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Abstract

In this paper we explore the intriguing factors involved in the non one-
one nature of the RC4, and explore new techniques and present interesting
findings regarding the same. The first part of this paper studies near
colliding keys of the RC4, and discusses how these keys are localized into
clusters in the key-space. The second part of this paper proposes a new
collision search algorithm specifically for 16-byte keys. It is generally the
practice to choose the byte that differs between two keys to be near the
end of the key. However, this is not necessary for 16-byte keys, and the
second part of this paper discusses how this may be used to grant us an
additional degree of control.
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1 Introduction

The RC4 stream cipher is one of the world’s most widely used cryptographic
systems. The most interesting aspects of it is its simplicity of its code, and it is
also very fast in implementation. However, several statistical weaknesses have
been found in the RC4 cipher [1, 10], but even today, in 2015, it remains the
most widely used stream cipher by volume of internet transactions.
One year after the specification of the RC4 was made publicly available, Andrew
Roos [18] made an observation that the initial few bytes of the output stream of
the RC4 had a significant correlation with the key being used. This observation
was exploited by many researchers in subsequent years. Mantin and Shamir [13]
mounted a distinguishing attack of the RC4 which showed that an attacker can
obtain many short-size output streams using randomized keys. Paul and Pre-
neel [17] later demonstrated that a distinguisher requires a total of 225 output
bytes (2 bytes per key, 224 keys in total). Further works were conducted on
this, such as by Mantin in 2005 [12].
The fact that the KSA permutation was not random had been observed by Paul,
Maitra and Srivastava in 2007 [16], which showed significant biases of each per-
mutation byte that are independent of the secret key. This led to follow-up work
in 2014 by Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul and Santanu
Sarkar where they thoroughly analysed these biases [19].
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The RC4 was suspected not to be one-one a long time ago [8], in fact, in 2008,
Sebastiaan Indesteege and Bart Preneel [9] modelled the RC4 as a hash func-
tion and looked for collisions. It was not until 2009 that the key-lengths were
brought down to feasible limits, when Mitsuru Matsui’s work [14] was published,
where he located a colliding 24-byte key, and a near colliding 20 byte key. Mit-
suru Matsui proposed a key collision algorithm for the RC4 stream cipher after
theorizing that the KSA algorithm was not one-one. This algorithm described
a particular pair of keys type, and he described a recursive algorithm to find
those near colliding keys.
The pair of keys Matsui chose differed in their last byte, with a hamming dis-
tance of 1, which is to say, if one key had in its last byte a value of x, the other
key would have x+1.
This recursive algorithm worked on choosing the best direction in which to
probe further, say a pair of key has been input into the search algorithm. The
algorithm first looks for +x/-x difference versions of the same keys at different
locations along the keys in order to find a near colliding key closeby. The KSA
is tuned to return the iteration number at which it is evident that a particular
pair of keys shall not (nearly) collide. Only the maximum returned values for
neighboring keys are investigated further, by recursively introducing these keys
into the same algorithm. This algorithm had fruitful results, and it resulted in
finding a 24 byte collision and a 20 byte near collision.
Jiageng Chen and Atsuko Miyaji have contributed significantly to the area of
RC4 key collisions as well, with their works in [3, 2] demonstrating that for keys
to collide, they need not have a hamming distance of one, but can collide with
various other hamming distances as well. In 2011, they proposed an alternative
algorithm [5, 4, 7] in which the difference was kept on the third last byte of the
key. This was done in order to be able to probabilistically bypass another round
of the KSA. They also suggested several modifications of the search algorithm
specifically tuned to finding collsions. The results of this was the discovery of a
22 byte near colliding key.
Another type of near collision from the ones discussed above are those that oc-
cur in the final keystream of the stream cipher. These have been discussed well
in [15].
Relations between keystreams of different keys due to either types of collisions
led to the mounting of several other attacks on the RC4 [6, 11], based on related
keystreams.
While the results of the papers on key collisions of the RC4 stream cipher that
were discussed above were all extremely interesting discoveries, they are a far
cry from the (near) collisions that actually matter, that is, for 16 byte keys,
which is the key-size used in practise by the RC4.
In this paper, we shall first discuss the distribution of the near colliding keys
in the keyspace, which we discovered during our tests. These discoveries were
further tested by applying them to a smaller scale RC4 to see whether similar
patterns are followed.
In the second part of the paper, we propose an algorithm of our own. This par-
ticularly tackles 16 byte keys, as it is the only kind that matters. The algorithm
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discussed shows improvements over prior algorithms, and may be used fruitfully
in the future to obtain collisions/near collisions for 16 byte keys.

