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Abstract. A collision search for a pair of n-bit unbalanced functions
(one is R times more expensive than the other) is an instance of the
meet-in-the-middle problem, solved with the familiar standard algorithm
that follows the tradeoff TM = N , where T and M are time and memory
complexities and N = 2n. By combining two ideas, unbalanced interleav-
ing and van Oorschot-Wiener parallel collision search, we construct an
alternative algorithm that follows T 2M = R2N , where M ≤ R. Among
others, the algorithm solves the well-known open problem: how to reduce
the memory of unbalanced collision search.
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1 Introduction

Consider a collision search problem between two n-bit functions f(x) and g(x),
in two similar scenarios. In the first case, assume f(x) and g(x) have the same
cost (in terms of time complexity). In the second case, assume that g(x) is
only 2

n
10 times more costly than f(x). The state-of-the-art suggests we use two

different time optimized algorithms for these two similar problems. For the first
case we deploy Floyd’s cycle finding algorithm [7] and produce a collision in 2

n
2

time and negligible memory. For the second case, we store 2
9n
20 images of g(x),

and with 2
11n
20 evaluations of f(x) find the collision – a process that requires a

time equivalent3 to 2
11n
20 calls to f(x) and a memory of 2

9n
20 . This sudden jump of

memory from negligible to almost 2
n
2 , when the comparative cost of the functions

has increased only by a small factor, indicates that the state-of-the-art algorithm
is inefficient. We eliminate this inefficiency and show an alternative algorithm
that relies on the more logical relation between the comparative cost of g(x)
to f(x) and the memory: the smaller the comparative cost, the less memory is
needed.

In the literature, the above second case is known as the meet-in-the-middle
(MITM) problem, and it is solved with the described standard MITM algorithm.
Many subproblems in cryptography can be modelled as MITM problems. In

3 The 2
9n
20 calls to g(x) cost 2

9n
20

+ n
10 = 2

11n
20 calls to f(x).



general, any collision search between two functions, which not necessary have
the same domain and range, is a MITM problem. In such a form, this makes the
MITM one of the most frequently occurring problems, and the MITM algorithms
that solve the problems, one of the most widely used algorithms in cryptography.

The MITM problem has two instances. The first is the classical MITM as
introduced by Diffie and Hellman [3] used for a key recovery in Double DES. It
is a collision search problem between two functions with a range larger than a
domain. The second instance aims at a collision search between two functions
with a range not larger than a domain, but (usually4) with different weights.
That is, one of the functions requires more time for execution. According to the
previous naming convention, we call this instance an unbalanced MITM. In this
paper we deal only with the unbalanced case. In the sequel, all references to the
MITM problem implicitly assume the unbalanced MITM.

The algorithm that solves the unbalanced MITM allows a simple time-memory
tradeoff. It is described with the curve TM = N , where N = 2n, T is the time
complexity measured in accumulative cost of calls to the functions f(x) and g(x),
while M is the memory measured in blocks of certain size (comparable to n). By
increasing time and reducing memory, solving certain MITM problems becomes
feasible in practice, as usually, the memory is the bottleneck. Conversely, most
theoretical applications require time optimized solutions, thus in these cases, the
time is reduced and the memory is increased. Note, the time can be reduced only
up to a certain bound, usually5 defined as

√
N . If T goes below the bound and

f(x), g(x) are random mappings, then a collision may not be found as the total
number of pairs is below N .

Our contribution. In our study of the unbalanced MITM problem, the MITM
algorithms and the resulting tradeoffs, we include as a parameter the ratio R
of costs of the two function (e.g. in the above first scenario R = 1, while in
the second R = 2

n
10 ). This is essential because R defines how to balance the

number of calls to f(x) and to g(x). In short, f(x) can be evaluated R times
more frequently than g(x), while maintaining the same time complexity.

Our new MITM algorithm relies on a combination of two ideas, both well
known, but never combined together. The first idea is based on a selection func-
tion (we call this method interleaving) from the memoryless collision search of
two functions. Floyd’s algorithm can be used to find a collision between the two
functions, by interleaving the calls to f(x) and g(x) during the detection of the
cycle. That is, Floyd’s algorithm is run for a function F (x) that, based on some
selection function, evaluates either f(x) or g(x) with equal probability. Thus a
collision for F (x) is an actual collision for f(x) and g(x) with a probability 1

2
and consequently, the search has to be repeated twice. Unbalanced interleaving
happens when F (x) evaluates one of the functions more frequently (e.g. R times

4 If the functions are balanced, then a collision can be found trivially with Floyd’s
cycle finding algorithm.

5 As shown further, the bound is not universal, but depends on the comparative cost
of the two functions.



more) than the other. Then the collision search has to be repeated R times. The
second idea relies on van Oorschot-Wiener [22] multiple/parallel collision search
based on Hellman’s table. First, Hellman’s table is built by storing the first
and the last points of multiple chains produced from iterative evaluations of a
function F (x). Then, to find one collision, another chain for F (x) is built. With
the right choice of parameters, one chain in Hellman’s table will collide with
the newly constructed chain, which can be detected by the end point. Multiple
collisions can be built by repeating the same process.

We combine these two ideas by constructing Hellman’s table for the function
F (x), which is produced by unbalanced interleaving of f(x) and g(x), such that
f(x) is called R times more often than g(x). Then, the collision search for F (x)
is repeated R times in order to obtain a single collision between f(x) and g(x).
(A full description of the algorithm in a pseudo code is given in Appendix A.)
Our analysis reveals that this new algorithm relies on the tradeoff

T 2M = R2N

where M ≤ R. It follows that, when R tends to 1, then M tends to 1, and T
tends to 2

n
2 . In other words, the closer the costs of the two functions, the less

memory is required (and the time is closer to the case of balanced functions). In
contrast, the standard MITM algorithm relies on the counterintuitive relation:
the closer the costs of the two functions, the more memory is required.

