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Abstract. Broadcast encryption with dealership (BED) has been pro-
posed to achieve more innovative and scalable business models for broad-
cast services. It has an extensive application future. However, designing
secure BED is a challenging task. The only known BED construction so
far is by Gritti et al. We aim to raise the profile of BED primitives which
has not received much attention despite of its importance. This paper
presents a selectively chosen plaintext attack (CPA) secure BED scheme
supporting maximum number of accountability and privacy (hides the
group of users from broadcaster). Our scheme is a key encapsulation
mechanism and practically more efficient. It reduces the parameter sizes
and computation cost compared to Gritti et al. More interestingly, the
broadcaster does not need to rely on users to detect the dishonest dealer.
We provide concrete security analysis of our design under reasonable as-
sumptions.

Keywords: broadcast encryption with dealership, chosen plaintext at-
tack, maximum number of accountability, privacy.

1 Introduction

The increasing interests in the wide application of e-commerce raises issues re-
garding unauthorised distributions and use of digital content. Broadcast encryp-
tion provides enhanced confidentiality in the setting of practical threats against
content distribution systems. Broadcast encryption was formally introduced by
Fiat and Naor [8] in 1994, followed by a vast literature in various flavours [1–7,
10, 13, 15].

Broadcast encryption with dealership (BED), introduced by Gritti et al. [11],
is a promising cryptographic primitive which has been developed very recently. It
has greatly facilitated with sufficiently fine grained business model in broadcast
environment. The core concept in BED is to enable a dealer to select the set of
subscribed users and publishing a group token together with a threshold value
on the group size. A broadcaster implicitly verifies the size of the group utilizing
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the group token without knowing the group explicitly. The broadcaster aborts
if the group size exceeds the threshold value, otherwise produces a ciphertext.

Designing BED is not trivial mainly due to the difficulty in achieving the
following three security issues:

(i) Maximum number of accountability: Dealer should not be able to cheat. If
a dishonest dealer selects k′ > k users and pays money for k users to the
broadcaster, then the business of the broadcaster will be ruined.

(ii) Privacy: The dealer should be able to keep the subscribed user set secret
from the broadcaster. Otherwise, the broadcaster can directly approach to
the subscribers and damage the business of the dealer.

(iii) Security against illegal users: Illegal users (including dealers) should not be
able to decrypt the encrypted digital content (ciphertext) similar to other
broadcast encryption schemes.

Efficiency is always the first priority in obtaining practical BED. Low cost de-
livery of content is a major challenge in this context apart from achieving the
aforementioned security attributes.

Interest in designing BED primitives is due to its applications in the real
world. It could solve several problems of security and trust. For instance, suppose
a dealer purchases the access of some encrypted digital contents from the service
provider (broadcaster) in a bulk and resells them to the subscribers with a better
price compared to the broadcaster’s price for individual content. The subscribers
thus enjoy the cheaper rate. The dealer keeps the identities of these subscribers
secret from the broadcaster to protect his business. On the other hand, the dealer
should be made incapable of decrypting the digital content to forbid him from
rebroadcasting the content. In the light of the above application requirements,
BED is useful.

So far as we know, BED has received very little attention despite of its
numerous applications in the real world. Our goal is to develop this direction of
research further by finding more practical and more efficient solutions towards
BED. Principally, a BED makes the existing business model more flexible by
creating new business opportunities for the dealers. A local dealer can better
explore potentially unknown markets for service provider (broadcaster) and make
a strategy according to the market. In addition, the dealer can also help in
handling different pricing structures of media in different countries and share
with the broadcaster any information on price or demand fluctuation cost. The
dealer gets commission from the broadcaster and eventually sale of company
increases.
Our contribution: Considering the limited development in the area of broad-
cast encryption in dealership framework, BED is further studied in this paper.
The closest related work to ours is that of Gritti et al. [11]; indeed their work
was starting point of ours. However, in the attempt made by [11], the broad-
caster does not have the full control to detect illegal behaviour of a dealer as
the components of the group token generated by the dealer are not fully binded.
A dishonest dealer could easily manipulate some components of a group token
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P (G) in such a way that the implicit verification of the size of group G by the
broadcaster succeeds without following the actual protocol. In fact, in Section
2.3 we elaborate this issue. The broadcaster has to release the encrypted content
once the verification passes and rely on the response from the user side who has
given the power to detect a dishonest dealer on completion of the protocol. This
is not a good solution as user may be dishonest themselves, thereby hampering
the broadcaster’s interest. The construction of [11] is claimed to achieve uncon-
ditional privacy. Unfortunately, the argument in the security proof provided to
support unconditional privacy allows illegal users to recover messages, thereby
leading to a contradiction to semantic security in semi-static security model. We
put more light on this in Section 2.3. We emphasize that in our scheme, the
components of group token are skillfully formed to enable the broadcaster to
have full control in detecting the dishonest behaviour of a dealer.

Our BED construction, namely KEMD, adapts key encapsulation mechanism
and reduces the parameter sizes and computation cost over the existing scheme
[11] significantly. Our construction based upon the identity based encryption
scheme of Delerablee et al. [5]. The scheme provides computational privacy under
the discrete logarithm problem. It is proven to achieve key indistinguishability
under chosen plaintext attack (CPA) in selective model assuming the hardness
of the (f, φ, F )-General Decisional Diffie-Hellman Exponent ((f, φ, F )-GDDHE)
problem. Furthermore, it supports maximum number of accountability under the
(f,N)-Diffie-Hellman Exponent assumption. In addition, if a user gets revoked
from the system, he will be unable to decrypt the ciphertext similar to other
broadcast encryption schemes. The dealer can select a new group of users without
changing the existing public parameter and secret key.
Organization: The rest of the paper is organized as follows. Section 2 provides
necessary definitions and background materials. We describe our main construc-
tion in Section 3 and its security in Section 4. Efficiency and comparison with
the existing work is presented in Section 5. We finally conclude in Section 6.

2 Preliminaries

Notation: We use the notation x ∈R S to denote x is a random element of
S and λ to represent bit size of prime integer p. Also, we use [m] to denote
integers from 1 to m and [a, b] to denote integers from a to b. Let ε : N→ R be
a function, where N and R are the sets of natural and real number respectively.
The function ε is said to be a negligible function if ∃ d ∈ N such that ε(λ) ≤ 1

λd
.

Let |G| denotes the cardinality of group G.

