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Abstract. Shannon defined an ideal (κ, n)-blockcipher as a secrecy system consisting of 2κ independent
n-bit random permutations.
In this paper, we revisit the following question: in the ideal cipher model, can a cascade of several ideal
(κ, n)-blockciphers realize an ideal (2κ, n)-blockcipher? The motivation goes back to Shannon’s theory on
product secrecy systems, and similar question was considered by Even and Goldreich (CRYPTO ’83) in
different settings. We give the first positive answer: for the cascade of independent ideal (κ, n)-blockciphers
with two alternated independent keys, four stages are necessary and sufficient to realize an ideal (2κ, n)-
blockcipher, in the sense of indifferentiability of Maurer et al. (TCC 2004). This shows cascade capable of
achieving key-length extension in the settings where keys are not necessarily secret.
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1 Introduction

A blockcipher with key length κ and block size n is a set of efficiently invertible permutations Ek on the set
{0, 1}n indexed by a κ-bit key k, and is often referred to as a (κ, n)-blockcipher. When the permutations are 2κ

independent and random ones, it constitutes an ideal (κ, n)-blockcipher IC[κ, n].
A cascade cipher is defined as a concatenation of blockcipher systems, henceforth referred to as its stages.

The cascade of l ciphers, called l-cascade, is

El(kl, El−1(kl−1, . . . (E1(k1, x)) . . .)).

In the secret-key setting, cascade is a natural and important way to amplify security, and has been deeply
understood for this purpose, cf. two recent works [16,24] (this line of works will be recalled later). However, it is
far less understood when used for other purposes and in settings different from secret-key setting. In this sense,
the power of cascade has not been fully developed.

Our Main Question. In this paper, we consider cascade ciphers from such a different perspective—more
clearly, in the indifferentiability framework of Maurer et al. [38]. Besides deepening the understanding of the
power of cascade, it’s also related to the structure of the set of transformations performed by cascade ciphers,
which dates back to Shannon: the cascade of l independent ideal (κ, n)-ciphers is a special case of product
secrecy system, and is a set of 2lκ n-bit permutations [46]; but Shannon did not provide additional knowledge
of these permutations. Over the past decades, the question what set of permutations the cascade can perform
received very few attention—we are only aware of the research of Even and Goldreich in 1980s, which proved
that the (probably 2lκ) different permutations realized by l-cascade are not independent : their behavior could
be determined using only l · 2κ exhaustive experiments [21]. Since their negative result, a problem is whether
the cascade of ideal (κ, n)-ciphers could “behave like” 2lκ independent random permutations for l ≥ 2 (say, an
ideal (lκ, n)-cipher) and under which conditions could it be?

The experiments considered in [21] do not allow the adversary to access the underlying ciphers. However,
we would like to consider the above problem in the ideal cipher model (ICM), as security proofs for cascade
ciphers are typically made in ICM—say, the adversary is free to query the underlying ideal ciphers (such proofs
are accepted as evidence of security against generic attacks despite the uninstantiability of ICM [10,8]). Then
our problem can also be seen as the natural extension of the key-length extension problem from the traditional
secret-key setting to the setting of public-key, and the goal is formalized by indifferentiability [38].



Note that cascade ciphers are idealized blockciphers; here we give a brief review on the indifferentiability
of idealized ciphers. Traditionally, blockciphers are used to ensure confidentiality in the secret-key setting,
and being pseudorandom already suffices. However, blockciphers also find extensive use in constructing other
cryptographic primitives such as hash functions, in which cases mere pseudorandomness would be insufficient.
For example, the Davies-Meyer mode of the pseudorandom 1-round Even-Mansour cipher [22] is not collision-
intractable. Even if only used for encryption, merely-pseudorandom blockciphers may induce danger due to
related-key attacks [6,4]. These motivated the line of works considering whether idealized blockciphers can
be “as secure as” ideal ciphers—or indifferentiable from ideal ciphers [3,34]. The indifferentiability analysis of
cascade follows this line in some sense.

Overall, motivated by the above discussion, our main question is:

– In the ICM, under which conditions and for how large value l is the cascade of l ideal ciphers IC[κ, n]
indifferentiable from an ideal (κ′, n)-blockcipher such that κ′ > κ, e.g. IC[2κ, n]?

Sub-Key Reuse, and Independent Underlying Ciphers. It has been observed by Lampe and Seurin that
the cascade of two IC[κ, n] with two independent keys is not indifferentiable from IC[2κ, n] [34]. Obviously,
using l independent keys in l-cascade is like using a 2-cascade; the case is a bit similar to the context of iterated
Even-Mansour ciphers [3]. Therefore, the keys of the underlying ideal ciphers must be somehow reused.

To achieve key-reusing and key-length extension at the same time, a very natural and promising approach is
interleaving two independent (sub-)keys in the underlying ciphers. The next concern is whether the underlying
ciphers should be independent or not. Our motivation inherently requires cascading independent ciphers, as we
aim to study the product of different secrecy systems. However, as what is usually used in practice is cascading
the same blockcipher (a.k.a. multiple encryption), it would be nice if we could achieve a positive result on multiple
encryptions. But we are not able to do so, because based on slide attack [7] we find a chosen-key distinguisher
on l-encryption with two alternated keys regardless of how large l is. Indeed, it is never surprising that multiple
encryptions can not achieve indifferentiability because they are never meant to do so. Albeit less relevant to
practical settings, this distinguisher suffices to force us to revert to cascading independent blockciphers.

With the discussion above, we consider interleaving two independent keys in l independent underlying ciphers.
Denote this construction by CCl and let K = (k1, k2), then

CCl(K,x) = El(kt, . . . (E3(k1, E2(k2, E1(k1, x)))) . . .)

where t = 1 when l is odd, and t = 2 when l is even. An illustration could be found in Fig. 4. The rest part of
this paper thereby focuses on working out the value of l such that CCl is indifferentiable from IC[2κ, n].

Our Contribution. We give the first positive answer to the main question: the 4-cascade CC4 is indifferentiable
from IC[2κ, n]. The security bound is O(q6/2n), and the query and time complexities of the simulator are O(q4)
and O(q7) respectively. Besides, 2-cascade CC2 and 3-cascade CC3 are also considered—and are attacked, thus
not indifferentiable. Therefore, for cascades with alternating key schedule the number of stages 4 is tight.1

As discussed, this research provides a deeper understanding into the algebraic structure of the sets of permu-
tations realized by cascade ciphers. It also sheds light on the structural and probabilistic aspects of cascade in
the ICM. Perhaps more importantly, the main result shows that cascade is not only a solution to the key-length
extension problem in the traditional secret-key setting, but also a solution in the recently popularized setting
of public-keys and indifferentiability, thus making a step into further developing the power of cascade—which
is a “basic information theoretic question” [1]. Note that Coron et al. already provided a solution to key-length
extension problem in indifferentiability setting: they proved that the construction E(H(K), x) using a random
oracle H and an ideal cipher E is indifferentiable [13] (and the security bound O(q2/2κ) is probably better than
ours). However, the success of the construction E(H(K), x) says nothing about the power of cascade. Further-
more, cascade has the advantage of being capable in both secret-key and indifferentiability setting, while the
key space of E(H(K), x) is essentially the same as E in secret-key setting.

1 The tightness does not necessarily hold for those with other key schedules. However, we have not found a schedule to
cinch the positive result on 3-cascade, cf. Appendix A.
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Technical Issues. Our proof is built on Andreeva et al.’s analysis of t-round Even-Mansour with Random
oracle key schedule (EMRt) [3]. We adapt their tripwire paradigm to build our indifferentiability simulator. We
also use their technique explicitly bookkeeping to simplify the language.2

Compared to Andreeva et al.’s simulator for 5-round EMR, our simulator incorporates two modifications in
order to correctly maintain chain completions in 4 stages. First, upon the distinguisher issuing a new query, our
simulator would “patiently” find the most suitable “starting point” for the recursive chain completion, while
Andreeva et al.’s simply starts the chain completion from the “vertex” specified by the new query. Second, our
simulator explicitly exploits the properties of the structures formed by the entire history of queries and answers
of the “targeted” ideal primitive IC[2κ, n]. Note that in indifferentiability setting the simulator should not be
able to access IC[2κ, n]’s entire history. To settle this, our simulator obtains some useful information about
IC[2κ, n]’s history via the “check” procedure of Coron et al. [14]. For more details cf. page 11.

Perhaps the most troubling obstacle is to find a simulator-termination argument, i.e. to prove that the
simulator has a polynomial complexity. Indeed, we take the “tripwire configuration” designed by Andreeva et
al. for EMR4, but they did not succeed in this task for EMR4 (and turned to EMR5). To solve this problem,
we combine the core idea of Coron et al.’s termination argument [14] and our fine-grained observations on our
simulator and 4-cascade. For more details please jump ahead and see page 16.

Other Related Work. As mentioned, most of the previous works on cascade focus on security amplification
in the traditional secret-key setting. We briefly recall this line of works. As to security lower bound, cascade
was proved at least as secure as the strongest underlying cipher when the enemy cannot exploit information
about the plaintext statistics, and at least as secure as the first underlying cipher in general cases [21,41]. As
to security amplification, double-encryption was proved only slightly better than single-encryption [1], while
triple-encryption was indeed better than single and double [5]. This line of researches was followed by a series
of works [25,35,27], culminating with two recent ones of Dai et al. [16] and Gaži et al. [24]: the former proved
tight security bounds for l-cascade for all l ≥ 3, while the latter took the number of queries to the cascade as
an explicit parameter in the expression of advantages, resulting in a refined security analysis.

The aforementioned works as well as ours focus on “plain” cascade. There is another key-length extension
approach named xor-cascade, which works by xoring whitening keys. The idea dates back to the well-known
FX-construction [33], and was further generalized and analyzed in [26,35,27,24,31]. Additionally, the line of
works on security amplification in the standard model was initiated by Luby and Rackoff [36] and followed by
e.g. [43,37,40,39,47].

Finally, indifferentiability of idealized blockciphers was initiated by Coron et al., with a proof for 14-round
Feistel networks [14], which was later improved to 10 [18,15] and 8 rounds [17]. It was also extended to Even-
Mansour [3,34,28] and confusion-diffusion networks [20].

Related Problems. As mentioned, for the same “tripwire configuration”, we succeed in finding a simulator-
termination argument in our context of CC4, while Andreeva et al. did not do for EMR4 and turned to EMR5.
It’s thus natural to ask if our termination argument could be adapted for EMR4. While there seems no obstacle,
we have found a proof for the indifferentiability of EMR3 [30] (which completely closes the gap between positive
and negative sides in [2]). We therefore eschew the analysis of EMR4.

Organization. Section 2 serves conventions and definitions. Section 3 gives the attacks. Section 4 presents the
main theorem as well as the key points of the proof. As the full proof for CC4 is too long, the pseudocode is
given in Appendix B and the full proof is in Appendix C and D – more clearly, C gives the proof for simulator
termination and non-abortion, while D proves the indistinguishability of the systems.

Finally, in Appendix A, we describe attacks against 3-cascade with a quite large class of key schedules.

2 Preliminaries

Throughout the remaining, the κ-bit sub-keys are written in lower-case letters, i.e. k, k1, and k2, while the
2κ-bit master key is interchangeably written in the capital letter K or the concatenation (k1, k2). For simplicity,

2 One may get an illusion as follows: if we prove the indifferentiability of the product of an ideal cipher and a random
permutation, then the proof of cascade ciphers could be obtained through a trivial domain separation argument.
However, it’s not hard to notice P ◦ IC1[κ, n] is indifferentiable from IC[κ, n], but as mentioned, IC2[κ, n] ◦ IC1[κ, n]
is not indifferentiable from IC[2κ, n].
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the notation C refers to an ideal cipher IC[2κ, n], and the notation E refers to a tuple of ideal ciphers IC[κ, n],
say, E = (E1, . . . ,El), where the value of l depends on the concrete context. We assume that the interfaces of
C are C.C(K, z) := {0, 1}2κ × {0, 1}n → {0, 1}n, and C.C−1(K, z) := {0, 1}2κ × {0, 1}n → {0, 1}n, and the
interfaces of E are E.E1(k, z) := {0, 1}κ × {0, 1}n → {0, 1}n, E.E1−1(k, z), . . ., E.El(k, z), and E.El−1(k, z).

The Cascade Cipher in Question. Given l independent ideal ciphers E = (E1, . . . ,El) and following the
above convention, the cascade cipher CCE

l considered in this work is formally written as follows (as depicted in
Fig. 4):

CCE
l ((k1, k2), x) =El(kt, . . . (E3(k1,E2(k2,E1(k1, x)))) . . .),

(CCE
l )

−1((k1, k2), y) =E1−1(k1,E2
−1(k2,E3

−1(k1, . . . (El
−1(kt, y)) . . .))),

where t = 1 when l is odd, and t = 2 when l is even.

Indifferentiability. Indifferentiability framework [38] addresses idealized constructions in settings where no
underlying element (including building blocks and parameters) is secret. For concreteness, consider CCE

4 : a

distinguisher DCCE
4 ,E with oracle access to the cascade and the underlying ideal ciphers is trying to distinguish

CCE
4 from C. Then, a formal definition due to [34] is as follows.

Definition 1 (Indifferentiability). The idealized blockcipher CCE
4 with oracle access to ideal primitives E is

said to be statistically and strongly (q, σ, t, ε)-indifferentiable from an ideal cipher C if there exists a simulator
SC s.t. S makes at most σ queries to C, runs in time at most t, and for any distinguisher D which issues at
most q queries, it holds ∣∣∣Pr[DCCE

4 ,E = 1]− Pr[DC,SC

= 1]
∣∣∣ ≤ ε

Such a result means that CCE
4 “behaves as” C, in the sense that CCE

4 can safely replace C whenever a moderate
blow-up of the adversary’s time and memory requirements is acceptable, cf. [44,19] for the limitations of indif-
ferentiability. Indeed, indifferentiability has been a de-facto standard security notion beyond traditional ones
such as collision resistance and pseudorandomness, and has found application in various idealized constructions
including hash functions [12] and permutations [14].

3 Attacks on CC2, CC3, and Multiple Encryption with Two Alternated Keys

Following the convention stipulated in Preliminaries (note an exception: for multiple encryption, the interfaces
of E are E and E−1), we present the attacks as follows. Note that the construction CC1 is non-sense, as itself
is an ideal cipher without any structure that can be studied.

3.1 Distinguisher for 2-Cascade

The distinguisher D for CCE
2 works as follows:

(1) D randomly chooses key differences ∆k1 ,∆k2 ∈ {0, 1}κ \ {0} and u ∈ {0, 1}n;
(2) D randomly chooses a master key (k1, k2), and queries w := C((k1, k2), u) and w′ := C((k1, k2 ⊕∆k2

), u);
(3) if C−1((k1 ⊕∆k1 , k2), w) = C−1((k1 ⊕∆k1 , k2 ⊕∆k2), w

′), D outputs 1, otherwise outputs 0.

Denote by v the unknown intermediate value E1(k1, u) (the value in gray in Fig. 1). Then clearly C−1((k1 ⊕
∆k1 , k2), w) = E1−1(k1 ⊕ ∆k1 , v) = C−1((k1 ⊕ ∆k1 , k2 ⊕ ∆k2), w

′), as depicted in Fig. 1, and D always out-
puts 1 when interacting with CCE

2 . Whereas when interacting with IC[2κ, n]—or four independent random
permutations,—the probability is 1/2n.

Clearly, this distinguisher does not need to query the underlying ciphers. Thus it shows that 2-cascade does
not perform 22κ independent permutations even if the underlying ideal ciphers are secret and the adversary is
only allowed to ask a few queries, thus enhancing the conclusion of [21] that cascades of secret ideal ciphers with
independent keys can be distinguished from longer-key ideal ciphers using exponential number of queries.
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Fig. 1. Attack CC2. k
′
1 = k1⊕∆k1 , k

′
2 = k2⊕∆k2 . (Left) step 2: diverge at the 2nd stage; (Right) step 3: re-gather after

inverse of the 2nd stage.

E1 E2

vu
u′

w
E3

x
x′

should satisfy x′ = CCE
3 ((k

′
1, k2), u

′)

k1

k′1

(k1, k2) the unknown k2

Fig. 2. Attack CC3.

3.2 Distinguisher for 3-Cascade

The following equation is the basis of the distinguisher for CC3 (cf. Fig. 2)

CCE
3 ((k

′
1, k2),E1

−1(k′1,E1(k1, u))) = E3(k′1,E3
−1(k1,CC

E
3 ((k1, k2), u))).

By this, we consider a distinguisher D which works as follows:

(1) D randomly chooses k1 ∈ {0, 1}κ and u ∈ {0, 1}n, and queries v := E1(k1, u);
(2) D randomly chooses k2 ∈ {0, 1}κ, and queries x := C((k1, k2), u);
(3) D queries w := E3−1(k1, x);
(4) D randomly chooses k′1 ∈ {0, 1}κ \ {k1}, and queries u′ := E1−1(k′1, v) and x′ := E3(k′1, w);
(5) D outputs 1 if x′ = C((k′1, k2), u

′), and outputs 0 otherwise.

Clearly Pr[DCCE
3 ,E = 1] = 1. On the other hand, note that the value k2 randomly chosen by D is unknown

to S. Denote by HitK the event that S
C

queried C on ((k∗1 , k2), u
∗) for some k∗1 and u∗ during the execution

DC,S
C

. Then, Pr[x′ = C((k′1, k2), u
′)] ≤ Pr[x′ = C((k′1, k2), u

′) | ¬HitK] + Pr[HitK] ≤ 1/2n + qS/2
κ, so that

D’s advantage is at least 1 − qS/2
κ − 1/2n. Typically, both κ and n are chosen to be polynomial functions of

the security parameter. CCE
3 is thereby not indifferentiable.

One may think appropriate key schedules could reduce the independence between the two halves k1 and k2
and “salvage” 3-cascade. However, we find distinguishers for a large class of such key schedules, cf. Appendix
A. Thus achieving positive (yet non-trivial) indifferentiability result on 3-cascade seems very hard.

3.3 Slide Attack on Multiple Encryption with Alternated Keys

To make a distinction, we denote l-encryption using two alternated keys by MEE
l . Formally,

MEE
l ((k1, k2), x) =E(kt, . . . (E(k1,E(k2,E(k1, x)))) . . .),

(MEE
l )

−1((k1, k2), y) =E−1(k1,E
−1(k2,E

−1(k1, . . . (E
−1(kt, y)) . . .))),

where t = 1 when l is odd, and t = 2 when l is even.
Consider the case when l is even first. Then we have (cf. Fig. 3)

MEE
l ((k2, k1),E(k1, x)) = E(k1,MEE

l ((k1, k2), x)).

Thus we have a very simple distinguisher D as follows:

(1) D randomly chooses k1 ∈ {0, 1}κ, k2 ∈ {0, 1}κ, and x ∈ {0, 1}n, and queries y := C((k1, k2), x);
(2) D queries x′ := E(k1, x) and y′ := E(k1, y);
(3) D outputs 1 if y′ = C((k2, k1), x

′) and outputs 0 otherwise.
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1

E

2

E

1

E

2

E

1
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should satisfy y′ = MEE
l ((k2, k1), x

′)

Fig. 3. Attack l-encryption with alternated keys, with l being even.

Note that k2 is unknown to the simulator S
C
. The analysis is thus similar to the previous subsection and leads

to the same advantage lower bound 1− qS/2
κ − 1/2n, assuming S

C
makes qS queries.

Now consider odd l. In this case 2l is even; so if D switches to query y := C((k2, k1),C((k1, k2), x)) in step
(1) and check if y′ = C((k1, k2),C((k2, k1), x

′)) in step (3), then it will succeed. This might be a surprising
example of composition leads to insecurity.

4 Indifferentiability of CC4

The main theorem of this paper is presented as follows.

Theorem 1. Assuming two independent κ-bit keys (k1, k2) alternatively used in each stage, the cascade CCE
4

of 4 independent ideal ciphers E = (E1,E2,E3,E4) is (q, σ, t, ε)-indifferentiable from an ideal cipher IC[2κ, n],

where σ = 8q4 = O(q4), t = O(q7), and ε ≤ 210·q6
2n = O( q

6

2n ).

The central argument of indifferentiability is to design and present a simulator. Unfortunately, our simulator
S is a bit complicated, cf. the 4-page code in Appendix B. It thus seems better to divide the presentation into
two steps:

(1) Informally describe a related (and hopefully easier to understand) simulator T, which is used in an imagined
intermediate systemG2 in the proof. In this system, the ideal (2κ, n)-cipher accessed byT offers an additional
interface Check(K,u, y) to T, which allows T to know whether the query (K,u, y) has appeared in the
cipher’s history. To make a distinction from the normal ideal cipher, we denote this modified ideal cipher
by C̃. Note that the interface Check is hidden from D, thus C̃ has no difference with a normal ideal cipher
in the view of D.

(2) Describe how to obtain S from T.

Remark 1. The intermediate scenario containing the modified ideal cipher C̃ is motivated by Coron et al. [14].
However, as will be elaborated, our simulator utilizes the Check interface in a much more complicated way.

In the rest part, we first spend three subsections on presenting T: 4.1 introduces basic ideas for simulation,
in particular, the tripwire paradigm; 4.2 serves several instructive cases of interaction between the distinguisher
D and (C̃,T), and introduces the “layer-2” ProcessTree procedures which “deal with” these cases; based on
these underlying procedures, 4.3 describes how T handles queries and “passes on the control” to the “right”
ProcessTree procedure. Altogether, 4.2 and 4.3 form a bottom-up style overview of T. After these, 4.4 shows
how to turn T to S. Finally, 4.5 sketches the rest of the proof.

4.1 Simulator T: Basic Ideas

T offers eight interfaces toD to emulate the ciphers, say, Ei and Ei−1 for i = 1, 2, 3, 4. To describe the interaction
between D, T, and C̃, we use the notation Ei(k, z)→ z′ to mean that D queries T.Ei on (k, z) and T answers

with z′, and Ei−1(k, z)→ z′ vice versa. We similarly use C(K, z)→ z′ to mean that either D or T queries C̃.C

on (K, z) and C̃ returns z′, and C−1(K, z)→ z′ vice versa.
Informally speaking, T internally keeps already answered queries: after D querying Ei(k, z)→ z′, it keeps a

record (i, k, z, z′,→), where i indicates the index, (k, z), z′ indicate the query and answer, and → indicates the
query is a forward one; after D querying Ei−1(k, z)→ z′, it similarly keeps (i, k, z′, z,←). The last coordinate
will sometimes be omitted, when it’s not of interest to the discussion at hand. Such tuples are called i-queries,
and an E-query refers to any i-query indifferently to the value of i. T may call Ei/Ei−1 itself and internally
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create such records; it makes no distinction between such internally-created queries and those due to D’s actions.
The queries that have been encountered and recorded are called old.

Upon a query from D, if it’s old, then T simply replies with the recorded answer; otherwise, T may randomly
sample an answer. For example, upon D querying Ei(k, z) such that no record of the form (i, k, z, ·) pre-exists,
T randomly samples a value z′ such that no record of the form (i, k, ·, z′) pre-exists,3 creates a new record
(i, k, z, z′,→), and then replies with z′. To handily describe how the answer z′ is drawn, we follow [11] and make
the randomness used by T explicit through a tuple of four ideal ciphers E = (E1,E2,E3,E4). This means if

T needs to assign a random answer z′ to Ei(k, z), T queries E and set z′ := E.Ei(k, z).4 We denote by TC̃,E

the simulator accessing E. However, for convenience, we keep saying “randomly sample” to refer to T’s such
actions.

T cannot answer all queries via randomly sampling, otherwise T will behave as four ideal ciphers independent
of C̃, whereas we need (C̃,T) to behave as (CC4,E), i.e. answers from T should depend on C̃. To this end,
the basic idea is Coron et al.’s simulation via chain completion technique [14], which has been a routine for
indifferentiability proof of idealized blockciphers.

Chain Completion—Tripwire Paradigm. We stipulate some terminology first. A triple ((k1, k2), u, y) such
that C((k1, k2), u) → y or C−1((k1, k2), y)→ u has appeared is called a C-query (such query may be made by
D or T, but this does not matter). A pair of E-queries (i, k, z, z′), (i+1, k′, z′, z′′) sharing the same intermediate
value z′ is called adjacent. Two queries ((k1, k2), u, y) and (1, k1, u, v) (or (4, k2, x, y)) are also adjacent. Then,
a sequence of five adjacent queries

((k1, k2), u, y), (1, k1, u, v), (2, k2, v, w), (3, k1, w, x), (4, k2, x, y)

in the history of the interaction is called a (k1, k2)-completed chain. Also, such a chain identifies a cycle of values
u− v − w − x− y − (u).

Note that when interacting with (CC4,E), the answers given by CC4 and E always form such completed

chains. E.g. if D asks u
E.E1k1−−−−→ v

E.E2k2−−−−→ w
E.E3k1−−−−→ x

E.E4k2−−−−→ y, then it must hold CC4.C((k1, k2), u) = y. This
forms the intuition of chain-completion technique: to generate similar interactions, T clearly needs to make
its simulated answers form similar completed chains with C̃’s answers. For this, note that for two adjacent E-
queries it holds: (i) they (should) belong to the same completed chain; (ii) they can uniquely specify the chain.
Therefore, T takes such adjacent pairs as “partial chains”, detects them, and pre-emptively completes them to
completed chains. For example, after D querying E1(k1, u) → v and E2(k2, v) → w, T detects two adjacent
(1, k1, u, v) and (2, k2, v, w). A possible strategy for T is to first internally call E3(k1, w) → x (with x being a

newly sampled random value) and create (3, k1, w, x,→), then query C̃.C−1((k1, k2), u) → y. The second step
ensures the existence of the C-query ((k1, k2), u, y). Now the only missing query of the chain y − u− v −w − x
is a 4-query (4, k2, x, y); T therefore create such a record (4, k2, x, y,⊥) to adapt and “close the cycle”. The last
coordinate ⊥ of this record indicates that it’s a query created for adaptation, henceforth referred to as adapted
queries.

The queries newly created during chain-completions (including the adapted ones) may form new adjacent
pairs, which may need to be completed as well and may lead to new queries and more adjacent pairs. T thus
should devote to a recursive chain completion process; following [3], we call it a chain reaction.

If T completes chains for every encountered adjacent pair, then it may complete infinitely many chains,
which is not acceptable. However, if T ignores too many adjacent pairs, then D may be able to bypass T’s
chain-detection conditions and “trap” T in an over-constrained situation, e.g. trying to create two contradictory
records (4, k2, x, y,⊥) and (4, k2, x, y

′,⊥) to adapt two chains. To ensure T away from these two disasters, we
have to choose a delicate chain detection strategy. To this end, note that detecting adjacent query-pairs resembles
the strategy used by Andreeva et al. for EMR [3]. Thus we take the tripwire paradigm introduced by Andreeva
et al.

