , since Πd[i] = Πd+1[4i+ 0]Πd+1[4i+ 1] + Πd+1[4i+ 2] +

Πd+1[4i+ 3],

[Πd[i]θl]l = pair([Πd+1[4i+ 0]θl||0]l||0, [Π
d+1[4i+ 1]θl||1]l||1)

⊕ pair([Πd+1[4i+ 2]θl||2]l||2, [Π
d+1[0]θl||3]l||3)

⊕ pair([Πd+1[4i+ 3]θl||2]l||2, [Π
d+1[0]θl||3]l||3) (12)

Invariant: The induction hypothesis guarantees that for any c, θl||c = θτ(l||c), and
thus θl = θl||0θl||1 = θl||2θl||3 = θτ(l)||0θτ(l)||1 = θτ(l).

At the end of the induction, obtain encodings [Π0[0]θε]ε = [θε]ε, and [Π0[1]θε]ε = [yθε]ε.
Since y ∈ {0, 1}, output y = 1 iff Eq([θε]ε, [yθε]ε) = 1.

To show that the final output y is computed correctly, it suffices to show that the above induction step
from d + 1 to d computes elements Πd[i] correctly, if elements Πd+1[i] are correct. Then combined
with the fact that ΠD[i]’s are computed correctly by the analysis above, we conclude that y = Π0[1]
is also correct.

The correctness of the induction step follows from the correctness of the AIK ARE scheme, the invari-
ant on θ’s and the fact that the assignment of subsets {Sd+1

l } ensures that all encodings on the right
hand side of equations (11) and (12) can be found in {[Πd+1[i]θl]l}l∈[`d+1],i∈[Sd+1

l]∪{0}.

68

7.3 Security

Lemma 12. Let D be any logarithmic function and GES a GES scheme for depth-D(λ) + 1 4-ary tree.
Assume that the joint-SXDH assumption holds for GES. Then, for any polynomials N,S, the scheme
FEN,D,S presented above is a selectively secure FE scheme for the class of Boolean functions in FN,D,S .

Proof. Fix any PPT adversary A, and security parameter λ. We need to show that experiments
Sel.ExpFE

A (1λ, 0) and Sel.ExpFE
A (1λ, 1) are indistinguishability to A. Recall that in Sel.ExpFE

A (1λ, b),
the adversary A after receiving a master public key mpk, immediately chooses two challenge in-
puts (x0, x1) and obtains a ciphertext ct of xb. Then, it can request for many function keys {skj} of
arbitrary functions {f j} of his choice, with the only restriction that f j(x0) = f j(x1) for all j. Let J
be an upper bound on the number of function keys that A asks. By construction, one instance of
FE consists of many instances of the slotted IPE scheme sIPE instantiated using encodings under
different labels l||0, l||1, for l ∈ {0, 1, 2, 3}D in the second last layer. That is,

mpk,msk = {sl.mpkl,i}, {sl.mskl,i}, sk = {sl.skl,i}, ct = {sl.ctl,i}

where l ∈ {0, 1, 2, 3}D and i ∈ SDl ∪ {0}. We refer to sl.mpkl,i, sl.mskl,i, sl.skl,i, sl.ctl,i the (l, i)th

instance of sIPE.
At a high-level, we show the indistinguishability of the two experiments in the following steps:

• Step 1: Hardwire the randomized encodings. First, we go through a sequence of 2D hybridsHb
0 =

Sel.ExpFE
A (1λ, b), Hb

1, · · · , Hb
2D

, to switch every function keys skj = {sl.skjl,i} and challenge
ciphertext ct = {sl.ctl,i} from encoding vectors {(Y j

i , 1
M)} and {(Xi, 0

M)} (where 1M and
0M are encoded in the second slot) to encoding {(Y j

i , 0
M−1||Πj [i])} and {(0M , 0M−1||1)},

where Πj [i] = Y j
i · Xi. Here, we rely on the fact that A chooses his challenge inputs x0, x1

before sending any function queries to ensure that at the time of generating function key skj ,
Πj is known. The indistinguishability of neighboring hybrids reduces to the multi-instance
joint indistinguishability of sIPE.

In the final hybrid Hb
2D

, the ciphertext ct contains no information of xb, and the secret keys

skj = {sl.skjl,i}l,i has Πj hardwired inside which is a randomized encoding f̂ j(xb). We would
like to apply the perfect security of the AIK ARE scheme ARE to claim thatH0

2D
is identically

distributed as H1
2D

. This, however, fails because different Πj are generated using correlated
randomness. In particular, the randomness rj for generating Πj is equal to rj = rjskrct, where
rct is embedded in ct, and rjsk is embedded in skj .