We compare the new algorithm to the standard algorithm and show that the
new is more memory effective and more time effective for certain values of R.
In short, the new algorithm is more time effective when MR2 < N , and more
memory effective when T > R2. A visual comparison of tradeoffs of the two
algorithms is given in Appendix B.

We present a number of cases where the replacement of the standard algo-
rithm with the new will lead either to a lower memory requirement or to a better
time-memory tradeoff. In addition, we point out cases where such replacement
will not work (e.g. known plaintext attacks on block ciphers). Finally, we show
that some balanced collision search problems can be regarded as unbalanced, and
thus with the use of the new algorithm, can be solved more efficiently (usually,
will require less memory).

Related work. The unbalanced MITM has been mentioned as a subproblem in
a large number of papers. A few result provide an actual memoryless solution to
the problem, for instance, Dunkelman et al. in [5]. The most extensive analysis
in this direction has been done by Sasaki [21], who even considers unbalanced
interleaving and comes to a conclusion that the time complexity of the memory-
less unbalanced MITM is invariant of the interleaving factor. In short, all of the
currently proposed memoryless algorithms for the unbalanced MITM provide
the same time complexity, which is actually the precise point of our tradeoff
curve with M = 1 and thus T = R

√
N .

Van Oorschot-Wiener multiple collision search [22] has been a fundamen-
tal tool in many research papers as well. Among the latest applications of this



technique, we single out the memory efficient multicollision search by Joux and
Lucks [12], the technique of dissection by Dinur et al. [4], the tradeoffs for the gen-
eralized birthday problem by Nikolić-Sasaki [20] and Khovratovich-Biryukov [1],
the multi-user collisions by Fouque et al. [8], and others.

2 Preliminaries

2.1 Basics

Let n be a positive integer, and N = 2n. Let f(x), g(x) : {0, 1}n → {0, 1}n
be two random functions (the range can be smaller than the domain, without
affecting the presented analysis). Assume that the time Tf required to compute
f(x) is not more than the time Tg required to compute g(x). Let R = 2ρ be

the ratio of the costs of g(x) to f(x), that is, R = 2ρ =
Tg
Tf

. Obviously, R ≥ 1.

We measure the time complexity of an algorithm in the number of equivalent
calls/evaluations to f(x). For instance, if an algorithm makes u calls to f(x) and
v calls to g(x), then the time complexity is u+R · v.

The MITM problem for f(x), g(x), also known as the collision search problem
between f(x) and g(x), consists in finding two n-bit values a and b such that
f(a) = g(b). This problem can be solved with the use of the MITM algorithm,
referred further as the standard MITM algorithm or MITM STD. The algorithm
works in two phases. First, in a hash table L it stores 2m pairs (g(bi), bi) indexed
by g(bi), where bi, i = 1, . . . , 2m are random values. Then, it keeps generating
pairs (aj , f(aj)), where aj are random values, until for some j the value of f(aj)
collides with some g(bi) from the table L. As f(x), g(x) are random, a collision
will occur after around 2n−m values of f(aj) have been generated.

The memory complexity of the standard algorithm is M = 2m. It makes 2m

calls to g(x) to create L, and 2n−m calls to f(x) to find the collision. According
to the above notation, the time complexity T of the algorithm is T = R · 2m +
2n−m = 2m+ρ + 2n−m. For convenience, assume that T = max(2m+ρ, 2n−m), as
this reduces the actual time at most by a factor of two.

Let us focus on possible time-memory tradeoffs. When, m + ρ ≤ n − m,
then T = 2n−m, and thus the standard algorithm allows the tradeoff TM =
2n−m2m = 2n = N . On the other hand, when m + ρ > n − m, then T =
2m+ρ, and thus TM = 2m+ρ2m > 2n−m2m = N . Obviously this option is worse
and therefore further we assume that the memory satisfies m + ρ ≤ n −m or
equivalently RM2 ≤ N and focus on the tradeoff

TM = N. (1)

From RM2 ≤ N , it follows that N ≥ RM2 = R(NT )2, which leads to T ≥
√
RN .

2.2 Collisions Search with Interleaving

Let us consider the collision search problem between two n-bit functions f(x) and
g(x). A memoryless approach to this problem is based on alteration of the well-



known Floyd’s cycle-finding algorithm that finds collisions for a single function,
i.e. finds (a, b) such that f(a) = f(b).

In the case of a single function f(x), Floyd’s algorithm picks a random
starting point u, assigns v0 = w0 = u, and iteratively produces values vi =
f(vi−1), wi = f(f(wi−1)) until a collision between vi and wi is reached. This
colliding value belongs to a cycle, and if the random point u was chosen to be
outside the cycle, then with an additional effort, the two colliding values a and
b for f(x) can be found: a will be the value that turns the iteration into a cycle,
while b the value of the cycle. From the properties of random mappings, it follows
that length of the cycle and the length of a chain that leads to a cycle is around
2
n
2 , thus the whole algorithm has a time complexity of around 2

n
2 evaluations

of f(x) and it uses a negligible memory.
In the case of two functions f(x), g(x), Floyd’s algorithm still works and

requires a small alteration. The trick is to interleave the evaluations of f(x) and
g(x) with the use of a selection function σ(x) which maps n-bit values to a single
bit in a random fashion. That is, σ(x) outputs 0 or 1, randomly and with equal
probability. Define a function F (x) as follows:

F (x) =

{
f(x) if σ(x) = 0

g(x) if σ(x) = 1

Then, with Floyd’s algorithm find a colliding pair (a, b) for F (x). Obviously if
σ(a) 6= σ(b), then this translates to a collision between f(x) and g(x). Otherwise,
repeat the collision search with another starting value. As a result, a colliding
pair (a, b) for f(x), g(x) is found with around 2

n
2 evaluations of both f(x) and

g(x), and it requires a negligible memory.
We have assumed above that the cost of the two functions is the same, i.e.