2.1 Broadcast Encryption with Dealership

Syntax of KEMD: A key encapsulation mechanism with dealership scheme
KEMD = (KEMD.Setup, KEMD.KeyGen, KEMD.GroupGen, KEMD.Verify, KEMD.
Encrypt, KEMD.Decrypt) consists of four probabilistic polynomial time (PPT)
algorithms - KEMD.Setup, KEMD.KeyGen, KEMD.GroupGen, KEMD.Encrypt and
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two deterministic polynomial time algorithms - KEMD.Verify, KEMD.Decrypt.
Formally, KEMD is described as follows:

• (PP,MK)←KEMD.Setup(N,λ): The PKGC takes as input the total number
of users N in the system and security parameter λ and constructs the public
parameter PP and a master key MK. It makes PP public and keeps MK secret
to itself.

• (ski)←KEMD.KeyGen(PP,MK, i): Taking as input PP, MK and a subscribed
user i, the PKGC generates a secret key ski of user i and sends ski to user
i through a secure communication channel between PKGC and user i.

• (P (G), k)←KEMD.GroupGen(PP, G): The dealer selects a set of subscribed
users G and generates a group token P (G) using PP. It outputs a threshold
value k, where |G| ≤ k. The dealer sends G to each subscribed user u ∈ G
through a secure communication channel between them. Subscribed users
keep G secret.

• (0 ∨ 1)←KEMD.Verify(P (G),PP, k): The broadcaster verifies implicitly group
size |G| ≤ k using P (G), PP, k and sets

KEMD.Verify(P (G),PP, k) =

{
1, if |G| ≤ k
0, otherwise.

If the verification fails i.e., KEMD.Verify(P (G),PP, k) = 0, the broadcaster
aborts.

• (Hdr,K)←KEMD.Encrypt(P (G),PP): Taking as input P (G) and PP, the
broadcaster produces a header Hdr and a session key K. It makes the header
Hdr public and keeps the session key K secret to itself. This session key K
can be used to generate a ciphertext for a message using a symmetric key
encryption algorithm.

• (K)←KEMD.Decrypt(PP, ski,Hdr, G): A subscribed user i with secret key ski
outputs the session key K using PP, Hdr and subscribed user set G.

Correctness: The scheme KEMD is said to be correct if the session key K
can be retrieved from the header Hdr by any subscribed user in G. Suppose
(PP,MK)←KEMD.Setup(N,λ), (P (G), k)←KEMD.GroupGen(PP, G), (Hdr,K)
←KEMD.Encrypt

(
P (G),PP

)
. Then for every subscribed user i ∈ G,

KEMD.Decrypt
(

PP,KEMD.KeyGen
(
PP,MK, i

)
,Hdr, G

)
= K.

2.2 Security Framework

〈I〉 Privacy:

We define the privacy of the subscribed user set G of the protocol KEMD
using the game as in Figure 1 between an adversary A and a challenger C.
We have followed privacy model of [11].
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the business of the dealer. We define the privacy of the subscribed user set
G of the protocol KEMD using the game as in Figure 1 between an adversary
A and a challenger C.

Setup: The challenger C runs KEMD.Setup(N,λ) to generate the public
parameter PP and master key MK. It sends PP to A.

Challenge: The adversary A selects two sets of users G0, G1 of same size
and submits G0, G1 to C. The challenger C chooses b ∈R {0, 1}, generates
a group token P (Gb) by running KEMD.GroupGen(PP, Gb) and sends
P (Gb) to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Setup: The challenger C runs KEMD.Setup(N,λ) to generate the public parameter PP and master

key MK. It sends PP to A.

Challenge: The adversary A selects two sets of users G0, G1 of the same size and submits G0, G1

to C. The challenger C chooses b ∈R {0, 1} and generates a group token P (Gb) by running

KEMD.GroupGen(PP, Gb) and sends it to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Fig. 1: Privacy of protocol KEMD.

Advantage of the adversary A in the above privacy game is defined as
AdvKEMD−P

A =|Pr(b
′
= b) − 1

2 |. The probability is taken over random bits
used by C and A.

Definition 21 The BED scheme KEMD is said to be (T, ε)-secure under
group privacy issue, if AdvKEMD−P

A ≤ ε for every PPT adversary A with
running time at most T .

〈II〉 Maximum Number of Accountability: Maximum number of account-
ability ensures that the encrypted content can be decrypted by maximum k
users. The security game between an adversary A and a challenger C address-
ing maximum number of accountability of the protocol KEMD is described
in Figure 2.

Fig. 1: Privacy of protocol KEMD.

The advantage of the adversary A in the above privacy game is defined as
AdvKEMD−P

A =|Pr(b′ = b) − 1
2 |. The probability is taken over random bits

used by C and A.

Definition 1. The BED scheme KEMD is said to be (T, ε)-secure under
group privacy issue, if AdvKEMD−P

A ≤ ε for every PPT adversary A with
running time at most T .

〈II〉 Maximum Number of Accountability: The security game between an
adversary A and a challenger C addressing maximum number of accountabil-
ity of the protocol KEMD follows the model in [11] and described in Figure
2.
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Definition 1 The BED scheme KEMD is said to be (T, ε)-secure under
group privacy issue, if AdvKEMD−P

A ≤ ε for every PPT adversary A with
running time at most T .

〈II〉 Maximum Number of Accountability: Maximum number of account-
ability ensures that the encrypted content can be decrypted by preselected
maximum number of users. The security game between an adversary A
and a challenger C addressing maximum number of accountability of the
protocol KEMD is described in Figure ??. The adversary A’s advantage

in the above game for maximum number of accountability is defined as
AdvKEMD-M

A = |
(
Pr(KEMD.Verify(P (G∗),PP, k)) = 1

)
− 1

2 | where k < |G∗|.
The probability is taken over random bits used by C and A.

Definition 2 The BED scheme KEMD is said to be (T, ε)-secure under max-
imum number of accountability, if AdvKEMD−M

A ≤ ε for every PPT adversary
A with running time at most T .

Setup: The challenger C runs KEMD.Setup(N,λ) and generates public pa-
rameter PP and master key MK. It sends PP to A.

Challenge: The challenger C sends an integer k to A.
Guess: The adversary A computes P (G∗), with |G∗| > k by running

KEMD.GroupGen(PP, G∗) and sends (P (G∗), G∗) to C.
Win: The challenger C outputs (P (G∗), G∗) if KEMD.Verify(P (G∗),PP, k) =

1; otherwise C aborts.

〈III〉 Key indistinguishability of KEMD under CPA: Selective security of
the scheme KEMD is measured under the following key indistinguishability
game played between a challenger C and an adversary A:
Initialization: The adversary A selects a recipient set G and provides it

to C.
Setup: The challenger C generates (PP,MK) ← KEMD.Setup(N,λ). It

keeps the master key MK secret to itself and makes the public parameter
PP public.

Phase 1: The adversary A sends key generation queries for i1, . . . , im /∈ G
to C and receives the secret key ski ← KEMD.KeyGen(PP,MK, i) for user
i ∈ {i1, . . . , im}.