• Step 2: Switch to truly random elements. To address the above issue, we use another sequence
of hybrids Gb1,0 = Hb

2D
, · · ·GbJ,T to switch, for each function query j, rj from being the prod-

uct rjskrct to a uniformly random vector wj $← RT , (where T is an upper bound on |rj |). This
step relies on the joint-SXDH assumption of GES and crucially the fact that the same random
element rjt would never appear at two nodes l1, l2 that are pairable.

At the final hybrid GbJ,T , the randomized encoding Πj hardwired in the function key skj is
computed using independent and random vector wj .

• Step 3: Switch the challenge input. Then it follows from the perfect security of ARE, G0
J,T

and G1
J,T are identically distributed. By a hybrid argument, we conclude that experiments

Hb
0 = Sel.ExpFE

A (1λ, b) for b = 0 and 1 are indistinguishable.

69

Next, we describe formally the hybrids {Hb
s} and {Gbj,t} and analyze the indistinguishability

of neighboring hybrids.

Hybrid Hb
s : Hybrid Hb

s for s ∈ [2D] proceeds identically to Hb
0 = Sel.ExpFE

A (1λ, b), except that, all
the sIPE instances in the set Γ(< s) = {(l, i) : τ(l) < s, i ∈ SDl } encode different function
and input vectors:

In Hb
0, ∀ (l, i) ∈ Γ(< s) sl.skjl,i encodes (Y j

i , 1
M) ctl,i encodes (Xi, 0

M) (13)

In Hb
s , ∀ (l, i) ∈ Γ(< s) sl.skjl,i encodes (Y j

i , 0
M−1||Πj [i]) ctl,i encodes (0M , 0M−1||1) (14)

where Πj [i] = Y j
i ·Xi. All other instances outside the set Γ(< s) encode identical vectors as

in line (13).

Recall that by construction of FE, Πj [i] is the ith element of the randomized encoding Πj for
the computation f j(xb). In other words, in Hb

s , for every i ∈ ∪τ(l)<sS
D
l , the ith randomized

encoding element Πj [i] is directly hardwired into skj , as opposed to being computed via
Y j
i ·Xi.

Indistinguishability between Hb
s−1 and Hb

s : We claim that for every s, hybrids Hb
s−1 and Hb

s

are indistinguishable to A. Note that the only difference between them is that instances in the
set Γ(s − 1) = {(l, i) : τ(l) = s− 1, i ∈ SDl } encode vectors in line (13) in Hb

s−1 and vectors in
line (14) in Hb

s . By the construction of FE, all instances (l, i) ∈ Γ(s − 1) use random scalars
α?s−1, β

?
s−1 in the setup phase for generating the master public and secret keys (sl.mpkl,i, sl.mskl,i),

and use random scalars αjs−1, β
j
s−1 during the jth key generation for generating sl.skjl,i. Moreover,

instances in Γ(s−1) are the only instances that use these random scalars. In other words, instances
outside Γ(s−1) are generated completely independently of instances in Γ(s−1), and are identically
distributed in Hb

s−1 and Hb
s . Therefore, to show the indistinguishability of Hb

s−1 and Hb
s , it suffices

to show the indistinguishability of the joint distributions of instances in Γ(s− 1) in Hb
s−1 and Hb

s ,
which we show follows from the multi-instance joint-indistinguishabilty of sIPE.

Note that for any labels l1 < l2 such that τ(l1) = τ(l2) = s − 1, they are not pairable, that is,
pairable(l1, l2) = ⊥. This is because for τ(l1) = τ(l2) to hold, it must be that l1 and l2 are decedents
of (l||0, l||2) or (l||1, l||3), and hence are not pairable. Therefore, by that joint-SXDH holds in GES,
joint-SXDH holds over encodings with labels {l||0 : τ(l) = s− 1}, as well as over encodings with
labels {l||1 : τ(l) = s− 1}. In other words, joint-SXDH holds in encodings used to instantiate sIPE
instances in Γ(s− 1). Hence, by Lemma 12, the multi-instance joint-indistinguishability property
holds for instances in Γ(s− 1). Observe additionally that the function and input vectors encoded
in instances in Γ(s− 1) have identical inner products in Hb

s−1 and Hb
s .