R = 1. However, if g(x) is more costly than f(x), then the time complexity
of the above Floyd’s algorithm is around R · 2n2 . An alternative way to find a
collision between two unbalanced function is to use unbalanced interleaving as
suggested by Sasaki [21]. That is, the selection function σ(x) outputs 0 around
R times more often than 1. In such a case, a collision for F (x) can be found in

around 2
n
2 calls to f(x) and 2

n
2

R calls to g(x), thus in time equivalent to around
2
n
2 calls to f(x) (recall that we measure the time complexity in calls to f(x)).

However, a collision for F (x) is an actual collision between f(x) and g(x) only
with a probability of 1

R , thus the collision search has to be repeated around R
times. This brings the total time complexity of producing a collision between
f(x) and g(x) to R · 2n2 .

2.3 Multiple Collision Search

Consider the problem of finding multiple collisions for a function f(x), i.e. pairs
(a1, b1), . . . , (as, bs) such that f(ai) = f(bi) for i = 1, . . . , s. By running Floyd’s
cycle finding algorithm s times (each with a different starting point and a differ-
ent reduction function), the required s collisions are found in s ·2n2 evaluations of



f(x) and with negligible memory. However, if s is sufficiently large, then the par-
allel collisions search algorithm by Van Oorschot and Wiener [22] has favourable
time complexity, but it requires non-negligible memory.

Let M = 2m be the available amount of memory. Van Oorschot-Wiener
algorithm (given in a pseudo code in Alg. 1 in Appendix A) starts by building
a hash table Lm that resembles Hellman’s table from the well known time-
memory tradeoffs [9]. Each entry in the table consists of two values: a random

starting value vs, and a value ve produced after 2
n−m

2 iterative applications of
f(x) to vs (i.e. v0 = vs, vi+1 = f(vi), ve = v

2
n−m

2
). The table Lm has 2m such

entries6 indexed by the values ve, and thus it requires 2m memory. It is built in

2m2
n−m

2 = 2
n+m

2 time. Note, collisions between iterations are prevented by the
so-called matrix stopping rule7. It guarantees that if M · l2 ≤ 2n, where l is the
length of an iteration, then the number of collisions is negligible. In the above

case l = 2
n−m

2 , hence M · l2 = 2n, thus the condition is fulfilled.

To find one collision for f(x) with the use of Lm, choose a random value w0

and build a chain composed of values wi where wi+1 = f(wi) (refer to Alg. 2
in Appendix A). Each time a new value of wi+1 is computed, check in Lm if it
coincides with one of ve. If it does, then pick the corresponding starting value vs
and the value w0 and find the colliding pair. The table Lm covers 2

n+m
2 values.

Hence, if the length of the chain is around 2n−
n+m

2 = 2
n−m

2 , we can expect that
some value of the chain will hit a value produced during the construction of the
table. Obviously, such a hit can be detected once one of the consecutive points of
the chain has coincided with some ve from Lm. As mentioned earlier, the average

length of the chain at the moment of hit is 2
n−m

2 and with an additional effort

of not more than 2
n−m

2 evaluations8 of f(x) such hit can be detected. Therefore,

a collision can be found in around 2
n−m

2 evaluations of f(x). The procedure of
generating Lm and finding a collision is illustrated in Fig 1.

To produce s collisions, van Oorschot-Wiener algorithm requires T = 2
n+m

2 +

s · 2n−m2 evaluations of f(x). Floyd’s algorithm needs T = s · 2n2 . Thus, roughly
when the required number of collisions s satisfies s >

√
M , then van Oorschot-

Wiener algorithm has a lower time complexity than Floyd’s algorithm. Con-
versely, if s collisions are required, then it suffices to use M < s2 memory in
order to achieve better algorithm in terms of time complexity. For instance,
when s = 2

n
3 and M = 2

n
3 , then van Oorschot-Wiener algorithm requires only

2
2n
3 time, while Floyd’s algorithm requires 2

n
3 +n

2 = 2
5n
6 time.

6 Each built by starting from a different point vs.
7 The term matrix stopping rule has been introduced by Biryukov-Shamir [2]. In the

original Hellman’s paper [9] on TMTO, this rule was given without any particular
name (see page 403, Remark 1).

8 Because ve is produced from vs in 2
n−m

2 iterations.
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Fig. 1. Lm generation and collision detection when 2m memory is available. Only vs
and ve are stored in Lm. Blue lines describe a collision detection performed after Lm
is generated. It will hit an intermediate value of one of the chains. By continuing the
computation, it reaches ve, thus the collided chain is identified. The exact colliding
value can be detected after some re-computation of the two chains (refer to Alg. 2 in
Appendix A).

3 A New Meet-in-the-Middle Algorithm

3.1 The Algorithm

To construct our new meet-in-the-middle algorithm, we combine the concepts of
unbalanced interleaving and multiple collisions search.

