Leakage-Abuse Attacks against Order-Revealing Encryption

Paul Grubbs*, Kevin SekniqiT, Vincent Bindschaedleri, Muhammad Naveed§, Thomas Ristenpart*
*Cornell Tech TCornell University tyrue Susc

Abstract—Order-preserving encryption and its generaliza-
tion order-revealing encryption (OPE/ORE) allow sorting,
performing range queries, and filtering data — all while only
having access to ciphertexts. But OPE and ORE ciphertexts
necessarily leak information about plaintexts, and what level
of security they provide in practice has been unclear.

In this work, we introduce new leakage-abuse attacks
that recover plaintexts from OPE/ORE-encrypted databases.
Underlying our new attacks is a framework in which we cast
the adversary’s challenge as a non-crossing bipartite matching
problem. This allows easy tailoring of attacks to a specific
scheme’s leakage profile. In a case study of customer records,
we show attacks that recover 99% of first names, 97 % of last
names, and 90% of birthdates held in a database, despite all
values being encrypted with the OPE scheme most widely used
in practice.

We also show the first attack against the recent frequency-
hiding Kerschbaum scheme, to which no prior attacks have
been demonstrated. Our attack recovers frequently occurring
plaintexts most of the time.

I. INTRODUCTION

Due to frequent data breaches and broad interest in out-
sourcing data to the cloud, companies increasingly want
to encrypt sensitive information before storing it in local
databases or uploading to services operated by third parties.
Standard encryption mechanisms would, however, reduce
the value of these databases and services by preventing
them from doing useful operations on the data. A seeming
solution is to use so-called property-revealing encryption
(PRE) schemes that allow limited operations over ciphertexts
by making public specific properties of plaintexts. Systems
based on PREs are already used in industry [3, 13, 36, 43]
and increasingly studied in the academic literature [3,20,24,
28,38,39].

A widely desired property to preserve is order. This allows
sorting, as well as range and prefix search queries, which
are needed to support other server-side operations. Order-
preserving encryption (OPE) [1, 5] ensures that & (m1) <
Er(msg) for my < my and & the encryption algorithm.
By allowing standard comparison operators directly on ci-
phertexts one can easily integrate OPE into systems, and
many have done so [3, 13, 36, 38, 43]. A generalization of
OPE is order-revealing encryption (ORE) [7] which reveals
ordering relations by way of a public comparison function
that operates on pairs of plaintexts.

What level of security OPE and ORE schemes achieve
is poorly understood. Boldyreva et al. [5, 6] explicitly warn
about the uncertain security of OPE. When encryption is

deterministic, no security is achieved should an encrypted
dataset include all possible plaintexts. (Simply sort the ci-
phertexts and their order reveals the plaintexts.) A recent
study by Naveed, Kamara, and Wright (NKW) [34] empir-
ically explores the security of deterministic OPE and ORE
schemes when not all possible plaintexts appear in the target
dataset. They exploit inference attacks: using some auxiliary
information about the distribution of plaintexts, the adversary
abuses the order and frequency of plaintexts preserved within
a sequence of ciphertexts to recover as many plaintexts as
possible. Their best performing attack, called the cumulative
attack, worked well to recover data that lies within small
domains, such as days of the year (365 possible values).

Intuitively, their attacks perform well when most possible
plaintexts appear in a target dataset, seeming to limit their
applicability when plaintexts are from large domains. The
NKW cumulative attack also scales poorly, requiring time
O(n?), where n is the greater of the number of unique items
in the ciphertexts or auxiliary data. All this leaves open the
possibility that OPE and ORE schemes remain secure in
practice for plaintext data drawn from larger domains, and
practitioners could simply avoid using OPE for small-domain
data. Indeed researchers have suggested exactly that approach
as a hedge against known attacks [17].

Our contributions. We develop new attacks that target,
in aggregate, all suggested OPE/ORE schemes, and show
their efficacy against plaintexts drawn from larger domains.
Our attacks come in two flavors: generic, like the NKW
attack, and scheme-specific. Generic attacks work against any
scheme that leaks frequency and order information. We also
introduce the first scheme-specific attacks that exploit addi-
tional leakage about plaintexts. These latter attacks cover the
OPE scheme most widely used in practice, due to Boldyreva,
Chenette, Lee, and O’Neill (BCLO) [5]. Finally, we provide
an attack against the recent frequency-hiding scheme of
Kerschbaum [25].