(Y j
i ||1

M) · (Xi||0M) = Xi · Y j
i = Πj [i] = (Y j

i , 0
M−1||Πj [i]) · (0M , 0M−1||1)

Therefore, instances in Γ(s− 1) are indistinguishable in Hb
s−1 and Hb

s , and hence so are Hb
s−1 and

Hb
s .

Analysis ofHb
2D

In the last hybridHb
2D

, the ciphertext ct = {sl.ctl,i}l,i encodes the vector (0M , 0M−1||1),
containing no information of xb. For every function query f j , the secret key skj = {sl.skjl,i}l,i con-
tains in the second slots a randomized encoding Πj of the computation f j(x). Towards show-
ing the indistinguishability of H0

2D
and H1

2D
, we will eventually apply the perfect security of the

70

randomized encoding scheme ARE, to argue that a randomized encoding Πj of the computa-
tion f j(x0) is identically distributed as a randomized encoding of the computation f j(x1), since
f j(x0) = f j(x1). But for the perfect security of ARE to hold, it must be the case that randomized
encodings Πj for different function queries are generated using independent random elements.
However, this is not true in Hb

2D
. By construction of FE, the jth randomized encoding Πj is gen-

erated using a vector of random elements rj = rjskrct, where rct are random elements sampled
at encryption time and embedded in ct, and rjsk are random elements sampled at key generation
time and embedded in skj . The distributions of rj = rjskrct for different j are correlated. This
motivates the next sequence of hybrids.

Hybrid Gbj,t Hybrid Gbj,t for j ∈ [J] and t ∈ {0} ∪ [T] (where J is an upper bound on the number
of function queries and t an upper bound on the number of random elements for generating
AIK randomized encodings), is identical to Gb1,0 = Hb

2D
except that {Πj} are computed with

the following random elements.

• For all h < j, {Πh} is generated using independent random vector wh $← RT , during
the key generation for function fh.
• For all h > j, {Πh} is generated using a vector rh = rhskrct, where rct is the random

elements sampled during the encryption of xb and rhsk is sampled during the key gen-
eration for function fh.
• For h = j, {Πh} is generated using a vector rh such that the first t elements are random
rh≤t

$← Rt while the rest are the products rh>t = rhsk,>trct,>t.

By construction, for any j, hybridsGbj−1,T andGbj,0 are identically distributed. Therefore, it suffices
to show the indistinguishability between Gbj,t−1 and Gbj,t.

Indistinguishability of Gbj,t−1 and Gbj,t We claim that for every j, t, hybrids Gbj,t−1 and Gbj,t are
indistinguishable to A. Note that the only difference between them is that in the former, the tth

random element rjt is rjt = rjsk,trct,t, whereas in the latter rjt = wjt
$← R is random.

Recall that by construction of ARE, the ith element in a randomized encoding Π for some com-
putation f(x) using random vector r is computed as,

Π[i] = pi(r)xπ(i) + qi(r) where pi(r) = Σl∈[Q]γi,lml(r), pi(r) = Σl∈[Q]δi,lml(r)

where {ml}l∈[Q] is the set of monomials in all {pi, qi}i. Moreover, pi, qi are multilinear and so are
all monomial ml’s. Therefore, every element Π[i] (viewed as a function over f, x, r) is multilinear
over r. Different pi, qi functions can depend on different subsets of elements in r. Let Λ(t) be the
set of indexes i such that pi or qi depends on the tth random element rt. In other words, Λ(t) is the
set of RE elements Π[i] that depends on rt. (Note that Λ(t) is determined by the scheme ARE, and
independent of f, x, r.)

By the construction of FE, the ith RE element Π[i] is assigned to a unique node l s.t. i ∈ SDl .
Let Ψ(t) = {(i, l) | i ∈ Λ(t) and i ∈ SDl } be the set of sIPE instances designated for computing RE
elements in Λ(t). Therefore, Ψ(t) is the set of instances depend on rt.