Specification of the algorithm. A description of the complete algorithm in
a pseudo code is given in Alg. 4 of the Appendix. In short, the algorithm can be
defined as follows:

1. Unbalanced interleaving: Define a function F (x) as

F (x) =

{
f(x) if σ(x) = 0

g(x) if σ(x) = 1

where the selection function σ(x) : {0, 1}n → {0, 1} outputs 0 around 2ρ

times more frequently than 1. For instance, σ(x) can be defined as9

σ(x) =

{
1 if ρ least significant bits of x are zero

0 otherwise

Hence, F (x) evaluates f(x) around 2ρ times more frequently than g(x).

9 With such a definition, we assume that f(x), g(x) are random.



2. Collision table: Based on van Oorschot-Wiener algorithm, create a table
Lm with M = 2m entries for the function F (x).

3. Multiple collision search: With the use of Lm, keep producing collisions
for F (x), until actual collision between f(x) and g(x) occurs.

After around 2ρ collisions for F (x), the required collision between f(x) and g(x)
will appear. Indeed, from the definition of F (x) it follows that the probability
that a collision for F (x) is an actual collision between f(x) and g(x) is 2−ρ.

Time-memory tradeoff. Let us find the time complexity of the above algo-
rithm. As stated in the previous section, van Oorschot-Wiener algorithm requires

T1 = 2
n+m

2 evaluations of F (x) to construct the table and T2 = 2ρ · 2n−m2 =

2ρ+
n−m

2 evaluations to find 2ρ collisions. Hence, the time complexity of our algo-
rithm is T = T1 + T2. To simplify the analysis we assume that T = max(T1, T2)
(we ignore the constant factor of 2). The required memory is M = 2m.

Let us express the values of T1 in terms of calls to f(x) (recall that we
measure the time cost in terms of the lighter function f(x)). In T1, there are

a total of 2
n+m

2 evaluations of F (x), out of which, around 2
n+m

2 are to the

function f(x) and 2
n+m

2 /2ρ = 2
n+m

2 −ρ to g(x) which in turn are equivalent to

2ρ · 2n+m
2 −ρ = 2

n+m
2 calls to f(x). Thus T1 = 2

n+m
2 calls to f(x). In T2, there

are 2ρ+
n−m

2 evaluations of F (x), out of which around 2ρ+
n−m

2 are to f(x) and

2ρ+
n−m

2 /2ρ = 2
n−m

2 to g(x), which is equivalent to 2ρ+
n−m

2 calls to f(x). As

a result, T2 = 2ρ+
n−m

2 calls to f(x). Therefore, the total time complexity T
expressed above as number of calls to F (x) can be replaced with calls to f(x).

Further we focus on T = max(T1, T2) = max(2
n+m

2 , 2ρ+
n−m

2 ) and analyze
the two cases:

1. Assume 2
n+m

2 ≤ 2ρ+
n−m

2 and thus T = 2ρ+
n−m

2 . In this case, we obtain that

T 2M = 22ρ+n−m2m = 22ρ2n2−m2m = R2N (2)

2. Assume 2
n+m

2 ≥ 2ρ+
n−m

2 and thus T = 2
n+m

2 . Similarly, we end up with the
tradeoff

T 2 = 2n+m = N ·M (3)

At the point 2
n+m

2 = 2ρ+
n−m

2 the tradeoffs switch. This point is defined as

n+m

2
= ρ+

n−m
2

(4)

m = ρ (5)

Hence, when the available memory M is not more than R, the time T and
memory M complexity of our meet-in-the-middle follows the tradeoff T 2M =
R2N . On the other hand, when M ≥ R, then our tradeoff follows the curve
T 2 = N ·M . In this case, we can see that when the memory increases, the time



increases as well. Therefore this tradeoff is not beneficial and thus further in
our discussion we focus only on the tradeoff T 2M = R2N , where M ≤ R. In

addition, the time is limited to T =
√

R2N
M ≥

√
R2N
2ρ =

√
RN .

3.2 Comparison of Tradeoffs

Let us compare the new meet-in-the-middle algorithm MITM NEW to the standard
meet-in-the-middle algorithm MITM STD in terms of time and memory complexi-
ties. A graphical comparison of the two tradeoffs is given in Appendix B.

Time comparison of the tradeoffs. Assume MITM NEW and MITM STD use the
same amount of memory M and we want to find the case when our algorithm
has a lower time complexity than the standard. When M ≤ R, then the time

complexity of MITM NEW is T1 = R
√

N
M , while of MITM STD is T2 = N

M and thus

R
N

1
2

M
1
2

= T1 < T2 =
N

M
(6)

RM
1
2 < N

1
2 (7)

R2M < N (8)

From (8) and M ≤ R we can conclude that

Fact 1 Let R be the ratio of costs of g(x) to f(x), M be the available memory,
and let M ≤ R. Then MITM NEW has a lower time complexity than MITM STD when

M <
N

R2
. (9)

Remark 1 (Necessary condition). From (9) it follows that the new algorithm

may have a better time complexity only if R < N
1
2 .

Memory comparison of the tradeoffs. Similarly, let us compare the memory
complexities of the two algorithms when they use the same amount of time T .

Assume M ≤ R. Then the memory complexity of MITM NEW is M1 = R2N
T 2 , while

of the MITM STD is M2 = N
T , thus

R2N

T 2
= M1 < M2 =

N

T
(10)

T > R2 (11)

The condition R ≥M1 = R2N
T 2 is equivalent to T ≥

√
RN . As a result we get

Fact 2 Let R be the ratio of costs of g(x) to f(x), T be the available time, and
let T ≥

√
NR. Then MITM NEW has a lower memory complexity than MITM STD

when
T > R2. (12)



Remark 2 (Necessary condition). From (9) and T < N it follows that the new

algorithm may have a better memory complexity only if R < N
1
2 .