Challenge: The challenger C generates (Hdr,K)←Encrypt
(
P (G),PP

)
, where

(P (G), k)←KEMD.GroupGen(PP, G). It selects b ∈R {0, 1} and setsKb =
K, K1−b a random value. Finally, C returns Hdr,K0,K1 to A.

Phase 2: This is similar to Phase 1 key generation queries. The adversary
A sends key generation queries for im+1, . . . , iq /∈ G to C and receives
the secret key ski ← KEMD.KeyGen(PP,MK, i) for i ∈ {im+1, . . . , iq}.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Let t be the number of corrupted users and N be the total number of users.
Adversary is allowed to get reply up to t key generation queries. In random
oracle model t is number of hash queries and key generation queries. The
adversary A’s advantage in the above security game is defined as
AdvKEMD−INDK

A (t,N) = |Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]|. The probability
is taken over random bits used by C and A.

Fig. 2: Maximum number of accountability of protocol KEMD.

The adversary A’s advantage in the above game for maximum number of ac-
countability is defined as AdvKEMD-M

A = |
(
Pr(KEMD.Verify(P (G∗),PP, k)) =

1
)
− 1

2 | where k < |G∗|. The probability is taken over random bits used by
C and A.

Definition 2. The BED scheme KEMD is said to be (T, ε)-secure under
maximum number of accountability, if AdvKEMD−M

A ≤ ε for every PPT ad-
versary A with running time at most T .

〈III〉 Key indistinguishability of KEMD under CPA: We have followed [5] to
design key indistinguishability against CPA security model. Selective security
of the scheme KEMD is measured under the following key indistinguishability
game played between a challenger C and an adversary A:

Initialization: The adversary A selects a recipient set G and sends to C.
Setup: The challenger C generates (PP,MK) ← KEMD.Setup(N,λ). It

keeps the master key MK secret to itself and makes the public parameter
PP public.
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Phase 1: The adversary A sends key generation queries for i1, . . . , im /∈ G
to C and receives the secret key ski ← KEMD.KeyGen(PP,MK, i) for user
i ∈ {i1, . . . , im}.

Challenge: The challenger C generates (Hdr,K)←Encrypt
(
P (G),PP

)
, where

(P (G), k)←KEMD.GroupGen(PP, G). It selects b ∈R {0, 1} and sets Kb =
K, K1−b a random value. Finally, C returns Hdr,K0,K1 to A.

Phase 2: This is similar to Phase 1 key generation queries. The adversary
A sends key generation queries for im+1, . . . , iq /∈ G to C and receives
the secret key ski ← KEMD.KeyGen(PP,MK, i) for i ∈ {im+1, . . . , iq}.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Let t be the number of corrupted users and N be the total number of users.
Adversary is allowed to get reply up to t key generation queries. In random
oracle model t is number of hash queries and key generation queries. The
adversary A’s advantage in the above security game is defined as
AdvKEMD−INDK

A (t,N)= |2Pr(b′ = b)−1|=|Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]|.

The probability is taken over random bits used by C and A.

Definition 3. Let AdvKEMD−INDK(t,N) = max
A
[
AdvKEMD−INDK

A (t,N)
]
, where

maximum is taken over all PPT algorithm running in poly(λ) (polynomial of
λ) time. The BED scheme KEMD is said to be (t,N)- secure if AdvKEMD−INDK

= ε(λ), where ε(λ) is a negligible function in security parameter λ.

2.3 The Drawbacks of [11]

We provide the overview of the BED construction of Gritti et al. [11] in Appendix
A. In BED scheme of [11], the dealer generates the group token as

P (G) =
(
w1, w2, w3, w4, w5, w6

)

=
(
u
t1

∏
i∈G(xi+α)

0 , v
t1

∏
i∈G(xi+α)

0 , v
t1

∏
i∈G(xi+α)

N−k ,
∏
i∈G f

t2
i , g

t2 , e(gγ , g)t2
)
.

Here e : G × G → G1 is bilinear mapping from source group G with generator
g to target group G1, ui = hγα

i

, vi = hγβα
i

for i ∈ [0, N ], α, β, γ, t1, t2 ∈R Zp,
h ∈R G, public key of user i is PKi = (xi +α, fi), xi ∈R Zp, fi ∈R G, the group

G = {i1, i2, . . . , ik′} ∈ (Zp)k
′
, k′ ≤ k. The broadcaster verifies whether group size

is ≤ k by checking e(w2, gN ) = e(w3, gk). It generates a ciphertext for message
M ∈ G1 as (wr5, w

r
4,Mwr6) where r ∈R Zp. Note that the broadcaster does not

involve w1, w2, w3 in ciphertext components. A dishonest dealer can generate
w1, w2, w3 for less than k users while creating w4, w5, w6 for greater than k
users. In decryption phase, a user checks the group size that is received from
the dealer during group token generation. If it is greater than k, then the user
informs this to the broadcaster. The dealer will be blacklisted and excluded from
further business. Consequently, the broadcaster does not have the full control
on determining the dishonest dealer and has to rely on user’s response to stop
release of further encrypted content.
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In the privacy proof, Gritti et al. [11] argued that group privacy is preserved
unconditionally since for each group of receivers G, there is a group G′ of same
size such that P (G) = P (G′). This argument in fact incorrect. It is not sufficient
to show that there exists a group G′, since the adversary is allowed to choose
G0 and G1. It is required to prove that P (Gb) = P (G1−b), b ∈ {0, 1} for a group
Gb. They have proved P (Gb) = P (Gb′) where Gb′ may not be equal to G1−b. If
unconditional privacy holds, then P (G) = P (G′) for all pairs of groups of same
size with G 6= G′. Then the members of G′ would also be able to decrypt the
ciphertext generated using P (G) as P (G) = P (G′). But if G is the set of legal
users, then a user in G′ \G is not entitled to decrypt the ciphertext using P (G).
This contradicts the semantic security against illegal users.

2.4 Complexity Assumptions

Definition 4. (Bilinear Map). Let G and G1 be two multiplicative groups of
prime order p. Let g be a generator of G. A bilinear map e : G×G −→ G1 is a
function having the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The map is non-degenerate, i.e., e(g, g) is a generator of G1.

The tuple S = (p,G,G1, e) is called a prime order bilinear group system.

〈A〉 The Discrete Logarithm (DL) Assumption:
Input :

〈
Z = (gα, g)

〉
, where g is a generator of G, α ∈R Zp.

Output : α

Definition 5. The (T, ε)-DL assumption holds if for every PPT adversary
A with running time at most T , the advantage of solving the above problem
is at most ε, i.e., AdvDL

A = |Pr[A(Z) = α]| ≤ ε(λ), where ε(λ) is a negligible
function in security parameter λ.