Combing back to hybrids Gj,t−1 and Gj,t, for every instance (l, i) ∈ Ψ(t), and every function
query f j , the function key sl.skjl,i encoding vector (Y j

i , 0
M−1||Πj [i]), where Y j

i = V j
i ⊗ uπj(i) and

V j
i = γi,1m1(rjsk)|| · · · ||γi,QmQ(rjsk)||δi,1m1(rjsk)|| · · · ||δi,QmQ(rjsk)

71

Thus, Y j
i depends linearly on rjsk,t and as discussed above Πj [i] depends linearly on rjt as well. Fur-

thermore, by construction of sIPE, the function key sl.skjl,i depends linearly on the encoded vectors
Y j
i and Πj [i], meaning that there exist linear functions Lj1, L

j
2 such that sl.skjl,i can be written as

[Lj1(rjsk,t)]l, [L
j
2(rjt)]l, where Lj1, L

j
2 depends on the master secret key sl.mskl,i and other random el-

ements for instance (l, i). Furthermore, only function keys {sl.skjl,i} of instances in Ψ(t) depend on
rjsk,t and rjt . All other objects — master keys, other function keys, and ciphertexts — are generated
identically in in Gj,t−1 and Gj,t.

Therefore, to show the indistinguishabilty of Gj,t−1 and Gj,t, it suffices to show the indistin-
guishabilty of function keys {sl.skjl,i} of instances (l, i) ∈ Ψ(t), which in turn is implied by the
indistinguishabilty of the following distributions{

rjsk,t, rct,t
$← R, rjt = rjsk,trct,t :

{
[rjsk,t]l||1, [rct,t]l||1, [r

j
t]l||1

}
(l,i)∈Ψ(t)

}
{
rjsk,t, rct,t, w

j
t

$← R, rjt = wjt :
{
[rjsk,t]l||1, [rct,t]l||1, [r

j
t]l||1

}
(l,i)∈Ψ(t)

}
All keys sl.skjl,i inGj,t−1 can be generated from the first distribution homomorphically (in an indis-
tinguishable way), and all keys in Gj,t can be generated from the second distribution homomor-
phically. Moreover, the above two distributions are indistinguishable as long as the joint-SXDH
assumption holds for encodings under labels {l||1}(l,i)∈Ψ(t), which is implied by the joint-SXDH
assumption of GES and the following claim. Therefore Gj,t−1 and Gj,t are indistinguishable.

Claim 3. For every t, every (l1, i1), (l2, i2) ∈ Ψ(t), it holds that pairable(l1, l2) = ⊥.

Proof. Proof by induction over the depth d of the circuit. When d = 0, the claim holds vacuously
since Π0[1] = x1 does not depend on any random elements.

Assume that the claim is true for depth-d circuits. That is, for every element r≤dt in the random
vector r≤d for computing Πd, for every (l1, i1), (l2, i2) ∈ Ψd(t), it holds that pairable(l1, l2) = ⊥,
where l1, l2 ∈ {0, 1, 2, 3}d and i1, i2 are indexes of elements in Πd. Then we show that the claim
holds for all depth-(d+1) circuits. Recall that the random vector r≤d+1 for computing Πd+1 consists
of two parts r≤d and rd+1. Consider two cases:

• Case 1: r≤d+1
t is an element in rd+1. Recall that by construction of ARE, when encoding

a depth-(d + 1) computation, for every i ∈ [`d], three random vectors rd+1
i,0 , rd+1

i,1 , rd+1
i,2 are

sampled, and used respectively in the generation of the following RE elements (Πd+1[4i +
0],Πd+1[4i+3]), (Πd+1[4i+1],Πd+1[4i+2],Πd+1[4i+3]), and (Πd+1[4i+2],Πd+1[4i+3]). The
four RE elements are respectively assigned to node l||0, l||1, l||2 and l||2 for some l ∈ {0, 1}d.
Hence Ψ(i, 0) = {(l||0, 4i+ 0), (l||2, 4i+ 3)}, Ψ(i, 1) = {(l||1, 4i+ 1), (l||2, 4i+ 2), (l||2, 4i+ 3)}
and Ψ(i, 3) = {(l||2, 4i+ 2), (l||2, 4i+ 3)}. It is easy to verify that for every t = (i, c), the claim
holds.

• Case 2: r≤d+1
t is an element in r≤d. Let r≤d+1

t = r≤dt′ for some t′. By the induction hy-
pothesis, no two labels in Ψd(t′) are pairable. Additionally, by the construction of ARE,
for every (l, i) ∈ Ψd(t′), the RE element Πd[i] is encoded in 4 elements Πd+1[4i · · · 4i +
3] in Πd+1. Moreover, only Πd+1[4i + 1] and Πd+1[4i + 3] depend on random elements
in r≤d (the other two elements depend only on elements in rd+1.) Therefore, Ψd+1(t) =
{(l||1, 4i+ 1), (l||2, 4i+ 3) | (l, i) ∈ Ψd(t′)}. By the fact that no two labels in Ψd(t′) are pairable,
the same holds for Ψd+1(t).