When used in analysis, often the parameters of the tradeoff are chosen in a
way to minimize the time complexity. That is, the most used point of the curve
in the tradeoff of the standard meet-in-the-middle algorithm is the one where
the time complexity reaches the minimum. As mentioned in Sect. 2.1, this point

is defined as T = 2
n+ρ
2 =

√
NR and M = 2

n−ρ
2 =

√
N
R . As the condition

T ≥
√
NR of Fact 2 is satisfied, it follows that our MITM NEW will always use less

memory than MITM STD as long as T > R2 = T 4

N2 or equivalently, T < N
2
3 . This

leads to

Fact 3 Let T < N
2
3 be the minimal time complexity of MITM STD, that uses

M2 = N
T memory. Then, with the use of MITM NEW, the memory complexity can

be reduced to M1 = T 2

N .

Proof. From T < N
2
3 it follows that R = T 2

N < N
1
3 and M2 = N

T > N
1
3 . We

choose M1 = R, and use our MITM NEW to achieve M1 = R2N
T 2 = T 4N

N2T 2 = T 2

N <

N
4
3

N = N
1
3 . ut

3.3 Practical Confirmation

We confirm the correctness of the new algorithm and the resulting tradeoff by
implementing it and by running a series of computer experiments. In the exper-
iments, the value of N is in the range of 232 to 240, and the values of R and M
vary (but comply to M ≤ R). For each particular N , R, and M , we run 100 ex-
periments, each with different f(x) and g(x), and measure the time complexity
required to produce a collision between f(x) and g(x).

In Tbl. 1 we report the measured time as the average of the 100 experiments.
It is evident that the experimental time is very close to the expected time and
differs roughly by a factor of four.

3.4 Additional Cases

Besides for the unbalanced MITM, MITM NEW can be used as well to solve a few
other collision problems between balanced functions. Further we describe two
potential applications. In Section 4 we provide concrete examples of these appli-
cations.

– Reducing calls to one of the functions. In certain applications, even
though the costs of the two functions are the same (R = 1), it may be
beneficial to reduce the number of calls to one of them. For instance, if g(x)
depends on a secret key k thus is written as g(k, x), then it has to be queried
to get the result. Thus the number of calls to g(x) corresponds to the data
complexity D. If reducing D is the priority, then the collision search becomes
unbalanced.



Table 1. Experimental verification of the new tradeoff.

MITM space Ratio Memory Expected time Experimental time

N R M T =
√
R2N/M T

232 28 26 221 222.6

232 24 24 218 220.0

232 212 210 223 225.3

232 212 212 222 224.0

236 210 28 224 226.2

236 210 210 223 224.7

236 212 212 224 225.9

240 26 24 224 226.1

240 26 26 223 224.9

240 28 28 224 225.7

– Reduced domain of one of the functions. So far, we have assumed that
the ranges of the two functions are not larger than their domain. If one of the
balanced functions has a domain smaller than the range, then MITM NEW can be
used to find a collision. That is, a collision between f(x) : {0, 1}n → {0, 1}n
and g(x) : {0, 1}m → {0, 1}n, where m < n and f, g are balanced, can be
found with the proposed algorithm.

3.5 Degenerate Cases

MITM NEW in an alternative to the MITM STD, but in some cases it may not be
applied or it may not follow the expected time-memory tradeoff curve. Let us
take a closer look at such degenerate cases.

– The ratio R depends on the available memory. An implicit assumption
used in the above analysis is that the ratio R of costs of the two function
is fixed and invariant of the available memory. This may not always be the
case, and one of the functions (most likely g(x)), may have execution time
that depends on the available memory (the larger the memory, the shorter
the time). In such a situation, the ratio R becomes a function of the memory
M , i.e. R = R(M), and the curve becomes T 2M = R(M)2N . This may
limit the flexibility of choosing M , lead to another tradeoff, or even make
the entire tradeoff invalid (recall that it is valid when M ≤ R, which becomes
M ≤ R(M) – this condition may not have a solution for M > 0).

– Sets instead of functions. MITM NEW makes calls to both f(x) and g(x),
thus the functions must be computable. If one of the function is given as a
set, then the algorithm will not function properly. Note, the naive idea of
storing the set only leads to MITM STD.

– Known plaintext attack. MITM NEW makes adaptive chosen queries to both
f(x) and g(x). Thus attacks on block ciphers that are based on MITM NEW

cannot be known plaintext attacks.



4 Applications

Further we show applications of the MITM NEW in three different cases: the first is
the standard unbalanced MITM, while the remaining two are for the additional
cases mentioned in Sect. 3.4.

4.1 The Case of Unbalanced Functions

Prior to presenting concrete applications of the MITM NEW, we emphasize two
points. First, MITM NEW can be used to achieve better tradeoffs (for certain val-
ues of M and T ) in a lot of cases where MITM STD has been applied. There are
numerous such cases – listing and analyzing them is too tedious, and therefore
we do not mention them. Second, when the amount of memory is not limited,
then both MITM NEW and MITM STD have the same time complexity (both achieve
the minimal possible theoretical time T =

√
RN). Hence, if the user is not con-

cerned about the memory, then he/she can use either MITM STD or MITM NEW. We
are ready now to proceed with concrete applications.