〈B〉 The (f, l)-Diffie-Hellman Exponent ((f, l)-DHE) Assumption [11]:

Input :
〈
Z = (S, g, gα, . . . , gαl)

〉
, where g is generator of G, α ∈R Zp.

Output : f(x) and gf(α) where f(x) is polynomial of degree l′ > l.

Definition 6. The (f, l)-DHE assumption holds with (T, ε) if for every PPT
adversary A with running time at most T , the advantage of solving the above

problem is at most ε, i.e., Adv
(f,l)−DHE
A = |Pr[A(Z) = (f(x), gf(α))]| ≤

ε(λ), where ε(λ) is a negligible function in security parameter λ and f(x) is
polynomial of degree l′ > l.

〈C〉 The (f, φ, F )-General Decisional Diffie-Hellman Exponent ((f, φ, F )-GDDHE)
Assumption [5]:

Input:
〈
Z = (S, f(x), φ(x), h0, h

α
0 , h

α2

0 , . . . , hα
t−1

0 , h
αf(α)
0 , h

kαf(α)
0 , g0, g

α
0 , g

α2

0 ,

. . . , gα
2N

0 , g
kφ(α)
0 ),K

〉
, where g0, h0 are generators of G, α ∈R Zp, f(x) =
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∏t
i=1(x+xi), φ(x) =

∏t+N
i=t+1(x+xi), xi ∈ Zp for i ∈ [t+N ] are distinct, K

is either e(g0, h0)F (α) where F (α) = kf(α) or a random element X ∈ G1.
Output: Yes if K = e(g0, h0)kf(α); No otherwise.

Definition 7. The (f, φ, F )-GDDHE assumption holds with (T, ε) if for ev-
ery PPT adversary A with running time at most T , the advantage of solv-

ing the above problem is at most ε, i.e., Adv
(f,φ,F )−GDDHE
A = |Pr[A(Z,K =

e(g0, h0)kf(α)) = 1]−Pr[A(Z,K = X) = 1]| ≤ ε(λ), where ε(λ) is a negligible
function in security parameter λ and X is random element of G1.

3 Our KEMD Construction

Our key encapsulation mechanism with dealership KEMD = (KEMD.Setup, KEMD.
KeyGen, KEMD. GroupGen, KEMD.Verify, KEMD.Encrypt, KEMD.Decrypt) is de-
scribed as follows:

• (PP,MK)←KEMD.Setup(N,λ): Given the security parameter λ and public
identity ID = {ID1, ID2, . . . , IDN} ∈ (Z+)N of a group of N users, the
PKGC generates the public parameter PP and a master key MK as follows:
1. Chooses a prime order bilinear group system S = (p,G,G1, e), where

G,G1 are groups of prime order p and e : G × G → G1 is a bilinear
mapping. Let g, h be generators of group G and H : {0, 1}∗ → Z∗p be a
cryptographically secure hash function.

2. Selects α ∈R Zp and sets a master key MK and public parameter PP as
MK = (α, h),PP = (S, g, g1, . . . , gN , v = e(g, h), w = hα, H, ID),

where gi = gα
i

for i ∈ [1, N ].
3. Keeps MK secret to itself and makes PP public.

Note that the public identity of the user i is IDi ∈ Z+ for i ∈ [N ].
• (sku)←KEMD.KeyGen(PP,MK, u): For each user u ∈ [N ], the PKGC extracts

α, h from MK and IDu from PP, generates a secret key as sku = h
1

α+H(IDu)

and sends it to user u through a secure communication channel between
them.

• (P (G), k)←KEMD.GroupGen(PP, G): The dealer selects a group of users G =
{i1, i2, . . . , ik′} ⊆ [N ] and performs the following using PP:

1. Sets a polynomial F (x) =
∏
ij∈G

(x+H(IDij )) =
k′∑
i=0

Fix
i, where Fi’s are

function of H(IDj) for j ∈ G.
2. Picks t1 ∈R Zp and generates the group token P (G) = (w1, w2, w3, w4)

by setting

w1 = w−t1 = h−αt1 , w2 =
k′∏
i=0

gt1FiN−k+i = g

k′∑
i=0

t1α
iFi

N−k = g
t1F (α)
N−k ,

w3 = gt1F0

k′∏
i=1

gt1Fii = g

k′∑
i=0

t1α
iFi

= gt1F (α), w4 = vt1 = e(g, h)t1

where w, gi, for i ∈ [1, k′] and v are extracted from PP.
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3. Selects a threshold value k on the group size G where k ≥ k′ = |G|.
4. SendsG to each subscribed user through a secure communication channel

between the user and the dealer. The subscribed users keep G secret to
themselves.

5. Publishes P (G) together with the threshold value k.
• (0∨1)←KEMD.Verify(P (G),PP, k): Taking as input the group token P (G) =

(w1, w2, w3, w4), the threshold value k, and gk, gN extracted from PP, the

broadcaster sets KEMD.Verify(P (G),PP, k) =

{
1, if e(w2, gk) = e(w3, gN )

0, otherwise.

Notice that, e(w2, gk) = e(g
t1F (α)
N−k , gk) = e

( k′∏

i=0

g(t1α
N−k+i·Fi), gα

k
)

= e(g, g)
t1α

k

(
k′∑
i=0

αN−k+i·Fi
)

= e(g, g)
t1

(
k′∑
i=0

αN+i·Fi
)

,

and, e(w3, gN ) = e(gt1F (α), gN ) = e(g, g)
t1

(
k′∑
i=0

αN+i·Fi
)

.

If the verification fails i.e., KEMD.Verify(P (G),PP, k) = 0, the broadcaster
aborts. We point down here that only two components namely w2, w3 of
P (G) are used during this verification process.

• (Hdr,K)←KEMD.Encrypt(P (G),PP): Using PP and P (G) = (w1, w2, w3, w4)
with KEMD.Verify(P (G),PP, k) = 1, the broadcaster does the following:
1. Chooses an integer r ∈R Zp and sets a session key K, header Hdr as

K = wr4 = e(g, h)t1r,Hdr = (C1, C2) =
(
wr1, w

r
3

)
=
(
h−αrt1 , grt1F (α)

)
.

2. Finally, publishes Hdr and keeps K secret to itself.
Note that this encryption process utilizes the two components w1, w4 of
P (G), together with w3 which has already been used in combination with
w2 and passed the verification in procedure KEMD.Verify successfully.

• (K)←KEMD.Decrypt(PP, sku,Hdr, G): A subscribed user u with secret key
sku, uses PP, the header Hdr = (C1, C2), the set of subscribed users G and

recovers the session key K as K =
(
e(C1, g

Pu,G(α))e(sku, C2)
) 1∏
j∈G,j 6=u

H(IDj)

where Pu,G(α) = 1
α

{ ∏
j∈G,j 6=u

(α+H(IDj))−
∏

j∈G,j 6=u
H(IDj)

}
.