72

Acknowledgements. The authors thank Hoeteck Wee for being the intellectual inspiration behind
this work, Stefano Tessaro for many helpful inputs and insights, and Benny Applebaum for be-
ing a quick and reliable oracle. Huijia Lin was partially supported by NSF grants CNS-1528178
and CNS-1514526. Vinod Vaikuntanathan was supported by NSF Grants CNS-1350619 and CNS-
1414119 and by the U.S. Army Research Office under contract W911NF-15-C-0226.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 528–556, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany.

[ABCP16] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better
security for functional encryption for inner product evaluations. IACR Cryptology
ePrint Archive, 2016:11, 2016.

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Sim-
ple functional encryption schemes for inner products. In Jonathan Katz, edi-
tor, PKC 2015, volume 9020 of LNCS, pages 733–751, Gaithersburg, MD, USA,
March 30 – April 1, 2015. Springer, Heidelberg, Germany.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
II, volume 9216 of Lecture Notes in Computer Science, pages 657–677. Springer, 2015.

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimiz-
ing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 646–658, Scottsdale, AZ, USA, Novem-
ber 3–7, 2014. ACM Press.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In
FOCS, pages 166–175, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom genera-
tors with linear stretch in nc0. Computational Complexity, 17(1):38–69, 2008.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129, Palm Springs, Cali-
fornia, USA, October 22–25, 2011. IEEE Computer Society Press.

73

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. SIAM J. Comput., 43(2):905–929, 2014.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness gener-
ically: Indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730, 2015.

[AL15] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. Electronic Colloquium on Computational Complexity
(ECCC), 22:172, 2015.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cam-
bridge, MA, USA, Proceedings, pages 298–307. IEEE Computer Society, 2003.

[App14] Benny Applebaum. Cryptography in Constant Parallel Time. Information Security and
Cryptography. Springer, 2014.

[BGI+01a] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara,
CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in The-
oretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 345–356.
ACM, 2016.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EuroCrypt’14, 2013.

[BGK+14a] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Den-
mark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 221–238. Springer, 2014.

[BGK+14b] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copen-
hagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

74

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryp-
tology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages 470–491.
Springer, 2015.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptoma-
nia to obfustopia through secret-key functional encryption. IACR Cryptology ePrint
Archive, 2016:558, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 719–737, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In Guruswami [Gur15], pages 1480–1498.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Theory of Cryptog-
raphy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part I, pages 474–502, 2016.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Computational Complexity, 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
IACR Cryptology ePrint Archive, 2002:80, 2002.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for
public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In TCC, pages 521–538,
2009.

[CHN+15] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. IACR Cryptology ePrint Archive,
2015:1096, 2015. To Appear in ACM STOC 2016.

75

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Dodis and Nielsen [DN15], pages 468–497.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in nc0. In Proc. 26th
MFCS, 2001.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using
black-box pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500, 2013.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for
inner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016 -
19th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I, volume 9614 of Lecture Notes in
Computer Science, pages 164–195. Springer, 2016.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptography - 12th The-
ory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, volume 9015 of Lecture Notes in Computer Science. Springer, 2015.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH13b] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17, Athens, Greece, May 26–30, 2013. Springer, Hei-
delberg, Germany.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round se-
cure MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science,
pages 74–94. Springer, 2014.

76

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptog-
raphy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, volume 9563 of Lecture Notes in Computer Science, pages 480–511.
Springer, 2016.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing pri-
vate RAM computation. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 404–413. IEEE
Computer Society, 2014.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. In Gu-
ruswami [Gur15], pages 151–170.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 426–443. Springer, 2014.

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation with-
out the vulnerabilities of multilinear maps. IACR Cryptology ePrint Archive, 2016:390,
2016.

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC
from indistinguishability obfuscation. In Dodis and Nielsen [DN15], pages 614–637.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P.
Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography Conference, TCC
2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, volume 4392 of
Lecture Notes in Computer Science, pages 194–213. Springer, 2007.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Unifying security notions of functional
encryption. IACR Cryptology ePrint Archive, 2016:524, 2016.