Informally, a tripwire is an ordered pair of the form (i, i+ 1) or (i+ 1, i) or (1, 4) or (4, 1). Using a tripwire
configuration (i, j) for j = i + 1 or j = i − 1 means that T will complete paths for adjacent pairs of i-query
and j-query for which the j-query appears later than the i-query. On the other hand, using (1, 4) means that T
will complete paths for pairs of queries (1, k1, u, v) and (4, k2, x, y) such that: (i) the 4-query appears later; (ii)

3 So that the simulated i-queries are consistent with a (κ, n)-blockcipher.
4 As argued by Andreeva et al. [3,11], using such explicit randomness is equivalent to lazily sampling enough randomness
at the beginning of the experiment.
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the C-query ((k1, k2), u, y) exists in the history, i.e. C̃.Check((k1, k2), u, y) returns true. Vice versa for (4, 1).
Whenever a tripwire is triggered (possibly by new adapted queries), T recurses to complete all the relevant
chains.

For CC4, we adopt the following asymmetric configuration, cf. Fig. 4:

(1, 2), (3, 2), (3, 4), (1, 4).

This means only the simulated E2 and E4 serve as “beacons” for chain detection. As mentioned in Introduction,
this configuration was designed for EMR4, yet abandoned due to the lack of a termination argument [3]. Whereas
in our context we succeed in this task and finally complete a proof for CC4.

E1

k1

u E2

k2

E3

k1

E4

k2

yv w x

Fig. 4. Tripwire configuration for the simulation strategy for 4-cascade. A directed arrow from column Ei to column Ej

indicates a tripwire (i, j). The tripwires are (1, 2), (3, 2), (3, 4), and (1, 4); note that the last one crosses C̃.

E1

detect & adapt

E2 E3 E4

detect & adapt

Random zone: ensure
needed structural properties Random zone

u v w x y(y)

Fig. 5. Another illustration of the simulation strategy. The dotted rectangle stands for the history of the ideal cipher C̃.

The simulated E2 and E4 also facilitate adaptations, i.e. when completing chains, T always “closes cycles”
by creating adapted 2- and 4-queries. In this way, the simulated E1 and E3 are reserved as two never adapted
stages, and each 1- and 3-query would have one of their endpoints defined as a randomly sampled value. E.g.
for the 3-query (3, k1, w, x,→), the value x was necessarily defined by an earlier randomly sampling action.

Meanwhile, note that answers from C̃ are random in the view of D and T, thus each C-query that appears
during the interaction also has at least one “random endpoint”. By the above, E1 along with C̃ form the first
“random zone”, while E3 acts as the second one, cf. Fig. 5. Reserving two never adapted stages is indeed inspired
by [3], which reserved the second and the forth simulated permutations (among five simulated ones) as never
adapted ones.

Till now we have established the tripwire configuration. But this only makes the first step. Next we’ll show
how to handle such tripwires.

4.2 T Handling Tripwires: Trees, and Instructive Examples

Recall that tripwires are formed by a new 2- or 4-query and (probably more than one) pre-existing 1- or 3-
queries in the random zones. The involved 1-/3-queries form structures, which should be considered by T upon
detecting new tripwires. As each query in the random zones has a random endpoint (cf. the previous subsection),
these structures possess special properties, which enables T to find the “most appropriate starting point” of
the chain reaction and enforce the best order in which paths are completed.5 Here how to react depends on
the situation. To help understand our design, in this subsection, we serve several possible cases of interaction
between the distinguisher D and (C̃,T) and introduce the underlying “layer-2” ProcessTree procedures
which “deal with” these cases. We commence by briefing the properties of the structures formed by 1-, 3-, and
C-queries (i.e. queries in random zones), as these properties are explicitly used in the remaining.

Queries in Random Zones Give Rise to Tree-Structures. Consider a bipartite graph B3 built from all
3-queries. More clearly,B3 takes {0, 1}n and {0, 1}n as the two shores, and includes an edge directed from the left-
shore node w to the right-shore node x for each forward 3-query (3, k1, w, x,→) and vice versa for each backward

5 Cf. [17] for the importance of such chain-completion order (in another context).
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3-query. A sequence of 3-queries thus may form directed paths in B3, e.g. w1

E3
k1
1−−−→ x1

E3−1

k2
1−−−→ w2

E3
k3
1−−−→ x2. If the

answer of a later query collides with a pre-existing value, e.g. E3−1(k41, x2) → w3 = w1, then a cycle emerges,
i.e. w1 − x1 − w2 − x2 − (w1). However, as long as the number of 3-queries is polynomial, such collisions are
unlikely since the answers for later 3-queries are always randomly sampled. Thus B3 is likely to be acyclic.

Similarly, for each k2, consider a bipartite graph CB(k2) from all 1- and C-queries, which also takes {0, 1}n
and {0, 1}n as the two shores, and includes an edge between the left-shore node y and the right-shore node
v (denoted (k1, y, v)) for each adjacent pair ((k1, k2), u, y) and (1, k1, u, v). The direction of the edge (k1, y, v)
equals the direction of the later query among the adjacent pair. Due to the reserved randomness, CB(k2) is
also acyclic. More clearly, with high probability (w.h.p.), connected components in B3 and CB(k2) are directed
trees.

These mean the mentioned structure (in the corresponding random zone, B3 or CB(k2)) involved by newly
set off tripwires is also a directed tree. The subsequent chain reaction is “carried around” this tree (e.g. see
Case 1 below). D may use different query sequences to create various trees and force T to tackle; we serve four
examples as follows.

Case 1. The involved tree is not adjacent to any pre-existing 2-/4-query. Since the graph CB(k2) is
more complicated and possesses more novelties, we consider examples around it. Assuming four edges (k11, y1, v1),
(k21, y2, v1), (k31, y2, v2), and (k41, y2, v3),

6 and D querying E2(k2, v1), cf. Fig. 6 (left). Suppose T randomly
samples w1 as the answer and creates (2, k2, v1, w1,→), a new 2-query. This leads T to detecting two (1, 2)-
tripwires due to (2, k2, v1, w1) and (1, k11, u1, v1) and (1, k21, u2, v1), completing the two associated chains one-by-
one and creating two adapted 4-queries (4, k2, x1, y1,⊥) and (4, k2, x2, y2,⊥). T then notices that (4, k2, x2, y2)
and (1, k31, u3, v2) and (1, k41, u4, v3) form two new (1, 4)-tripwires, and completes them one-by-one and creates
two adapted 2-queries. Such a recursive process would continue and “attach” adapted queries to the nodes in
the tree one-by-one till reaching the “leaves” y1, v2, and v3. After this process, each node in the tree is adjacent
to a 2- or 4-query with key k2, cf. Fig. 6 (right).

To capture these considerations, we take Andreeva et al.’s terminology pebbling and live tree [3]. Informally,
under a key k2, a left-shore node y (a right-shore node v, resp.) is pebbled if it has been adjacent to a 4-query
(2-query, resp.) with key k2. The live tree anchored at a non-pebbled node z (denoted Li(k2, z); indifferently of z
in left-shore or right-shore) is the tree obtained by “dangling” the connected component (in CB(k2)) containing
z by z, such that z is the root, and then pruning all portions of this “dangled” tree that lie beneath a node
pebbled under k2. E.g. in this example, the four edges give rise to a tree Li(k2, v1) with y1, v2, and v3 being its
leaves. Note that as all the nodes under the pebbled ones have been pruned, only leaves can be pebbled nodes.

Under these definitions, Case 1 is translated as the involved live tree Li(k2, v1) has no pebbled leaf (no leaf
pebbled under k2). The contrary cases are as follows.

E1 E2 E3E4

CB(k2) B3

CT

v1
y1 u1

u2
u3

v2
y2

E1 E2 E3E4

CB(k2) B3

CT

1

2

4v3
u4

3

Fig. 6. Figures for Case 1. The directed edge indicates the query E2(k2, v1). The keys k1
1, etc. are omitted as they are

less interested here. (Left) the state of the query history before the chain reaction; (Right) the state after the reaction
(with the labels y1, etc. omitted for clearness). Each (red) edge with a number on it indicates an adapted query, and
these associated numbers indicate the order of their creation. The newly created 3-queries are not interested here and
are thus drawn in dotted (and gray).

Case 2. The involved tree has one pebbled leaf. The case would be different, if a leaf in the involved live
tree in CB(k2) has been pebbled under k2 before the reaction. For this, assuming four edges as before and a
pre-existing 2-query (2, k2, v3, w3). In this case, upon D querying E2(k2, v1) which sets off new (1, 2)-tripwires,

6 In detail, four pairs of queries ((k1
1, k2), u1, y1), (1, k1

1, u1, v1), ((k2
1, k2), u2, y2), (1, k2

1, u2, v1), ((k3
1, k2), u3, y2),

(1, k3
1, u3, v2), ((k

4
1, k2), u4, y2), and (1, k4

1, u4, v3).
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if T insists on starting its chain reaction from v1, then after it creates (4, k2, x2, y2,⊥) (as done in Case 1), it
would find v3 already pebbled. This means T finds a chain x2 − y2 − u4 − v3 − w3 that can only be adapted
at E3, cf. Fig. 7 (left). So T has to either admit a failure, or destroy the “randomness” of E3—which would
significantly complicate the proof.

Here we give a brief note: starting the chain reaction from the vertex specified by D’s query is indeed the
choice of Andreeva et al. [3] for EMR5. But their simulator has 5 rounds to “play with” (more precisely, 3
rounds for adaptation, which is one more than our 2 stages) and thus could succeed, while our T works in a
more constrained setting of 4 stages and cannot follow this strategy.

E1 E2 E3E4

CB(k2) B3

CT

y1 u1
u2

u3 v2y2

E1 E2 E3E4

CB(k2) B3

CT

4

1
3

u4

2

v1

v3 w3

1

2
3

A?
x2

Fig. 7. Figures for Case 2. The pre-existing query (2, k2, v3, w3) is indicated by the black bold undirected edge. (Left)
the unsuccessful trial: S has to adapt in E3; (Right) a more appropriate operation sequence leads to success.

However, if T could be a bit more patient, then it would easily overcome the above dilemma: after T notices
that the last query E2(k2, v1) fromD may set off new tripwires, instead of immediately creating (2, k2, v1, w1,→),
T first traverses in the live tree Li(k2, v1) (in CB(k2)) to figure out how many nodes have been pebbled under
k2. T therefore finds the pebbled node v3, and then starts the chain reaction from v3. More clearly, T adapts
by “attaching” adapted queries to y2, v2, v1, and y1 successively, cf. Fig. 7 (right). After this, there is a newly
created adapted query attached to v1 (in contrast to Case 1, in which the 2-query attached to v1 is created by
randomly sampling), so that T is able to answer D’s original query E2(k2, v1).

The aforementioned traversal is performed by a procedure FindPebLeafCB. On the other hand, the subse-
quent chain reaction is performed by a procedure ProcessCBSubTree, which finishes the task by recursively
calling itself. We give an overview of them, before we present the next instructive example.

Traversing in CB: FindPebLeafCB. The access to the whole history of C̃ seems necessary for T to con-
struct the graph CB(k2) and then traverse in it. However, T can only call C̃.Check to verify the existence of
certain C-queries. Thus we have to implement FindPebLeafCB based on Check.

Our solution is as follows. Note that the traversal algorithm has two scenarios. The first is when it reaches
a left-shore node y, and would like to determine all the edges adjacent to y (and then “jumps” to the children
of y via these edges). In this case, if an edge (k1, y, v) exists for some k1 and v, then the corresponding 1-

query (1, k1, u, v) necessarily exists. Therefore, T could call C̃.Check((k1, k2), u, y) for each pre-existing 1-query
(1, k1, u, v) to determine whether the C-query ((k1, k2), u, y) exists, which further indicates whether the edge
(k1, y, v) exists.

The second case is when the algorithm reaches a right-shore node v, and would like to determine all the
edges adjacent to v and “jump” to the children of v through them. Still, if (k1, y, v) exists for some k1 and v,
then the 1-query (1, k1, u, v) must exist. But different to the first case, here T does not know for which y should
it call Check((k1, k2), u, y). However, we observe that after “grasping” the 1-query (1, k1, u, v), T could simply

queries C̃.C((k1, k2), u) → y to obtain the left-shore node y, and take (k1, y, v) as if it indeed pre-exists. The
underlying observation is as follows: after T obtains such right-shore node v, T will complete some tripwires
formed by relevant edges and will attach a new 2-query to v at some time, which would form a (1, 2)-tripwire
with (1, k1, u, v) and force T to issue the C-query C((k1, k2), u); by this, the query C((k1, k2), u) → y will be
made by T sooner or later, and it makes no difference if we let it appear earlier. These constitute the ideas of
FindPebLeafCB.

ProcessCBSubTree Procedure. We first give some insights on ProcessCBSubTree. Note that in the
above example, when T is to start chain reaction, it is expected to “pebble” the nodes in the live tree Li(k2, y2)
(which captures the same nodes as Li(k2, v1) but takes a different root), and it has “grasped” v3, the unique
pebbled leaf of Li(k2, y2), cf. Fig. 8 (left). Later after T attaches an adapted query to y2, T is faced with a
similar situation for each child of y2, cf. Fig. 8 (right): T is to “deal with” Li(k2, v1) and Li(k2, v2) (warning:
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they refer to the live trees at the current point), and T has “grasped” y2, the unique pebbled leaf of both
Li(k2, v1) and Li(k2, v2). It can be seen that similar situations are successively presented to T till the end of
the chain reaction.

These observations motivate the recursive implementation of ProcessCBSubTree. More clearly, to start a
chain reaction as above we letTmake a call to ProcessCBSubTree(k41, k2, y2, v3, left). Among the arguments,
the tuple (k41, y2, v3) identifies the edge (k41, y2, v3), and the fifth argument left means that among the two
endpoints of (k41, y2, v3), the non-pebbled one/the root of the to-be-processed live tree is in the left shore of
CB(k2). This ProcessCBSubTree-call would have two steps:

(1) complete the chain specified by its arguments. In the example the chain is y2 − u4 − v3 − w3, and Pro-
cessCBSubTree first calls E3(k41, w3) to create (3, k41, w3, x2,→) and then creates an adapted query
(4, k2, x2, y2,⊥).
Right before creating this adapted query, x2 may have been “occupied”, i.e. there has been a 4-query
(4, k2, x2, y

′
2) for some y′2. In this case, creating (4, k2, x2, y2,⊥) would certainly cause T fail to emulate the

forth ideal cipher; we thus let T abort. In consequence, D would know it is interacting with the simulated
world. We thus need to prove that the chance of such an event is negligible. Jumping ahead, the proof is in
page 17.

(2) for each child z of y2, call itself with the arguments identified by the edge between y2 and z. In the example, it
makes two calls toProcessCBSubTree(k21, k2, y2, v1, right) andProcessCBSubTree(k31, k2, y2, v2, right).
Note that the involved non-pebbled nodes v1 and v2 are in the right shore, as specified by the fifth argument
of these sub-calls.

The ProcessCBSubTree-calls with right as the fifth argument runs symmetrically. By such a recursively-
calling mechanism, the chain reaction “burns” from the starting point “through” the whole live tree. As the
effects, T would alternatively create adapted 2- and 4-queries and finally pebble all the nodes in the live tree—as
we wished.

E1 E2 E3E4

CB(k2) B3

CT

y1

y2

E1 E2 E3E4

CB(k2) B3

CT

1

v3 w3

Li(k2, y2) Li(k2, v1)v1

v2

v1

v2 Li(k2, v2)y2

Fig. 8. Illustration for the recursive process. The white circulars indicate pebbled nodes, while the squares indicate the
roots of the live trees. (Left) S is to deal with Li(k2, y2); (Right) After attaching an adapted query to y2, S is to deal
with Li(k2, v1) and Li(k2, v2). For cleaness, the edges of Li(k2, v1) are in magenta, while those of Li(k2, v2) are in blue.

Although the above two cases focus on CB(k2), the discussion can be easily transferred to B3: similar ter-
minology are used and similar interactions are considered. T traverses in B3, and performs similar subsequent
chain reactions. As B3 is built from the 3-queries simulated by T, it’s pretty easy to traverse in B3, and this is
implemented as a procedure FindPebLeafB3. On the other hand, the chain reactions around B3 is performed
by a procedure ProcessB3SubTree via recursion (similarly to ProcessCBSubTree).

Case 3. The involved tree has more than one pebbled leaves. Live trees involved in previous examples
have at most one pebbled leaf. If the tree has more than one such leaves, then T cannot adapt. For this,
assuming the tree y1 − v1 − y2 − (v2, v3) as before and its two leaves y1 and v3 pebbled due to (4, k2, x1, y1)
and (2, k2, v3, w3) respectively, while v1, y2, and v2 are not pebbled. Now upon the query E2(k2, v1), if T starts
chain reaction from y1, then it will fail when reaching the pebbled leaf v3, cf. Fig. 9 (left); if T starts from v3
then it will fail when reaching y1, cf. Fig. 9 (right). This case thus cannot be resolved. To summarize, if D can
create a live tree in CB(k2) with at least two leaves pebbled under k2, then the strategy in Fig. 5 would fail
and thus be useless.

Fortunately, we prove that under the strategy in Fig. 5, such a “doubly-pebbled” live tree is unlikely to appear.
More clearly, we prove a claim similar to [3]: as long as CB(k2) remains acyclic (which is indeed likely), if a
node in CB(k2) is pebbled under k2, then its parent is also pebbled under k2, so that it is never possible that
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Fig. 9. Figures for Case 3. S has to adapt in E3 regardless of which sequence of operations it takes.

two leaves of a tree are pebbled while the root is not (so, a live tree, whose root has to be non-pebbled, cannot
have two pebbled leaves). Similar claims are proved for structures in B3. These eliminate the apparent failure
possibilities and enable us to step further.

Case 4. Dual-tree: two trees are involved; and the procedure ProcessDualTree. In all the above
cases only one live tree is involved in the subsequent reaction. Indeed, D could force T to consider two trees
linked by a 2- or 4-query, and this constitutes the most complicated case. For this consider the following example.
Assume that D first makes E2(k2, v) → w, then makes E1−1(k1, v) → u, C((k1, k2), u) → y, E3(k1, w) → x,
and then makes a dozen of 1-, 3-, and C-queries to enlarge the two live trees Li(k2, y) and Li(k2, x) without
setting off any tripwire, cf. Fig. 10 (left), and finally uses a query e.g. E4(k2, x) to “light the fuse”.

We now give some insights on how to handle this case. We first bring out two features of the structure upon
the “fuse-lighting” query:

(i) w.h.p. v is the unique pebbled leaf of Li(k2, y), because as stressed in Case 3, Li(k2, y) is unlikely to contain
more than one pebbled leaves before the chain reaction. Similarly, w is the unique pebbled leaf of Li(k2, x);

(ii) the chain y − u− v − w − x will be completed, once we add the 4-query (4, k2, x, y).

We will informally call such structures dual-trees, as it consists of two trees Li(k2, x) and Li(k2, y) linked by a
2-query (2, k2, v, w).

We then describe how T reacts. As the first step, T traverses in Li(k2, x) (as described in Case 2). As a
result, T would find the pebbled leaf w and further v, u, y, and be aware of the whole situation. To handle
such a dual-tree, T makes a call to a procedure ProcessDualTree(k1, k2, x, y, 4) (the fifth argument indicates
that the “missing query” is a 4-query, as mentioned), which creates the adapted query (4, k2, x, y,⊥), cf. Fig.
10 (left).

After this T (more precisely, the ProcessDualTree-call) should consider all the (1, 4)- and (3, 4)-tripwires
newly set off by (4, k2, x, y)—that is to say, consider all the pre-existing edges in B3 and CB(k2) that is adjacent
to (4, k2, x, y). Here the involved edges (and structures) fall into three possibilities. For clearness, we give three
examples as follows:

(i) for an edge (3, k11, w
1, x) in B3, if the edge (k11, y, v

1) already exists in CB(k2), then along with (4, k2, x, y)
they indeed form a smaller dual-tree structure, cf. the black subtrees in Fig. 10 (right). In particular,
Li(k2, v

1) and Li(k2, w
1) are linked by the 4-query (4, k2, x, y), and the chain w1−x−y−v1 will be completed

if we add the 2-query (2, k2, v
1, w1). In this case T makes a call to ProcessDualTree(k11, k2, v

1, w1, 2) to
handle this smaller dual-tree;

(ii) on the contrary, if for an edge (3, k21, w
2, x) in B3 there is no edge of the form (k21, y, ·) in CB(k2), then only

a (3, 4)-tripwire is set off, and T would be led to handle a live tree Li(k2, w
2) in B3, cf. the blue subtree in

Fig. 10 (right). In this case T makes a call to ProcessB3SubTree(k21, k2, w
2, x, left);

(iii) on the other hand, for an edge (k31, y, v
3) in CB(k2), if there does not exist any edge of the form (3, k31, ·, x) in

B3 (cf. the green subtree in Fig. 10 (right)), thenTmakes a call to ProcessCBSubTree(k31, k2, y, v
3, right)

to handle the live tree Li(k2, v
3).

The ProcessDualTree-calls with 2 as the fifth argument runs similarly. For elaboration consider the men-
tioned call to ProcessDualTree(k11, k2, v

1, w1, 2): it first creates (2, k2, v
1, w1,⊥) and then makes several

sub-calls similarly as ProcessDualTree(k1, k2, x, y, 4). The dual-tree structure would thus be processed in a
series of recursive calls as above. Once all the subsequent calls are finished without abortion, all the nodes in
the dual-tree have been pebbled, and T could answer the original “fuse-lighting” query E4(k2, x).

In the rest of the paper we would say “layer-2 ProcessTree-procedure” to indifferently refer to Pro-
cessB3SubTree, ProcessCBSubTree, or ProcessDualTree. For the sake of page limits, we defer the
technical details of these procedures to the pseudocode in Appendix B.
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Fig. 10. Figures for Case 4. (Left) before the reaction – S is to create the adapted 4-query (4, k2, x, y,⊥); (Right) the
state right after (4, k2, x, y,⊥) is created (with more concretely drawn edges). Note that different possibilities for sub-calls
are differentiated by different colors and polygons.

4.3 T Handling Queries: An Overview

Based on the underlying mechanism above, we now describe how T handles different queries. First, old queries
are simply answered with the recorded values. Second, upon a new 1- or 3-query, T simply randomly samples a
value as the answer, and creates a new query record. The process around new 2- and 4-queries is complicated:
T may have to traverse in the involved live tree, distinguish which case the situation fits into, and call the right
layer-2 ProcessTree procedure.

New Query E2−1(k2, w) and E4(k2, x). Consider E2−1(k2, w) first. Upon such a new query, if there is no
pre-existing 3-query of the form (3, k1, w, ·), then no (3, 2)-tripwire would be set off, and T simply randomly
samples v and creates a record (2, k2, v, w,←). If there does pre-exist 3-queries (3, k1, w, ·), then T calls Find-
PebLeafB3 to traverse in Li(k2, w) (in B3) and check the number of leaves pebbled under k2, and reacts
depending on the case:

(1) If there is no pebbled leaf in Li(k2, w), then it fits into the instructive Case 1 (page 10), and T “starts the
chain reaction from w”. More clearly, T first creates (2, k2, v, w,←) with randomly sampled v. Note that this
makes w pebbled, so that for each pre-existing 3-query (3, k1, w, x), Li(k2, x) becomes a live tree with w as the
unique pebbled leaf. Moreover, since v is newly sampled, w.h.p. v is not adjacent to any pre-existing edge in
CB(k2). This means for each such (3, k1, w, x), Li(k2, x) is not “involved in” any dual-tree, thus T makes a call
to ProcessB3SubTree(k1, k2, w, x, right) to “process” Li(k2, x) by recursion (as sketched before, page 12).

(2) If there is exactly one pebbled leaf (denoted z◦), then FindPebLeafB3 returns the edge in Li(k2, x) that
contains z◦. Briefly speaking, if T finds Li(k2, x) “involved in” a dual-tree, then it’s in Case 4 (page 13), and
it calls ProcessDualTree; otherwise it’s in Case 2 (page 10), and it calls ProcessB3SubTree to deal with
Li(k2, x) alone. For clearness, according to which shore z◦ is in, we distinguish two cases:

– z◦ is in the left shore of B3. Rewriting z◦ as w◦. Assume that the edge in Li(k2, x) that contains w◦ is
(3, k◦1 , w

◦, x◦), while the 2-query attached to w◦ is (2, k2, v
◦, w◦). Then:

• if there’s no pre-existing 1-query of the form (1, k◦1 , ·, v◦), then Li(k2, x
◦) is not “involved in” any dual-

tree. Thus it fits into Case 2, and T simply calls ProcessB3SubTree(k◦1 , k2, w
◦, x◦, right) to handle

Li(k2, x) alone.

• if there’s a 1-query (1, k◦1 , u
◦, v◦) for some u◦, then T makes a query C̃.C((k◦1 , k2), u

◦) → y◦. At this
point the (possibly new) node y◦ would likely be non-pebbled, and thus the live tree Li(k2, y

◦) makes
sense. As Li(k2, y

◦) and Li(k2, x
◦) are linked by (2, k2, v

◦, w◦), it now fits into Case 4. Therefore, T calls
ProcessDualTree(k◦1 , k2, x

◦, y◦, 4) to handle.

– z◦ is in the right shore of B3. Rewriting z◦ as x◦, and assume that the edge in Li(k2, x) that contains x
◦ is

(3, k◦1 , w
◦, x◦) while the 4-query attached to x◦ is (4, k2, x

◦, y◦). In this case, T calls Check((k◦1 , k2), u
◦, y◦)

for each pre-existing 1-query (1, k◦1 , u
◦, v◦) to determine whether the edge (k◦1 , y

◦, v◦) pre-exists in CB(k2).
Depending on the result:

• if none of the Check-calls return true, then there’s no edge of the form (k◦1 , y
◦, ·) in CB(k2). Thus it

fits into Case 2 and T calls ProcessB3SubTree(k◦1 , k2, w
◦, x◦, left) to tackle;

• otherwise it fits into Case 4,T finds the edge (k◦1 , y
◦, v◦) and then calls ProcessDualTree(k◦1 , k2, v

◦, w◦, 2)
to deal with the dual-tree formed by Li(k2, v

◦) and Li(k2, w
◦).
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(3) If there are more than one pebbled leaves, then T aborts. As discussed (Case 3, page 12), w.h.p. this situation
would not occur.

In each case, once the ProcessTree-procedures return and abort does not occur, the 2-query (2, k2, v, w)
must have been created, which allows T to return v to answer the original query E2−1(k2, w).

Upon a new forward 4-query E4(k2, x), if there is no pre-existing 3-query (3, k1, ·, x), then T randomly
samples y to answer. If there exists 3-queries (3, k1, ·, x), then new (3, 4)-tripwires are set off, and T calls
FindPebLeafB3 to traverse in Li(k2, x). The subsequent process is similar as that around new E2−1(k2, w)
and is thus omitted.

New Query E4−1(k2, y) and E2(k2, v). Consider a new query E4−1(k2, y) first, upon which T first
determines whether it sets off new (1, 4)-tripwires, by calling Check((k1, k2), u, y) for each pre-existing 1-
query (1, k1, u, v). If T detects no new (1, 4)-tripwire, then it answers with randomly sampled x and creates
(4, k2, x, y,←); otherwise, y is adjacent to at least one edge in CB(k2), and T calls FindPebLeafCB to traverse
in the live tree Li(k2, y) and reacts depending on the pebbling state:

(1) If there is no pebbled leaf, then it fits into Case 1, and T first creates (4, k2, x, y,←) with randomly sampled
x and then considers each pre-existing edge (k1, y, v) in CB(k2) (by calling Check, as described) and makes a
call to ProcessCBSubTree(k1, k2, y, v, right) for each of them.