Iwamoto et al. [11] show that in narrow-pipe Merkle-Damg̊ard hash functions,
a collision attack for the compression function can be converted into a limited-
birthday-distinguisher for the corresponding hash function. Recall that a colli-
sion10 for a compression function CF (h,m), where h is the chaining value and m
is the message block, is a tuple (h∗,m,m′) such that CF (h∗,m) = CF (h∗,m′).
On the other hand, a limited-birthday distinguisher for a hash function H(M)
is the following problem: given two sets I,O, find a message M∗ such that
H(M∗ ⊕ δin) ⊕ H(M∗) = δout, where δin ∈ I, δout ∈ O. It can be seen as a
problem of finding a message that follows a certain truncated differential (I,O
are the truncated differences at the input and at the output, respectively).

Iwamoto et al. convert the collision into a limited-birthday distinguisher by
placing the collision at the second block (refer to Fig. 2). That is, they first
find multiple collisions (h1,m1,m

′
1) for the compression function, store all h1,

and from the initial chaining value h0, find a message m0 that will produce
a match with one of the stored h1, i.e. find m0 such that CF (h0,m0) = h1.
The complexity of the limited-birthday distinguisher in part depends on the
complexity of producing collisions for the compression function. Thus, it is a
classical example of an unbalanced MITM problem. Iwamoto et al. essentially
use MITM STD while we will switch to MITM NEW.

Application to LANE-256. LANE-256 is a SHA-3 candidate hash function
designed by Indesteege et al. [10] that has 256-bit state. A collision attack on the
full compression function has been presented by Matusiewicz et al. [14]. Naya-
Plasencia [19] has improved the attack – her collision search requires 280 calls to
the compression function and 266 memory.

10 Sometimes, it is called a semi-free-start collision for the compression function.
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Fig. 2. Conversion from a collision attack on the compression function into a limited-
birthday-distinguisher on hash function as shown in [11]. The third message block deals
with padding. As the collision occurs on h2, the third block preserves collision.

We use Iwamoto et al. conversion of the collision attack for the compression
function into a limited-birthday distinguisher for the hash function. The result-
ing unbalanced MITM (on which the limited-birthday distinguishers relies on)
consists of the two functions f(x) and g(x), such that f(x) is equivalent to one
compression function call (with a random message block), while g(x) is equiva-
lent to one collision for the compression function (according to Naya-Plasencia
equivalent to 280 calls and 266 memory). Therefore, the ratio of costs is R = 280.

Iwamoto et al. [11] use MITM STD to find the complexity of the limited-birthday
distinguisher for LANE-256. We use MITM NEW and show its advantage. From
N = 2256 and R = 280, it follows that MITM NEW can be described as T 2M =
22∗80+256 = 2416. For example, if we set the time complexity to be identical to
[11], i.e. T = 2169, then the memory complexityM is reduced to 2416−2∗169 = 278,
which improves the previous 288 by a factor of 210. If we set the memory com-
plexity to the lowest possible M = 266 (Naya-Plasencia collision attack requires
this much memory), then the previous MITM STD requires T = 2190 (the tradeoff
is TM = 2256), while our MITM NEW requires T = 2175.

Application to AES-Miyaguchi-Preneel. Iwamoto et al. show as well that
in 248 time they can find a collision for the compression function built upon
6-round AES in Miyaguchi-Preneel mode. Therefore, a limited-birthday distin-
guisher for the corresponding Merkle-Damg̊ard hash function, is equivalent to
an unbalanced MITM, where R = 248.

According to Fact 1, with parameters N = 128 and R = 48, MITM NEW has
lower complexity than MITM STD if M < N

R2 = 232,M ≤ R = 248, which reduces
to M < 232. The time complexity of Iwamoto et al. result with M = 248 cannot
be improved. However, 248 memory may be too costly and it may be beneficial
to reduce the time, when the available memory is much smaller. As suggested
by the above condition, when the memory is limited up to 232, MITM NEW gives
better time than MITM STD.



4.2 The Case of Reduced Calls

Consider a MITM attack between two balanced functions f(x) and g(x), where
f(x) can be computed offline, while g(x) requires oracle queries. Calls to f(x)
are counted as a time complexity, while to g(x) as a data complexity. In practice,
we often want to keep the data complexity low, which results in an unbalanced
MITM. In addition, some schemes (for instance, Chaskey [18]) limit the number
of online queries to less than the birthday bound, and thus are able to prove
beyond-birthday-bound security.

The best example that illustrates the importance of MITM NEW to these cases
would be to use it to answer Dunkelman et al. [5] open problem about mem-
oryless attack on Even-Mansour with T time and D = N

T data. However, this
problem already has been solved partially by Fouque et al. [8]. They provide a
solution that uses M memory and D data, such that M < D and MD2 = N .
Interestingly, their approach also relies on van Oorschot-Wiener algorithm, but
they do not use unbalanced interleaving. With MITM NEW, we can obtain the same
solution (thus we omit it from the paper). However, our approach is more generic
than [8] – we show this by applying MITM NEW to key recovery attacks on tweakable
block cipher constructions11.

Tweakable Block Cipher Mode-of-Operation. The first example is a Tweak-
dependent Rekeying (TDR) mode-of-operation proposed by Minematsu [17]. Let
EK be a block cipher with n-bit state and n-bit key, and let EtK , where t < n

2 ,
be a construction in which the first n − t bits of the plaintext for EK are fixed
to 0, namely the plaintext space is limited to t bits. The TDR mode converts
EK into a tweakable block cipher (uses t-bit tweak) with two EK calls: the first
encrypts a tweak Tw with EtK , used in the second call as a key:

K ′ ← EtK(Tw),

C ← EK′(P ).