Observe that gPu,G(α) is computable with the knowledge of G as follows:
The expression

{ ∏
j∈G,j 6=u

(α + H(IDj)) −
∏

j∈G,j 6=u
H(IDj)

}
is a polynomial

of degree (k′ − 1) in α without a constant term where k′ = |G| and thus

the expression 1
α

{ ∏
j∈G,j 6=u

(α+H(IDj))−
∏

j∈G,j 6=u
H(IDj)

}
=

k′−2∑
i=0

aiα
i is a

polynomial of degree (k′−2) in α. Here ai, i ∈ [0, k′−2] are constants and are

functions of H(IDj) where j ∈ G, j 6= u. Since g, gi = gα
i

for i ∈ [1, k′ − 2]
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are all available in public parameter PP,

gPu,G(α) = g

k′−2∑
i=0

aiα
i

= ga0
k′−2∏
i=1

gaiα
i

= ga0
k′−2∏
i=1

gaii

can be computed without the knowledge of α. However, this requires explicit
knowledge of group G, which is intimated to each subscriber by the dealer
during token generation in the procedure KEMD.GroupGen through a secure
communication channel between them.

Correctness of our KEMD: The correctness of KEMD.Decrypt algorithm is
as follows:

K =
[
e(C1, g

Pu,G(α))e(sku, C2)
] 1∏
j∈G,j 6=u

H(IDj)

=
[
e
(
h−αrt1 , g

1
α

{ ∏
j∈G,j 6=u

(α+H(IDj))−
∏

j∈G,j 6=u
H(IDj)

})
×

e
(
h

1
α+H(IDu) , g

rt1
∏
j∈G

(α+H(IDj)))] 1∏
j∈G,j 6=u

H(IDj)

=
[
e(g, h)

−rt1
{ ∏
j∈G,j 6=u

(α+H(IDj))−
∏

j∈G,j 6=u
H(IDj)

}
×

e(h, g)
rt1

{ ∏
j∈G,j 6=u

(α+H(IDj))
}] 1∏

j∈G,j 6=u
H(IDj)

= e(g, h)t1r.

Remark 1. If a user revokes then the selected user set G will be changed. Ac-
cordingly P (G) will be changed. Moreover, a revoked user will not have the
information about current subscribed users. Therefore he will unable to recover
the session key.

Remark 2. In our scheme dealer can not act dishonestly as we use all the com-
ponents of our group token

P (G) =
(
w1, w2, w3, w4

)
=
(
w−t1 , gt1F (α)

N−k , gt1F (α), e(g, h)t1
)

either implicitly or explicitly in encryption phase. This property is not achievable
in [11].

Remark 3. Note that the decryptor (legitimate subscribed user) needs the ex-
plicit knowledge of subscribed users in the decryption procedure. The dealer uses
secure communication channel to inform the subscribed user set G while gener-
ating the group token P (G). The dealer has to use these secure channels between
him and the subscribed user each time a new group token is generated on group
membership change. For dynamic group, it is essential to remove the reuse of
secure communication channel which can be done by using a suitable public key
encryption as follows: The dealer generates (public key, secret key) pair (pi, si) for
each user i ∈ [N ] during the procedure KEMD.Setup using a public key encryp-
tion mechanism and gives si to user i securely. Let at some stage, j1, . . . , jk′ ∈ [N ]
are subscribed users with identities IDj1 , . . . , IDjk′ . To represent a user index,
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we need s = log2N bits for a network with maximum N users. Let message
space of the public key encryption scheme E be at least (N + 2)s bits. The

dealer generates ciphertext y =
([
Epi(j1|| . . . ||jk′ ||k′||X)

]k′
i=1

,
[
Ep̂i(Ri)

]k−k′
i=1

, X
)

of size k + 1 while generating group token in the procedure KEMD.GroupGen.
Here Ri are random messages, p̂i are random key values for i ∈ [1, k − k′], ||
denotes concatenation of bits. Consider j1, . . . , jk′ , k

′, X are of s bits. If it is not
of s bits, fill up left part by zeros. Last s bits are parity checking bits. The dealer
publishes y instead of sending the group G to the subscribed users through se-
cure communication channels. User i decrypts the ciphertext components using
the secret key si. If it finds a decrypted value whose last s bits matches with X,
then it can extract j1, . . . , jk′ from the decrypted value.

4 Security

Theorem 1. (Privacy). Our proposed BED scheme KEMD described in Section
3 is computationally secure under the hardness of the discrete logarithm problem
as per the group privacy issue as described in Figure 1 in Section 2.2.

Proof. We describe the privacy of KEMD using a game between a challenger C
and an adversary A as:

Setup: The challenger C generates the public parameter, PP = (S, g, g1, . . . , gN ,
v = e(g, h), w = hα, H, ID), and the master key MK = (α, h) by calling

KEMD.Setup(N,λ). Here gi = gα
i

for i ∈ [1, N ], α ∈ Zp, g, h are generators
of group G, ID = {ID1, ID2, . . . , IDN} ∈ (Z+)N is the set of public identities
of N users, H : {0, 1}∗ → Z∗p is a cryptographically secure hash function. It
keeps MK secret to itself and hands PP to A.

Challenge: The adversary A selects two sets of users G0, G1 of same size and
submits G0, G1 to C. The challenger C chooses b ∈R {0, 1} and generates a
group token P (Gb) by running KEMD.GroupGen(PP, Gb) as

P (Gb) = (w1, w2, w3, w4) = (w−t1 ,
k′∏
i=0

gt1FiN−k+i,
k′∏
i=0

gt1Fii , vt1)

= (h−αt1 , gt1F (α)
N−k , gt1F (α), e(g, h)t1)

where t1 ∈ Zp, Fi, 0 ≤ i ≤ k′ are coefficient of xi in polynomial F (x) =∏
j∈Gb(x+H(IDj)). The challenger C hands P (Gb) to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Given P (Gb), the adversary A can predict Gb if it can predict the random
number t1 chosen by the challenger C. As A has G0, G1, he can compute P (G0)
if he can know t1. If P (G0) matches with P (Gb), A predicts b = 0, else b = 1.
Therefore, prediction of b is same as predicting t1 from P (Gb) i.e., computing t1
from w1 = w−t1 where w is available to A trough PP. So, security depends on
the hardness of the discrete logarithm problem. Hence the theorem.
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Theorem 2. (Maximum number of accountability). Our proposed BED scheme
KEMD described in Section 3 is secure as per maximum number of accountability
security model as described in Figure 2 in Section 2.2 under the (f,N)-DHE
hardness assumption.