We use as a running case study an encrypted customer
record database, a frequent scenario for these encryption
technologies in industry. We utilize a variety of public
datasets as stand-ins for the kind of data targeted in an
attack, including such customer attributes as first names,
last names, ZIP codes, and birthdates. These attribute types
come from domains much larger than those considered in
the prior work; for example there are hundreds of thousands
of unique first names, tens of thousands of birthdates (across



Scheme(s) First names Last names
Kerschbaum [25] 30% 7%
Popa et al. [37], Kerschbaum [26] 84% 38%
BCLO [5,6] 99% 97 %
CLWW [12] 98 % 75%
BCLO + CLWW [12] 85% 44%
Baseline Guessing 5% 1%

Figure 1: Average recovery rate of plaintexts (in percent of all target
ciphertexts) across all first and last name datasets for our best attacks
against the indicated OPE/ORE scheme(s). The last row indicates
the recovery rate given by just guessing the most likely message
for each ciphertext. We have bolded those attacks that fully recover
more than half the plaintexts, on average.

a given century span), and tens of thousands of unique ZIP
codes in the United States. We identify distinct public data
sets that can be used as auxiliary information in inference
attacks.

Generic attacks and non-crossing matching. We first
revisit the NKW attack, which is generic in that it works
against any scheme that reveals plaintext frequency and order.
Its accuracy in our customer record case study is relatively
poor. For example, it recovers on average 44% of encrypted
first name records but this accounts for only 5% of the
unique first names in the data set, meaning the attack only
recovers a small fraction of the high-frequency elements of
the distribution. The attack is also relatively slow, requiring
six hours for the Fraternal Order of Police dataset on a well-
provisioned cluster.

We explore their attack in more detail, and point out some
limitations of their approach. Their most accurate attack,
called the cumulative attack, casts the adversarial task as
solving a linear sum assignment problem. This approach,
however, typically yields solutions that violate adversarially
known ordering constraints, outputting a guess that ciphertext
c1 encrypts plaintext p2 and ciphertext cy encrypts plaintext
p1, yet ¢1 < cg and pa > p;.

We observe that the adversary’s goal can be cast as a
classic graph problem: a min-weight non-crossing bipartite
matching. One set of nodes consists of ciphertexts and the
other possible plaintexts, and the edges are weighted using
frequency information. Non-crossing refers to the fact that
we want the solution to abide by the adversarially known or-
dering constraints. Unlike the NKW attack, our non-crossing
attack takes fuller advantage of frequency and order infor-
mation. We use a classic algorithm [32] to solve the min-
weight non-crossing matching problem, and its runtime is
both asymptotically and concretely better than the NKW
approach.

We show that our non-crossing attack achieves signifi-
cantly better accuracy, for example it recovers on average
84% of first names in our target encrypted datasets, about
a 2x improvement over NKW. High-frequency plaintexts are

particularly at risk: our attack recovers on average 95% of
the 20 most frequent first name plaintexts, and 88% of the
20 most frequent last names. The non-crossing attack runs in
only a few hours, even for the largest target dataset, where
the induced matching problem has over 17 billion edges.

Exploiting further leakage. The attacks so far are generic,
and do not take advantage of the additional leakage exhibited
by the OPE schemes used in practice. The most widely used
scheme is due to Boldyreva, Chenette, Lee, and O’Neill
(BCLO) [5], because it is fast, easy to deploy, and has
ciphertexts that are only a few bits longer than plaintexts. It’s
been proven secure in the sense of indistinguishability from
a random order-preserving function, but this provides only
modest guarantees: prior work has shown that for a uniformly
chosen plaintext, the corresponding ciphertext leaks almost
the entire first half of the plaintext [6]. Despite widespread
deployment of BCLO, the implications of this leakage for
real datasets has not been studied.

We rectify this, showing that in practical scenarios using
the BCLO scheme to encrypt a set of first names, for exam-
ple, allows an attacker to recover almost half the data set.
The leakage is even worse for last names, with almost 97%
of last names trivially recoverable. A key issue making this
leakage so damaging is that varying-length plaintexts must
be padded to the maximum length plaintext, ensuring that
shorter messages completely reside in the leaked first half
of the padded plaintext. We emphasize that exploiting this
leakage does not require mounting an inference attack, rather
an adversary simply can inspect ciphertexts, perform a few
elementary calculations, and produce (most) plaintexts.