(2) If there is one pebbled leaf (denoted z◦), then FindPebLeafCB returns the edge in Li(k2, x) that contains
z◦. Similarly as described, T calls ProcessDualTree if it finds Li(k2, y) “involved in” a dual-tree, and calls
ProcessCBSubTree otherwise. For elaboration, consider the case of z◦ in the left shore of CB(k2), and
rewrite z◦ as y◦ (for cleanness, the symmetrical case is omitted here). Assume that the edge in Li(k2, y) that
contains y◦ is (k◦1 , y

◦, v◦) while the 4-query attached to y◦ is (4, k2, x
◦, y◦). Then:

– if there’s no pre-existing 3-query of the form (3, k◦1 , ·, x◦), then it fits into Case 2 (page 10) and T calls
ProcessCBSubTree(k◦1 , k2, y

◦, v◦, right) to deal with Li(k2, v
◦);

– if there’s a 3-query (3, k◦1 , w
◦, x◦) for some w◦, then it fits into Case 3 (page 12) and T calls ProcessDu-

alTree(k◦1 , k2, v
◦, w◦, 2) to deal with the dual-tree formed by Li(k2, v

◦) and Li(k2, w
◦).

(3) If there are more than one pebbled leaves, then T aborts.

T answers the original query E4−1(k2, y) with the recorded x once the tree processing procedures return
without abortion.

Finally, upon a new query E2(k2, v), if there is no pre-existing 1-query (1, k1, ·, v), thenT randomly samples u
to answer. If there exists 1-queries (1, k1, ·, v), then new (1, 2)-tripwires are set off, and T calls FindPebLeafCB
to traverse in Li(k2, v). The subsequent process is similar to that around new E4−1(k2, y), thus omitted.

4.4 Obtaining S from T

Note that TC̃ takes advantage of the “illegal” interface Check offered by C̃. As a “normal” ideal cipher C

certainly does not provide such an interface, SC implements this procedure itself. In detail, compared to TC̃ ,
SC incorporates the following two modifications:

(i) SC has an additional procedure SC.Check(K,u, y), which makes a query to C.C(K,u), and returns true
if C.C(K,u) = y;

(ii) Each time TC̃ calls C̃.Check(K,u, y), SC calls SC.Check(K,u, y) instead.

The idea dates back to Coron et al. [14]. Briefly speaking, if (K,u, y) really appeared in the history of C, then
clearly C.C(K,u) = y and SC.Check(K,u, y) returns true; otherwise, as long as Check is called polynomial
times, it holds Pr[C.C(K,u) = y] = O( 1

2n ), and thus w.h.p. SC.Check(K,u, y) does return false. Thus this
modification is unlikely to cause essential difference. However, in contrast to T, the obtained S is a “legal”
simulator for CC4.

Remark 2. Access to the entire history of C seems necessary for SC to traverse in CB(k2), but should not
be possible in indifferentiability setting. In particular, D’s queries to C are never leaked to S, and S cannot

construct the described graph CB(k2). This is why we introduce TC̃ first and take it as an intermediate step.
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4.5 Proof Overview

This subsection sketches the key points of the proof of Theorem 1. The formal presentation is deferred to
Appendix C and D.

Denote by G1 the simulated system consisting of C and S, and by G3 the real system formed by CC4 and
E. Then we need to show the following two claims for any computationally unbounded distinguisher D:

(i) G1(C,SC) and G3(CC
E,E) are indistinguishable for D.

(ii) The query and time complexity of SC in DG1(C,SC) are polynomial (at least with overwhelming probability).

The aforementioned intermediate system G2 is formed by C̃ and T. As sketched in subsection 4.4, G1 and G2

are indistinguishable, if T makes polynomial number of calls to C̃.Check. On the other hand, the indistin-
guishability of G2 and G3 is proved via a randomness mapping argument, which mainly requires proving T
always succeeds in adapting chains/never aborts due to adaptations. Thus the crux is to analyze T (or G2): to
bound the complexity (i.e. termination argument) as well as the abort probability of T.

The next subsection introduces distinguisher which completes all chains, a standard approach to indifferen-
tiability proofs for idealized blockciphers. The remaining three subsections sketches respectively the termination
argument for T, calculating the abort probability for T, and the indistinguishability of systems. Moreover, the
formal proof for T’s termination is in Appendix C, Lemmata 12-14, 15-20.

Distinguisher that Completes All Chains. For a fixed deterministic distinguisher D, the corresponding
completing-all-chain distinguisher D first runs D, then queries E for each D’s query to C, and finally outputs
whatever D outputs. More clearly, for each D’s query C((k1, k2), u)→ y or C−1((k1, k2), y)→ u, D sequentially
queries E1(k1, u) → v, E2(k2, v) → w, E3(k1, w) → x, and E4(k2, x) → y. Clearly D has exactly the same
advantage as D in distinguishing G2 and G3; all the rest arguments thereby concentrate on this fixed D.
Limiting D to deterministic ones is wlog since the advantage of a probabilistic distinguisher cannot exceed the
corresponding deterministic version with the best random tapes.

Note that each query of D results in at most one D’s query of a certain type. For instance, consider a query
of D: if it is a 1-query, then D makes the same 1-query when it runs D to this step; if it is a C-query, then D
makes a corresponding 1-query when it completes the chain; otherwise, D does not make 1-query (relative to

this query). By this, if D issues at most q queries, then in any execution D
Gi

we have:

– for i = 1, 2, 3, 4, the number of i-queries made by D is at most q;

– D makes at most q C-queries;

– the number of distinct keys k1 contained in D’s queries is the same as D, i.e. at most q. The same bound
holds for k2.

These observations will help to derive the bounds on complexity.

Termination Argument for T. LetKSet1 andKSet2 be the sets of keys k1 and k2 appeared in the interaction
respectively. E.g. if T created a query (1, k1, u, v), then k1 ∈ KSet1. Further denote by Ei the set of i-queries for
i = 1, 2, 3, 4. Then the core observation is that |E3| can only be affected by a certain type of chain completions
(one may deem such chains as the “outer” chains in similar arguments, e.g. [34]). The number of such chain
completions does not exceed 2q · |KSet1|. This cinches the bound on |E3|, and further enforces |KSet2| · |E3| as
the bound of the number of chains completed by T.

We then provide a more detailed overview as follows. First, T itself never brings in “new” k1 values. Thus
|KSet1| equals the number of distinct keys k1 contained in D’s queries, which, as analyzed in the previous
subsection, does not exceed q. Similarly, |KSet2| ≤ q.

We then show |E3| ≤ 3q2. When a chain reaction is “burning through” a tree in B3, no 3-query is created.
Hence besides D issuing 3-queries, |E3| is only enlarged during chain reactions around live trees in CB(k2)
(whether these trees are involved in dual-trees or not does not matter). Denote by T i

CB the i-th involved live
tree in CB(k2), by |T i

CB | the number of edges in T i
CB , and by Rv(T i

CB) the number of right-shore vertexes in
T i
CB . Then T i

CB corresponds to T completing at most |KSet1| ·Rv(T i
CB) chains, which enlarges |E3| by at most

|KSet1| ·Rv(T i
CB): essentially, this is because during the chain reaction, for each right-shore node v in T i

CB , T
may encounter at most |KSet1| (1, 2)-tripwires, and complete the same amount of chains.
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Chain reactions around CB(k2) may be the consequence of D issuing 2- or 4-queries. For a live tree T i
CB

involved by D querying E2(k2, v), it holds Rv(T i
CB) ≤ |T i

CB |+1;7 for the other possibilities it holds Rv(T i
CB) ≤

|T i
CB |. As D makes at most q queries to E2, chain reactions increase |E3| by at most (q +

∑
i |T i

CB |) · |KSet1|.
The edges in T i

CB are necessarily due to D querying C̃ and thus
∑

i |T i
CB | ≤ q: because once T’s action leads

to creating a new C-query, T would soon complete the corresponding chain, and hence the edges in CB(k2)
with at least one non-pebbled endpoint cannot have been formed by “T’s” C-queries. Therefore chain reactions
enlarges |E3| by at most 2q2. This plus the possible q 3-queries from D yields |E3| ≤ 3q2.

Now, as every completed chain corresponds to a unique pair of entries in E3 and KSet2, T completes at
most |KSet2| · |E3| ≤ 3q3 chains. As a consequence, for i = 1, 2, 4, the number of i-queries internally created by
T is at most 3q3, which plus the q i-queries from D yields |E1|, |E2|, |E4| ≤ 4q3. These further imply T makes

at most |E1| · |E4| ≤ 16q6 distinct calls to C̃.Check.

Bounding the Abort Probability for T. Besides aborting due to adaptations (cf. the layer-2 ProcessTree
procedures, page 11), T may also abort due to finding more than one pebbled leaves when traversing in a live
tree, cf. subsection 4.3. To bound the probabilities, we incorporate a number of checks in G2, which catch “bad
events” and may cause abort at the earliest possible stage. Roughly speaking, right after a new random value z
“appears” (either sampled by T or given by C̃), if z has appeared at some place in the history, then G2 aborts.
We call G2’s abortion due to these conditions early-abortions. With the bounds obtained before, the probability
of early-abortions is upper bounded to 178q6/2n.

The checks for early-abortions are sufficient conditions for the execution to maintain the “desired” features,
i.e. if early-abortions do not occur, then the properties of the defined graph B3 and CB(k2) (for each k2) are
as wished. More clearly, connected components in B3 and CB(k2) are directed trees, and each “dangled” live
tree has at most one pebbled leaf. By this, T never aborts due to finding more than one pebbled leaves during
tree-traversing.

For the impossibility of abortion due to adaptations, since the ProcessTree procedures perform the chain
reactions in a recursive manner, we use a recursive-style argument. To this end, for a layer-2 ProcessTree-
call, if the involved structure possesses certain nice properties, then we call it safe. For example, for a call to
ProcessDualTree(k1, k2, x, y, 4), if the involved structure is indeed a “dual-tree” as depicted in Fig. 10 (left),
then the call is safe.

Conditioned on the absence of early-abortions, we first show that when handling queries from D, T’s calls
to layer-2 ProcessTree procedures are safe. Then, for any safe-call, we prove:

(i) the adaptation in this call would not cause abort;
(ii) safeness is preserved during recursion: all the sub-calls to layer-2 ProcessTree procedures made in this

call are safe. This is essentially due to the fact that each processed live tree has exactly one pebbled leaf,
and the chain reaction “burns” from the pebbled leaf to the other nodes.

Thus by induction, all calls to layer-2 ProcessTree procedures are safe. This implies adaptations never cause

G2 abort, and Pr[D
G2

aborts] equals the probability of early-abortions, which has been proved at most 178q6/2n.

Transitions Between Systems. To prove G1 and G2 indistinguishable as well as transit the results on T

to S, we take the idea of [14]: essentially, D
G1

and D
G2

only deviate due to Check-calls returning different
answers. Since there are at most 16q6 distinct Check-calls in non-aborting G2 executions, the probability that

D
G1

and D
G2

deviate is at most 178q6/2n + 2 · 16q6/2n ≤ 210q6/2n. This also shows that with probability at
least 1− 210q6/2n, the query and time complexity of S in G1 do not exceed 8q4 and O(q7) respectively.

To prove G2 and G3 indistinguishable we take the randomness mapping argument [14]. In fact, we use
an argument to link G1, G2, and G3 together to bound D’s advantage in distinguishing G1 and G3 without

appealing to the hybrid argument: |Pr[D
G1

= 1]− Pr[D
G3

= 1]| ≤ 219q6/2n.
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24. Gaži, P., Lee, J., Seurin, Y., Steinberger, J., Tessaro, S.: Relaxing Full-Codebook Security: A Refined Analysis of
Key-Length Extension Schemes. In: Leander, G. (ed.) Fast Software Encryption, Lecture Notes in Computer Science,
vol. 9054, pp. 319–341. Springer Berlin Heidelberg (2015)
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A Attacks on 3-Cascade with Stronger Key Schedules

During the first round review at Eurocrypt 2016, one of the referees suggested considering 3-cascade with keys
(k1, k2, k1⊕k2) as a possible future work. This slightly more sophisticated key schedule nicely blocks the attack
against CC3 (subsection 3.2). To make a distinction, we denote this scheme by CC3[k1, k2, k1 ⊕ k2]. We did not
find any distinguisher either, until 11 April, 2016. The distinguisher D is as follows:

(1) Randomly chooses four keys k1, k
′
1, k2, k

′
2, and n-bit value v;

(2) Queries E1−1(k1, v)→ u1 and E1−1(k′1, v)→ u2;
(3) Makes eight C-queries:

u1
C(k1,k2)−−−−−→ C−1(k1⊕k2⊕k′

2,k
′
2)−−−−−−−−−−−−→ C(k1⊕k2⊕k′

2,k2)−−−−−−−−−−−→ C−1(k1,k
′
2)−−−−−−−→ u′

1,

and

u′
1

C(k′
1,k2)−−−−−→ C−1(k′

1⊕k2⊕k′
2,k

′
2)−−−−−−−−−−−−→ C(k1⊕k2⊕k′

2,k
′
2)−−−−−−−−−−−→ C−1(k′

1,k
′
2)−−−−−−−→ u′

2;

(4) If E1(k1, u
′
1) = E1(k′1, u

′
2) then outputs 1, else outputs 0.

When interacting with CC3[k1, k2, k1 ⊕ k2], D always outputs 1. The involved structure is depicted in Fig. 11;
the queries that are really made by D are drawn in black, while the others are drawn in gray. On the other
hand, no simulator would be able to extract the involved k2 and k′2 from the interaction. Therefore, no simulator
could withstand this distinguisher.
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Fig. 11. Related-key Boomerang Structure in CC3[k1, k2, k1 ⊕ k2].
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The key schedule could be generalized to a more general form: denote by K the 2κ-bit main key and
(k1, k2, k3) the three round-key, then there exist three efficiently computable 2κ-bit permutations (π1, π2, π3)
such that:

– (k1, k2) = π1(K), (k2, k3) = π2(K), (k3, k1) = π3(K).

However, the above distinguisher could also be generalized to cover such schemes:

(1) Randomly chooses eight pair-wise distinct round-keys k12, k
2
2, . . . , k

8
2;

(2) Randomly chooses 2 distinct round-keys k11 and k11 and n-bit value v;

(3) Queries E1−1(k11, v)→ u1 and E1−1(k11, v)→ u1;
(4) For i = 1, 2, 3, 4, repeats the following operations:

(a) Computes Ki ← π−1
1 (ki1, k

i
2), Ki ← π−1

1 (ki1, k
i
2), (k

i
3, k

i
1)← π3(Ki), and (ki3, k

i
1)← π3(Ki);

(b) Computes K ′
i ← π−1

3 (ki+1
2 , ki3), K

′
i ← π−1

3 (ki+1
2 , ki3), (k

i+1
1 , ki+1

2 )← π3(Ki), and (ki+1
1 , ki+1

2 )← π3(Ki);

(c) Queries ui
C(Ki)−−−−→ C−1(K′

i)−−−−−→ ui+1 and ui
C(Ki)−−−−→

C−1(K′
i)−−−−−→ ui+1;

(5) Note that u5 and u5 have been obtained. If E1−1(k51,E1(k
5
1, u5)) = u5 then outputs 1, and 0 otherwise.

The involved structure is depicted in Fig. 12. As it is quite complicated, most of the key-labels are omitted; just
take it as a coarse illustration. It can be seen from the figure that D always outputs 1 when interacting with
the variant of 3-cascade. On the other hand, for any S∗ that tries to simulate the three ciphers, the number of
κ-bit keys S∗ can extracted from the above interaction is four (say, k11, k

1
1, k

5
1, and k51). But to figure out the

value u5 S∗ has to recover the eight unknown k2 values. This is clearly impossible.
As far as we know, the latter distinguisher seems to have no known analogue in the literature. On the other

hand, as the general form covers a very large range of key schedules that could be imagined, it now seems very
hard to dig out a positive yet non-trivial result on 3-cascade.

B The Pseudocode

In the following two subsubsections, we deliver some additional implementation issues that is omitted in the
the overview in subsection 4.1-4.4. The code is in the last subsubsection.

Implementation Issues for G1.

Explicit Randomness of S. As mentioned in subsection 4.1, the randomness of the simulator T is made
explicit via the 4 ideal ciphers E. Since S is modified from T, S also takes E as the randomness source, i.e.
whenever S needs to assign a random answer to S.Ei(k, z), it queries E to get z′ := E.Ei(k, z). As already
mentioned, using such explicit randomness is indeed equivalent to lazily sampling at the beginning of the
experiment.

S Maintaining History. To keep the query-records, S maintains a set Queries, storing tuples of the form
(i, k, z, z′, dir, num). The first five coordinates are as described in subsection 4.1. While the additional sixth
coordinate num is the value of a query counter qnum (initialized to 1 at the beginning of the interaction) when
this record is created. The last coordinate—num—or last two coordinates—dir and num—are often omitted,
when they are not of interest to the discussion at hand. We recall that whenever S newly simulates a query
(i, k, z, z′) (as the result of either answering D’s query or S’s inner actions), we say it creates a new i-query,
and a record as described is added to Queries.

We write Ei for the set {(k, z, z′) : ∃dir, num s.t. (i, k, z, z′, dir, num) ∈ Queries}, and denote by ET the
tuple of sets (E1, E2, E3, E4). S would try to ensure the sets E1, . . . , E4 to define four partial ciphers, i.e. for
each tuple (i, k, z), there is at most one z′ such that (k, z, z′) ∈ Ei, and vice versa. Clearly, all the i-queries
with dir =← or → are consistent with the randomness source E, and indeed always define a partial cipher.
However, since there exist adapted queries which are seldom consistent with E, the situation may be broken in
the following two cases:

(i) When S obtains a new random value z from E, z may collide with a value of an adapted query. For
example, when S obtains w := E.E2(k2, v) and tries to create (2, k2, v, w,→), there may already exists a
record (2, k2, v

′, w,⊥) for some v′ ̸= v;

21



(ii) When S tries to create an adapted query, it may contradict earlier-created queries. This possibility is also
mentioned in the description of the layer-2 ProcessTree procedures, cf. page 11.

In these cases, we let S abort. This mechanism ensures E1, . . . , E4 to define four partial ciphers, and we thus
write Ei[k] and Ei[k]

−1 for the sets {z : ∃z′ s.t. (k, z, z′) ∈ Ei} and {z′ : ∃z s.t. (k, z, z′) ∈ Ei} respectively,
and write Ei[k](z) (Ei[k]

−1(z′), resp.) for the (unique) corresponding z′ (z, resp.) when z ∈ Ei[k] (z
′ ∈ Ei[k]

−1,
resp.). Note that by the above mechanism, S never overwrites anything. Moreover, the sets Ei, Ei[k], and
Ei[k]

−1 changes as new records are added to Queries.

More Variables of S. We let S maintain some additional sets. First is a set Completed which is used to keep
a record of all the paths S has completed. The entries in Completed are 4-tuples (k1, k2, v, 2) and (k1, k2, x, 4),
which keep the associated keys and the intermediate value v and x in the path respectively. Second, by the
strategy, S would frequently check conditions of the form “∃k s.t. z ∈ Ei[k]/Ei[k]

−1” for some z. To simplify the
code, we let S maintain 8 sets {LS} = {LS1, LS2, LS3, LS4} and {RS} = {RS1, RS2, RS3, RS4} to keep such
values. More clearly, for i ∈ {1, 2, 3, 4}, LSi keeps all z satisfying ∃k ∈ {0, 1}κ s.t. z ∈ Ei[k], while RSi keeps
all z meeting ∃k ∈ {0, 1}κ s.t. z ∈ Ei[k]

−1. The abbreviation “LS” stands for Left Shore while “RS” stands
for Right Shore. Finally, the two sets KSet1 and KSet2 mentioned in the termination argument (page 16) are
explicitly maintained by S.

Implementation Issues for G2. All the aforementioned sets of S (i.e. Queries, KSet1, KSet2, Completed,
{LS}, and {RS}) also appear in T, and are similarly maintained. Besides, some additional issues are as follows.

Implementing C̃. Since the imagined cipher C̃ in G2 is somewhat non-standard, we explicitly implement it.
We also make the randomness of the implemented C̃ explicit, via a normal ideal (2κ, n)-cipher C. (We note that

in the main body, page 17, we take (C̃,E) as the randomness source of G2. Since we now replace the imagined

C̃ by our implemented C̃C, the randomness source of G2. changes from (C̃,E) to (C,E), and the formal proof
for the transition from G2 to G3 would operate on (C,E), cf. subsection D.)

In detail, we let C̃C maintain a set CQueries to keep its query history. Once receiving a query C(K,u), C̃C

takes y := C.C(K,u) as the answer and adds a record ((k1, k2), u, y,→, qnum) via a procedure AddCQuery—
here CQueries and T.Queries share the same counter qnum, which is made global in G2; and upon a query
C−1(K, y), C̃C answers with u := C.C−1(K, y) and adds a record ((k1, k2), u, y,←, qnum) via AddCQuery.
As all the tuples in CQueries are consistent with C, CQueries always defines a partial blockcipher. The set
CQueries and T’s set Queries are used for the explicitly bookkeeping mechanism, which is lifted from [2] to
simplify the arguments.

To simplify the language we use notations similar to Queries: we write CTable[K] for the set

{u : ∃y, dir, num s.t. (K,u, y, dir, num) ∈ CQueries},

and CTable[K](u) for the corresponding y. Similarly for CTable[K]−1 and CTable[K]−1(y).

Global Variables. In order to allow the two set-maintaining procedures AddQuery and AddCQuery to
check “bad randomness” before creating new query-records (the mentioned early-abortion mechanism, cf. page

17), T’s eight sets LS1, . . . , LS4, RS1, . . . , RS4 are made global (thus accessible to C̃’s procedure AddCQuery).
Furthermore, two additional (also global) sets LS0 and RS0 are used in G2: RS0 keeps all the values u satisfying
∃K ∈ {0, 1}2κ and y : (K,u, y) ∈ CQueries, while LS0 keeps all the values y satisfying ∃K ∈ {0, 1}2κ and u :
(K,u, y) ∈ CQueries. As G2 is merely an intermediate system, the existence of such “global” variables is not
problematic.

The Code. The first part of the code implements the simulated system G1 along with the simulator T from G2.
When a line has a boxed variant next to it, S uses the original code, whereas T uses the boxed one. Additionally,
the underlined red sentences only exist in T.

Simulated System G1(C,SC) // No need to implement the ideal cipher C.

Simulator SC,E: Simulator TC̃C,E:
Variables

Sets Queries, Completed, KSet1, KSet2, {LS} = {LS1, LS2, LS3, LS4}, and {RS} = {RS1, RS2, RS3, RS4};
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Setsall initially empty
Integer qnum, initialized to 1

// Create a query using a random value from E. The term “random assign” is from [34].
private procedure RandomAssign(i, δ, k, z)

if δ = + then
z′ := E.Ei(k, z)
if z′ ∈ Ei[k]

−1 then abort
AddQuery(i, k, z, z′,→)

else
z′ := E.Ei−1(k, z)
if z′ ∈ Ei[k] then abort
AddQuery(i, k, z′, z,←)

// Create the record of a query. Also capture the early-abort conditions around new E-queries.
private procedure AddQuery(i, k, z, z′, dir)

if dir =→ ∧z′ ∈ (RSi ∪ LSi+1 mod 5) then abort // Early-abortion in G2.
else if dir =← ∧z ∈ (LSi ∪RSi−1) then abort // Early-abortion in G2.