Proof. Let a PPT adversary A breaks the maximum number of accountability
of our KEMD scheme with non-negligible advantage. We construct an algorithm
C that attempts to solve an instance of the (f,N)-DHE problem using A as a
sub-routine.

C is given an instance of the (f,N)-DHE problem
〈
Z = (S, g, g1, g2, . . . , gN )

〉
,

where gi = gα
i

for i ∈ [N ], α ∈ Zp, S is a bilinear group system, g is a generator
of the group G. Now C plays the role of the challenger in the security game and
interacts with A as follows:

Setup: Using Z, the challenger C sets public parameter PP = (S, g, g1, . . . , gN ,
v = e(g, gx), w = gx1 , H, ID) where x ∈R Zp, H : {0, 1}∗ → Z∗p is a crypto-

graphically secure hash function, ID = {ID1, ID2, . . . , IDN} ∈ (Z+)N is the
set of public identities of N users and hands PP to A. It sets MK = (α, h =
gx). Note that α is not known to C explicitly and w = gx1 = gαx = hα, v =
e(g, gx) = e(g, h) as in the real scheme.

Challenge: The challenger C submits a threshold value k ∈ [N ] on the group
size to A.

Guess: The adversaryA computes P (G∗) by running KEMD.GroupGen(PP, G∗)
where |G∗| = k̂ > k as

P (G∗) = (ŵ1, ŵ2, ŵ3, ŵ4) = (w−t1 ,
k̂∏
i=0

gt1FiN−k+i,
k̂∏
i=0

gt1Fii , vt1)

= (h−αt1 , gt1F̂ (α)
N−k , gt1F̂ (α), e(g, h)t1)

where t1 ∈ Zp, Fi, 0 ≤ i ≤ k̂ are coefficient of xi in polynomial F̂ (x) =∏
j∈G∗(x+H(IDj)). The adversary A sends (P (G∗), G∗) to C.

Note that if the adversary A outputs a valid P (G∗) for a group G∗ of size k̂ > k

i.e., KEMD.Verify(P (G∗),PP, k) = 1, then F̂ (x) =
∏
j∈G∗

(x+H(IDj)) is a k̂(> k)

degree polynomial and ŵ2 = g
t1F̂ (α)
N−k = gt1α

N−kF̂ (α). Let f(x) = t1x
N−kF̂ (x).

This is a polynomial of degree N −k+ k̂ > N as k̂ > k. Then (f(x), ŵ2 = gf(α))
is a solution of the (f,N)-DHE problem. Therefore if A wins against maximum
number of accountability game in Figure 2, then it can solve the (f,N)-DHE
problem. This completes the proof.

Theorem 3. (Key indistinguishability under CPA) Our proposed BED scheme
KEMD described in Section 3 achieves selective semantic (indistinguishable un-
der CPA) security in the random oracle model as per the key indistinguishability
security game of Section 2.2 under the (f, φ, F )-GDDHE hardness assumption.



Secure and Efficient Construction of BED 13

Proof. Assume that there is a PPT adversary A that breaks the selective seman-
tic security of our proposed KEMD scheme with a non-negligible advantage. We
construct a distinguisher C that attempts to solve the (f, φ, F )-GDDHE problem
usingA as a subroutine. BothA and C are given N , the total number of users and
t, the total number queries for key generation and random oracle. Let C be given

an (f, φ, F )-GDDHE instance
〈
Z = (S, f(x), φ(x), h0, h

α
0 , h

α2

0 , . . . , hα
t−1

0 , h
αf(α)
0 ,

h
kαf(α)
0 , g0, g

α
0 , g

α2

0 , . . . , gα
2N

0 , g
kφ(α)
0 ), X

〉
, where f(x) =

∏t
i=1(x + xi), φ(x) =∏t+N

t+1 (x + xi) are two co-prime polynomials with pairwise distinct roots i.e.,
xi ∈R Zp, i ∈ [t + N ] are all distinct, S = (p,G,G1, e), g0, h0 are generators
of group G, X = e(g0, h0)kf(α) or random element of G1. The distinguisher C
attempts to output 0 if X = e(g0, h0)kf(α) and 1 otherwise, using A as a subrou-

tine. Let us denote fi(x) = f(x)
x+xi

for i ∈ [t], φi(x) = φ(x)
x+xi

for i ∈ [t + 1, t + N ].
Now C plays the role of a challenger in the security game described in Section
2.2 and interacts with A as follows:

Initialization: The adversary A selects a target recipient set G of s∗ users with
identity set S = {ID∗1 , . . . , ID∗s∗} ⊆ ID = {ID1, ID2, . . . , IDN} ∈ (Z+)Nand
declares it to C. Here ID is the set of identities of the group of N users.

Setup: Using Z, the challenger C first computes
t+N∏

i=t+s∗+1

(x+ xi) =
N−s∗∑
i=0

xiAi

(say), where Ai’s, are function of xj , j ∈ [t+ s∗+ 1, t+N ] for i ∈ [0, N − s∗].
We note down here that xj are distinct roots of polynomial φ(x) which
C can extract from the polynomial. Using these Ai values, C computes

N−s∗∏
i=0

(gα
i

0 )Ai = g

N−s∗∑
i=0

αiAi

0 = g

t+N∏
i=t+s∗+1

(α+xi)

0 by extracting gα
i

0 values from

Z and sets g = g

t+N∏
i=t+s∗+1

(α+xi)

0 , gj = gα
j

=
N−s∗∏
i=0

(gα
i+j

0 )
Ai

.

Note that
N−s∗∏
i=0

(gα
i+j

0 )
Ai

= g

N−s∗∑
i=0

αi+jAi

0 = g
αj
{

t+N∏
i=t+s∗+1

(α+xi)

}

0 = gα
j

= gj .

The challenger also computes

f(x)
t+N∏

i=t+s∗+1

(x+ xi) =
t∏
i=1

(x+ xi)
t+N∏

i=t+s∗+1

(x+ xi) =
N−s∗+t∑
i=0

xiCi (say),

where Ci, are function of xj , j ∈ [t+s∗+1, t+N ]∪ [1, t] for i ∈ [0, N−s∗+t].
Here xj are distinct roots of f(x) and φ(x), which are made available to
C through f(x), φ(x) provided in Z. Using these Ci values, C computes

N−s∗+t∏
i=0

(gα
i

0 )
Ci

= g

N−s∗+t∑
i=0

αiCi

0 = g
f(α)

{
t+N∏

i=t+s∗+1

(α+xi)

}

0 and

e
(
g
f(α)

{
t+N∏

i=t+s∗+1

(α+xi)

}

0 , h0

)
= e(g0, h0)

f(α)

{
t+N∏

i=t+s∗+1

(α+xi)

}

. Note that, N−
s∗ + t ≤ 2N as t, s∗ ≤ N . Therefore, all gα

i

0 values required for the above
computation can be extracted by C from Z. The challenger C finally sets
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w = h
αf(α)
0 , v = e(g0, h0)

f(α)

{
t+N∏

i=t+s∗+1

(α+xi)

}

and gives public parameter
PP = (S, g, g1, . . . , gN , v, w,H, ID) to A, where H : {0, 1}∗ → Z∗p is a crypto-
graphic hash function selected by C himself.