[Gur15] Venkatesan Guruswami, editor. IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. IEEE Computer
Society, 2015.

[HY16] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. Electronic Colloquium on Computational
Complexity (ECCC), 23:63, 2016.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In EUROCRYPT 2008, pages
146–162, 2008.

77

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes, 2016. To Appear in Eurocrypt’16.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. IACR Cryptology ePrint Archive, 2016:561, 2016.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierar-
chical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010, vol-
ume 6110 of LNCS, pages 62–91, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

[MMN16a] Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the impos-
sibility of virtual black-box obfuscation in idealized models. In Theory of Cryptogra-
phy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part I, pages 18–48, 2016.

[MMN+16b] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
Abhi Shelat. Lower bounds on assumptions behind indistinguishability obfuscation.
In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part I, pages 49–66, 2016.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October
2003, Cambridge, MA, USA, Proceedings, pages 136–145, 2003.

[MSZ16a] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. IACR Cryp-
tology ePrint Archive, 2016:147, 2016.

[MSZ16b] Eric Miles, Amit Sahai, and Mark Zhandry. Secure obfuscation in a weak multi-
linear map model: A simple construction secure against all known attacks. IACR
Cryptology ePrint Archive, 2016:588, 2016.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In 36th FOCS, pages 170–181, Milwaukee,
Wisconsin, October 23–25, 1995. IEEE Computer Society Press.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467, Miami Beach, Florida, October 19–
22, 1997. IEEE Computer Society Press.

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions and factor-
ing (extended abstract). In 32nd ACM STOC, pages 11–20, Portland, Oregon, USA,
May 21–23, 2000. ACM Press.

[NS94] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real poly-
nomials. Computational Complexity, 4:301–313, 1994.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

78

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and sig-
natures from vector decomposition. In Steven D. Galbraith and Kenneth G. Pater-
son, editors, Pairing-Based Cryptography - Pairing 2008, Second International Conference,
Egham, UK, September 1-3, 2008. Proceedings, volume 5209 of Lecture Notes in Computer
Science, pages 57–74. Springer, 2008.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for
inner-products. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture
Notes in Computer Science, pages 214–231. Springer, 2009.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12, 2014.

[PS16] Rafael Pass and Abhi Shelat. Impossibility of VBB obfuscation with ideal constant-
degree graded encodings. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 3–17, 2016.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484,
New York, NY, USA, May 31 – June 3, 2014. ACM Press.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryp-
tology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 678–697. Springer, 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–
467, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

79

	Introduction
	Our Results
	Technical Overview
	Noisy Graded Encodings
	Local PRGs
	Organization

	Preliminaries
	-Indistinguishability
	Indistinguishability Obfuscation
	Pseudorandom Generator
	Randomized Encodings
	Program-Decomposable Randomized Encodings
	Linear Efficiency

	Functional Encryption
	Public-Key Functional Encryption
	FE Schemes for P/poly, NC 1 and NC 0
	Compactness

	Indistinguishability Obfuscation from NC 0-Functional Encryption
	Proof of Theorem 5
	The Construction
	Compactness of CFE
	Security of CFE

	IO from FE for Constant Degree Polynomials

	Graded Encoding with the Joint-SXDH Assumption
	Clean Graded Encoding Schemes
	Noisy Graded Encoding Schemes
	The joint-SXDH Assumption
	Tree-GES: Graded Encoding for Depth-D 4-ary Trees
	Connection with Set-based and Graph-based GES
	Set-based GES
	Graph-based GES

	Function-Hiding Secret-Key IPE
	Secret-Key Inner Product Functional Encryption
	Function Hiding and Weak Function Hiding

	Asymmetric Bilinear Groups
	BJK Weak Function Hiding Secret Key IPE
	Multi-Instance Function Hiding
	Multi-Instance Weak Function Hiding
	BJK is Multi-Instance Weak Function Hiding
	Our Multi-Instance (Strongly) Function-Hiding Secret-Key IPE

	Slotted Public Key IPE
	Public Key IPE
	ABDP Public Key IPE
	Definition of Output-Encoded Slotted-IPE
	Our Output-Encoded Slotted-IPE
	Security
	Output-Encoded Slotted-IPE using GES

	FE from the joint-SXDH Assumption on Graded Encodings
	Affine Randomized Encoding for NC 1
	Additional Properties of the AIK Affine Randomized Encoding

	Construction
	Security