Queries := Queries ∪ {(i, k, z, z′, dir, qnum)}
qnum := qnum+ 1
LSi := LSi ∪ {z}
RSi := RSi ∪ {z′}
if i ∈ {1, 3} then KSet1 := KSet1 ∪ {k}
else KSet2 := KSet2 ∪ {k} // i ∈ {2, 4}

// The interfaces for 1- and 3-queries: simply randomly assign an answer.
public procedure E1(k1, u)

if u /∈ E1[k1] then
RandomAssign(1,+, k1, u)

return E1[k1](u)

public procedure E1−1(k1, v)
if v /∈ E1[k1]

−1 then
RandomAssign(1,−, k1, v)

return E1[k1]
−1(v)

public procedure E3(k1, w)
if w /∈ E3[k1] then

RandomAssign(3,+, k1, w)
return E3[k1](w)

public procedure E3−1(k1, x)
if x /∈ E3[k1]

−1 then
RandomAssign(3,−, k1, x)

return E3[k1]
−1(x)

// Interfaces for 2-queries: E2 considers live trees in CB(k2), while E2−1 considers live trees in B3.
public procedure E2(k2, v)

if v ∈ E2[k2] then return E2[k2](v)
if v /∈ RS1 then // Lazy sampling

RandomAssign(2,+, k2, v)
return E2[k2](v)

OriginSet := FindPebLeafCB(k2, v, right)
// Traverse in Li(k2, v)
if OriginSet = ∅ then

ProcessNonPebCBTree(k2, v, right)
else if |OriginSet| > 1 then abort
else

(k◦
1 , y

◦, v◦, pos) := OriginSet
ProcessPebCBTree(k◦

1 , k2, y
◦, v◦, pos)

return E2[k2](v)

public procedure E2−1(k2, w)
if w ∈ E2[k2]

−1 then return E2[k2]
−1(w)

if w /∈ LS3 then // Lazy sampling
RandomAssign(2,−, k2, w)
return E2[k2]

−1(w)
OriginSet := FindPebLeafB3(k2, w, left)
// Traverse in Li(k2, w)
if OriginSet = ∅ then

ProcessNonPebB3Tree(k2, w, left)
else if |OriginSet| > 1 then abort
else

(k◦
1 , w

◦, x◦, pos) := OriginSet
ProcessPebB3Tree(k◦

1 , k2, w
◦, x◦, pos)

return E2[k2]
−1(w)

// Interfaces for 4-queries.
public procedure E4(k2, x)

if x ∈ E4[k2] then return E4[k2](x)
if x /∈ RS3 then

// Lazy sampling
RandomAssign(4,+, k2, x)
return E4[k2](x)

OriginSet := FindPebLeafB3(k2, x, right)
// Traverse in Li(k2, x)
if OriginSet = ∅ then

ProcessNonPebB3Tree(k2, x, right)
else if |OriginSet| > 1 then abort
else

(k◦
1 , w

◦, x◦, pos) := OriginSet
ProcessPebB3Tree(k◦

1 , k2, w
◦, x◦, pos)

return E4[k2](x)

public procedure E4−1(k2, y)
if y ∈ E4[k2]

−1 then return E4[k2]
−1(y)

if Exists14Tripwire(k2, y) = false then
// Lazy sampling
RandomAssign(4,−, k2, y)
return E4[k2]

−1(y)
OriginSet := FindPebLeafCB(k2, y, left)
// Traverse in Li(k2, y)
if OriginSet = ∅ then

ProcessNonPebCBTree(k2, y, left)
else if |OriginSet| > 1 then abort
else

(k◦
1 , y

◦, v◦, pos) := OriginSet
ProcessPebCBTree(k◦

1 , k2, y
◦, v◦, pos)

return E4[k2]
−1(y)
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private procedure Exists14Tripwire(k2, y)
forall k1 ∈ KSet1 do

if FindEdgeInCB(k1, k2, y) ̸= ⊥ then return true
return false

private procedure FindEdgeInCB(k1, k2, y)
forall u ∈ E1[k1] do

if Check((k1, k2), u, y) = true if C̃.Check((k1, k2), u, y) = true

then return E1[k1](u)
return ⊥

public procedure Check((k1, k2), u, y) // This procedure only exists in G1

return C.C((k1, k2), u) = y
// The procedures on the trees: around trees in B3

private procedure FindPebLeafB3(k2, z, pos) // Width-first traversal.
OriginSet := ∅
SearchQueue.Enqueue(⊥, z, pos)
while SearchQueue ̸= ∅ do

(past, z, pos) := SearchQueue.Pop()
forall k1 ∈ KSet1 \ {past} do

if pos = right then
x := z
if x /∈ E3[k1]

−1 then continue
w := E3[k1]

−1(x)
// If w is pebbled, then stop going deeper from x.
if w ∈ E2[k2]

−1 then
OriginSet := OriginSet ∪ {(k1, w, x, right)}

else
SearchQueue.Enqueue(k1, w, left)

else // pos = left
w := z
if w /∈ E3[k1] then continue
x := E3[k1](w)
if x ∈ E4[k2] then

OriginSet := OriginSet ∪ {(k1, w, x, left)}
else

SearchQueue.Enqueue(k1, x, right)
return OriginSet

private procedure ProcessNonPebB3Tree(k2, z, pos)
if pos = left then

w := z
RandomAssign(2,−, k2, w)
forall k1 ∈ KSet1 do

if w /∈ E3[k1] then continue
x := E3[k1](w)
ProcessB3SubTree(k1, k2, w, x, right)

else // pos = right
x := z
RandomAssign(4,+, k2, x)
forall k1 ∈ KSet1 do

if x /∈ E3[k1]
−1 then continue

w := E3[k1]
−1(x)

ProcessB3SubTree(k1, k2, w, x, left)

The following procedure slightly deviates from the description presented in subsection 4.3: once the simulator detects a
“dual-tree” (cf. page 13) to be processed, it first makes a call to FindPebLeafCB to perform the traversal in the live
tree in CB(k2) before calling ProcessDualTree. The information returned by FindPebLeafCB is ignored. Indeed,
this FindPebLeafCB-call can be eliminated. But note that a FindPebLeafCB-call may bring in new C-queries to
the history, thus modifying the involved live tree. Therefore, we take this “traverse-in-advance” strategy, with the aim
of bringing forward such possible modifications and making the subsequent process (in this case) the same as that in
some other cases (cases where a new query E4−1(k2, y) or E2(k2, v) appears and ProcessDualTree is subsequently
called). This strategy helps simplify some arguments.

private procedure ProcessPebB3Tree(k1, k2, w, x, pos)
if pos = left then

y := E4[k2](x)
Traversed := false
v := FindEdgeInCB(k1, k2, y)

if v = ⊥ then
ProcessB3SubTree(k1, k2, w, x, left)
return

forall k′
1 ∈ KSet1 \ {k1} do
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if Traversed = true then continue
if v /∈ E1[k

′
1]

−1 then continue
FindPebLeafCB(k2, v, right)
Traversed := true

ProcessDualTree(k1, k2, v, w, 2)

else // pos = right
v := E2[k2]

−1(w)
if v /∈ E1[k1]

−1 then
ProcessB3SubTree(k1, k2, w, x, right)

return
u := E1[k1]

−1(v)

y := C.C((k1, k2), u) y := C̃.C((k1, k2), u)

Traversed := false
forall k′

1 ∈ KSet1 \ {k1} do
if Traversed = true then continue
v′ := FindEdgeInCB(k′

1, k2, y)
if v′ = ⊥ then continue
FindPebLeafCB(k2, y, left)
Traversed := true

ProcessDualTree(k1, k2, x, y, 4)
// The procedures on the trees: around trees in CB(k2)
private procedure FindPebLeafCB(k2, z, pos)

if (pos = left ∧ z ∈ E4[k2]
−1) ∨ (pos = right ∧ z ∈ E2[k2]) then return ∅

OriginSet := ∅
SearchQueue.Enqueue(⊥, z, pos)
while SearchQueue ̸= ∅ do

(past, z, pos) := SearchQueue.Pop()
forall k1 ∈ KSet1 \ {past} do

if pos = right then
v := z
if v /∈ E1[k1]

−1 then continue
u := E1[k1]

−1(v)

y := C.C((k1, k2), u) y := C̃.C((k1, k2), u)

if y ∈ E4[k2]
−1 then

OriginSet := OriginSet ∪ {(k1, y, v, right)}
else

SearchQueue.Enqueue(k1, y, left)
else // pos = left

y := z
v := FindEdgeInCB(k1, k2, y)
if v = ⊥ then continue
if v ∈ E2[k2] then

OriginSet := OriginSet ∪ {(k1, y, v, left)}
else

SearchQueue.Enqueue(k1, v, right)
return OriginSet

private procedure ProcessNonPebCBTree(k2, z, pos)
if pos = left then

y := z
RandomAssign(4,−, k2, y)
forall k1 ∈ KSet1 do

v := FindEdgeInCB(k1, k2, y)
if v = ⊥ then continue
ProcessCBSubTree(k1, k2, y, v, right)

else // pos = right
v := z
RandomAssign(2,+, k2, v)
forall k1 ∈ KSet1 do

if v /∈ E1[k1]
−1 then continue

u := E1[k1]
−1(v)

y := C.C((k1, k2), u) y := C̃.C((k1, k2), u)

ProcessCBSubTree(k1, k2, y, v, left)

private procedure ProcessPebCBTree(k1, k2, y, v, pos)
if pos = left then

w := E2[k2](v)
if w ∈ E3[k1] then

ProcessDualTree(k1, k2, E3[k1](w), y, 4)
else

ProcessCBSubTree(k1, k2, y, v, pos)

else // pos = right
x := E4[k2]

−1(y)
if x ∈ E3[k1]

−1 then
ProcessDualTree(k1, k2, v, E3[k1]

−1(x), 2)
else

ProcessCBSubTree(k1, k2, y, v, pos)
// “Layer-2” ProcessTree procedures (cf. page 13)

According to the overview in page 11, ProcessB3SubTree only makes calls to ProcessB3SubTree. However, in the
following code, it seems like that ProcessB3SubTree may calls ProcessCBSubTree and even ProcessDualTree
(through the sub-call to RecurseNew2 and RecurseNew4). We remark that here the purpose of letting Pro-
cessB3SubTree call layer-2 ProcessTree procedures indirectly (through RecurseNew2 and RecurseNew4) is to
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simply the implementation as well as increase modularity. Indeed, we will prove that only calls to ProcessB3SubTree
can be made inside such sub-call to RecurseNew2 and RecurseNew4 (cf. the proof of lemma 7). Similarly remarked
for the code of ProcessCBSubTree.

private procedure ProcessB3SubTree(k1, k2, w, x, pos)
if pos = left then // A (3, 4)-tripwire.

y := E4[k2](x)

u := C.C−1((k1, k2), y) u := C̃.C−1((k1, k2), y)

v := E1(k1, u)
Adapt(2, k2, v, w)
Completed := Completed ∪ {(k1, k2, v, 2)}
Completed := Completed ∪ {(k1, k2, x, 4)}
RecurseNew2(k1, k2, v, w)

else // pos = right; a (3, 2)-tripwire.
v := E−

2 [k2](w)
u := E1−1(k1, v)

y := C.C((k1, k2), u) y := C̃.C((k1, k2), u)

Adapt(4, k2, x, y)
Completed := Completed ∪ {(k1, k2, v, 2)}
Completed := Completed ∪ {(k1, k2, x, 4)}
RecurseNew4(k1, k2, x, y)

private procedure ProcessCBSubTree(k1, k2, y, v, pos)
if pos = left then // A (1, 2)-tripwire.

w := E2[k2](v)
x := E3(k1, w)
Adapt(4, k2, x, y)
Completed := Completed ∪ {(k1, k2, v, 2)}
Completed := Completed ∪ {(k1, k2, x, 4)}
RecurseNew4(k1, k2, x, y)

else // pos = right; a (1, 4)-tripwire.
x := E4[k2]

−1(y)
w := E3−1(k1, x)
Adapt(2, k2, v, w)
Completed := Completed ∪ {(k1, k2, v, 2)}
Completed := Completed ∪ {(k1, k2, x, 4)}
RecurseNew2(k1, k2, v, w)

private procedure ProcessDualTree(k1, k2, z, z
′, i)

Adapt(i, k2, z, z
′)

if i = 2 then
Completed := Completed ∪ {(k1, k2, z, 2), (k1, k2, E3[k1](z

′), 4)}
RecurseNew2(k1, k2, z, z

′)
else // i = 4

Completed := Completed ∪ {(k1, k2, E2[k2]
−1(E3[k1]

−1(z)), 2), (k1, k2, z, 4)}
RecurseNew4(k1, k2, z, z

′)

// Deals with the tripwires newly set off by a new 2-query (2, k2, v, w)
private procedure RecurseNew2(k1, k2, v, w)

forall k′
1 ∈ KSet1 \ {k1} do

if v ∈ E1[k
′
1]

−1 ∧ w ∈ E3[k
′
1] then

u′ := E1[k
′
1]

−1(v)

y′ := C.C((k′
1, k2), u

′) y′ := C̃.C((k′
1, k2), u

′)

ProcessDualTree(k′
1, k2, E3[k

′
1](w), y′, 4)

else if v ∈ E1[k
′
1]

−1 ∧ w /∈ E3[k
′
1] then

u′ := E1[k
′
1]

−1(v)

y′ := C.C((k′
1, k2), u

′) y′ := C̃.C((k′
1, k2), u

′)

ProcessCBSubTree(k′
1, k2, y

′, v, left)
else if v /∈ E1[k

′
1]

−1 ∧ w ∈ E3[k
′
1] then

ProcessB3SubTree(k′
1, k2, w,E3[k

′
1](w), right)

// Deals with the tripwires newly set off by a new 4-query (4, k2, x, y)
private procedure RecurseNew4(k1, k2, x, y)

forall k′
1 ∈ KSet1 \ {k1} do

v′ := FindEdgeInCB(k′
1, k2, y)

if x ∈ E3[k
′
1]

−1 ∧ v′ ̸= ⊥ then
ProcessDualTree(k′

1, k2, v
′, E3[k

′
1]

−1(x), 2)
else if x ∈ E3[k

′
1]

−1 ∧ v′ = ⊥ then
ProcessB3SubTree(k′

1, k2, E3[k
′
1]

−1(x), x, left)
else if x /∈ E3[k

′
1]

−1 ∧ v′ ̸= ⊥ then
ProcessCBSubTree(k′

1, k2, y, v
′, right)

private procedure Adapt(i, k2, z, z
′)

if z ∈ Ei[k2] ∨ z′ ∈ Ei[k2]
−1 then abort

AddQuery(i, k2, z, z
′,⊥)

The second part of the code implements the intermediate system G2. Note that the involved simulator T has been
implemented in the code above.
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Intermediate System G2(C̃
C,TC̃C

)
Global Variables

Sets LS0, RS0, and CQueries; all initially empty
Enhanced Ideal Cipher C̃C:
// Capture the early-abort conditions around new C-queries.
private procedure AddCQuery((k1, k2), u, y, dir)

if dir =→ ∧y ∈ (LS0 ∪RS4) then abort // Early-abortion
else if u ∈ (RS0 ∪ LS1) then abort // Early-abortion; dir =←
CQueries := CQueries ∪ {((k1, k2), u, y, dir, qnum)}
qnum := qnum+ 1
RS0 := RS0 ∪ {u}
LS0 := LS0 ∪ {y}

public procedure C((k1, k2), u)
if u /∈ CTable[(k1, k2)]

y := C.C((k1, k2), u)
AddCQuery((k1, k2), u, y,→)

return CTable[(k1, k2)](u)

public procedure C−1((k1, k2), y)
if y /∈ CTable[(k1, k2)]

−1

u := C.C−1((k1, k2), y)
AddCQuery((k1, k2), u, y,←)

return CTable[(k1, k2)]
−1(y)

public procedure Check((k1, k2), u, y)
return CTable[(k1, k2)](u) = y

C Focus on G2: Non-abortion and Termination Arguments

As mentioned in subsection 4.5, the indifferentiability can be reduced to results on G2. This subsection gives
the desired results, including non-abortion and termination arguments. For ease of discussion, we borrow the
terminology simulator cycle from [2], which refers to the execution period from the point D makes a query till
the point D receives the answer—or G2 aborts.

Invariants. Due to the early abort conditions incorporated by us (cf. page 17), the desired properties in
Queries and CQueries are ensured for any point in any G2 execution. To give a formal presentation, we first
give a useful lemma, stating that each tuple in Completed corresponds to a completed path.

Lemma 1. At any point in a G2 execution, for any (k1, k2, x, 4) ∈ Completed, there exist u, v, w, y ∈ {0, 1}n
such that the following five queries have been in Queries and CQueries respectively:

((k1, k2), u, y), (1, k1, u, v), (2, k2, v, w), (3, k1, w, x), (4, k2, x, y).

Similar claim holds for any (k1, k2, v, 2) ∈ Completed.

Proof. By inspection of the code, it can be seen that right before any tuple (k1, k2, x, 4) is to be added to
Completed, there is a corresponding call to Adapt. The claim thereby holds for any (k1, k2, x, 4) right after
(k1, k2, x, 4) ∈ Completed holds. As nothing can be overwritten, the claim keeps holding since then. Similarly
for (k1, k2, v, 2). ⊓⊔

We then present several invariants, which are somewhat similar to [2].

Inv0. 1-queries and 3-queries have dir ∈ {←,→}.

Inv1. (About two E-queries to two consecutive cascade stages) For num > num′, there does not exist two queries
(i, k, z, z′,→, num) and (i+1, k′, z′, z′′, dir, num′) (inQueries); there does not exist two queries (i+1, k′, z′, z′′,←
, num) and (i, k, z, z′, dir, num′) either.

Inv2. (About two E-queries to the same cascade stage) For num > num′, there does not exist two queries
(i, k, z, z′,→, num) and (i, k′, z′′, z′, dir, num′); there does not exist two queries (i, k, z′, z,←, num) and (i, k′, z′,
z′′, dir, num′) either.

Inv3. (About two C-queries) For num > num′, there does not exist two C-queries (K,u, y,→, num) and
(K ′, u′, y, dir, num′); there does not exist two C-queries (K,u, y,←, num) and (K ′, u, y′, dir, num′).
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Inv4. (About a C-query and a 1/4-query) New 1/4-queries and C-queries cannot hit each other:

– There does not exist a C-query ((k1, k2), u, y, dirC , numC) and a 1-query (1, k1, u, v, dir1, num1) such that
either: (i) dir1 =← and num1 > numC , or (ii) dirC =← and numC > num1;

– There does not exist a C-query ((k1, k2), u, y, dirC , numC) and a 4-query (4, k2, x, y, dir4, num4) such that
either: (i) dir4 =→ and num4 > numC , or (ii) dirC =→ and numC > num4.

Inv5. (The tripwires function well) In each of the following cases, the two involved queries are part of the same
(k, k′)-completed path, and the 4-tuples corresponding to the (k, k′)-completed path are in Completed:

(i) There are two queries (j, k, z′, z′′, dir, num) and (i, k′, z, z′, dir′, num′) such that (i, j) ∈ {(1, 2), (3, 4)} and
num > num′;

(ii) There are two queries (2, k2, v, w, dir, num) and (3, k1, w, x, dir
′, num′) such that num > num′;

(iii) There are two queries (4, k2, x, y, dir, num) and (1, k1, u, v, dir
′, num′) such that both num > num′ and

C̃.Check((k1, k2), u, y) = true.

Lemma 2. Invariants Inv0-Inv4 hold throughout any G2 execution. Invariant Inv5 holds at the end of each
simulator cycle as long as G2 does not abort.

Proof. Inv0 is obvious (which is indeed among the core ideas of the simulation strategy). Inv1 to Inv4 are
ensured by the early abort conditions inside AddQuery and AddCQuery. More clearly, for Inv1, in each
case, the value z′ must have been in LSi+1 or RSi before AddQuery is called on the num-th query. By this,
AddQuery would abort and not add the num-th query to Queries. For Inv2 we wlog consider two queries
(i, k, z, z′,→, num) and (i, k′, z′′, z′, dir, num′). After (i, k′, z′′, z′, dir, num′) is created, z′ must be added to RSi,
so that the later query (i, k, z, z′,→, num) would cause AddQuery abort and would not be added to Queries.
The proof of Inv3 and Inv4 follows the same line as Inv1 and Inv2 (differently: in some cases, the queries
contradicting them would cause AddCQuery abort).

To show Inv5, we consider all possibilities of the creation of two queries meeting the constraints, and prove
the claim for each of them.

Consider two queries (1, k1, u, v, dir
′, num′) and (2, k2, v, w, dir, num) (i.e. (i, j) = (1, 2)) first. Since num >

num′, it cannot be dir =← as otherwise contradicting Inv1. Hence dir ∈ {→,⊥}. By construction, such a
2-query may be created due to the following possibilities:

(i) a call to RandomAssign(2,+, k2, v) in E2(k2, v);
(ii) a call to RandomAssign(2,+, k2, v) in ProcessNonPebB3Tree;
(iii) a call to Adapt(2, k2, v, w) in a call to layer-2 ProcessTree procedure.

However, possibility (i) is not possible: for a call E2(k2, v) to call RandomAssign, it has to be v /∈ RS1 before
the E2-call, which contradicts the pre-existence of (1, k1, u, v). So we consider the remaining two possibilities:

– for possibility (ii): by construction, after ProcessNonPebCBTree creates the 2-query (2, k2, v, w,→),
it will check the set E1 and find v ∈ E1[k1] and call ProcessCBSubTree(k1, k2, y, v, left) for y =
C((k1, k2), u). By inspection of the code of ProcessCBSubTree, it can be seen once this call returns with-
out abortion, (k1, k2, v, 2) ∈ Completed would hold. By Lemma 1, this implies (2, k2, v, w) and (1, k1, u, v)
in the same completed path;

– for possibility (iii): note that each of the three layer-2 ProcessTree procedures takes the first sub-key as an
argument—to make a distinction, we denote by k◦1 the “first-key argument” to the layer-2 ProcessTree-call
which creates (2, k2, v, w). Then:

• If k◦1 = k1 and the ProcessTree-call returns without abortion, then by a quick inspection of the
code, it can be seen the claims hold regardless of the type of the call. For example, if the call is Pro-
cessB3SubTree(k1, k2, w, x, ·), then (k1, k2, x, 4) ∈ Completed after the call, which implies (2, k2, v, w)
and (1, k1, u, v) in the same completed path (by Lemma 1).

• If k◦1 ̸= k1, then after the 2-query is created, the ProcessTree-call would call RecurseNew2 and
iterate for k′1 ∈ KSet1\{k◦1} and make a call to a layer-2 ProcessTree procedure when it iterates with
k′1 = k1. The latter ProcessTree-call indeed will be made due to v ∈ E1[k1]

−1 which is implied by
the existence of (1, k1, u, v); and, by the analysis above, if it returns without abortion, then the claims
hold.
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The arguments for (i, j) = (3, 2), (3, 4) follow the same line as the above. As to (i, j) = (1, 4), consider two

queries (4, k2, x, y, dir, num) and (1, k1, u, v, dir
′, num′) such that C̃.Check((k1, k2), u, y) = true. The return

value of Check implies the existence of the C-query ((k1, k2), u, y, dirC , numC). It cannot be numC > num, as
otherwise numC > num > num′ and the creation of the C-query would contradict Inv4. Hence num > numC

and the 4-query is the latest among the three, and dir′ ∈ {←,⊥} due to Inv4. By construction, such a 4-query
can only be created due to ProcessNonPebCBTree or layer-2 ProcessTree-calls (again, the query cannot
be created due to E4−1, as the pre-existence of the 1- and C-query implies Exists14Tripwire(k2, y) returning
true). Similarly to the case of (i, j) = (1, 2), in each of the cases, the tuples are in Completed and the path
exists after the simulator cycle is finished. ⊓⊔

The Bipartite Graphs B3, CB(k2), and the Graph B(k2). This subsubsection presents formal definitions
for the graphs used in the proof, as well as discussions on their structural properties. More precisely, for each
k2 ∈ {0, 1}κ, we use an edge-labeled graph B(k2) to encode the information fromQueries and CQueries relevant
to 2-, 4-, and C-queries associated with k2; and the two bipartite graphs B3 and CB(k2) are two subgraphs
in B(k2). Both B3 and CB(k2) have shores {0, 1}n; note that B3 is independent from k2 as it is built from
3-queries. Further note that B(k2), B3, and CB(k2) are all time-dependent.

We describe B3 first. Edges of B3 are directed and labeled, and constructed as follows: for every 3-query
(3, k1, w, x, dir, num) ∈ Queries, we construct an edge (w, x) of label k1, of direction dir (dir ∈ {→,←} by
Inv0), and of an associated num value equaling the num value of the 3-query. This constitutes all edges of B3.
For convenience, we will use the 3-query (3, k1, w, x, dir, num) to refer to the corresponding edge. Due to Inv2,
two distinct 3-queries cannot give rise to two edges of B3 with the same endpoints, and hence B3 contains no
multiple edges.

We then describe CB(k2). For any k2 ∈ {0, 1}κ, CB(k2) is constructed as follows: for every C-query
((k1, k2), u, y, dirC , numC) ∈ CQueries and every 1-query (1, k1, u, v, dir1, num1) ∈ Queries (the two queries
must share the same k1 and u), we construct an edge (y, v) of label k1, direction dir(y,v), and num value
num(y,v). The associated num(y,v) and dir(y,v) equal the corresponding parameters of the later query (say, if
numC > num1, then num(y,v) = numC and dir(y,v) = dirC , and vice versa). For convenience, we will use the
5-tuple (k1, y, v, dir(y,v), num(y,v)) to refer to such an edge (often abbreviated to (k1, y, v)). This constitutes
all edges of CB(k2). Note that for any k2, each 1-query (1, k1, u, v) gives rise to at most one edge in CB(k2):
because only C-queries of the form ((k1, k2), u, ·) are able to form edges with (1, k1, u, v), and the number of
such C-queries is at most 1. Moreover, due to Inv2 and Inv3, two distinct pairs of queries cannot give rise to
two edges of CB(k2) with the same endpoints, so that CB(k2) contains no multiple edges.

We note that if there is an edge (k1, y, v, d, num) with d =←, then the involved C-query has to head
towards y, i.e. of the form ((k1, k2), u, y,→, nC): because if not, then the 1-query (1, k1, u, v, d1, n1) must meet
(i) n1 > nC (due to Inv4); (ii) d1 =→ (due to n1 > nC and Inv4), so that d cannot be←. Similarly, the 1-query
(1, k1, u, v, d1, n1) involved in an edge (k1, y, v, d, num) with d =→ has to meet d1 =→ as otherwise the involved
C-query is later and heads towards y and d ̸=→.

We now formally prove the acyclic property of B3, which is almost the same as Lemma 12 of [2].

Proposition 1. Connected components of B3 are directed trees with edges directed away from the root, and the
num values on the edges of any directed path in B3 are strictly increasing.

Proof. Due to Inv2, every vertex of B3 has indegree at most 1. Moreover, since queries are totally ordered and
a single query exactly raises a single edge, two adjacent edges in B3 have different num values. Due to Inv2,
these num values go from smaller to larger according to the edge directions, hence the connected component is
also acyclic. These establish the claim. ⊓⊔

We then formally prove the acyclic property of CB(k2).

Proposition 2. For any k2 ∈ {0, 1}κ, connected components of CB(k2) are directed trees with edges directed
away from the root, and the num values of the edges of any directed path in CB(k2) are strictly increasing.

Proof. We first show that every vertex in CB(k2) has indegree at most 1. Consider a left-shore node y first.
As remarked, the C-query involved in an edge (k1, y, v,←) has to head towards y. Due to Inv3, for each y,
there exists at most one C-query that heads towards y. The above show that every left-shore node y in CB(k2)
has indegree at most 1. For right-shore node v the argument follows the same line: as remarked, the 1-query
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involved in an edge (k1, y, v,→) has to head towards v; a 1-query gives rise to at most one edge; due to Inv2,
two different 1-queries cannot head towards the same v.

We then proceed to argue that the num values of two adjacent edges go from smaller to larger according to
the edge directions:

(i) for two edges adjacent to the same right-shore node v, assume that the four involved queries are ((k1, k2), u, y,
dir1, num1), (1, k1, u, v,→, num2), (1, k

′
1, u

′, v, dir3, num3), and ((k′1, k2), u
′, y′,→, num4). By Inv2, it nec-

essarily holds num3 > num2 and dir3 =←; then by Inv4, it holds num4 > num3 > num2. Since the edge
formed by (1, k1, u, v,→, num2) and ((k1, k2),
u, y, dir1, num1) is directed from y to v, either dir1 =← ∧num2 > num1, or dir1 =→ (which also implies
num2 > num1). Therefore, the two num values associated to the two edges are num2 and num4 respectively,
and num4 > num2 and the claim on the num values of the edges holds.

(ii) for two edges adjacent to the same left-shore node y, the proof is symmetrical.

By the analysis above, the component is acyclic. These establish the claim. ⊓⊔

With respect to the graph CB(k2), we have the following variant of Inv5.

Lemma 3. For any k2 ∈ {0, 1}κ, consider an edge (k1, y, v, dir, num) in CB(k2). At any moment of a G2

execution such that Inv5 holds, if there exists a 2-query (2, k2, v, w, dir2, num
′) (a 4-query (4, k4, x, y, dir4, num

′),
resp.) such that num′ > num, then the queries of the edge (k1, y, v, dir, num) and the 2-query (4-query, resp.)
are part of the same (k1, k2)-completed path.

Proof. Assume that the two queries involved in the edge (k1, y, v, dir, num) are ((k1, k2), u, y, dirC , numC)
and (1, k1, u, v, dir1, num1). If there exists a 2-query (2, k2, v, w, dir2, num

′) satisfying all the assumptions,
then it necessarily holds num′ > Max{numC , num1} ≥ num1; if there is a 4-query (4, k4, x, y, dir4, num

′)
satisfying all the assumptions, then: (i) num′ > Max{numC , num1} ≥ num1; (ii) due to the existence of

((k1, k2), u, y, dirC , numC), C̃.Check((k1, k2), u, y) returns true. In both cases, the claim holds by Inv5. ⊓⊔

We now present the graph B(k2) itself (for a certain k2), which is basically obtained by linking the nodes in
the left shore of B3 and the right shore of CB(k2) with existing 2-queries (2, k2, v, w, dir, num), and linking the
nodes in the left shore of CB(k2) and the right shore of B3 with existing 4-queries (4, k2, x, y, dir, num). These
additional edges correspond to queries labeled k2; however since the entire graph B(k2) is already parameterized
by k2, there is no need to associate labels to these additional edges.