That said, our graph-based viewpoint on inference attacks
allows us to easily combine this leakage with inference to
improve recovery rates further. We adapt our non-crossing
attack to first compute the leakage implied by [6], use it
to exclude matchings that cannot occur, and then solve the
resulting, narrower non-crossing matching problem. The re-
sulting attack allows us to recover on average 99% of first
names, more than doubling the recovery rate over using the
BCLO leakage alone without inference.

We also apply our approach to exploit the leakage of the
more recent Chenette, Lewi, Weis, and Wu (CLWW) [12]
ORE scheme. The leakage of CLWW is different than that
of BCLO, and they argue that their scheme may be more
secure: CLWW prove that for uniform randomly distributed
messages, their scheme’s leakage is asymptotically less than
the BCLO leakage. They also propose that security may be
further improved by composing an OPE scheme with their
ORE scheme. We apply our framework to both the CLWW
scheme and the composition of BCLO with CLWW, and
show that, unfortunately, CLWW provides an equivalently
poor level of security as compared to BCLO in the settings
we consider. Interestingly, some plaintext distributions are
particularly bad for CLWW leakage: for example, our attack



against BCLO does not perform well on ZIP codes (achieving
12% recovery rate), but on CLWW our attack recovers 97%
of encrypted ZIP codes. Composition of the two schemes
does decrease attack accuracy, but is still far from providing
acceptable security.

Exploiting known plaintexts. Our attacks, as well as the
NKW attack, assumes a relatively weak adversary that only
obtains ciphertexts, but has no information about any specific
plaintext values. As we discuss in detail in the body, in real-
world deployments many systems relying on OPE/ORE offer
attackers the ability to mount known- or chosen-plaintext
attacks. We show how to extend our attack framework to
take advantage of known plaintexts by simply partitioning
the attack problem based on the known values and running
an attack against each resulting sub-problem independently.
As the BCLO and CLWW attacks already recover most
plaintexts, we see how well this partitioning approach would
help our generic non-crossing attack. Knowing some small
percentage of plaintexts provides a modest improvement for
first names and last names, but a huge boost for birthdates
and ZIP codes.

Attacking frequency-hiding schemes. The attacks men-
tioned above work against schemes that at least leak both fre-
quency and order, but Kerschbaum [25] recently introduced
a scheme that hides frequency information. Here there is no
prior work, as the NKW attacks do not apply to frequency-
hiding schemes, and our non-crossing attack framework also
does not apply. We propose a new “binomial” attack that
performs reasonably well, recovering on average 30% of first
names and 7% of last names. Notably, it recovers the majority
of high-frequency plaintexts (despite not having frequency
information leaked), suggesting these plaintexts are particu-
larly poorly protected by any order-revealing scheme.

Newer ORE schemes. The ORE schemes we consider have
been defined as having a public, unkeyed, noninteractive
procedure the server can use to reveal the order relation-
ship between the underlying plaintexts of two ciphertexts.
Recently, a new line of work [16,30,41] explore schemes at a
different point in the design space. These schemes are more
similar to searchable symmetric encryption (SSE) in that a
user must generate a query-specific trapdoor, or complete
multiple rounds of interaction, to perform a range query on
ciphertexts. Unfortunately there are currently major impedi-
ments barring deployment of these schemes in practice (see
Section IX). Our results may encourage systems designers to
consider them in greater earnest.

Summary. We are the first to explore the security of OPE
and ORE schemes when used with plaintext data types that
were, before our work, not known to admit attacks. What’s
more, our case study of customer data is representative of
common industry practice. Underlying our new results is a
framework for constructing attacks based on min-weight non-

crossing bipartite matching, which allow for easy extensibil-
ity in the face of leakage beyond frequency and order. Most
importantly for current industry practice, our results show,
for the first time, how the leakage of the BCLO scheme
would enable recovery of essentially all plaintexts encrypted
in typical customer record databases. Suggested practical
alternatives such as the CLWW scheme, or the composition
of it with BCLO, do not fare much better. See Figure 1 for
a high level summary of our quantitative results for first and
last names.