Minematsu proves that the TDR mode achieves O( 2n

2t ) security. As t < n
2 , the

TDR mode achieves beyond-birthday-bound security. This bound is tight, as
shown by the following attack that uses MITM STD:

1. Fix P to a randomly chosen value.

2. Choose D random values of Tw, query (P, Tw) to obtain the corresponding
C, and store all C in a table L.

3. Make 2n/D guesses of K ′, compute C ← EK′(P ) and look for a match in L.

A match suggests a candidate for K ′. With a negligibly small additional cost,
the correct K ′ can be verified. As the analysis relies on MITM STD, it follows the
tradeoff TD = 2n. The required memory is identical to the data, i.e. M = D.

11 In our understanding, these problems cannot be solved with the algorithm from [8].



To find a collision between steps 2) and 3), we can use MITM NEW– as in the
above analysis12, such collision will exist as long as TD = 2n. The memory,
however, can be reduced with MITM NEW. The unbalanced MITM will make T calls
to f(x) and D calls to g(x), if we set R = T

D . In such a case, the tradeoff becomes

T 2M =
(
T
D

)2
2n, which is equivalent to MD2 = 2n. Thus, when the data D

satisfies D > 2
n
3 , the new approach will require less memory. For instance, if

D = 2
3n
7 , then the standard (as given above in steps 2),3)) will require M = 2

3n
7 ,

while the new only M = 2
n
7 memory.

Cryptanalysis on McOE-X. At FSE 2009, Fleischmann et al.[6] propose a
family of online authenticated encryption called McOE. Let EK,Tw be a tweak-
able block cipher under a key K and a tweak Tw. Then, the ciphertext Ci of
the i-th message block Pi of McOE is defined as follows:

ti ← Pi−1 ⊕ Ci−1,
Ci ← EK,ti(Pi).

McOE-X is an instance of the McOE family, such that EK,Tw = EK⊕Tw.
Mendel at al. [15] show that the key of McOE-X can be recovered in O(2

n
2 )

time and data, or more general, in T time and D = 2n

T data, with MITM STD.

1. Fix the message for the second block P1 to a randomly chosen value.
2. Choose D random values of the first message block P0, query P0‖P1 to obtain

the corresponding C0‖C1, and store them in a table L along with P0 ⊕ C0.
3. Make 2n/D guesses of K ⊕ t1, denoted by K ′, and compute C1 ← EK′(P1).

Check for a match with L.

A match suggests that the K can be computed as P0 ⊕ C0 ⊕K ′.
As in the case of TDR, with the use of MITM NEW we can reduce the memory

requirement of Mendel et al. attack (which currently is M = D), while main-
taining the same time T and data D. Fleischmann et al. instantiate McOE-X
with AES-128 as an underlying block cipher. Thus, according to Fact 3, Mendel
et al. attack will have a lower memory complexity if T < 285.3 and if it relies
on MITM NEW (rather than MITM STD). (Considering that accessing D data requires
some computational cost of about D, limiting T > D is reasonable. Then the
range of T becomes 264 < T < 285.3.) For instance, if T = 270, then D = 258,
and thus Mendel et al. attack will require 258 memory if it uses MITM STD, and
only 212 memory if it relies on MITM NEW. However, note that MITM NEW overweights
MITM STD only if D > 242.7.

4.3 The Case of Reduced Domain

Let us apply MITM NEW to the case of a reduced domain. To do so, we focus on
triple encryption Ek1,k2,k3(P ) = Ek3(Ek2(Ek1(P ))) = C, where Ek(P ) is an

12 We stress out that we are not showing a weakness of the TDR-mode, but a possible
improvement in the memory requirement of the analysis that matches the proved
security bound.



n-bit cipher with n-bit key k, and provide a key recovery given three pairs of
known plaintext-ciphertext (Pi, Ci), i = 1, 2, 3.

First, let us reduce the key recovery to a collision search problem. For this
purpose, we define two functions (below, || denotes concatenation)

F (k1, k2) = Ek2(Ek1(P1))||Ek2(Ek1(P2)),

G(k3) = E−1k3 (C1)||E−1k3 (C2)

Obviously, F : {0, 1}2n → {0, 1}2n and G : {0, 1}n → {0, 1}2n, that is, G has a
reduced domain. A collision between F and G corresponds to a triplet of keys
(k1, k2, k3) such that Ek1,k2,k3(P1) = C1 and Ek1,k2,k3(P2) = C2. We need to
produce 2n such collisions to get the final Ek1,k2,k3(P3) = C3, as on average
there is only a single triplet of keys that encrypts the three plaintexts P1, P2, P3,
into the three ciphertexts C1, C2, C3.

To find a single collision on 2n bits, we use MITM NEW with R = 2
n
2 . This value

is chosen to avoid collisions of chains in the Hellman’s table. Recall that chains

have length
√

22n

M . This ensures that the matrix stopping rule is fulfilled for

points on which F is evaluated: dimension of the domain of F is 2n, each chain

has at most
√

22n

M evaluations of F and thus,M ·
(√

22n

M

)2

≤ 22n. When R = 2
n
2 ,

then each chain has
√

22n

M /2
n
2 evaluations of G, thus the matrix stopping rule for

G (with domain of dimension n) is fulfilled as well because M ·
(√

22n

M /2
n
2

)2

≤

2n. Therefore, the number of colliding chains is negligible. Note, as the ranges
of the two functions are of dimensions 2n each, while the domain of G has
a dimension of only n, when building the chains, we need to use a reduction
function for the inputs of G, which can be defined simply as a truncation of the
2n-bit value to n bits.

According to the tradeoff curve of MITM NEW, we can produce a collision with
complexities that follow T 2M = R222n = 23n. The condition of the tradeoff
dictates that M ≤ R, hence given a memory M = 2

n
2 , we can get a collision in

time T1 = 2
5n
4 . To get 2n collisions we repeat 2n times the whole collision search

(rebuild a new Hellman’s table with different reduction function). As a result,

we can recover the whole 3n-bit key in time T = 2
9n
4 and memory M = 2

n
2 .