More precisely, for a fixed k2 ∈ {0, 1}κ, B(k2) has four “shores” {0, 1}n numbered 2, 3, 4, and 5:8 a copy of
CB(k2) is placed between shore 5 and shore 2, while a copy of B3 is placed between shore 3 and shore 4. For
i = 2, 4, a query (i, k2, z, z

′, dir, num) becomes a (possibly directed) unlabeled i-edge from node z in shore i to
node z′ in shore i+ 1, with direction consistent with dir.

Note that unlike the graph B used in [2] (page 42), in this work, a completed path corresponds to a cycle
in B(k2) which crosses all the shores.

The following paragraphs present the formal definitions of the other terminology borrowed from [2], say,
pebbling and live tree.

Pebbling in B(k2). In B(k2), a node z in shore 2, 3, 4, or 5 that is adjacent to a 2-edge or 4-edge is said to
be pebbled.9 For a pebbled node z in shore 2 or 5 (3 or 4, resp.), we also say that z is a pebbled node of CB(k2)
(B3, resp.). Similarly to [2], the edge pebbling a node is necessarily unique; also, pebbling transfers upwards in
a live tree, which is crucial for the proof.

Lemma 4. For any k2 ∈ {0, 1}κ, at any moment of a G2 execution such that Inv5 holds, the connected com-
ponents of B3/CB(k2) are “pebbled upwards”: if a node is pebbled, then its parent is also pebbled. Formally
speaking,

(a) for a 3-query (3, k1, w, x, dir, num), if dir =→ and x is adjacent to a 4-query, then w is adjacent to a
2-query; if dir =← and w is adjacent to a 2-query, then x is adjacent to a 4-query;

8 They are numbered from 2 to 5 because they consist of inputs to E2 (v), inputs to E3 (w), inputs to E4 (x) respectively,
and y ∈ CTable[K]−1.

9 Note that in simulator overview (page 9), the notion pebbling is informally specified under certain k2 for the sake of
simplicity.
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(b) for an edge (k1, y, v, dir, num) in CB(k2), if dir =→ and v is adjacent to a 2-query, then y is adjacent to
a 4-query; if dir =← and y is adjacent to a 4-query, then v is adjacent to a 2-query.

Proof. For (a), we prove the first half of the claim, and the second half is symmetric. Assume that the involved
4-query is (4, k2, x, y, dir

′, num′). Then it has to be num′ > num, as otherwise contradicting Inv1; then as Inv5
holds, the two queries (3, k1, w, x, dir, num) and (4, k2, x, y, dir

′, num′) are in the same (k1, k2)-completed path,
so that w is adjacent to a 2-query (2, k2, v, w).

For (b) we also prove the first half of the claim. Assume that the two queries involved in the edge are
((k1, k2), u, y, dC , nC) and (1, k1, u, v,→, n1) and the 2-query attached to v is (2, k2, v, w, d2, n2). It necessarily
be num = n1. Due to Inv1, it has to be n2 > n1; hence n2 > num and (by Lemma 3) the three queries are in
the same (k1, k2)-completed path, so that y is adjacent to a 4-query. ⊓⊔

Live Trees. For k2 ∈ {0, 1}κ, consider B(k2) and the graphs B3 and CB(k2) in B(k2). For z ∈ {0, 1}n, denote
by B3(z) (CB(k2, z), resp.) the connected component containing z in B3 (CB(k2), resp.). Then at any point
in a G2 execution and for any non-pebbled node z of B3 (CB(k2), resp.), define the live tree anchored at z in
B3 (CB(k2), resp.) (denoted Li(k2, z)) as the tree obtained by “dangling” B3(z) (CB(k2, z), resp.) by z, such
that z is the root, and then pruning all portions of this “dangled” tree that lie beneath a pebbled node (in
B(k2)). More clearly, Li(k2, z) in B3 (CB(k2), resp.) is obtained from B3(z) (CB(k2, z), resp.) according to the
following rules:

(1) Initially, Li(k2, z) is empty;

(2) Add z into Li(k2, z) and take z as the root;

(3) For any node z′ ∈ B3(z) (z
′ ∈ CB(k2, z), resp.) (z

′ ̸= z), if the path between z′ and z does not pass through
any pebbled node, then add z′ and the edges and nodes of the path into Li(k2, z) (if they have not been in
Li(k2, z)). Note that whether z′ is pebbled or not does not matter.

Note that this definition is the same as the generalized live tree in [2]. Also note that, by this definition,

– if z is not adjacent to any edges, then Li(k2, z) = {z};
– the pebbled nodes in Li(k2, z) can only be leaves (as all the portions beneath the pebbled nodes have been
pruned).

For convenience, for any pebbled node z, define Li(k2, z) := {z}.
We then prove that at any point such that Inv5 holds, there is at most one pebbled node in a live tree

Li(k2, z). As mentioned, this is the core idea behind the simulator design as well as the non-abortion argument.

Lemma 5. At any point in a G2 execution such that Inv5 holds (for example, the point before/after a simulator
cycle) and for any k2 ∈ {0, 1}κ, there is at most one pebbled node in a live tree Li(k2, z).

Proof. If z itself is pebbled then Li(k2, z) = z and the claim holds. In case of z is non-pebbled, assume that
there are two pebbled nodes z′ and z′′ in Li(k2, z). As per the remark above, both z′ and z′′ must be leaves,
and the path between z′ and z′′ passes through z (an illustration is z′ − . . . − z − . . . − z′′). Then consider
the “original” connected component B3(z) (CB(k2, z), resp.). As the connected component is a directed tree
(Propositions 1 and 2), it can be seen that at least one of the following two paths is directed from z:

– the path between z and z′;

– the path between z and z′′.

So that by Lemma 4, z must be the parent of a pebbled node, and must be pebbled. This contradicts our
assumption that z is non-pebbled. ⊓⊔

The size of a live tree Li(k2, z) is defined as the number of edges in Li(k2, z), and is denoted by |Li(k2, z)|.10
For a tree T and a node z in T , we write SubT (T, z) for the subtree of T rooted at z; if z is the root, then
SubT (T, z) = T .

10 Note that this deviates from the analogue terminology in [2, page 44]: the term “size” in [2] refers to the number of
non-pebbled nodes.
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Extending Live Trees. We now consider the effects of the procedure FindPebLeafCB. We start by defining
complete live trees: at any point in a G2 execution and for any k2 ∈ {0, 1}κ, a live tree Li in CB(k2) is complete, if
for any non-pebbled right-shore node v in Li and any k1, ∃(1, k1, u, v) ∈ Queries⇒ ∃((k1, k2), u, y) ∈ CQueries.
In other words, for no pair (k1, v) does the following hold:

v ∈ Li ∧ v ∈ E1[k1]
−1 ∧ E1[k1]

−1(v) /∈ CTable[(k1, k2)].

The motivations behind this definition are two-fold: first, we observe that during G2 processing a complete
tree Li, the number of newly-created 3-queries is at most |Li|; second, a call to FindPebLeafCB(k2, z, pos)
would turn the live tree Li(k2, z) to complete, if it returns without abortion. The former observation will be
formally discussed in Lemmata 8 and 9, while the latter is captured by the following lemma. To simplify the
presentation, we introduce a notation Tk2,z, which denotes the snapshot of the live tree Li(k2, z) standing at
the point right before the call in question. This notation will be used not only in the following lemma, but also
in all the lemmata in the remaining of this subsection. Similarly to [2], this notation is used to avoid ambiguity,
as the tree Li(k2, z) changes during G2 processing.

Lemma 6. Right after a call to FindPebLeafCB(k2, z, pos) returns without abortion, the following hold:

(a) Each C-query created in this call is a part of an edge in Li(k2, z); and all the nodes “newly added”11 to
Li(k2, z) are non-pebbled leaves;

(b) Li(k2, z) is complete;
(c) if pos = left then |Li(k2, z)| ≤ |Tk2,z| · |KSet1|; otherwise (pos = right) |Li(k2, z)| ≤ Max{|Tk2,z|, 1} ·
|KSet1|;

Proof. We start by reminding that in this lemma, the notation Tk2,z is the snapshot of Li(k2, z) before the
FindPebLeafCB-call.

We then show the three statements by carefully analyzing the process of FindPebLeafCB. If z is pebbled
before the FindPebLeafCB-call, then it simply returns ∅, and the claims clearly hold.12 When z is non-pebbled,
the discussions are divided into two cases depending on the arguments of the call:

Case 1: the call is FindPebLeafCB(k2, y, left). If Tk2,y = {y}, then for no (k1, u) in the history does Check
return true, and FindEdgeInCB returns ⊥ for all k1, so that FindPebLeafCB has no effect.13 We thereby
assume that the children of y in Tk2,y are v1, . . . , vl, and the associated edges are (k11, y, v1), . . . , (k

l
1, y, vl). Then

for i = 1, . . . , l, FindPebLeafCB will find vi via FindEdgeInCB, and pushes it into either OriginSet or
SearchQueue depending on its pebbling state:

– if vi has not been pebbled, then (ki1, vi, right) is pushed into SearchQueue;
– if vi has been pebbled, then (ki1, k2, y, vi, left) is added into OriginSet, and FindPebLeafCB will not go
deeper in Tk2,y from vi.

After the above process around the root/level 1 node of Tk2,y, FindPebLeafCB only adds some nodes to
SearchQueue or OriginSet, and does not modify Lik2,y.

Then FindPebLeafCB proceeds to pop the level 2 nodes from SearchQueue. Assume that the following
hold for a level 2 node denoted vi:

(i) the children of vi in Tk2,y are y1i , . . . , y
s
i , with associated edges (ki,11 , y1i , vi), . . . , (k

i,s
1 , ysi , vi);

(ii) there are s 1-queries (1, ki,j1 , uj
i , vi) (j = 1, . . . , s) such that uj

i /∈ CTable[(ki,j1 , k2)]. Clearly ki1 ̸= ki,11 ̸= . . . ̸=
ki,s1 ̸= ki,11 ̸= . . . ̸= ki,s1 and s+ s+ 1 ≤ |KSet1|.

Then after vi is popped, the operations inside the forall loop depend on the concrete conditions:

(i) When the forall loop iterates with k1 = ki1, nothing happens as FindPebLeafCB finds k1 = past(= ki1).

11 Say, the nodes that were not in Tk2,z but are in Li(k2, z). It should be reminded that by the assumption of the lemma,
Li(k2, z) refers to the live tree anchored at z right after the FindPebLeafCB-call.

12 Indeed, FindPebLeafCB would never be called on pebbled node z. However, to show this requires analyzing the
process of simulator cycles, which cannot be accomplished in this paragraph. We thereby add the “pebbling-check”
operation at the beginning of FindPebLeafCB.

13 Indeed, similarly to the previous footnote, FindPebLeafCB is never called in such a case by construction. But we do
not have to care about this fact.
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(ii) When the forall loop iterates with k1 = ki,j1 , the subsequent query to C̃ does not create any new C-queries.

FindPebLeafCB simply obtains the level 3 node yji and pushes it into either SearchQueue or OriginSet
depending on its pebbling state (as previously pushing level 2 nodes).

(iii) When the forall loop iterates with k1 = ki,j1 , FindPebLeafCB obtains uj
i by accessing E−1

1 , and then

queries C̃.C((ki,j1 , k2), u
j
i ). As uj

i /∈ CTable[(ki,j1 , k2)], this operation creates a new C-query ((ki,j1 , k2), u
j
i , y

j
i )

(with yji = C.C((ki,j1 , k2), u
j
i )), thus adding an edge (ki,j1 , yji , vi) into Lik2,y. Furthermore, as G2 does not

abort (by assumption), ∀k′1 ∈ {0, 1}κ\{k
i,j
1 }, y

j
i /∈ CTable[(k′1, k2)]

−1 immediately holds due to Inv3, so that

yji turns out to be a leaf of Lik2,y; and yji /∈ E4[k2]
−1 immediately holds right after the C-query is created

(due to Inv4), so that yji is non-pebbled. As a consequence, yji will later be innocuously popped, and keeps
non-pebbled till the end of FindPebLeafCB.

It can be easily checked that (a) holds with respect to the above process. Furthermore, after the above process,
for each level 1 node vi in Lik2,y:

– at most |KSet1| edges in Lik2,y are adjacent to vi;
– for any k1, ∃(1, k1, u, vi) ∈ Queries⇒ ∃((k1, k2), u, y) ∈ CQueries.

Later when the newly added node yji is popped from SearchQueue, the subsequent process is similar to
that around the level 1 node y, which has been described. Subsequently, level 4 nodes in Lik2,y are processed
similar to the level 2 nodes as described, and have similar effects. The above are interleavingly repeated till all
the nodes in Tk2,y are visited.

In summary, note that only in the cases captured by the above case (iii) does FindPebLeafCB add nodes
into Lik2,y and create new C-queries. By the analysis, such nodes are non-pebbled leaves, and such new C-
queries are clearly parts of the edges in Li(k2, y); these establish (a). Moreover, ∀k1, ∃(1, k1, u, v) ∈ Queries⇒
∃((k1, k2), u, y) ∈ CQueries holds for any non-pebbled right-shore node v in Li(k2, y) after all of them are
visited, so that (b) holds. Finally, at the end of FindPebLeafCB, each right-shore node v in Lik2,y is adjacent
to at most |KSet1| edges. As the number of right-shore nodes is at most |Tk2,y| (when pos = left), we obtain
|Li(k2, y)| ≤ |Tk2,y| · |KSet1| and establish (c). These complete the analysis of Case 1.

Case 2: the call is FindPebLeafCB(k2, v, right). When |Tk2,v| ≥ 1, then it can be checked that the process
has no essential difference with Case 1, and the statements hold. In particular, when |Tk2,v| ≥ 1, Tk2,v has at
least one left-shore node, and hence the number of right-shore nodes in Tk2,v is at most |Tk2,v| and |Li(k2, v)| ≤
|Tk2,v| · |KSet1| ≤ Max{|Tk2,v|, 1} · |KSet1|. So we focus on the case where Tk2,v = {v}. Assume that there
are l pre-existing 1-queries (1, k11, u1, v), . . . , (1, k

l
1, ul, v) (note that ∀i ∈ {1, . . . , l}, ui /∈ CTable[(ki1, k2)] by

the assumption Tk2,v = {v}). Then for i = 1, . . . , l, FindPebLeafCB obtains ui by accessing E−1
1 , and then

queries C̃, which results in creating a new C-query ((ki1, k2), ui, yi) and adding an edge (ki1, yi, v) to Lik2,v.
Right after the C-query is created, ∀k′1 ∈ {0, 1}κ\{ki1}, yi /∈ CTable[(k′1, k2)]

−1 immediately holds due to
Inv3, so that yi turns out to be a leaf of Lik2,v; and yi /∈ E4[k2]

−1 immediately holds due to Inv4, so that
yi is non-pebbled. Consequently, yi will later be innocuously popped, and keeps non-pebbled till the end of
FindPebLeafCB. In this case, FindPebLeafCB exactly makes l C-queries and adds l leaves into Li(k2, v),
and (a), (b) clearly hold. On the other hand, in this case, Tk2,v has one right-shore nodes and |Tk2,v| = 0, hence
(c) (|Li(k2, v)| ≤ |KSet1| ≤ Max{|Tk2,v|, 1} · |KSet1| when pos = right) holds. ⊓⊔

As a corollary of Lemma 6 (a), the number and positions of pebbled nodes in Lik2,z are both invariant after
Lik2,z is “extended” by FindPebLeafCB.

Inside a Simulator Cycle. Based on the above observations, this subsubsection analyzes the process and
effects of simulator cycles. Recall that a simulator cycle is triggered by a query from D, and refers to the
execution period between the query is made till the point the query is answered or G2 aborts. The case of D
making a query which has been in the history is clearly not interesting. Whereas according to the strategy (cf.
page 14) and the code, in the following two cases (of D making a new query), the subsequent simulator cycle
only consists querying E to obtain the random answer, and the corresponding set is simply enlarged by 1:

(a) D makes a new 1- or 3-query;
(b) D makes a new 2- or 4-query, but the query is not adjacent to any pre-existing queries (say, not able to set

off any tripwire).

We thereby focus on the remaining cases. For clearness, we briefly summarize the hierarchy of the code/process
of G2 in the next paragraph before we present the (pretty long) main analysis.
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Hierarchy of the Code and Procedures. Consider D issuing a new 2- or 4-query. In general, the subse-
quent simulator cycle proceeds as follows:

(1) checks the state around the new query by both accessing the sets and calling the traversal procedure
FindPebLeafB3 or FindPebLeafCB;

(2) calls a procedure among ProcessNonPebB3Tree, ProcessPebB3Tree, ProcessNonPebCBTree,
and ProcessPebCBTree—depending on the concrete state. They will thus be called layer-1 Pro-
cessTree procedures;

(3) makes a series of calls to the “layer-2” ProcessTree procedure(s) (cf. page 13)—ProcessB3SubTree,
ProcessCBSubTree, and ProcessDualTree—recursively, depending on concrete conditions.

With the above in mind, the following paragraphs first analyze layer-2 ProcessTree procedures (as the results
are the most elementary ones and are necessary for the other analyses), then analyze layer-1 ProcessTree
procedures, and finally gather them to yield the results on 2- and 4-queries.

Around Layer-2 ProcessTree Procedures. The analysis starts with formally defining safe ProcessTree-
calls. The term “safe” is due to [34].

Definition 2. A call to ProcessB3SubTree is safe if depending on its arguments, the following hold right
before the call is made:

(i) when the arguments to the call are (k1, k2, w, x, left), let y := E4[k2](x), then: (a) x is the unique pebbled
leaf of Li(k2, w),

14 and (b) there does not exist an edge (k1, y, v) in CB(k2) (cf. Fig. 13 (right));15

(ii) when the arguments to the call are (k1, k2, w, x, right), let v := E2[k2]
−1(w), then: (a) w is the unique

pebbled leaf of Li(k2, x), and (b) v /∈ E1[k1]
−1 (cf. Fig. 13 (left)).

Definition 3. A call to ProcessCBSubTree is safe if depending on its arguments, the following hold right
before the call is made:

(i) when the arguments to the call are (k1, k2, y, v, left), let w := E2[k2](v), then: (a) v is the unique pebbled
leaf of Li(k2, y), and (b) w /∈ E3[k1], and (c) Li(k2, y) is complete (cf. Fig. 14 (left));

(ii) when the arguments to the call are (k1, k2, y, v, right), let x := E4[k2]
−1(y), then: (a) y is the unique pebbled

leaf of Li(k2, v), and (b) x /∈ E3[k1]
−1, and (c) Li(k2, v) is complete (cf. Fig. 14 (right)).

Definition 4. A call to ProcessDualTree is safe if depending on its arguments, the following hold right
before the call is made:

(i) if the arguments to the call are (k1, k2, v, w, 2), then: (a) there exist four queries ((k1, k2), u, y), (1, k1, u, v),
(3, k1, w, x), and (4, k2, x, y), and (b) u (x, resp.) is the unique pebbled leaf of Li(k2, v) (Li(k2, w), resp.),
and (c) Li(k2, v) is complete (cf. Fig. 15 (left));

(ii) if the arguments to the call are (k1, k2, x, y, 4), then: (a) there exist four queries ((k1, k2), u, y), (1, k1, u, v),
(2, k2, v, w), and (3, k1, w, x), and (b) w (v, resp.) is the unique pebbled leaf of Li(k2, x) (Li(k2, y), resp.),
and (c) Li(k2, y) is complete (cf. Fig. 15 (right)).

Recall from the previous subsubsection that the notation Tk2,z refers to the snapshot of the live tree Li(k2, z)
standing at the point right before the call in question is made. Then, the following lemmata analyze each layer-2
ProcessTree procedure. In each case, the “interesting” influence on the sets is presented, and it is proved
that G2 never aborts due to adaptations. The first one deals with safe calls to ProcessB3SubTree.

Lemma 7. The following hold for a safe call to ProcessB3SubTree:

(a) All the calls to layer-2 ProcessTree procedures made in this call are safe, and G2 never aborts due to
calls to Adapt in this call;

(b) |KSet1|, |KSet2|, and |E3| stay constant after this call.

Proof. We first analyze the flow of ProcessB3SubTree. For clearness, we divide the flow into two steps:
first is a chain-completion phase, then is a call to RecurseNew. Depending on the arguments, there are two
possibilities:

14 Note that this implicitly requires: (i) (3, k1, w, x) pre-exists; (ii) w is non-pebbled in B(k2). Similarly for those below.
15 Formally speaking, either y /∈ CTable[(k1, k2)]

−1 (Fig. 13 (right-upper)), or CTable[(k1, k2)]
−1(y) /∈ E1[k1] (Fig. 13

(right-lower)).
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Fig. 13. (Left) a safe call to ProcessB3SubTree(k1, k2, w, x, right); (Right) a safe call to Pro-
cessB3SubTree(k1, k2, w, x, left). The two structures in the right half identify the two possibilities. The blue
circles identify the pebbled leaves; the same for the other two figures for safe layer-2 ProcessTree calls.
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Fig. 14. (Left) a safe call to ProcessCBSubTree(k1, k2, y, v, left); (Right) a safe call to ProcessCBSub-
Tree(k1, k2, y, v, right).
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Fig. 15. (Left) a safe call to ProcessDualTree(k1, k2, v, w, 2); (Right) a safe call to ProcessDualTree(k1, k2, x, y, 4).
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Case 1: the call is ProcessB3SubTree(k1, k2, w, x, left). Let y := E4[k2](x). Then the chain-completion

phase consists of three steps: (1) queries C̃; (2) calls E1; (3) calls Adapt—for ease of reference, this call will
be called level 1 Adapt-call in this proof. We argue that a new 1-query (1, k1, u, v,→) must be created during
step (2). To this end, recall the definition of safe ProcessB3SubTree-calls: either y /∈ CTable[(k1, k2)]

−1 or
u /∈ E1[k1] (for u = CTable[(k1, k2)]

−1(y)) before the call. In the latter case, G2 clearly creates a new 1-query

(1, k1, u, v,→); in the former case, G2 first creates a new C-query ((k1, k2), u, y,←) via C̃, then creates a 1-query
(1, k1, u, v,→). If abort does not occur, then this 1-query is indeed new because otherwise its adjacency to the
newer query ((k1, k2), u, y,←) would contradict Inv4. By the above, after step (1) and (2), if abort does not
occur, then it holds v /∈ E2[k2] by Inv1, and the following holds by Inv2:

∀k′1 ∈ {0, 1}κ \ {k1}, v /∈ E1[k
′
1]

−1. (1)

Moreover, as the ProcessB3SubTree-call is assumed safe, w is non-pebbled, i.e. w /∈ E2[k2]
−1. Hence the

“level 1” Adapt-call (step (3)) does not cause abort, and creates a new adapted 2-query (2, k2, v, w,⊥).
G2 then calls RecurseNew2(k1, k2, v, w), which would iterate for all k′1 ∈ KSet1 \ {k1} and make a series

of calls to layer-2 ProcessTree procedures. However, note that for each such k′1, only if v ∈ E1[k
′
1]

−1 could
ProcessCBSubTree and ProcessDualTree be called. By this and (1), RecurseNew2 only calls Pro-
cessB3SubTree. We argue that these ProcessB3SubTree-calls are all safe. For this, let x1, . . . , xl be the non-
pebbled children of w in Tk2,w,

16 and let the associated 3-queries be (3, k11, w, x1), . . . , (3, k
l
1, w, xl). Note that it

must be k1 ̸= k11 ̸= . . . ̸= kl1. Then for any xi among the l children, SubT (Tk2,w, xi) has no pebbled node: because
x is the unique pebbled leaf in Tk2,w, and because the chain-completion phase only pebbles w. By this and the def-
inition, right before the forall loop, Li(k2, xi) consists of SubT (Tk2,w, xi) and the pebbled node w, and has only
one pebbled leaf. We then show that the state is kept till the call to ProcessB3SubTree(ki1, k2, w, xi, right).
Note that for any xj such that the call ProcessB3SubTree(kj1, k2, w, xj , right) precedes the call Pro-
cessB3SubTree(ki1, k2, w, xi, right) it holds SubT (Tk2,w, xi) ∩ SubT (Tk2,w, xj) = ∅. Hence the processing of
Li(k2, xj) does not affect Li(k2, xi). On the other hand, v /∈ E1[k

i
1]

−1 follows from (1) and k1 ̸= k11 ̸= . . . ̸= kl1,
so that the call ProcessB3SubTree(ki1, k2, w, xi, right) is safe (if it is indeed made, say, G2 does not abort
until it makes this call). Thus all the l ProcessB3SubTree-calls are safe (the l calls corresponding to
(k11, k2, w, x1), . . . , (k

l
1, k2, w, xl) will also be called level 1 ProcessB3SubTree-calls in this proof). These

complete the analysis of Case 1.

Case 2: the call is ProcessB3SubTree(k1, k2, w, x, right). Let v := E2[k2]
−1(w). Then the chain-completion

phase has three steps (if abort does not occur):

(1) calls E1−1, which creates a new 1-query (1, k1, u, v,←) (this query will be new because the ProcessB3Sub-
Tree-call is assumed safe, cf. definition 2);

(2) queries C̃, which creates a new C-query ((k1, k2), u, y,→). This query will be new because otherwise its
adjacency to the newer query ((k1, k2), u, y,→) would contradict Inv4. Moreover, after this query is created,
y /∈ E4[k2]

−1 follows from Inv4, and the following holds due to Inv3:

∀k′1 ∈ {0, 1}κ \ {k1}, y /∈ CTable[(k′1, k2)]
−1. (2)

(3) calls Adapt. As the ProcessB3SubTree-call is safe, x /∈ E4[k2], so that this Adapt-call creates an
adapted 4-query (4, k2, x, y,⊥) without abortion.

G2 then calls RecurseNew4(k1, k2, x, y), which only makes a series of calls to ProcessB3SubTree due
to (2) (similarly to Case 1). The argument for their safeness is also similar to Case 1. In particular, assuming x
adjacent to l 3-edges (3, ki1, wi, x) for i = 1, . . . , l besides (3, k1, w, x), then for each wi, x is the unique pebbled leaf
in Li(k2, wi) before the subsequent call to ProcessB3SubTree(ki1, k2, wi, x, left), and y /∈ CTable[(ki1, k2)]

−1

follows from (2) and k1 ̸= k11 ̸= . . . ̸= kl1. These complete the analysis of Case 2.

We then consider the statements. By the analysis above, if a ProcessB3SubTree-call is safe, then we have:

(i) the level 1 Adapt-call will not cause G2 abort, and all the level 1 ProcessB3SubTree-calls are safe. By
this, (a) can be deduced by induction;

16 The requirement “non-pebbled” excludes the node x.
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(ii) the three variables |KSet1|, |KSet2|, and |E3| stay constant till the subsequent level 1 ProcessB3SubTree-
calls (i.e. the three variables stay constant in the chain-completion phase). As all the subsequent ProcessB3-
SubTree-calls are safe by (a), (b) is established. ⊓⊔

The next lemma deals with safe calls to ProcessCBSubTree.