2 Clustering of Near Colliding Keys

As stated previously, the RC4 stream cipher has been found to be not one-one
for keys of up to length 22, and near collisions (defined here as keys that generate
initial states that differ in not more than 2 positions) have been located for up
to length 20 bytes. Over here, we discuss the relations between near colliding
keys in the RC4 stream cipher.
Mitsuru Matsui proposed a collision search algorithm which helped him locate
one 24-byte colliding key and one 20 byte near colliding key. However, Matsuis
algorithm for collision search can be heavily modified to give faster results.
Chen-Miyaji in their 2011 paper applied several of those modifications, resulting
in a faster collision search algorithm, that which resulted in finding a 22-byte
key collision.
On using a modified version of Matsuis algorithm, we located several near-
collisions of 24 bytes. These collisions seem rather interesting, as they all form
in clusters. The clusters consist of key pairs that differ slightly from one another,
with the same key sum.
We found several near-colliding keys that occur in large clusters. The reason
for this is that modifying key bytes at two subsequent positions by +x and -x
yield related initial states, and is discussed in detail in the next section.
However the exact distribution of these clusters is of importance. This has also
been tested in this paper, in a later section, with a miniature RC4.

2.1 Clusters Observed

The clusters that were observed in searching the key space for 24 byte keys shall
be displayed in this section. Each key byte is represented in decimal, and not
in hexadecimal. This is for ease of reading.
The following table consists of a set of a few representative keys for each cluster
that we observed.

Cluster Key

1 0 220 185 236 240 98 223 61 227 188 157 75 72 185 209 237 43 229 154 55 89 155 208 45(46)
0 220 185 236 240 98 223 61 227 188 157 75 72 185 209 237 43 229 154 55 89 157 206 45(46)
0 220 185 236 240 98 223 61 227 188 157 75 72 185 209 237 43 229 154 55 89 158 205 45(46)
0 220 185 236 240 98 223 61 227 188 157 75 72 185 209 237 43 229 154 55 89 159 204 45(46)

2 0 225 212 184 215 64 244 111 72 42 66 123 214 117 46 234 137 79 241 136 48 44 91 130 (131)
0 225 212 184 215 64 244 111 72 42 66 123 214 117 46 234 137 79 241 136 48 30 105 130 (131)

3 0 225 12 100 229 115 244 48 129 32 3 40 114 86 58 232 127 79 185 241 66 235 91 128 (129)
0 225 12 100 229 115 244 48 129 32 49 250 114 86 58 241 118 79 185 241 66 151 175 128 (129)
0 225 12 100 229 115 244 48 129 32 11 32 114 86 58 246 113 79 185 241 66 150 176 128 (129)
0 225 12 100 229 115 244 48 129 32 11 32 114 86 58 246 113 79 185 241 66 174 152 128 (129)

Cluster 1 consists of roughly 58 keys that nearly collide, of which only a handful
has been shown here. Modifying the 2nd last and third last bytes of the key
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will give you many more near colliding keys. Also, some of these keys generate
initial states that match in almost 240 positions with the keys of a different near
colliding pair.
Cluster 2 is a sparse cluster, consisting of just 2 near colliding keys (more may
be found using a deeper search).
Cluster 3 is slightly denser than the previous one, and comprises of around 4
keys that have been located (more may be present).
These clusters are evident of certain facts. It is known that a change of +x/-x
in a key gives rise to related initial states. In fact, it was Matsuis initial idea
that key collisions would be found in making a key differ from another by +x/-x
on two different bytes of the key. But from the clusters that we have found,
we speculate that the key near-collisions, and perhaps even collisions, occur in
groups, owing to the related initial states, and the above observations.