The standard MITM algorithm on triple encryption by Merkle and Hell-
man [16] follows TM = 23n, thus for M = 2

n
2 it requires time T = 2

5n
2 , which

is larger than our time. In addition, the dissection by Dinur et al.[4] used for
attacks on multiple encryption, applies only when the number of encryption is
at least four. Therefore, MITM NEW leads to the lowest time complexity attack on
triple encryption with M = 2

n
2 .

5 Conclusion

We have shown that one of the most common subproblems in cryptanalysis,
the unbalanced meet-in-the-middle problem, can be solved with an alternative



algorithm. The new algorithm relies on combination of two ideas: unbalanced
interleaving and van Oorschot-Wiener multiple collision search. It follows the
tradeoff T 2M = R2N , where R is the ratio of costs of the two functions. It
outperforms the standard algorithm (with the tradeoff TM = N) in terms of
time when MR2 < N , and in terms of memory when T > R2 (in both of the
cases, assume that M ≤ R).

The new algorithm follows a more intuitive relation between the ratio R
and the required memory M : the lower the ratio, the less memory is required.
In fact, the complexity of the balanced collision search between two functions
(solved with the Floyd’s algorithm), can be described as a point of the tradeoff
curve of the new algorithm (R = 1,M = 1 and thus T 2 = N). This is not the
case with the standard algorithm (M = 1 will lead to T = N).

The new algorithm outperforms the standard algorithm in terms of time when

M ≤ R, M ≤
√

N
R and M < N

R2 , and in terms of memory when T ≥
√
RN and

T > R2.

In applications where minimizing the time complexity is the only concern,
both the new and the standard algorithm behave the same (T =

√
RN). How-

ever, once the focus expands to memory as well as time, the new algorithm
may provide significant advantage over the standard. As a general rule of the
thumb, the new algorithm should be considered as the first choice in unbalanced
meet-in-the-middle problems with R < N

1
3 .
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A Pseudo Code of Algorithms

Algorithm 1 Construction of table Lm
procedure ConstructL(f(x), n,m)

Lm ← ∅
for i=1 to 2m do

vs
$←− {0, 1}n . Generate random value

ve ←− vs
for j=1 to 2

n−m
2 do . Iteratively apply f(x)

ve ←− f(ve)
end for
Lm ←− Lm ∪ (vs, ve) . Store (vs, ve) in Lm

end for
return Lm

end procedure

Algorithm 2 Find collision with Lm
procedure FindCollision(Lm, f(x), n,m)

w0
$←− {0, 1}n . Generate random value

wi ←− w0

length←− 0
do

length← length + 1
wi ←− f(wi)
vs ← Find(Lm, wi) . Check if wi is in Lm

while vs = ∅
for i=1 to 2

n−m
2 − length do . Align the two chains

vs ← f(vs)
end for
while f(vs) 6= f(w0) do . Find the colliding pair

vs ← f(vs)
w0 ← f(w0)

end while
return (vs, w0)

end procedure



Algorithm 3 Definition of F (x)

procedure F(f, g, ρ)
if x % 2ρ = 0 then . Least ρ bits of x are zeros

return g(x) . F (x) = g(x)
else

return f(x) . F (x) = f(x)
end if

end procedure

Algorithm 4 New MITM Algorithm

procedure MITM(n,m, ρ)
Lm ← ConstructL(F(f, g, ρ), n,m)
do

(a, b)← FindCollision(Lm,F(f, g, ρ), n,m))
while a % 2ρ > 0 and b % 2ρ > 0
return (a, b)

end procedure

B Graphical Comparison of the Tradeoffs

A comparison of our tradeoff T 2M = R2N to the standard tradeoff TM = N is
given in Figures 3,4, and 5.

In Fig. 3, we can see that as long as R < 2
n
2 , there is a range of values of

M , where the time of MITM NEW is lower than the time of MITM STD. For MITM NEW,
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Fig. 3. Dependency of time on mem-
ory between MITM STD (in black) and
MITM NEW (coloured), when 2

n
10 ≤ R ≤

2
n
2 .
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Fig. 4. Dependency of memory on
time between MITM STD (in black) and
MITM NEW (coloured), when 2

n
10 ≤ R ≤

2
n
2 .

when M > R, the time remains the same as for the point M = R (recall the
tradeoff is valid as long as M ≤ R). Note, a similar is true for MITM STD and
is denoted with coloured dots on the black line. For instance, when R = 2

n
4



(denoted in green), MITM STD is valid as long as M ≤ 2
3n
8 . For larger values of

M , the standard tradeoff does not actually follow the black line (the time does

not reduce), but the time remains the same as in the point M = 2
3n
8 .

Similarly, in Fig. 4, we can see a range of values T for which MITM NEW outper-
forms MITM STD in terms of memory. Note, both of the algorithms require minimal
time of T =

√
RN . Therefore, the lines start from the point T =

√
RN .
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Fig. 5. Dependency of the memory on the ratio, when the time is minimal (T =
√
RN),

between MITM NEW (in red) and MITM STD (in blue).

Finally, in Fig. 5, we show the dependency on the memory of the comparative
cost of the two functions, when the time is set to minimal, that is, when T =√
RN . When R = 1, then the Floyd’s algorithm requires no memory to find the

collision (denoted with a yellow circle at the point (0,0)). However, once R > 1,
the memory requirement of MITM STD immediately jumps to almost 2

n
2 (in blue),

whereas the memory of MITM NEW increases gradually (in red).