Lemma 8. The following hold for a safe call to ProcessCBSubTree(k1, k2, y, v, left) (or ProcessCBSub-
Tree(k1, k2, y, v, right), resp.):

(a) All the calls to layer-2 ProcessTree procedures made in this call are safe, and G2 never aborts due to
calls to Adapt in this call;

(b) If this call returns without abortion, then after this call, |KSet1| and |KSet2| stay constant, while |E3|
increases by |Tk2,y| (|Tk2,v|, resp.). Moreover, each edge in Tk2,y (Tk2,v, resp.) is a part of a completed path.

Proof. Following the same line as Lemma 7, we analyze the flow first—which also consists of a chain-completion
phase and a RecurseNew-call. Two possibilities are distinguished depending on the arguments:

Case 1: the call is ProcessCBSubTree(k1, k2, y, v, left). Let u := E1[k1]
−1(v) and w := E2[k2](v). The

chain-completion phase has two steps:

(1) calls E3, which creates a new 3-query (3, k1, w, x,→) (as w /∈ E3[k1] due to the safe-ProcessCBSubTree-
call assumption) and enlarges |E3| by 1. After this query is created, if abort does not occur, then x /∈ E4[k2]
due to Inv1, and the following holds due to Inv2:

∀k′1 ∈ {0, 1}κ \ {k1}, x /∈ E3[k
′
1]

−1. (3)

(2) calls Adapt, which creates a new adapted 4-query (4, k2, x, y,⊥) without abortion (as the ProcessCB-
SubTree-call is safe, y /∈ E4[k2]

−1).

Clearly, if abort never occurs, then the edge (k1, y, v) is a part of a completed path after this phase.
G2 then calls RecurseNew4(k1, k2, x, y), which would only make calls to ProcessCBSubTree due to (3):

because ProcessB3SubTree and ProcessDualTree can only be called for k′1 ̸= k1 such that x ∈ E3[k
′
1]

−1.
Furthermore, these calls must be safe. To show this, let v1, . . . , vl be the non-pebbled children of y in Tk2,y,
and let the associated edges be (k11, y, v1), . . . , (k

l
1, y, vl) (note k1 ̸= k11 ̸= . . . ̸= kl1). Then for each vi, the

only pebbled leaf in Li(k2, vi) before the subsequent call ProcessCBSubTree(ki1, k2, y, vi, right) is y, and
x /∈ E3[k

i
1]

−1 follows from (3) and k1 ̸= k11 ̸= . . . ̸= kl1. Moreover, since Tk2,y is complete, Li(k2, vi) is also
complete. Hence all the l calls are safe. These complete the analysis of Case 1.

Case 2: the call is ProcessCBSubTree(k1, k2, y, v, right). Let x := E4[k2]
−1(y). The chain-completion phase

has two steps: First, calls E3−1 and creates a new 3-query (3, k1, w, x,←) (thus enlarging |E3| by 1), after which
w /∈ E2[k2]

−1 due to Inv1 and the following holds due to Inv2 (if abort does not occur):

∀k′1 ∈ {0, 1}κ \ {k1}, w /∈ E3[k
′
1]; (4)

Second, calls Adapt, which creates an adapted 2-query (2, k2, v, w,⊥) without abortion. Similarly to Case 1,
after the chain-completion phase is completed without abortion, the edge (k1, y, v) is a part of a completed
path.

G2 then calls RecurseNew2(k1, k2, v, w), which—similarly to Case 1—would only call ProcessCBSub-
Tree due to (4). To show the safeness of these calls, consider each kj1 such that v ∈ E1[k

j
1]

−1 (excluding k1). As

Tk2,v is complete, let uj := E1[k
j
1]

−1(v), then we have: (i) uj ∈ CTable[(kj1, k2)], so that yj = CTable[(kj1, k2)](uj)

is a child of v in Tk2,v, and the query to C̃ made in RecurseNew2 would not lead to creating new C-queries;
(ii) SubT (Tk2,v, yj) is complete. Since y is the unique pebbled node of Tk2,v and the chain-completion phase
only pebbles v, yj must be non-pebbled. Gathering these and (4) yields the safeness of the calls. These complete
the analysis of Case 2.

As to the statements, (a) is proved by an induction similar to Lemma 7 (a). We proceed to show (b).
Assuming a non-aborting execution of ProcessCBSubTree(k1, k2, v, y, left) and consider a ProcessCB-
SubTree-call made during this process—for example, the call ProcessCBSubTree(ki1, k2, y, vi, right) (cf.
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the analysis of Case 1). Note that the arguments of this call indeed uniquely characterize an edge in Tk2,y (i.e.
(ki1, y, vi)). Moreover, it can be seen (from the code/the tree traversal algorithm and the analysis above) that two
different ProcessCBSubTree-calls in this period cannot share the same arguments (k1, y, v). Hence there is a
bijection between the ProcessCBSubTree-calls in this period (including the “mother” call ProcessCBSub-
Tree(k1, k2, v, y, left)) and edges in Tk2,y. The analysis of the flow of a safe ProcessCBSubTree-call shows
that the edge characterized by its inputs is in a completed path after its chain-completion phase is completed.
The above show that after the call ProcessCBSubTree(k1, k2, v, y, left) returns, each edge in Tk2,y is a part of
a completed path. Moreover, |KSet1| and |KSet2| clearly stay constant, while each ProcessCBSubTree-call
enlarges |E3| by 1 during its chain-completion phase. As we have seen, there are |Tk2,y| ProcessCBSubTree-
calls in this period (including ProcessCBSubTree(k1, k2, v, y, left)). Hence |E3| increases by |Tk2,y|, and (b)
holds for ProcessCBSubTree(k1, k2, v, y, left). Similarly for ProcessCBSubTree(k1, k2, v, y, right). These
complete the proof. ⊓⊔

The last one deals with safe calls to ProcessDualTree.

Lemma 9. The following hold for a safe call to ProcessDualTree(k1, k2, v, w, 2) (ProcessDualTree(k1,
k2, x, y, 4), resp.):

(a) All the calls to layer-2 ProcessTree procedures made in this call are safe, and G2 never aborts due to
calls to Adapt in this call;

(b) If this call returns without abortion, then after this call, |KSet1| and |KSet2| stay constant, while |E3|
increases by at most |Tk2,v| (|Tk2,y|, resp.). Moreover, each edge in Tk2,y (Tk2,v, resp.) is a part of a completed
path.

Proof. There are two possibilities for the flow depending on the arguments:

Case 1: the call is ProcessDualTree(k1, k2, v, w, 2). Let x := E3[k1](w) and y := E4[k2](x). The chain-
completion phase only consists of a call to Adapt(2, k2, v, w), which creates a 2-query (2, k2, v, w,⊥) without
abortion (v /∈ E2[k2]∧w /∈ E2[k2]

−1 as the ProcessDualTree-call is safe). It’s clear that neither |KSeti| nor
|E3| is modified. Additionally, note that the arguments of this ProcessDualTree-call uniquely characterize
an edge in Tk2,v, say, the edge (k1, y, v); and after the adaptation, (k1, y, v) is a part of a completed path.

G2 then calls RecurseNew2(k1, k2, v, w). We proceed to argue that all the calls to layer-2 ProcessTree
procedures made in RecurseNew2 are safe. Right after (2, k2, v, w,⊥) is created, for any child xi of w in Tk2,w

(excluding x), xi is non-pebbled; for any kj1 such that v ∈ E1[k
j
1]

−1 (excluding k1), since Tk2,v is complete, the

node yj = CTable[(kj1, k2)](E1[k
j
1]

−1(v)) is a child of v in Tk2,v and must be non-pebbled (and the query to C̃
would not create new C-queries). By the above, for any call to layer-2 ProcessTree procedures made in the
subsequent forall loop, the requirement for safeness on the pebbling state is met right after (2, k2, v, w,⊥) is
created, and will keep holding as processing several disjoint subtrees does not affect each other.

On the other hand, the other requirements are directly ensured by the RecurseNew2-call. More clearly,
for any k′1,

– only when v /∈ E1[k
′
1]

−1 and w ∈ E3[k
′
1] will RecurseNew2 make a call to ProcessB3SubTree(k′1, k2, w,

E3[k
′
1](w), right), which is thereby safe;

– only when w /∈ E3[k
′
1] and v ∈ E1[k

′
1]

−1 (as Tk2,v is complete, this implies E1[k
′
1]

−1(v) ∈ CTable[(k′1, k2)]
and the completeness of Li(k2, y

′) for y′ := CTable[(k′1, k2)](E1[k
′
1]

−1(v))) will RecurseNew2 make a call
to ProcessCBSubTree(k′1, k2, y

′, v, left), which is thereby safe;
– only when w ∈ E3[k

′
1]∧v ∈ E1[k

′
1]

−1 will RecurseNew2make a call to ProcessDualTree(k′1, k2, x
′, y′, 4)

(let x′ := E3[k
′
1](w); and similarly to the previous case, let y′ := CTable[(k′1, k2)](E1[k

′
1]

−1(v))), which
is thereby safe. Similarly to the “mother” call ProcessDualTree(k1, k2, v, w, 2), this call also uniquely
characterize an edge (k′1, y

′, v′) in Tk2,v.

These show the safeness of the layer-2 ProcessTree-calls made in the current ProcessDualTree-call and
complete the analysis of Case 1.

Case 2: the call is ProcessDualTree(k1, k2, x, y, 4). The argument is altogether symmetrical to the ar-
gument in Case 1, and is thereby omitted. As a summary of the key points, the Adapt-call made in the
chain-completion phase does not cause abort due to the safeness assumption on the current ProcessDual-
Tree-call, while the safeness of the calls to layer-2 ProcessTree procedures made in the subsequent call
RecurseNew4(k1, k2, x, y) is ensured by the RecurseNew4-call itself.
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We then consider the statements. First, the analysis above shows that a safe ProcessDualTree-call makes
a non-aborting Adapt-call as well as a series of safe calls to layer-2 ProcessTree procedures. By this and
Lemmata 7 (a) and 8 (a), (a) is deduced through an induction.

As to (b), assuming a non-aborting execution of ProcessDualTree(k1, k2, v, w, 2), and consider the sub-
sequent calls to layer-2 ProcessTree procedures made in this period. As mentioned (cf. the analysis of Case
1), each subsequent call to ProcessDualTree uniquely characterize an edge in Tk2,v. Meanwhile, in the proof
of Lemma 8, we already argued that each subsequent ProcessCBSubTree-call also uniquely characterize an
edge in Tk2,v. Also, it can be seen from the code that two different calls among the set of all subsequent Pro-
cessCBSubTree- and ProcessDualTree-calls in this period cannot characterize the same edge in Tk2,v.
Hence there is a bijection between the ProcessCBSubTree- and ProcessDualTree-calls in this period
(including ProcessDualTree(k1, k2, v, w, 2) itself) and the edges in Tk2,v.

The analysis of the flow of a safe ProcessDualTree-call shows that the edge characterized by its arguments
is a part of a completed path after the subsequent Adapt-call. The subsequent ProcessCBSubTree-calls have
been proved safe, and the edges in the associated live tree are thereby in corresponding completed paths by
Lemma 8 (b) (if abort does not occur). By all the above, each edge in Tk2,v is a part of a completed path if the
call to ProcessDualTree(k1, k2, v, w, 2) returns without abortion. For ProcessDualTree(k1, k2, x, y, 4) the
argument is similar.

We finally prove the claims on the sets to complete the proof. The claim on |KSet1| and |KSet2| simply
follows from the analysis above and Lemmata 7 (b) and 8 (b). On the other hand, each subsequent Pro-
cessCBSubTree-call enlarges |E3| by 1 during its chain-completion phase, while none of the subsequent calls
to ProcessDualTree and ProcessB3SubTree “directly” enlarges |E3|. As we have seen, there are |Tk2,v|
calls to ProcessCBSubTree and ProcessCBSubTree in total in this period (including ProcessDual-
Tree(k1, k2, v, w, 2) itself). Hence |E3| increases by at most |Tk2,v|. ⊓⊔

Around Layer-1 ProcessTree Procedures. As planed, this paragraph analyzes layer-1 ProcessTree
procedures. Consider ProcessNonPebB3Tree and ProcessNonPebCBTree first. In such a call, a series
of calls to ProcessB3SubTree and ProcessCBSubTree are made. The next two lemmata analyze the
influence of such a bundle of layer-2 ProcessTree calls.

Lemma 10. For a call to ProcessNonPebB3Tree(k2, w
∗, left) (or ProcessNonPebB3Tree(k2, x

∗, right)),
if the tree Tk2,w∗ (Tk2,x∗ , resp.) has no pebbled leaf, then the following hold:

(a) G2 never aborts due to the subsequent calls to Adapt;
(b) |KSet2| increases by at most 1, while |KSet1| and |E3| stay constant.

Proof. By inspection of the code, it can be seen that an execution of ProcessNonPebB3Tree first cre-
ates a new 2- or 4-query (thus enlarging |KSet2| by at most 1) and then makes several safe calls to Pro-
cessB3SubTree. By this, the claims (a) and (b) immediately follow from Lemma 7.

To give a clearer analysis, let’s consider the two possibilities:

Case 1: the call is ProcessNonPebB3Tree(k2, w
∗, left). ProcessNonPebB3Tree starts by creating a new

2-query (2, k2, v
∗, w∗,←) via a call to RandomAssign(2,−, k2, w∗). If abort does not occur, then the following

claim holds by Inv1:
∀k1 ∈ {0, 1}κ, v∗ /∈ E1[k1]

−1. (5)

ProcessNonPebB3Tree then enters the forall loop. Assume that the children of w∗ in Tk2,w∗ are x1, . . . , xl

and the associated 3-edges are (3, ki1, w
∗, xi) for i = 1, . . . , l. Note k11 ̸= . . . ̸= kl1. Similarly to [2], throughout

the remaining, we assume the l children are ordered such that k11 < . . . < kl1, and assume that the loops of the
type “forall k ∈ KSetj” iterates from the smallest value of k ∈ KSetj to the largest one. Then, consider the
point when the forall loop iterates with k1 = ki1. At this point, the set of pebbled nodes in Tk2,w∗ include the
following ones:

– w∗, i.e. the parent of xi in Tk2,w∗ ;
– all the nodes in SubT (Tk2,w∗ , x1), . . . , SubT (Tk2,w∗ , xi−1).

Therefore xi is non-pebbled at this point and w∗ is the unique pebbled node in Li(k2, xi). Moreover, due to (5)
and k11 ̸= . . . ̸= kl1, it holds v∗ /∈ E1[k

i
1]

−1, and hence the call to ProcessB3SubTree(ki1, k2, w, xi, right) is
safe, and the following hold by Lemma 7 (a) and (b):
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– G2 will not abort due to the Adapt-calls made in ProcessB3SubTree(ki1, k2, w, xi, right);
– the call ProcessB3SubTree(ki1, k2, w, xi, right) will not enlarge the sets.

The above analysis indeed holds for i = 1, . . . , l; as a consequence, G2 never aborts due to Adapt-calls, and (a)
holds. Furthermore, by the above analysis, ProcessNonPebB3Tree does not enlarge |KSet1| nor |E3|. On
the other hand, the call RandomAssign(2,−, k2, w∗) at the beginning of ProcessNonPebB3Tree enlarges
|KSet2| by at most 1, while the subsequent process does not affect KSet2. These establish (b) and complete
the analysis of Case 1.

Case 2: the call is ProcessNonPebB3Tree(k2, x
∗, right). The case is symmetrical to Case 1. We recall the

key points: ProcessNonPebB3Tree starts by creating a new 4-query (4, k2, x
∗, y∗,→), and the following

holds by Inv4 (if abort does not occur):

∀k1 ∈ {0, 1}κ, y∗ /∈ CTable[(k1, k2)]
−1. (6)

Then, for each 3-edge (3, ki1, wi, x
∗), at the point when the subsequent forall loop iterates with k1 = ki1,

wi must be non-pebbled and x∗ is the unique pebbled node in Lik2,wi . And y∗ /∈ CTable[(ki1, k2)]
−1 due

to (6) and k11 ̸= . . . ̸= kl1, so that there does not exist an edge (ki1, y
∗, ·) in CB(k2) and the call Pro-

cessB3SubTree(ki1, k2, wi, x
∗, left) is safe. Thus all the calls to ProcessB3SubTree in ProcessNon-

PebB3Tree(k2, x
∗, right) are safe and the claims hold by Lemma 7 and an analysis similar to Case 1. ⊓⊔

Lemma 11. For a call to ProcessNonPebCBTree(k2, y
∗, left) (or ProcessNonPebCBTree(k2, v

∗, right)),
if the tree Tk2,y∗ (Tk2,v∗ , resp.) is complete and has no pebbled leaf, then the following hold:

(a) G2 never aborts due to the subsequent calls to Adapt;
(b) If this call returns without abortion, then |KSet1| stays constant, |KSet2| increases by at most 1, and |E3|

increases by |Tk2,y∗ | (|Tk2,v∗ |, resp.); and each edge in |Tk2,y∗ | (|Tk2,v∗ |, resp.) is a part of a completed path
after this call returns.

Proof. The analysis is very similar to Lemma 10: ProcessNonPebCBTree first creates a new 2- or 4-query
(which enlarges |KSet2| by at most 1) and then makes several safe calls to ProcessCBSubTree, and the non-
abortion claim and the claims on |KSet1| and |KSet2| follow from Lemma 8. As to |E3|, note that by Lemma
8 (b), the increment of |E3| due to each ProcessCBSubTree-call equals the size of the subtree processed by
it. Hence the total increment equals the summation of the size of each subtree, which equals |Tk2,y|.

For clearness, we recall the key observations in each possibility.

Case 1: the call is ProcessNonPebCBTree(k2, y
∗, left). ProcessNonPebCBTree starts by creating a

new 4-query (4, k2, x
∗, y∗,←). If abort does not occur, then the following holds by Inv1:

∀k1 ∈ {0, 1}κ, x∗ /∈ E3[k1]
−1. (7)

Then, for each edge (ki1, y
∗, vi), at the point when the forall loop in ProcessNonPebCBTree iterates with

k1 = ki1, vi must be non-pebbled because the set of pebbled nodes in Tk2,y∗ is {y∗}∪
∪i−1

j=1{nodes in SubT (Tk2,y∗ , vj)}.
Furthermore, x∗ /∈ E3[k

i
1]

−1 due to (7) and k11 ̸= . . . ̸= kl1, and hence the call to ProcessCBSubTree(ki1, k2, y
∗,

vi, right) is safe. The analysis is applicable to all edges (ki1, y
∗, vi) adjacent to y∗, hence all calls to ProcessCB-

SubTree in ProcessNonPebCBTree(k2, y
∗, left) are safe, and the claims on non-abortion (due to Adapt)

and |KSet1| and |KSet2| follow from Lemma 8 and an analysis similar to Lemma 10. Finally, by Lemma 8, each
call to ProcessCBSubTree(ki1, k2, y

∗, vi, right) enlarges |E3| by |SubT (Tk2,y∗ , vi)| + 1, and the increment is
|Tk2,y∗ | in total.

Case 2: the call is ProcessNonPebCBTree(k2, v
∗, right). ProcessNonPebCBTree starts by creating a

new 2-query (2, k2, v
∗, w∗,→), after which the following holds by Inv1 (if abort does not occur):

∀k1 ∈ {0, 1}κ, w∗ /∈ E3[k1]. (8)

Then, for each ki1 such that v∗ ∈ E1[k
i
1]

−1, since Tk2,v∗ is complete, the node yi = CTable[(ki1, k2)](E1[k
i
1]

−1(v∗))
is a child of v∗ in Tk2,v∗ . Moreover, yi must be non-pebbled, and w∗ /∈ E3[k

i
1] due to (8) and k11 ̸= . . . ̸= kl1.

Hence the call to ProcessCBSubTree(ki1, k2, yi, v
∗, left) is safe, and the claims can be established similarly

to Case 1. These complete the proof. ⊓⊔
An execution of ProcessPebB3Tree or ProcessPebCBTree mostly consists of a single call to layer-2

ProcessTree procedures, and is thus relatively simpler. We thereby analyze them in the subsequent lemmata
instead of giving separate analysis in this paragraph.
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Around New 2- and 4-queries. Based on the lemmata above, we now analyze the influences of new 2- and
4-queries. In each case, the increments of |KSeti| and |E3| are presented, and it is proved that the absence of
early-abortion implies non-abortion.

Lemma 12. During G2 processing a query E2−1 or E4, the following hold:

(a) |KSet1| stays constant, |KSet2| increases by at most 1, while |E3| increases by at most |TCB | · |KSet1|
where TCB is the involved live tree in CB(k2).

17

(b) If early-abortion does not occur, then G2 does not abort.

(c) If abort does not occur, then each C-query newly created in this period is a part of a completed path after
the process.

Proof. By inspection of the code, it can be seen that the processes around E2−1 and E4 are almost the same.
We thereby take a deep look into E2−1, and only sketch E4.

By construction, upon a query E2−1(k2, w
∗), if w∗ ∈ E2[k2]

−1, then G2 answers with E2[k2]
−1(w∗); if

w∗ /∈ E2[k2]
−1 ∧ w∗ /∈ LS3, G2 draws the random answer from E. In these cases the statements clearly hold.

We thereby focus on the remaining (more complex) cases. If G2 finds w∗ /∈ E2[k2]
−1 and w∗ ∈ LS3, then it

calls FindPebLeafB3. By Lemma 5, Tk2,w∗ has at most 1 pebbled leaf. Moreover, till now Li(k2, w
∗) receives

no modification, so that when FindPebLeafB3 is called, Li(k2, w
∗) still equals Tk2,w∗ and has at most 1

pebbled leaf. By this, G2 would not abort due to |OriginSet| > 1.

We consider the flow in case of |OriginSet| = 0 first, which is simpler. It necessarily be that Li(k2, w
∗) has

no pebbled leaf before the earlier call to FindPebLeafB3; as FindPebLeafB3 does not modify Li(k2, w
∗),

Li(k2, w
∗) has no pebbled leaf after FindPebLeafB3 returns. By construction, a call to ProcessNon-

PebB3Tree(k2, w
∗, left) is then made, and (a) immediately follows from Lemma 10 (b). As to (b), first note

that by Lemma 10 (a) and the analysis above, G2 never aborts due to the conditions other than the early-abort
ones (say, G2 does not abort due to |OriginSet| > 1 nor adaptations). As we assume early-abortion absent,
G2 does not abort and (b) holds. Finally, it can be seen from the analysis in Lemma 10 that T only queries

C̃ during the chain-completion phase of the subsequent ProcessB3SubTree-calls, so that each newly-created
C-query is a part of a completed path right after the corresponding Adapt-call. This claim keeps holding till
the end of the current simulator cycle as nothing is overwritten, hence (c) holds—and all the claims hold in case
of |OriginSet| = 0.

We then consider the case(s) of |OriginSet| = 1. In these cases, a call to ProcessPebB3Tree is made.
Depending on the arguments to ProcessPebB3Tree and the concrete flow of ProcessPebB3Tree (depend-
ing on concrete conditions, ProcessPebB3Tree may call ProcessPebB3Tree or ProcessDualTree), the
discussions are divided into four cases, as follows:

Case 1: the call is ProcessPebB3Tree(k◦1 , k2, w
◦, x◦, left), and ProcessPebB3Tree subsequently calls

ProcessB3SubTree. Then by construction, right before the call ProcessB3SubTree(k◦1 , k2, w
◦, x◦, left)

is made, it holds:

(i) x◦ is pebbled;

(ii) w◦ is non-pebbled, and Li(k2, w
◦) has only one pebbled leaf (i.e. x◦; the reason is Li(k2, w

◦) = Tk2,w∗);

(iii) For y◦ := E4[k2](x
◦), there does not exist an edge (k◦1 , y

◦, v◦) in CB(k2) (as FindEdgeInCB(k◦1 , k2, y
◦)

returns ⊥).

Therefore, the call ProcessB3SubTree(k◦1 , k2, w
◦, x◦, left) is safe, and the statements can be established

similarly as before. More clearly, (i) (a) holds by Lemma 7 (b) and the safeness of the ProcessB3SubTree-
call; (ii) by Lemma 7 (a) and the analysis above, G2 never aborts due to the conditions other than the early-abort
ones. As early-abortion is absent, G2 does not abort and (b) holds; (iii) by the analysis in Lemma 7, T only

queries C̃ during the chain-completion phase of the calls to ProcessB3SubTree, hence (c) holds.

17 Formally speaking, the claim in (a) means: if ProcessDualTree(k1, k2, v, w, 2) is subsequently called, then |E3|
increases by at most |Tk2,v| · |KSet1|; if ProcessDualTree(k1, k2, x, y, 4) is called, then |E3| increases by at most
|Tk2,y| · |KSet1|; otherwise |E3| stays constant/increases by 0. We remark that the notations Tk2,v and Tk2,y refer to
the live trees before the query E2−1/E4.
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Case 2: the call is ProcessPebB3Tree(k◦1 , k2, w
◦, x◦, left), and ProcessPebB3Tree subsequently calls

ProcessDualTree. In this case, it necessarily be that ProcessPebB3Tree computes a value v◦ ̸= ⊥
(thus calling ProcessDualTree(k◦1 , k2, v

◦, w◦, 2) then). To establish the claims, we proceed to argue that this
ProcessDualTree-call is safe.

As the starting point, we argue that v◦ is non-pebbled before the forall loop in ProcessPebB3Tree.
Assuming otherwise, then as no query is newly created till the point before the forall loop, the follow-
ing four queries necessarily existed before the query E2−1(k2, w

∗): a 4-query (4, k2, x
◦, y◦, d4, n4), a C-query

((k◦1 , k2), u
◦, y◦, dC , nC), a 1-query (1, k◦1 , u

◦, v◦, d1, n1), and a 2-query (2, k2, v
◦, w◦, d2, n2). Then the four queries

had to be in the same completed path, contradicting the assumption that x◦ was non-pebbled:

– if nC > n1, then dC must be → by Inv4, and further n4 > nC by Inv4, so that the 4 queries are in the same
completed path by Lemma 3;

– if n1 > nC , then d1 =→ and n2 > n1 and the queries are in the same completed path by Lemma 3.

Therefore, y◦ is a pebbled leaf of the tree Tk2,v◦ (before the simulator cycle); as Tk2,v◦ has at most one pebbled
leaf (Lemma 5), y◦ is the unique pebbled node.

Then, depending on the flow of ProcessPebB3Tree, we’ve two subcases.

Subcase 2.1: FindPebLeafCB is not called. Then it necessarily be that v◦ /∈ E1[k
′
1]

−1 for any k′1 ∈ KSet1 \
{k◦1}, and Tk2,v◦ consists of only one edge (k◦1 , y

◦, v◦). It’s then an easy task to check that the subsequent call
ProcessDualTree(k◦1 , k2, v

◦, w◦, 2) is safe. By this, the three statements can be established by Lemma 9 and
by an argument similar to that in Case 1.