Observe that, w = h
αf(α)
0 = hα,

v = e(g0, h0)
f(α)

{
t+N∏

i=t+s∗+1

(α+xi)

}

= e(g

t+N∏
i=t+s∗+1

(α+xi)

0 , h
f(α)
0 ) = e(g, h),

where h = h
f(α)
0 is set by C implicitly. This makes the distribution of PP

simulated above identical as in the original scheme. As α or hα
t

0 is not known
to adversary A or challenger C, they can not compute h.

Hash queries: The challenger maintain hash list HL that contains at the be-
ginning {∗, xi, ∗}ti=1, {ID∗i−t, xi, ∗}t+s

∗

i=t+1 (∗ stands for empty entry) to reply
at most t − q hash queries, where q is number of key generation queries.
If the queried identity already exists in HL, C responds with corresponding
hash value. Else picks xi for some {∗, xi, ∗} in HL, returns H(IDi) = xi to
A, adds {IDi, xi, ∗} to HL.

Query Phase 1: The adversary A issues key generation queries on {IDi}mi=1

with a restriction that IDi /∈ S. The challenger generates private key as:
If A already issued a key generation query on IDi, C can find an entry
(IDi, xi, ski) in HL and responds to A with this ski.
Else if A has already issued a hash query on IDi, then C can find an entry

(IDi, xi, ∗) in HL, uses this xi to compute fi(x) = f(x)
x+xi

=
t−1∑
i=0

Dix
i (say),

where Di’s are function of the roots xj , j ∈ [1, t] of f(x) for i ∈ [0, t−1], sets

ski =
t−1∏
i=0

hα
iDi

0 = h

t−1∑
i=0

(αiDi)

0 = h
fi(α)
0 , adds (IDi, xi, ski) to HL and responds

to A with this ski.

Note that ski = h
fi(α)
0 = h

f(α)
α+xi
0 = h

1
α+xi = h

1
α+H(IDi) has the same distribu-

tion as in the original scheme.
Else C sets H(IDi) = xi, (as in the Hash queries phase), computes the
corresponding ski exactly as above, adds (IDi, xi, ski) to HL and responds
to A with this ski.

Challenge: The challenger C first extracts (h
kαf(α)
0 , g

kφ(α)
0 ) from the (f, φ, F )-

GDDHE instance
〈
Z,X

〉
and sets the header Hdr as, Hdr = (h

−kαf(α)
0 , g

kφ(α)
0 ).

Observe that, h
−kαf(α)
0 = (h

αf(α)
0 )−k = w−k,

g
kφ(α)
0 = g

k

(
t+s∗∏
i=t+1

(α+xi)
t+N∏

i=t+s∗+1

(α+xi)

)

0 = g
k

(
t+s∗∏
i=t+1

(α+xi)

)

= g
k
s∗∏
i=1

(α+H(ID∗i ))

are similar to our real construction from A’s point of view.
The challenger C then computes the polynomial

q(x) = 1
x

( t+N∏
i=t+s∗+1

(x+xi)−
t+N∏

i=t+s∗+1

xi

)
=
N−s∗−1∑
i=0

xiĀi (say), where Āi, are
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function of xj , j ∈ [t+ s∗+ 1, t+N ] for i ∈ [0, N − s∗− 1]. It then generates

N−s∗−1∏
i=0

gĀiα
i

0 = g

N−s∗−1∑
i=0

αiĀi

0 = g
q(α)
0 by extracting gα

i

0 from the given in-

stance
〈
Z,X

〉
and sets session keyK as,K =

[
(X)

t+N∏
i=t+s∗+1

xi]
e(h

kαf(α)
0 , g

q(α)
0 ),

where X is extracted from the (f, φ, F )-GDDHE instance. The challenger C
finally chooses b ∈R {0, 1} and sets Kb = K, K1−b as a random element of
G1 and returns (Hdr,Kb,K1−b) to A.

Here X= e(g0, h0)kf(α) or random element of G1, if X= e(g0, h0)kf(α) then

K =
[
(X)

t+N∏
i=t+s∗+1

xi]
e(h

kαf(α)
0 , g

q(α)
0 )

=
[
e(g0, h0)

kf(α)

{
t+N∏

i=t+s∗+1

xi

}
][
e(g0, h0)

kf(α)

(
t+N∏

i=t+s∗+1

(α+xi)−
t+N∏

i=t+s∗+1

xi

)
]

= e(g0, h0)
kf(α)

(
t+N∏

i=t+s∗+1

(α+xi)

)

= e(g

t+N∏
i=t+s∗+1

(α+xi)

0 , h
f(α)
0 )k = e(g, h)k = vk.

Hence the simulated session key K has the same distribution as in original
scheme.

Phase 2: This is similar to Phase 1 key generation queries. The adversary A
sends key generation queries for {IDi}qm+1 with a restriction that IDi /∈ S
and receives back secret keys {ski}qm+1 simulated in the same manner by C
as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C and wins if b′ = b.

We define X = e(g0, h0)kf(α) as real event and X a random element of G1 as
rand event. Therefore

Adv
(f,φ,F )−GDDHE
C = |Pr[b′ = b|real]− Pr[b′ = b|rand]| = |Pr[b′ = b|real]− 1

2
|

=
∣∣∣(1

2
Pr[b′ = 1|b = 1 ∧ real] +

1

2
Pr[b′ = 0|b = 0 ∧ real])− 1

2

∣∣∣

=
∣∣∣1
2
Pr[b′ = 1|b = 1 ∧ real]− 1

2
Pr[b′ = 1|b = 0 ∧ real]

∣∣∣.
[ as Pr[b′ = 0|b = 0 ∧ real] + Pr[b′ = 1|b = 0 ∧ real] = 1]

In real case, the distribution of all the variables agrees with the semantic
security game, thereby

AdvKEMD−INDK
A (t,N) = |Pr[b′ = 1|b = 1 ∧ real]− Pr[b′ = 1|b = 0 ∧ real]|.

This implies Adv
(f,φ,F )−GDDHE
C = 1

2Adv
KEMD−INDK
A (t,N). Therefore, ifA has non-

negligible advantage in correctly guessing b′, then C solves (f, φ, F )-GDDHE in-
stance given to C with non-negligible advantage. Hence the theorem follows.
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Table 1. Comparative summaries of storage, communication bandwith and security
of BED schemes.