2.2 Search Algorithm

The algorithm used to locate these clusters is described as follows:
1) Initialize a key, making sure that K[L−1] = 256−j, and K2[L−1] = 257−j.
L denotes the length of the key. The algorithm is so designed so that K[L− 1]
is not swapped out before i = L− 1. Although this requires the first L steps of
KSA to be performed, it is not done in the KSA. *
2) Search (K,K2)
3) y-for loop running from 0-255
4) nested within y loop, x-for loop running from 1 to L− 2
5) Alter K[x] as K[x] = K[x] + y. Do the same for K2[x].
6) Alter K[x + 1] as K[x + 1] = K[x + 1]− y. Do the same for K2[x + 1].
7) Run KSA on K,K2**
8) From return value of KSA, set a MaxS(as according to Matsuis algorithm).
9) end for loops
10) y-loop running from 0-255
11) nested within y loop, x-loop running from 1 to L− 2
12) Alter K[x] as K[x] = K[x] + y. Do the same for K2[x].
13) Alter K[x + 1] as K[x + 1] = K[x + 1]− y. Do the same for K2[x+1].
14) Run KSA on K,K2**
15) If the S-Value of the K,K2 pair is equal to MaxS, Recursively call Search(K,K2).
Recursive depth is set to 10.
16) end for loops

*If the K[L− 1] = 256− j and K2[L− 1] = 257− j step is done in the KSA, we
risk ruining the cluster, as any changes in the Key in the KSA function would
be reflected back to the Key in the search algorithm. This is because K[L-1]
needs to be fixed in a specific cluster.
**The KSA algorithm used here checks the number of steps of KSA that can
run before the initial states of the 2 keys differ by more than 2 positions, as
according to Matsuis algorithm. This can be made faster by a worst case of
O(2L) probability improvement, by setting specific conditions on j, as according
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to Chen-Miyajis 2011 paper. The function returns the value i − 1, and stops
KSA at the point where more than 2 initial states differ. If it survives all the
steps, it is printed as a collision / near collision, with the string distance.

2.3 Views

These clusters are evident of certain facts. It is known that a change of +x/−x
in a key gives rise to related initial states. In fact, it was Matsuis initial idea that
key collisions would be found in making a key differ from another by +x/ − x
on two different bytes of the key. But from the clusters that we have found,
we speculate that the key near-collisions, and perhaps even collisions, occur in
groups, owing to the related initial states, and the above observations.
Hence, it raises the question on whether one will be able to construct more
collisions/near-collisions from the collisions/near-collisions already located, or
develop a search algorithm that specifically looks through clusters when a certain
number of rounds of the KSA has been passed successfully.
In the following section, we shall attempt to test the clustering hypothesis on
key-spaces we can exhaustively search through, using a small-scale RC4.

2.4 Testing hypothesis using a smaller scale RC4

To test the clustering hypothesis which was formulated on the basis of the ob-
servations noticed for 24 byte keys, we ran a modified smaller-scale RC4 on
Matsuis key type. This was done for 2 key lengths, 7 word and 8 word, and
keys with word lengths of 32 bits.
As such, for this miniaturized RC4, the state array for the RC4 permutation
was also of length 32, and the KSA algorithm for this RC4 ran for 32 iterations
per call.
The 256 − j and 257 − j modification of the last word of the key during KSA
for Matsui’s algorithm that was suggested in Chen-Miyaji’s paper was trimmed
from the algorithm as the goal was an exhaustive search throughout the keyspace
in accordance with Matsui’s key type, and all such near collisions were enumer-
ated.
The columns of the following tables enumerate the number of near collisions for
a specific last word of the second key, ie, the key word that has been modified as
x, x+ 1 in the two keys used to compare for a near collision. The word depicted
by the columns is the x + 1 word. The rows are all the collisions for a specific
key sum.

For 7 word keys :
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The distributions are reminiscent of the distribution we had noticed for 24 byte
keys. Some relatively large clusters (of a fixed key sum, which implies small
changes to the individual words) interspersed with sparser clusters, while certain
regions are devoid of any near collisions.

2.5 Results of the Small Scale simulation

Once again, it is evident that the keys clearly appear in clusters. Among the
large number (256 for the 8 word case and 224 for the 7 word case) of possible
key sums, only a fraction of these are occupied by near colliding keys (47 for the
8 word case and 30 for the 7 word case). Moreover, the ones that are occupied
usually create large clusters around a specific last byte (the byte that has the
d/d+1 difference). These results are a clear depiction of the cluster distribution,
with many large clusters with thousands of near colliding keys, and various
sparse clusters, with only a few such near colliding keys. The distribution is
similar to what we had observed with the regular RC4 on 24 byte keys.
Another important observation was that no complete collisions were observed.
This may give us a reason to believe that Matsui’s approach isn’t the correct
way to look for collisions.