Subcase 2.2: FindPebLeafCB is called. Note that y◦ is the unique pebbled node in Tk2,v◦ . Moreover, the
call FindPebLeafCB(k2, v

◦, right) would not cause G2 abort, as it can only cause early-abortion, which
is assumed absent. Let TXk2,v◦ be the snapshot of the live tree Li(k2, v

◦) standing right after FindPe-
bLeafCB(k2, v

◦, right) returns. Then the following hold by Lemma 6:

(i) y◦ remains the unique pebbled node in TXk2,v◦ (Lemma 6 (a));
(ii) TXk2,v◦ is complete (Lemma 6 (b));
(iii) |TXk2,v◦ | ≤ |Tk2,v◦ | · |KSet1| (Lemma 6 (c). Note that here |Tk2,v◦ | ≥ 1.);
(iv) Each C-query created in FindPebLeafCB is a part of an edge in TXk2,v◦ (Lemma 6 (a));

As a consequence, the call ProcessDualTree(k◦1 , k2, v
◦, w◦, 2) is safe, and the statements are proved as follows:

(i) (a) follows from Lemma 9 (b) and |TXk2,v◦ | ≤ |Tk2,v◦ | · |KSet1|;
(ii) (b) holds by Lemma 9 (a) and the analysis above;
(iii) Note that in this case, new C-queries may be created during the chain-completion phase of layer-2 Pro-

cessTree-calls or during the call to FindPebLeafCB. We already argued (in the previous cases) that the
former type of new C-queries are in completed paths. On the other hand, the latter type of new C-queries
are in the edges of TXk2,v◦ (cf. the remark (iv) above); by Lemma 9 (b), each edge of TXk2,v◦ will be in
a complected path. By this, each C-query newly created in FindPebLeafCB is also in a completed path
after the simulator cycle, and (c) is established.

These complete the analysis of Case 2.

Case 3: the call is ProcessPebB3Tree(k◦1 , k2, w
◦, x◦, right), and ProcessPebB3Tree subsequently calls

ProcessB3SubTree. This case is very similar to Case 1: right before the call ProcessB3SubTree(k◦1 , k2, w
◦,

x◦, right) is made, it holds:

(i) w◦ is pebbled;
(ii) x◦ is non-pebbled, and Li(k2, x

◦) has only one pebbled leaf, i.e. w◦;
(iii) For v◦ := E2[k2]

−1(w◦), it holds v◦ /∈ E1[k
◦
1 ]

−1.

Therefore, the call ProcessB3SubTree(k◦1 , k2, w
◦, x◦, right) is safe, and the statements are established by an

argument similar to Case 1.

Case 4: the call is ProcessPebB3Tree(k◦1 , k2, w
◦, x◦, right), and ProcessPebB3Tree subsequently calls

ProcessDualTree. In this case, it necessarily be v◦ ∈ E1[k
◦
1 ]

−1. Let u◦ := E1[k
◦
1 ]

−1(v◦). Then depending on
the state of the history, the discussions are divided into three subcases.
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Subcase 4.1: u◦ /∈ CTable[(k◦1 , k2)] before the cycle. In this case, ProcessPebB3Tree creates a new C-

query ((k◦1 , k2), u
◦, y◦,→) via querying C̃. Right after this point, if early-abortion does not occur, then it holds

y◦ /∈ E4[k2]
−1/y◦ is non-pebbled (by Inv4; we thereby let T ∗

k2,y◦ = Li(k2, y
◦) at this point) and (by Inv3)

∀k′1 ∈ {0, 1}κ \ {k◦1}, y◦ /∈ CTable[(k′1, k2)]
−1, (9)

By (9), FindEdgeInCB returns ⊥ for any k′1 ∈ KSet1 \ {k◦1}, and FindPebLeafCB is never called. Con-
sequently, T ∗

k2,y◦ consists of only one edge (k◦1 , y
◦, v◦) (with v◦ being pebbled), and the call ProcessDual-

Tree(k◦1 , k2, v
◦, w◦, 2) is safe. The statements are then proved as follows:

(i) The claims on |KSet1| and |KSet2| follow from Lemma 9 (b). As to the claim on |E3|, note that by (9)
and the fact that the edge (k◦1 , y

◦, v◦) is newly added to CB(k2), the live tree Li(k2, y
◦) standing before

this simulator cycle indeed has NO edge—i.e. |Tk2,y◦ | = 0. On the other hand, by (9) and by inspection of
the code of ProcessDualTree , it can be seen that the call ProcessDualTree(k◦1 , k2, v

◦, w◦, 2) only
makes safe calls to ProcessB3Tree during the recursively-calling phase. By Lemma 7 (b), these calls do
not enlarge |E3|; hence |E3| does not increase in this subcase, which meets |Tk2,y◦ | = 0 and establishes (a).

(ii) (b) holds by Lemma 9 (a) and the analysis above;
(iii) In this case, besides the new queries created during the chain-completion phase of subsequent layer-2 Pro-

cessTree-calls, the ProcessPebB3Tree-call itself creates a new C-query (i.e. ((k◦1 , k2), u
◦, y◦,→)). Sim-

ilarly to subcase 2.2, the former type of new C-queries are in completed paths, while the C-query created
by ProcessPebB3Tree is in the edge of T ∗

k2,y◦ , which will be in a complected path by Lemma 9 (b). By
this, (c) is established.

Subcase 4.2: u◦ ∈ CTable[(k◦1 , k2)] before the cycle, and FindPebLeafCB is not called. Then it necessarily be
that FindEdgeInCB returns ⊥ for any k′1 ∈ KSet1 \{k◦1} (otherwise FindPebLeafCB would be called). Sim-
ilarly to Case 2, y◦ = CTable[(k◦1 , k2)](u

◦) must be non-pebbled before the query E2−1(k2, w
∗): otherwise either

the 1-query (1, k◦1 , u
◦, v◦) or the 4-query which pebbles y◦ has an associated num value larger than the num

value of the edge (k◦1 , y
◦, v◦) (due to Inv4), and the four queries are in the same completed path (by Lemma

3) and x◦ would have been pebbled. By this, right before ProcessDualTree is called, the tree Li(k2, y
◦)

consists of only one edge (k◦1 , y
◦, v◦) (with v◦ being pebbled). It’s then clearly that the call ProcessDual-

Tree(k◦1 , k2, v
◦, w◦, 2) is safe, and the statements can be established similarly to subcase 2.2 (except that in

this subcase, there’s no new C-query due to FindPebLeafCB).
Indeed, the mere difference between subcase 4.2 and subcase 4.1 is that ProcessPebB3Tree does not

create new C-queries in subcase 4.2.

Subcase 4.3: FindPebLeafCB is called. This case is very similar to subcase 2.2. First, y◦ must be non-pebbled
before the current cycle, otherwise x◦ would have been pebbled (this argument is similar to subcase 4.2). By this,
v◦ is the unique pebbled node in Tk2,y◦ . Let TXk2,y◦ be the snapshot of the live tree Li(k2, y

◦) standing right
after FindPebLeafCB(k2, y

◦, left) returns (this call indeed returns without abortion because early-abortion
is assumed absent). Then by Lemma 6 (a), v◦ remains the only pebbled node in TXk2,y◦ ; and by Lemma 6 (b),
TXk2,y◦ is complete. As a consequence, the call ProcessDualTree(k◦1 , k2, x

◦, y◦, 4) is safe, and the statements
can be established similarly to subcase 2.2. These complete the analysis of the simulator cycles due to E2−1.

We then sketch the analysis of a cycle due to E4(k2, x
∗). If Tk2,x∗ has no pebbled leaf, then the analysis is

similar to the case of E2−1(k2, v
∗) where Tk2,v∗ has no pebbled leaf. If Tk2,x∗ has pebbled leaves, then it has

only one pebbled leaf by Lemma 5, and the subsequent cases are the same as those captured by Case 1-4 above.
These complete the proof. ⊓⊔

We view the claim on |E3| as crucial. Since the proof of Lemma 12 is a bit long, in order to make it clearer,
we illustrate the ideas around |E3| in Fig. 16.

Lemma 13. During G2 processing a query E4−1(k2, y
∗), the following hold:

(a) |KSet1| stays constant, |KSet2| increases by at most 1, while |E3| increases by at most |Tk2,y∗ | · |KSet1|.
(b) If early-abortion does not occur, then G2 does not abort.
(c) If abort does not occur, then each C-query newly created in this period is a part of a completed path after

the process.
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Fig. 16. For Lemma 12. If the query only involve an isolate tree in B3, then |E3| stays constant, as argued in Lemmata
7 and 10. Thus if |E3| increases, the involved structure has to be a dual-tree. The left and right parts of this figure show
the two different cases of dual-tree. In each case, the lime lines indicate the “single-query-missing” path. In Process-
DualTree, G2 (first) completing this path would not enlarge |E3|. The increments to |E3| are brought in by the red
lines, i.e. the involved tree in CB(k2). In this tree, the dashed red lines indicate the 1-queries that are not already in
edges before the cycle, i.e. 1-queries of the form (1, k1, u, v) with u /∈ ETable[(k1, k2)]. For each involved right-shore node
in CB(k2) (emphasized by red pentagrams), there are at most |KSet1| such 1-queries (because for l distinct 1-queries
of the form (1, ki

1, u
i, v) the associated ki

1 must be l distinct ones). It’s purely geometrical to see that in each case, the
number of right-shore nodes (i.e. red pentagrams) cannot exceed the number of involved edges (i.e. all the red lines and
the lime line) in CB(k2). Therefore, |E3| increases by at most |TCB | · |KSet1|.

Proof. Similarly to Lemma 12, we focus on a new query E4−1(k2, y
∗). If Tk2,y∗ = {y∗}, then for no k1 does

FindEdgeInCB return true, so that the call Exists14Tripwire(k2, y
∗) (at the beginning of E4−1) returns

false, and G2 simply calls RandomAssign to answer. In this case the statements clearly hold.
We then consider the remaining cases. If G2 finds y∗ /∈ E4[k2]

−1 and a pre-existing edge (k1, y
∗, v∗) in

CB(k2) (via Exists14Tripwire), then it calls FindPebLeafCB(k2, y
∗, left). At this point, Li(k2, y

∗) still
equals Tk2,y∗ , so that it has at most 1 pebbled leaf by Lemma 5. Let TXk2,y∗ be the snapshot of Li(k2, y

∗)
standing right after FindPebLeafCB(k2, y

∗, left) returns (which would not cause abort due to the absence of
early-abortion), then by Lemma 6, we have the following remarks (similarly to those mentioned in subcase 2.2 of
Lemma 12): (1) the pebbling state of TXk2,y∗ is exactly the same as that of Tk2,y∗ ; (2) TXk2,y∗ is complete; (3)
|TXk2,y∗ | ≤ |Tk2,y∗ | · |KSet1|; (4) Each C-query created in FindPebLeafCB is a part of an edge in TXk2,y∗ .
By remark (1), TXk2,y∗ has at most 1 pebbled leaf, and hence G2 will not abort due to |OriginSet| > 1.

We consider the case of |OriginSet| = 0 first. It necessarily be that Li(k2, y
∗) has no pebbled leaf before

the call to FindPebLeafCB; gathering this and remark (2) (mentioned before) establishes the safeness of the
subsequent call to ProcessNonPebCBTree(k2, y

∗, left). Then (a) and (b) follow from Lemma 11 and the
analysis and remark (3). The argument for (c) is similar to subcase 2.2 of Lemma 12: the new C-queries due
to FindPebLeafCB will be in the edges of TXk2,y∗ which will further be in completed paths, while those
due to layer-2 ProcessTree-calls will clearly be in completed paths. Hence the claims hold for the case of
|OriginSet| = 0.

We then consider the cases of |OriginSet| = 1. In these cases, a call to ProcessPebCBTree is made, and
the discussions are divided into four cases depending on the concrete flow:

Case 1: the call is ProcessPebCBTree(k◦1 , k2, y
◦, v◦, left), and ProcessPebCBTree subsequently calls

ProcessCBSubTree. Then by construction, right before the call ProcessCBSubTree(k◦1 , k2, y
◦, v◦, left)

is made, it holds:

(i) v◦ is pebbled;
(ii) y◦ is non-pebbled; Li(k2, y

◦) is complete and has only one pebbled leaf (since Li(k2, y
◦) = TXk2,y∗);

(iii) For w◦ := E2[k2](v
◦), it holds w◦ /∈ E3[k

◦
1 ].

Therefore, the call ProcessCBSubTree(k◦1 , k2, y
◦, v◦, left) is safe, and the statements can be shown by Lemma

8 and an argument similar to the case of |OriginSet| = 0.

Case 2: the call is ProcessPebCBTree(k◦1 , k2, y
◦, v◦, left), and ProcessPebB3Tree subsequently calls

ProcessDualTree. In this case, it necessarily be w◦ ∈ E3[k
◦
1 ] (w◦ = E2[k2](v

◦)) and ProcessDual-
Tree(k◦1 , k2, x

◦, y◦, 4) is then called (x◦ = E3[k
◦
1 ](w

◦)). In order to utilize Lemma 9, we show the safeness
of this ProcessDualTree-call. Similarly to Case 2 in Lemma 12, we first argue that x◦ is non-pebbled before
the ProcessDualTree-call. Assume otherwise, then before the current simulator cycle, there already existed
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a 2-query (2, k2, v
◦, w◦, d2, n2), a 3-query (3, k◦1 , w

◦, x◦, d3, n3), and a 4-query (4, k2, x
◦, y◦, d4, n4) (these queries

indeed existed before the cycle because they cannot be created by FindPebLeafCB). Then as d3 ∈ {←,→}
(Inv0), either n4 > n3 or n2 > n3 due to Inv1, and the three queries had to be in the same completed path due
to Inv5, contradicting the assumption that y◦ was non-pebbled.

Therefore, w◦ is a pebbled leaf of the tree Tk2,x◦ (before the current simulator cycle); as Tk2,x◦ has at most
one pebbled leaf (Lemma 5), w◦ is the unique pebbled node. By this and the remarks above ((1) and (2)), the
subsequent ProcessDualTree-call is safe. The statements thereby follow from Lemma 9 and an argument
similar to the case of |OriginSet| = 0.

Case 3: the call is ProcessPebCBTree(k◦1 , k2, y
◦, v◦, right), and ProcessPebCBTree subsequently calls

ProcessCBSubTree. Symmetrically to Case 1, right before the callProcessPebCBTree(k◦1 , k2, y
◦, v◦, right)

is made, it holds:

(i) y◦ is pebbled;
(ii) v◦ is non-pebbled; Li(k2, v

◦) is complete and has only one pebbled leaf;
(iii) For x◦ := E4[k2]

−1(y◦), it holds x◦ /∈ E3[k
◦
1 ]

−1.

The subsequent call ProcessCBSubTree(k◦1 , k2, y
◦, v◦, right) is thereby safe, and the proof of the statements

is similar to Case 1 by symmetry.

Case 4: the call is ProcessPebCBTree(k◦1 , k2, y
◦, v◦, right), and ProcessPebCBTree subsequently calls

ProcessDualTree. In this case, it must be x◦ ∈ E3[k
◦
1 ]

−1 (x◦ = E4[k2]
−1(y◦)). Let w◦ := E3[k

◦
1 ]

−1(x◦). By
an argument similar to Case 2, w◦ must be non-pebbled, and x◦ is the unique pebbled node in Tk2,w◦ . Hence
the subsequent ProcessDualTree-call is safe and the proof of the statements follows the same line as Case
2. These complete the proof. ⊓⊔

Lemma 14. During G2 processing a query E2(k2, v
∗), the following hold:

(a) |KSet1| stays constant, |KSet2| increases by at most 1, while |E3| increases by at most Max{|Tk2,v∗ |, 1} ·
|KSet1|.

(b) If early-abortion does not occur, then G2 does not abort.
(c) If abort does not occur, then each C-query newly created in this period is a part of a completed path after

the process.

Proof. If the query is new while v∗ /∈ LS1 then G2 simply calls RandomAssign to answer and the statements
clearly hold. Otherwise, by construction, there is to be a call to FindPebLeafCB(k2, v

∗). Let TXk2,v∗ be the
snapshot of Li(k2, v

∗) standing right after FindPebLeafCB returns. Then by Lemma 6: (1) the pebbled nodes
of Tk2,v∗ are also the pebbled nodes of TXk2,v∗ ; (2) TXk2,v∗ is complete; (3) |TXk2,v∗ | ≤ Max{|Tk2,v∗ |, 1} ·
|KSet1|; (4) Each C-query created in FindPebLeafCB is a part of an edge in TXk2,v∗—indeed, observation
(3) is the mere difference between the cycles due to E2(k2, v

∗) and the cycles due to E4−1(k2, y
∗) (cf. Lemma

13). The analysis follows the same line as Lemma 13 and has no novelty except for replacing |Tk2,y∗ | · |KSet1|
(as in Lemma 13 (a)) by Max{|Tk2,v∗ |, 1} · |KSet1|. ⊓⊔

We similarly illustrate the ideas around |E3| in Fig. 17.

Bounding the Complexity. With the analysis in the previous subsubsection, we now bound the complexity
of T in G2. They are captured by a series of lemmata as follows. The first lemma presents the core idea: the
C-queries made by T do not “essentially” enlarge the size of any live tree in CB(k2) for any k2.

Lemma 15. At the end of each simulator cycle, as long as G2 does not abort, it holds:

(a) Each C-query made by T (till that point) is a part of a completed path, and has an associated 4-tuple
(k1, k2, x, 4) in Completed.

(b)
∑

k2∈{0,1}κ |CB(k2)| ≤ q, where |CB(k2)| is the total number of edges in live trees in CB(k2).

Proof. Consider (a) first. We note that during the simulator cycles due to D issuing a 1- or 3-query, T does
not make any C-queries; whereas during the cycles due to D issuing a 2- or 4-query, the claims are ensured
by Lemmata 12-14. On the other hand, the existence of the 4-tuple could be verified by revisiting the proof of
Lemmata 12-14.
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Fig. 17. For Lemmata 13 and 14. These queries themselves are already “anchored” at trees in CB(k2), thus they can
“directly” bring increments to |E3| (i.e. not necessarily via dual-trees). (Left) the case of D querying E4−1. Clearly, the
number of right-shore nodes/red pentagrams cannot exceed the number of involved edges/red lines in CB(k2), and thus
|E3| increases by at most |TCB | · |KSet1|. (Right) the case of D querying E2. The upper structure depicts the extreme
case of |TCB | = 0, while the lower structure depicts the general case. In the general case, the number of right-shore nodes
cannot exceed the number of edges either. Whereas in extreme case, the number of right-shore nodes equals that of edges
plus 1. Therefore, generally speaking, |E3| increases by at most Max{|Tk2,v∗ |, 1} · |KSet1|.

(b) is indeed a corollary of (a). We note that for any k2, each C-query in CQueries gives rise to at most one
edge in CB(k2). The associated C-queries of two edges in CB(k2) and CB(k′2) (k2 ̸= k′2) cannot be the same,
as the associated k2 values deviate. Furthermore, note that an edge in a live tree has at least one non-pebbled
endpoint, so that its associated C-query cannot have been created by T (as otherwise the query is in a completed
path and the two endpoints of the edge are both pebbled). As D creates at most q C-queries, (b) holds. ⊓⊔

The second lemma bounds |KSet1| and |KSet2|.

Lemma 16. At the end of D
G2

, |KSet1| ≤ q, |KSet2| ≤ q.

Proof. For |KSet1|, consider each query of the original distinguisher D. If the query from D is a 1- or 3-query,

then the same query will appear in D
G2

, which enlarges |KSet1| by at most 1. If the query is a 2- or 4-query,

then the same query will appear in D
G2

, which does not enlarge |KSet1| by Lemmata 12-14. Finally, if the

query is a C-query, then four E-queries will appear in D
G2

. Among the four queries, the 2- and the 4-query do
not enlarge |KSet1|. The 1- and the 3-query may enlarge |KSet1|; but they share the same associated k1 value,
thereby only enlarge |KSet1| by at most 1. By the above, each query from D leads to |KSet1| increasing by at
most 1. As D makes at most q queries, |KSet1| ≤ q. The argument for |KSet2| ≤ q is similar: |KSet2| stays
constant for a 1- or 3-query of D, while increases by at most 1 for a 2-, 4-, or C-query of D (by Lemmata 12-14,
and by an analysis similar to the above). ⊓⊔

The third lemma bounds |E3|.

Lemma 17. At the end of D
G2

, |E3| ≤ 3q2.

Proof. By construction, |E3| can only be enlarged in the following three cases:

– D directly makes a 3-query, the number of which is at most q (cf. page 16);
– D makes a 2-query. It’s further divided into two subcases:
• the query is E2(k2, v): by Lemma 14 (a), |E3| increases by at most Max{|Tk2,v|, 1} · |KSet1| ≤ (|Tk2,v|+

1) · |KSet1|. Furthermore, if |Tk2,v| ≥ 1, then by Lemma 15 (a), the edges are necessarily formed by
C-queries due to D;

• the query is E2−1(k2, w): assume that before this query, the live tree in CB(k2) that is connected to
Tk2,w is TCB . Then by Lemma 12 (a), |E3| increases by at most |TCB | · |KSet1|. Similarly, the edges in
TCB are necessarily formed by C-queries due to D;

– D makes a 4-query. It’s also divided into two subcases:
• the query is E4(k2, x): the case is similar to the case of E2−1(k2, w). Assume that before this query, the

live tree in CB(k2) that is connected to Tk2,x is TCB . Then by Lemma 12 (a), |E3| increases by at most

|TCB | · |KSet1|, and the edges in TCB are necessarily due to D querying C̃;
• the query is E4−1(k2, y): by Lemma 13 (a), |E3| increases by at most |Tk2,y| · |KSet1|. Also, the edges

of Tk2,y are necessarily formed by C-queries due to D;
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By the above, let TCB,i be the live tree in CB(k2) involved in G2 processing the i-th 2-query from D (i ≤ q),
then |E3| increases by at most

∑
i(|TCB,i|+ 1) · |KSet1| ≤

∑
i |TCB,i| · |KSet1|+ q · |KSet1| in total; let T ′

CB,j

be the live tree in CB(k2) involved in G2 processing the j-th 4-query from D, then |E3| increases by at most∑
j |T ′

CB,j |·|KSet1|. By the above and the fact thatD makes at most q queries to C̃,
∑

i |TCB,i|+
∑

j |T ′
CB,j | ≤ q;

by Lemma 16, |KSet1| ≤ q. Therefore the bound in total is |E3| ≤ q+(q+
∑

i |TCB,i|+
∑

j |T ′
CB,j |)·|KSet1| ≤ 3q2.

⊓⊔

|Completed| is finite: T completes at most 3q3 chains.

Lemma 18. At the end of D
G2

, there are at most 3q3 tuples of the form (k1, k2, x, 4) in Completed. The same
bound holds for (k1, k2, v, 2).

Proof. Consider (k1, k2, x, 4) first. By Lemma 1, for each (k1, k2, x, 4) ∈ Completed, it holds x ∈ E4[k2], x ∈
E3[k1]

−1, k1 ∈ KSet1 and k2 ∈ KSet2. Then the bound 10q3 follows from |KSet2| ≤ q and |E3| ≤ 3q2 (Lemmata
16 and 17). Similarly for (k1, k2, v, 2): it holds v ∈ E2[k2], w ∈ E3[k1] for w := E2[k2](v), and ki ∈ KSeti, and
the number of such tuples is thereby at most |KSet2| · |E3| ≤ 3q3. ⊓⊔

The next lemma bounds the rest variables around T.

Lemma 19. At the end of D
G2

, |E2| ≤ 4q3, |E4| ≤ 4q3, |E1| ≤ 4q3, and T makes at most 16q6 distinct calls

to C̃.Check.

Proof. Consider |E2| first. T may create a new 2-query with dir ̸= ⊥ during E2, E2−1, ProcessNonPebCB-
Tree, and ProcessNonPebB3Tree. But by inspection of the execution, such 2-queries are indeed due to D’s
2-queries, and should be “billed” to D. As D makes at most q 2-queries, the number of 2-queries with dir ̸= ⊥
is at most q. On the other hand, T only creates adapted 2-queries in calls to layer-2 ProcessTree procedures,
and once an adapted 2-query (2, k2, v, w,⊥) is created, a tuple (k1, k2, v, 2) will be added to Completed (for
some k1). It’s clear that two different 2-queries (2, k2, v, w,⊥) and (2, k′2, v

′, w′,⊥) cannot correspond to the
same tuple (k1, k2, v, 2), so that the number of adapted 2-queries is at most 3q3 by Lemma 18. The bound in
total is thereby q + 3q3 ≤ 4q3. The argument for |E4| is similar. The argument for |E1| is even simpler: the
number of 1-queries created during E1 and E1−1 is at most q as they are attributed to D’s queries, while the
number of 1-queries created during layer-2 ProcessTree-calls is at most 3q3.

By the above, the number of distinct calls to C̃.Check is easily bounded to |E1| · |E4| ≤ 16q6. ⊓⊔

The next lemma bounds |CQueries|.

Lemma 20. At the end of a non-aborting execution D
G2

, there is a bijection between the 4-tuples (k1, k2, x, 4) ∈
Completed and the C-queries ((k1, k2), u, y) ∈ CQueries. As a corollary, |CQueries| ≤ 3q3 for any G2 execu-
tion.

Proof. The proof will establish two goals: first, associating a unique C-query ((k1, k2), u, y) ∈ CQueries to
each 4-tuple (k1, k2, x, 4) ∈ Completed; second, associating a unique 4-tuple (k1, k2, x, 4) ∈ Completed to each
C-query ((k1, k2), u, y) ∈ CQueries. The first goal is easier: by Lemma 1, for (k1, k2, x, 4) ∈ Completed, there
is a corresponding completed path and the associated C-query is the one in this path. Furthermore, the same
C-query cannot be associated to two different 4-tuples (k1, k2, x, 4) and (k′1, k

′
2, x

′, 4). This is indeed obvious: for
(k1, k2, x, 4) and (k′1, k

′
2, x

′, 4), if k1 ̸= k′1 or k2 ̸= k′2, then the two C-tuples associated to them clearly cannot
be the same; if k1 = k′1 and k2 = k′2, then it must be x ̸= x′, and as the sets Queries and CQueries define
partial blockciphers, the two C-queries ((k1, k2), u

′, y′) and ((k1, k2), u
′, y′) associated to the two tuples cannot

meet u = u′.
To establish the second goal, we first show the existence of such associated 4-tuples. For the C-queries created

due to T querying C̃.C, the existence of the associated 4-tuples has been shown by Lemma 15 (a). For the C-

queries created due to D querying C̃.C, we have the following reasoning: as D completes all chains (cf. page 16),

right after some simulator cycle in D
G2

, there exists four queries (1, k1, u, v, dir1, num1), (2, k2, v, w, dir2, num2),
(3, k1, w, x, dir3, num3), (4, k2, x, y

′, dir4, num4). With respect to the four queries, we have: dir3 =→ or ← due
to Inv0; so that by Inv1, either num2 > num3 or num4 > num3; then by Inv5, the 2- or 4-query and the 3-query
are in the same completed path, and the associated 4-tuple is in Completed. The above show the existence of
the associated 4-tuples.
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We then proceed to show the uniqueness, say, a 4-tuple (k1, k2, x, 4) cannot be associated to two different C-
queries ((k1, k2), u, y) and ((k′1, k

′
2), u

′, y′). This is also obvious: for ((k1, k2), u, y) and ((k′1, k
′
2), u

′, y′), if k1 ̸= k′1
or k2 ̸= k′2, then the two 4-tuples associated to them clearly cannot be the same; if k1 = k′1 and k2 = k′2, then as
CTable defines a part of the ideal cipher C, it must be u ̸= u′ ∧ y ̸= y′ and E4[k2]

−1(y) ̸= E4[k2]
−1(y′). These

complete the main proof.