Scheme |PP| |PK| |SK| |P (G)| |CT| SM MC SA

[11]

(2N+4)|G|
+1|G1|

N |Zp|
+N |G| (N+1)|G| 5|G|+1|G1| 2|G|+1|G1| Semi-static Semantic N-DBDHE

Our
KemD

(N+2)|G|
+1|G1| 0 1|G| 3|G|+1|G1| 2|G|+1|G1| Selective Semantic GDDHE

|PP| = public parameter size, |PK| = public key size, |SK| = secret key size, |P (G)| = group token
size, |CT| = ciphertext size, N = total number of users, |G| = bit size of an element of G, |G1|
= bit size of an element of G1, |Zp| = bit size of an element of Zp, SM = security model, MC
= message confidentiality, SA = security assumption, N-DBDHE = N- decisional bilinear diffie-
hellman exponent, GDDHE = general decisional diffie-hellman exponent.

Table 2. Comparative summary of computation cost of parameter generation, encryp-
tion and decryption algorithm for BED schemes.

Scheme PP SK P (G) Verify Enc Dec
#exp #pair #exp # inv #exp # inv #pair #exp #pair #exp #pair # inv

[11]
2N+3
in G 1

N+2
in G 1

k′+4 in G,

1 in G1 0 2

2 in G,

1 in G1 2 0 2 1 in G1

Our
KemD

N+1
in G 0

1
in G 1

2k′+3 in G,

1 in G1 1 in G1 2

2 in G,

1 in G1 0
k′-1 in G
1 in G1 2 1 in G1

PP = public parameter, SK = secret key, P (G) = group token, Enc = encryption, Dec = decryption,
N = total number of users, k′ = number of users selected by the dealer, #exp = number of
exponentiations, #pair = number of pairings, #inv = number of inversions.

5 Efficiency

We compare our KEMD construction with the only known work of Gritti et al.
[11] in Tables 1 and 2 which exhibit significant improvement in parameter sizes
and computation overhead of our scheme over [11].

Our proposed scheme is essentially a key encapsulation mechanism in deal-
ership framework whereas the construction of [11] is message encryption in deal-
ership framework. Unlike [11], our construction does not require any public key
and has constant size secret key. More interestingly, the sizes of the public pa-
rameter, secret key, group token and ciphertext are less in our KEMD design
than those of [11]. Computation cost in our construction is also favourably com-
parable with that of [11]. The total number of exponentiation in our scheme is
3k′+N + 9, whereas in [11] number of exponentiation is 3N +k′+ 13. Here N is
the total number of users and k′ is the number of subscribed users. As k′ ≤ N ,
our scheme requires less exponentiation. Our scheme needs 5 pairings whereas
[11] needs 7 pairings. While [11] is semi-statically secure in the standard model,
our KEMD is selectively secure in the random oracle model.

Remark 4. Session key K is used for message encryption. If we compare with a
message encryption scheme, we can consider ciphertext CT as CT = (Hdr,MK).
In our scheme, we can consider ciphertext size as 1 more to the size of header.
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6 Conclusion

We have proposed a BED scheme in key encapsulation mode, namely KEMD
which significantly reduces the parameter sizes and computation cost compared
to the only existing BED scheme constructed by Gritti et al. [11]. The scheme
is selectively secure against CPA under reasonable assumption. We have also
discussed privacy and maximum number of accountability issues. Furthermore,
unlike [11] the broadcaster in our scheme does not have to wait for response from
user’s side to detect illegal behaviour of a dealer.
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A The BED construction of [11]

The portions in the following scheme of [11] framed by boxes indicates those
terms which were added or modified in transition from the syntax of KEMD as
described in Section 2.1 to the syntax of BED of [11].

(PP,MK)←Setup(N,λ): The PKGC chooses a bilinear group system S = (p,G,
G1, e), where G,G1 are groups of prime order p and e : G × G → G1 is a
bilinear mapping. Let g be a generator of G and h ∈R G. It selects α, β, γ ∈R
Zp, computes ui = hγα

i

, vi = hγβα
i

for i ∈ [0, N ] and sets public parameter
PP and master key MK as

MK = (α, β, γ),PP = (S, g, h, e(gγ , g), {ui}Ni=0, {vi}Ni=0).

(ski, PKi )←KeyGen(PP,MK, i): The PKGC takes si ∈R Zp, fi ∈R G for

i ∈ [1, N ] and generates a secret key for user i as ski = (di,0, . . . , di,N ),
where di,0 = g−si , di,i = gγfsii , di,j = fsij for i 6= j. The PKGC additionally
generates the public key for user i as PKi = (xi + α, fi) where xi ∈R Zp. It
makes PKi public and sends ski to user i securely through a secure commu-
nication channel.

(P (G), k)←GroupGen(PP, {PKi}Ni=1 , G): A dealer selects a group G of k′(≤ k)

users and generates a group token P (G) as

P (G) = (w1, w2, w3, w4, w5, w6)

= (u
t1

∏
i∈G

(xi+α)

0 , v
t1

∏
i∈G

(xi+α)

0 , v
t1

∏
i∈G

(xi+α)

N−k ,
∏

i∈G
f t2i , g

t2 , e(gγ , g)t2)

where t1, t2 ∈R Zp, ui, vi are extracted from PP, xi + α, fi are extracted
from PKi for i ∈ [N ]. The dealer sends G to each subscribed user through a
secure communication channel.
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(0∨1)←KEMD.Verify(P (G),PP, k): The broadcaster implicitly verifies that the
size of G does not exceed k by checking the pairing e(w2, uN ) = e(w3, uk). If
the verification succeeds, the broadcaster outputs 1 and proceeds; otherwise
it outputs 0 and aborts.

( C )←Encrypt(P (G),PP, M ): The broadcaster verifies that w2 = wβ1 by
checking e(w1, v0) = e(w2, u0). If the verification succeeds the broadcaster
generates a ciphertext C using P (G) = (w1, w2, w3, w4, w5, w6), PP and a
message M ∈ G1 as
C = (C1, C2, C3) = (wr5, w

r
4,Mwr6) = (grt2 ,

∏
i∈G

frt2i ,M.e(gγ , g)rt2)

where r ∈R Zp.
( M )←Decrypt(PP, ski, C ,G): User i checks the cardinality of G which he

receives from the dealer. If it is greater than k, then user i informs this to
the broadcaster. User i retrieves M by coupling C = (C1, C2, C3) with di,j ’s
extracted from ski as follows:

X = e(di,i
∏

j∈G,j 6=i
di,j , C1)e(di,0, C2)

= e(gγ
∏

j∈G
fsij , g

rt2)e(g−si ,
∏

j∈G
frt2j ) = e(gγ , grt2)

X−1C3 = e(gγ , grt2)−1Me(gγ , grt2) = M.