3 Faster Collision Search for 16-byte Keys

In all the search algorithms described so far, people have dealt with key sizes>16
bytes, and hence chosen to create the difference only in the last few bytes of the
key.
In Chen-Miyajis 2011 paper, they have devised a way to probabilistically skip
the second round of KSA, by modifying K[d+2], where d=L-3. However, it is
possible to almost deterministically skip the second round of KSA, by using the
difference in Key 1 and Key 2 on the 1st byte of the key. But this is viable
for only 16-byte keys, as for bigger key lengths, the first byte enters KSA an
additional round.
It is shown as follows :
K[0]=0, K2[0]=1
K[1] = L− d− 1 = L− 1
K[L− 1] = 2× L− ji=L−2 − s[L− 1]− s[L]−K[0] (mod 256)
By making this modification, the key almost deterministically (with a probabil-
ity of ( 255

256 )L−2) passes the 2nd round.
All of the conditions on j stated in Chen-Miyaji’s 2011 paper can also be modi-
fied in accordance to the difference being in the first byte, and imported to this
idea.
We are limited by today’s computer hardware in searching for key collisions of
16-bytes, and we hope this may be applicable in the future.
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3.1 Search Algorithm

The proposed algorithm is given as follows :
1) The random key generated is first pre-constructed, by setting K[L − 1] to
2×L− ji=L−2 − S[L− 1]− S[L]−K[0] (mod 256), during a mock L iterations
of KSA.
2) This key is then run through the same search algorithm proposed in the
previous section.
3) The KSA modifies the L-1th byte of the key according to K[L− 1] = 2× L
-ji=L−2 -S[L−1]−S[L]−K[0] (mod 256). This has to be done again as, during
the search through various modifications of the originally pre-constructed key,
this condition might not be maintained.

3.2 Results and Discussions

For the time, with the computation efficiency that is available to us, the algo-
rithm was run for 16-byte keys over 144 rounds of KSA (instead of 256). The
following results were found (within a few seconds).
0(1) 15 250 44 152 103 197 60 59 84 97 203 136 140 223 214
0(1) 15 41 205 255 35 142 97 160 194 154 15 207 20 218 219
0(1) 15 250 170 29 44 42 184 49 211 191 201 233 211 181 226
Many more such keys were located, many forming localized clusters, as was seen
in the previous section of this paper.

3.3 Comparison to previous algorithms

It is clear, that in comparison to the algorithm where the last byte of the second
key has the 1 bit difference, this algorithm runs 1 less round of the KSA
(where a round consists of L iterations, and L is the length of the key).
This is because by modifying the last byte of the key during the first round of
KSA, we almost deterministically (with a probability of ( 255

256 )L−2, similar
to the probability of the deterministic bypass claimed by Chen-Miyaji with the
modification 255-j) pass the second round of KSA (the first round is passed by
setting L-d-1 to the d+1th byte of the key, that is L-1 to position 1. In com-
parison, Matsui’s approach only passes the first round deterministically.
Passing an additional round in the KSA has a significant impact in the time
taken to find a solution. It is also clear that this algorithm runs better than
the last byte modification algorithm only when i%L==0, where i is the total
number of iterations of the KSA, as for other key lengths the first byte has to
undergo an extra round as it is. However, it seems completely pointless to find
near-collisions of any size apart from 16 bytes, as that is the size intended for
the RC4 stream cipher.
As 32 byte near-collisions are found too fast in both algorithms to have a basis
for comparison, we try 28 byte keys on a 252-iteration KSA. On an i5-3337u lap-
top processor, near collisions were found after over 10 seconds for the last byte
modification algorithm (Matsui’s, with a few tweaks taken from Chen-Miyaji’s
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proposed algorithm) and under half a second for the algorithm proposed
here.