As to the corollary, the above shows |CQueries| = |{(k1, k2, x, 4)}| ≤ 3q3 for non-aborting G2 executions.
The variable |CQueries| obtained in aborted G2 executions can only be smaller, and hence the corollary holds.

⊓⊔

The last lemma bounds the running time of T.

Lemma 21. In D
G2

, the simulator T runs in time O(q7).

Proof. As T receives O(q) queries, there are O(q) simulator cycles. We bound the time of a single cycle to O(q6)
to complete the proof. Consider a simulator cycle. By inspection of the strategy (cf. page 14) and the code, we
observe that the longest possible cycle due to E4−1 or E2 consists of the following two steps:

FindPebLeafCB→ ProcessNonPebCBTree/ProcessPebCBTree.

The second step ProcessNonPebCBTree or ProcessPebCBTree consists of a series of calls to layer-2
ProcessTree procedures.

On the other hand, the longest possible cycle due to E4 or E2−1 consists of the following two steps:

FindPebLeafB3→ ProcessPebB3Tree,

and the second step ProcessPebB3Tree is further divided into two steps: first calling FindPebLeafCB,
then making a series of calls to layer-2 ProcessTree procedures. The second possibility has one more step
than the first one. We thereby focus on the second possibility, and bound the running time of each step as
follows:

First, denote by t1 the time cost of FindPebLeafB3. Then t1 = O(q4): because by the code, the time should
be |SearchQueue| · |KSet1|, and by Lemmata 16 and 17, |SearchQueue| ≤ |E3| = O(q3) and |KSet1| = O(q).

Second, denote by t2 the time cost from the point ProcessPebB3Tree is started till the point the layer-2
ProcessTree procedure (either ProcessB3SubTree or ProcessDualTree) is called. Then t2 = O(q5).
For this, consider the process of ProcessPebB3Tree in the case pos = left first, and consider the call
to FindEdgeInCB (which loops for all u ∈ E1[k

◦
1 ]) and the loop right after this call (which loops for all

k1 ∈ KSet1). The overall running time is clearly O(|E1|) = O(q3) (Lemma 19) if FindPebLeafCB is never
executed inside the latter loop. Due to the tag Traversed, FindPebLeafCB is executed at most once, so that
when pos = left, we have t2 = O(q3) + t∗, where t∗ is the running time of FindPebLeafCB. By the code,
t∗ = |SearchQueue| ·O(|E1|). Furthermore, the size of a live tree (in CB(k2) for the corresponding k2) extended
by FindPebLeafCB is O(q2) (by Lemmata 15 (b) and 6 (c) and |KSet1| = O(q)), hence t2 = O(q5). In case of
pos = right, the argument is similar: on one hand, the process lying between the point ProcessPebB3Tree
is started and the point the layer-2 ProcessTree procedure is called costs O(q3) time; on the other hand,
FindPebLeafCB is executed at most once due to the tag Traversed. Therefore, in this case, the overall time
cost t2 is also O(q5).

We finally show that the subsequent series of layer-2 ProcessTree calls runs in t3 = O(q6) in total. As
the size of a live tree in CB(k2) (extended by FindPebLeafCB) is O(q2) while the size of one in B3 is O(q3),
there are O(q3) calls to layer-2 ProcessTree procedures. By inspection of layer-2 ProcessTree procedures
and noting |KSet1|, |KSet2| ≤ q and |E1| = O(q3), the time cost of a layer-2 ProcessTree-call is dominated
by the subsequent call to RecurseNew, which is O(q3). By this, the time cost t3 is O(q6), and the time cost
of a single cycle is obtained through t1 + t2 + t3 = O(q6). ⊓⊔

Bounding the Abort Probability of G2. For the distinguisher D (cf. page 16) and a random tuple (C,E),

the following propositions analyze the abort probability of G2 (during D
G2(C,E)

) due to each possibility.

Proposition 3. The probability that G2 aborts inside a call to AddCQuery is at most 21q6

2n−3q3 .
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Proof. By Lemma 19, it holds RS4 ≤ |E4| ≤ 4q3 and LS1 ≤ |E1| ≤ 4q3; by Lemma 20, it holds LS0 ≤
|CQueries| ≤ 3q3 and RS0 ≤ |CQueries| ≤ 3q3. So a single call to AddCQuery induces abortion with

probability at most 4q3+3q3

2n−3q3 regardless of the value of the involved parameter dir, and the probability in total

is at most 21q6

2n−3q3 . ⊓⊔

Proposition 4. The probability that G2 aborts inside a call to AddQuery is at most 32q6

2n−4q3 +
21q5

2n−3q2 +
8q4

2n−q +
7q4

2n−q .

Proof. Consider calls to AddQuery(1, k1, u, v, dir) first. Note Max{|RS0| + |LS1|, |RS1| + |LS2|} ≤ 8q3 by
Lemmata 19 and 20. So a single call to AddQuery(1, k1, u, v, dir) induces abortion with probability at most

8q3

2n−4q3 regardless of dir, and the bound in total is 32q6

2n−4q3 . Similar argument establish the bound 21q5

2n−3q2 for

calls to AddQuery(3, k1, w, x, dir).
Then, consider calls to AddQuery(2, k2, v, w, dir) with dir =← or →. As noted in the proof of Lemma 19,

the number of such calls is at most q (rather than |E2|): this means that E2 is queried at most q times

during D
G2

. Furthermore, Max{|RS1| + |LS2|, |RS2| + |LS3|} ≤ 8q3 by Lemmata 19 and 20, so calls to

AddQuery(2, k2, v, w, dir) induce abortion with probability at most q · 8q3

2n−q ≤
8q4

2n−q in total. For calls to

AddQuery(4, k2, x, y, dir) the case is similar although the values deviate, and the bound in total is 7q4

2n−q . ⊓⊔

Proposition 5. The probability that G2 aborts inside calls to E2, E2−1, E4, and E4−1 (excluding all subcalls)
is 0.

Proof. By design, this lemma indeed focuses on the case where G2 finds more than one pebbled node in the
involved live tree. If G2 did not abort at some earlier point (due to early-abort conditions), then this type of
abortion is not possible by Lemmata 12 (b), 13 (b), and 14 (b). ⊓⊔

Proposition 6. The probability that G2 aborts inside calls to Adapt is 0.

Proof. By Lemmata 12-14 and follows the same line as Proposition 5. ⊓⊔

The propositions above together yield the overall abort probability of G2.

Lemma 22. The overall probability that G2 aborts is at most 178q6

2n .

Proof. By Propositions 3-6 above, assuming 4q3 < 2n/2, then the bound is

21q6

2n − 3q3
+

32q6

2n − 4q3
+

21q5

2n − 3q2
+

8q4

2n − q
+

7q4

2n − q
≤ 178q6

2n
.

Note that the abortions inside RandomAssign while outside the subsequent AddQuery (say, the abortions
due to the two conditions z′ ∈ Ei[k]

−1 and z′ ∈ Ei[k]) are not included in these propositions. The reason is
that the two conditions have been covered by the early-abort conditions in the subsequent AddQuery, and
the probability has been accounted in the probability of those in AddQuery (Proposition 4). For clearness,
consider the case of a call to RandomAssign(1,+, k1, u). Let Sh := RS1∪LS2. Then by noting that v ∈ Sh⇒
v ∈ E1[k1]

−1, it holds

Pr[G2 aborts in RandomAssign or AddQuery]

=Pr[v ∈ E1[k1]
−1 ∧ v ∈ Sh] + Pr[v /∈ E1[k1]

−1 ∧ v ∈ Sh]

=Pr[v ∈ Sh] = Pr[G2 aborts in AddQuery].

The other possibilities are similar. ⊓⊔

D Formal Proof for Transition

Since we now have got a thorough understanding of G2 from the previous section, we can complete the proofs
for the transitions.

49



G1 and G2 Behave the same: Around Check. This subsubsection gives the transition from G1 to G2. As
mentioned (cf. page 17), the central issue is the procedure Check, and the argument follows the idea initiated
by Coron et al. [14]. As we avoid the two-sided random function used in [14], our argument is closer to the
corresponding part in [29]. More clearly, we first specify a bad event BadCheck1 in G1, which captures the

possible differences brought in by Check. We then formally prove that for a tuple (C,E) such that D
G2(C,E)

does not abort (such tuples would be called good G2-tuples), if BadCheck1 does not happen during the G1

execution D
G1(C,E)

, then G1 and G2 have the same behaviors when running on this tuple.

The Event BadCheck1. Recall that the return value of a call C̃.Check in G2 depends on the history of C̃
which has a polynomial size, whereas the return value of S.Check in G1 is completely up to C which indeed has
an exponential size. To capture this difference, we use an event BadCheck1:18 for a tuple of random primitives

(C,E), BadCheck1 happens during the execution D
G1(C,SC,E)

if ∃(K,u, y) s.t. all the following hold:

(i) SC,E makes a call to Check(K,u, y);
(ii) C.C(K,u) = y;
(iii) Before the call in (i), at no point outside the Check-calls was C.C(K,u) or C.C−1(K, y) called.

Behaviors of G1 and G2. To formally capture the behaviors of the two systems, consider the transcripts
of queries and (random) answers appeared in the two systems, where the queries include C, C−1, Ei, Ei−1

(i = 1, 2, 3, 4), and Check; but (in D
G1

) the queries to C made inside Check are not included. More clearly,
the following queries are included in such transcripts:

(i) in D
G2

: all the C̃.C, C̃.C−1, C̃.Check, E.Ei, and E.Ei−1 queries issued by D and T;

(ii) in D
G1

: all the S.Check, E.Ei, and E.Ei−1 queries issued by D and S, all the queries C.C and C.C−1

issued by D, and all the queries C.C and C.C−1 issued by S outside the Check procedure.

With the notions above, the next lemma claims that for a good G2-tuple, if BadCheck1 does not occur in

D
G1(C,E)

for sufficiently many Check calls, then the transcripts of the two executions D
G1(C,E)

and D
G2(C,E)

will be the same, and D thereby gives the same output. Additionally, the probability is overwhelming.

Lemma 23. Consider two executions D
G1(C,E)

and D
G2(C,E)

on a good G2-tuple (C,E). Assume that there

are t calls to C̃.Check during D
G2(C,E)

. We have the following two claims:

(a) If BadCheck1 does not happen in the first t calls to S.Check during D
G1(C,E)

, then the transcripts (defined

as above) of D
G1(C,E)

and D
G2(C,E)

are the same, and D gives the same output in the two executions.
(b) The assumption in (a) holds with probability at least 1− 32q6/2n.

Proof. We first prove (a) by an induction. Assume that the answers to the previous queries equal correspondingly,
and consider the next query. As both D and S/T are deterministic, the next query will be the same. If the

query is to C.C/C.C−1 or C̃.C/C̃.C−1, then the answers in the two executions will clearly be the same as both
of them are due to the same ideal cipher C. Ditto for the case of a query to E. If the query is to Check, then
the answers are the same by assumption of ¬BadCheck1. By construction, S and T will then proceed to the
same sequence of operations until the next query, or either S or T aborts.

We then show that neither S nor T aborts. As the tuple (C,E) in question is a good G2-tuple, T clearly
never aborts. Since we have showed that the transcripts obtained till this point are the same, each time S is to
check an abort condition, T is to perform exactly the same check operation, so that T’s non-abortion implies S’s

non-abortion. By this, D
G1(C,E)

and D
G2(C,E)

proceed to the next query and the proof proceed by induction.
The above show that the transcripts of the two executions are the same. This means that D obtains the

same queries and answers in the two executions, so that D outputs the same as it is deterministic.

We then consider (b). Assume that there are t′ distinct calls to C̃.Check during D
G2(C,E)

. We calculate

Pr[¬BadCheck1] by the follow process: consider a call Check(K,u, y) in D
G2(C,E)

at some point, and assume

that the transcript obtained so far in D
G1(C,E)

and D
G2(C,E)

are the same. Then, by the discussions above, there

is a corresponding call Check(K,u, y) in D
G1(C,E)

. Depending on the state we have the following discussions:

18 The number 1 indicates that the event is defined for G1.
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– if this call appears for the first time (i.e. Check(K,u, y) was never made before this point), then by
the definition of BadCheck1, the probability that BadCheck1 happens with respect to this call is at most

1/(2n − q∗), where q∗ is the total number of queries received by C in D
G1

;
– if the call Check(K,u, y) has appeared before this point, then it further consists of two subcases:

• during the period between Check(K,u, y) was first made and the current point, either C(K,u) or
C−1(K, y) was issued at some point outside Check. Then BadCheck1 does not happen with respect to
the later Check(K,u, y) call, as it does not meet the requirements;

• opposite to the previous subcase: neither C(K,u) nor C−1(K, y) was issued (outside Check) during
the period. Then BadCheck1 does not happen with respect to the later Check(K,u, y) call, as it did
not happen with respect to the first Check(K,u, y) call.

By the above, it already suffices to sum over the t′ distinct Check-calls. As t′ ≤ 16q6 by Lemma 19, the overall
probability that BadCheck1 occurs is at most 16q6/(2n − q∗). Assuming q∗ < 2n/2, then we get the bound
32q6/2n. ⊓⊔

A good G2-tuple (C,E) is a good G1-tuple if BadCheck1 does not happen during D
G1(C,SC,E)

. As a corollary

of Lemma 23 (b), the probability that a random tuple (C,E) is a good G1-tuple is at least 1− ( 178q
6

2n + 32q6

2n ) ≥
1− 210q6

2n .

Efficiency of S. Gathering Lemma 23 and the bounds on T (Lemmata 16-20) yields the bounds on the
complexity of S (in G1).

Lemma 24. During a G1 execution D
G1(C,SC,E)

, with probability at least 1− 210q6/2n, S issues no more than
8q4 queries to C (assuming S avoids redundant queries), and runs in time O(q7).

Proof. By Lemma 23, with probability at least 1−210q6/2n (the probability that a randomly chosen tuple (C,E)

is a good G1-tuple), the transcripts in D
G1(C,SC,E)

and D
G2(C̃

C,TC̃C,E)
are the same. Hence in D

G1(C,SC,E)
, the

bounds given in Lemma 16-20 hold with probability at least 1− 210q6/2n. As S issues at most |E1| · |KSet2|+
|E4| · |KSet1| queries to E, we have the bound 8q4.

The running time O(q7) directly follows from Lemma 21. ⊓⊔

G2 and G3 Behave the same: Randomness Mapping. This part is proved by a randomness mapping
argument of [14], while the formalism is similar to [11]. As the beginning, with respect to D, we borrow some
terminology from [2] and [11].

First, recall the notion good G1-tuple: α = (C,E) is a good G1-tuple if (i) it is a good G2-tuple, and (ii)

BadCheck1 does not occur during D
G1(C,E)

. Second, denote by R the set of all possible tuples of sets ET (of
T) standing at the end of G2 executions when running with good G1-tuples. For a good G1-tuple α = (C,E)

and a tuple of sets ET ∈ R, if the sets of T standing at the end of D
G2(α)

define exactly the same values as

ET (i.e. if ET ′ are the sets of D
G2(α)

, then ∀(i, k, z), Ei[k](z) = E′
i[k](z)), then write D

G2(α) → ET . Third,
consider a set-tuple ET = (E1, E2, E3, E4) ∈ R. For a tuple of ideal ciphers E, if for any (i, k, z) such that
z ∈ Ei[k] it holds E.Ei(z) = Ei[k](z) (note this implies that for any (k, z′) such that z′ ∈ Ei[k]

−1 it holds
E.Ei−1(z′) = Ei[k]

−1(z′)), then E coincides with ET , and denoted E ∼= ET .
Then the following lemma claims that the results of 4-cascade computed from ET are the same as the

answers given by C̃. This lemma is a bit similar to Lemma 2 in [2, page 24].

Lemma 25. Consider a good G1-tuple (C,E). At the end of the G2 execution D
G2(C,E)

, for any C-query
((k1, k2), u, y) in CQueries, there are four queries (for some v, w, and x) in Queries as follows:

(1, k1, u, v), (2, k2, v, w), (3, k1, w, x), (4, k2, x, y).

Proof. This is a corollary of Lemma 1 (each tuple in Completed corresponds to a completed path) and Lemma 20
(note that the 4-tuple (k1, k2, x, 4) associated to ((k1, k2), u, y) indeed characterizes the corresponding completed
path).
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The number of adapted queries (queries with dir = ⊥) equals the number of C̃C’s queries to C. To show
this, we need a helper proposition.

Proposition 7. Consider a good G1-tuple (C,E). During D
G2(C,E)

, it holds:

(a) Two tuples (k1, k2, x, 4) and (k′1, k
′
2, x

′, 4) computed in two different safe calls to layer-2 ProcessTree
procedures cannot be the same;

(b) All the calls to layer-2 ProcessTree procedures are safe.

Proof. For (a), assume otherwise, then we show that the later call (to layer-2 ProcessTree procedure) cannot
be safe to establish a contradiction. Further assume that the 4-tuple computed in the earlier call is (k1, k2, x, 4).
By construction, right after this call adapts, it holds (k1, k2, x, 4) ∈ Completed, which implies the existence of
the following completed path:

((k1, k2), u, y), (1, k1, u, v), (2, k2, v, w), (3, k1, w, x), (4, k2, x, y).

This in particular means that all of the four nodes v, w, x, and y are pebbled after the earlier layer-2 Pro-
cessTree-call adapts. By this, the later layer-2 ProcessTree-call cannot be safe regardless of its concrete
type.

The claim (b) follows from the analysis in Lemmata 12-14. ⊓⊔

Lemma 26. Consider a good G1-tuple (C,E). At the end of the G2 execution D
G2(C,E)

, it holds

|{(i, k, z, z′, dir) ∈ Queries : dir = ⊥}| = |CQueries|.

Proof. We exhibit a bijective mapping between the adapted queries and the C-queries, through the following
chain:

C-queries ((k1, k2), u, y) ∈ CQueries ↔ 4-tuples (k1, k2, x, 4) ∈ Completed

↔ layer-2 ProcessTree-calls ↔ calls to Adapt/adapted queries

In this chain, each ↔ denotes a bijection. The first bijection in this chain has been proved by Lemma 20. We
proceed to prove the remaining two.

For the second bijection, note that for each layer-2ProcessTree-call we could associate a 4-tuple (k1, k2, x, 4)
∈ Completed (i.e. the tuple added to Completed during its chain-completion phase); for each (k1, k2, x, 4) ∈
Completed we could associate a unique layer-2 ProcessTree-call (i.e. the call which adds it to Completed).

Moreover, by Proposition 7, two different layer-2 ProcessTree-calls in D
G2(C,E)

would not lead to the same
4-tuple (k1, k2, x, 4). These establish the second bijection.

We follow the same line as above to establish the third bijection: an Adapt-call could be associated to each
layer-2 ProcessTree-call; and a unique layer-2 ProcessTree-call could be associated to each Adapt-call.
Furthermore, the same call to Adapt cannot be made in two different layer-2 ProcessTree-calls, otherwise
G2 would abort during the later one. These complete the proof.19 ⊓⊔

If we use the values in the sets of a good G2 execution as the randomness source of a G3 execution, then
the transcripts of queries and answers of D in these two executions are the same.

Lemma 27. Let α = (C,E) be a good G1-tuple, and denote by ET the sets of T standing at the end of D
G2(α)

.
Then for any tuple E′ such that E′ ∼= ET , the transcripts of queries and answers of D in the two executions

D
G2(α)

and D
G3(E

′)
are the same; and D

G2(α)
= D

G3(E
′)
.

Proof. We use an induction similar to Lemma 23. Assume that the transcripts of D in the two executions are
the same up to some point, and consider the next query. As D is deterministic, D’s next queries in the two
executions are the same. We prove that D obtains the same answer. For this we consider the two possibilities:

19 The proof appears much simpler than the analogue in [2] (Lemma 4 in page 26, the proof of which takes 4 pages)
despite the closeness of the overall paradigms. The reason is: in [2], adapted queries are not only created in “chain-
completion phases” (which was captured by CompletePath procedures), but also in PrivateP3. Some of our bijections
thereby cannot be established within a few words in the scenarios of [2].
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(i) the query is to Ei/Ei−1: then the answers are the same, since the answer obtained in D
G2(α)

equals the
value in ET , and E′ coincides with ET ;

(ii) the query is to C/C−1: then due to Lemma 25 and the fact that E′ ∼= ET , the answers obtained in D
G2(α)

and D
G3(E

′)
are the same.

Therefore, the answers are the same, and the two transcripts of D are the same as the induction proceeds. Since
D is deterministic, D gives the same output in the two executions. ⊓⊔

For any ET ∈ R, the probabilities of the following two events are close:

(i) a G2 execution with a random tuple (C,E) generates ET ;

(ii) a random tuple E coincides with ET .

Lemma 28. For any ET ∈ R, it holds

PrE[E ∼= ET ]

PrC,E[D
G2(C,E) → ET ]

≥ 1− 9q6

2n
.

Proof. Let ET = (E1, E2, E3, E4). Then

PrE[E ∼= ET ] =

4∏
i=1

∏
k∈{0,1}κ

|Ei[k]|−1∏
j=0

1

2n − j
.

To calculate Pr[D
G2(C,E) → ET ], consider a good G1-tuple α′ = (C′,E′) which satisfies D

G2(C
′,E′) → ET . It

can be shown that D
G2(C,E) → ET if and only if the transcripts (cf. page 50) of D

G2(C,E)
and D

G2(C
′,E′)

are

the same (by an induction similar to that of Lemma 27)—also, the random values used during D
G2(C,E)

are

exactly the same as those used during D
G2(C

′,E′)
. Assume that during D

G2(C,E)
, for each k ∈ {0, 1}κ, there are

|Ẽi[k]| entries in Ei[k] that are defined by RandomAssign. By construction, it clearly holds |Ẽi[k]| = |Ei[k]|
when i = 1, 3. Let v = |CQueries|. Then each random answer from C̃C is uniformly picked from a pool of size
at least 2n − v, and it holds

Pr[D
G2(C,E) → ET ] ≤

 ∏
i=1,3

∏
k∈{0,1}κ

|Ei[k]|−1∏
j=0

1

2n − j

 ·
 ∏

i=2,4

∏
k∈{0,1}κ

|Ẽi[k]|−1∏
j=0

1

2n − j

 · ( 1

2n − v
)v.

By Lemma 26, it holds
∑

k∈{0,1}κ |E2[k]| +
∑

k∈{0,1}κ |E4[k]| −
∑

k∈{0,1}κ |Ẽ2[k]| −
∑

k∈{0,1}κ |Ẽ4[k]| = v. Fur-

thermore v ≤ 3q3 by Lemma 20, hence

PrE[E ∼= ET ]

PrC,C[D
G2(C,E) → ET ]

≥
∏

i=2,4

∏
k∈{0,1}κ

∏|Ei[k]|−1
j=0

1
2n−j

(
∏

i=2,4

∏
k∈{0,1}κ

∏|Ẽi[k]|−1
j=0

1
2n−j ) · (

1
2n−v )

v
≥

( 1
2n )

v

( 1
2n−v )

v
≥ 1− v2

2n
≥ 1− 9q6

2n
.

as claimed. ⊓⊔

An implication of Lemma 27 is that the good G2 executions can be partitioned with respect to the sets

generated by them: for any ET ∈ R and any two tuples (C,E) and (C′,E′), once D
G2(C,E) → ET and

D
G2(C

′,E′) → ET , then D
G2(C,E)

= D
G2(C

′,E′)
. With this in mind, let Θ1 be the subset of R such that for any

tuple (C,E) such that D
G2(C,E) → ET ∈ Θ1 it holds D

G2(C,E)
= 1. Then the following inequality holds. Its

interpretation is that the G3 executions in which D outputs 1 can be partitioned with respect to the member
of Θ1 without any “repeat count”.

Lemma 29. PrE[D
G3(E)

= 1] ≥
∑

ET∈Θ1
PrE[E ∼= ET ].
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Proof. We show that for any tuple E∗, there exists at most one ET ∈ R s.t. E∗ ∼= ET . Assume otherwise,
i.e. ∃ET ′ ∈ R s.t. ET ̸= ET ′ ∧ E∗ ∼= ET ∧ E∗ ∼= ET ′. Assume that for two good tuples α = (C,E) and

α′ = (C′,E′), it holds D
G2(α) → ET and D

G2(α
′) → ET ′. Then we show that the transcripts (cf. page 50) of

the two executions D
G2(α)

and D
G2(α

′)
are the same, so that the two set-tuples ET and ET ′ should be the

same, which is a contradiction. This is proved by an induction similar to Lemma 27: assume the transcripts
obtained so far are the same and consider the next query:

(i) the query is to E/E′: the answers are the same as E.Ei(k, z) = Ei[k](z) = E∗.Ei(k, z) = E′
i[k](z) =

E′.Ei(k, z) and E.Ei−1(k, z) = Ei[k]
−1(z) = E∗.Ei−1(k, z) = E′

i[k]
−1(z) = E′.Ei−1(k, z);

(ii) the query is to C̃C/C̃C′
: then by Lemma 25, the answers are the same;

(iii) the query is to Check: as the transcripts obtained so far are equal, the contents in CTable in the two
executions are also the same, so that the answers to Check are the same.

The above establish that for any tuple E∗, there exists at most one ET ∈ R s.t. E∗ ∼= ET . After this, we have

PrE[D
G3(E)

= 1] ≥ PrE[D
G3(E)

= 1 ∧ ∃ET ∈ R s.t. E ∼= ET ] =
∑

ET∈Θ1

PrE[E ∼= ET ] (by Lemma 27)

as claimed. ⊓⊔

Transition from G1 to G3: Linking the Three Systems. With all the discussions and lemmata above, we
complete the transition from G1 to G3. Note that we directly transit from G1 to G3. This “direct” transition

argument allows avoiding counting Pr[D
G2(C,E)

aborts] twice.

Lemma 30. |PrE[D
G3(CC

E
4 ,E)

= 1]− PrC,E[D
G2(C̃

C,TC̃C,E)
= 1]| ≤ 219q6

2n .

Proof. Wlog assume that PrC,E[D
G1(C,E)

= 1] ≥ PrE[D
G3(E)

= 1], then

|PrE[D
G3(E)

= 1]− PrC,E[D
G1(C,E)

= 1]|
≤PrC,E[(C,E) is not a good G1-tuple]︸ ︷︷ ︸

≤ 210q6

2n (cf. page 51)

+ PrC,E[(C,E) is a good G1-tuple ∧D
G1(C,E)

= 1]︸ ︷︷ ︸
=PrC,E[(C,E) is a good G1-tuple∧D

G2(C,E)
=1] (by Lemma 23)

−PrE[D
G3(E)

= 1]

≤210q6

2n
+

∑
ET∈Θ1

(PrC,E[D
G2(C,E) → ET ]− PrE[E ∼= ET ]) (by Lemma 29)

≤210q6

2n
+

∑
ET∈Θ1

9q6

2n
· PrC,E[D

G2(C,E) → ET ] (by Lemma 28) ≤ 219q6

2n

as claimed. ⊓⊔
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