In comparison to Chen-Miyaji’s probabilistic bypassing of the second round,
this algorithm performs better, as the probability for them to bypass the second
round is :

∏L−2
i=1

256−i
256

This is equal to 0.61 for a 16 byte key.
For our algorithm, the probability of passing this round is equal to ( 255

256 )L−2,
which is equal to 0.9467 for a 16 byte key, thereby making the likelihood 1.55
times more.
However, the probabilistic bypass of Chen-Miyaji’s algorithm could also be ap-
plied to our algorithm, as there are several available key bytes.

3.3.1 Applying Chen-Miyaji’s modification to our algorithm

If the last byte modification of our scheme is shifted to the second last byte, and
the modification of Chen-Miyaji’s paper, K[L−1] = j2L−3 - jL−2 -

∑L−3
i=0 K[i] -∑2L−3

i=L−1 SL−2[i] (Section 4.2 of [5] discusses this modification in detail) applied
to our algorithm, we obtain the following equations that need to be satisfied (k
is the length of the key).
(i)jL−3+K[L− 2]+SL−2[L− 2]+K[L− 1]+SL−2[L− 1]+K[0] + S[k] = 2× L

(ii)jL−3+SL−2[L − 2]+SL−2[L − 1]+2(K[L − 2] + K[L − 1])+
∑L−3

i=0 K[i] +∑2L
i=L SL−2[i] + K[0] = 3× L

Which basically boils down to satisfying the following equations :
(i)jL−3+K[L− 2]+S[L− 2] + K[L− 1] + S[L− 1] + K[0] + S[L] = 2× L

(iii)
∑L−1

i=1 K[i] +
∑2L

i=L+1 SL−2[i] = L
These need to be satisfied after the swap at i = L − 3, if we succeed, we
may probabilistically bypass another round, thereby leading to an improvement
nearly of the order of 2−8 over Chen-Miyaji’s algorithm.
The probability of successfully bypassing the second and third round combined is∏k+2

i=1
256−i
256 , Which comes to 0.504 for 16 byte keys, which is an improvement of

more than 211 times over Chen Miyaji’s algorithm. However there are additional
difficulties in making this work.
For this to work, we need to engineer enough swaps in the S-box within k+ 1 to
2k using the key-bytes available to us, such that both the above equations, i.e.
(i) and (iii), are satisfied. However, this is not always possible, and may require
re-initiation of keys till a satisfying pair is found.

3.4 Complexity Analysis

When we modify the last byte of a key and look for a near-collision, we need a
swap to occur at an exact position in the initial state. This means that K[15]
needs to swap with K[31] for the near collision to propagate forward. For a 16
byte key, round 1 is bypassed automatically. Thereafter K[31] needs to swap
with K[47], and there are 28 other possibilities. 14 such rounds need to be
passed, making the complexity of finding a near collision 2112 for 16-byte keys.
However, for the first byte modification algorithm proposed here, the number
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of rounds that need to be passed is 13, which gives rise to a probability of 2104

for 16-byte keys, an improvement in the order of 28. Also, 3 of the 16 key
bytes are fixed now, as compared to 2 in the last byte modification algorithm,
which means the number of bytes that are to be randomly generated is reduced,
thereby reducing the search space.
On applying Chen-Miyaji’s modification to the algorithm, we probabilistically
bypass another round of the KSA, which leads to a probability of 296.28. This
is the best result for finding near colliding keys of length 16 bytes.

3.5 Other observations

The small-scale RC4 was also used to test our proposed search algorithm.
The first byte difference algorithm was also tested in comparison to Matsui’s
algorithm. The search was exhaustive, and the probabilistic steps of K[L − 1]
= 256-ji=L−2 (mod 256) for Matsui’s algorithm and K[L-1]= 2× L− ji=L−2 −
s[L− 1]− s[L]−K[0] (mod 256) for the algorithm proposed in this paper were
removed. The results gave us around 500000 near colliding keys among 235

candidate pairs for Matsui’s algorithm, and nearly 300000 near colliding keys
among 230 candidate pairs for our algorithm, which gives us a 19.2 times better
probability of near collision for our algorithm.

4 Conclusion

From the facts discussed in this paper, we notice two primary things.
1) Near Collisions occur in clusters. This is most likely due to the nature of
generating related permutations when a key is modified at two locations with
+x and −x.
2) The first byte of a key offers us control over one extra round of the KSA. This
may be properly utilized in the future to generate collisions and near collisions
of 16-bytes, which is the key-length that actually matters, and has eluded us so
far.
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