Our results offer guidance to practitioners about the secu-
rity level offered by OPE and ORE schemes. While obviously
using property-revealing encryption is better than leaving
data in the clear (in some settings the only viable alternative
currently), our work indicates that the security benefits of
deployed schemes is quite marginal.

In terms of countermeasures, an obvious suggestion is to
move towards less leaky schemes, such as those that only
reveal order, including Kerschbaum’s scheme and the more
recent Boneh et al. scheme based on multilinear maps [7,
29]. Unfortunately in most settings there exists inherent
challenges to deployment of these schemes. Kerschbaum’s
scheme is relatively efficient, but requires client-side state
which impedes scaling. The Boneh et al. scheme has cipher-
texts larger by 10 orders of magnitude than BCLO ciphertexts
and requires tens of minutes to compute encryptions. Even
s0, our attack against such frequency hiding schemes shows
that for common use cases the high frequency plaintexts may
nevertheless be revealed to attackers.

II. PRELIMINARIES

Basic notation. Let D be a set and let its size be denoted by
s = |D|. We assume some total ordering of elements in D.
Let D be a sequence of elements (di,...,ds), where each
d; € D.For 1 <1 < s, we define the histogram function for
D to be the function Hp (¢) that outputs the number of times
the i element of D appears in D, divided by s. For 1 <
J < s, we define the cumulative distribution function (CDF)
for D to be the function Fp(j) = (3°7_, h;)/s, where h; is
the number of occurrences of the ¢th element of D. Observe
that one can represent histograms and CDFs linearly in the
number of unique elements in D. Below, we will use both
“birth date” and “birthdate” to refer to the month, day, and
year of an individual’s birth.

Order-preserving and revealing encryption. An order-
preserving encryption (OPE) [1,5] E allows encrypting data
under a secret key k such that Ex(m1) < Ex(me) for any
my1 < meg. We focus primarily on deterministic schemes,
meaning & defines a function. The benefit of OPE is that
existing comparison operations will work transparently on
ciphertexts, thus providing a drop-in way to replace plaintexts
with ciphertexts while preserving the ability to perform order
comparisons, range queries, etc. Order-revealing encryption



(ORE) [7] does not allow an existing comparison operator
to work on ciphertexts, but instead comes with a public pro-
cedure that can determine the order of two plaintexts given
only their two ciphertexts. Again, we will focus primarily on
ORE schemes that are deterministic.

PRE-based systems. OPE and ORE are examples of what
we refer to as property-revealing encryption (PRE) schemes.
PRE schemes encrypt data while allowing limited compu-
tation over the revealed plaintext properties. A motivating
scenario for PRE schemes is in client-server systems where
one wants to perform encryption on the client side but take
advantage of the server performing some operations on the
client’s behalf. In a PRE-based encrypted database, for exam-
ple, OPE is often used to enable certain kinds of expressive
SQL-like queries on encrypted data. The standard database
functionality in such a system is extended and modified by
a database proxy, which rewrites queries and performs en-
cryption/decryption on behalf of database clients. The clients
are often application servers (acting on behalf of human
users) which address the database proxy as though it were the
database. Example PRE-based databases include IQrypt [22],
CryptDB [38,40], and Cipherbase [3].

Another concrete application arises with security-
conscious businesses that use network middleware to encrypt
and decrypt data as users interact with cloud software-as-
a-service (SaaS) applications. Such “encryption proxies”
are similar to the database proxy described above, except in
most cases it cannot change the way the SaaS application
works. PRE schemes including OPE and ORE become
useful to ensure stored data does not break (some) useful
cloud functionality. Commercial products from Skyhigh
Networks [43], CipherCloud [13], and Perspecsys [36] are
examples.

In all these deployment settings, a minimal security re-
quirement is the confidentiality of plaintext data in the face
of attackers that obtain access to a PRE-encrypted database,
e.g., by compromising a server or obtaining insider access to
it.

Types of ORE/OPE schemes. OPE and ORE schemes
come in several flavors that affect their deployability in the
above application scenarios. Unlike the OPE/ORE schemes
mentioned above, some schemes require state beyond the se-
cret key to be stored with the client. This state can potentially
be held by proxies on behalf of clients, but regardless com-
plicates scaling to large numbers of clients. These schemes
are mutable: ciphertexts might change as more values are
added to a database. They are also interactive, requiring
multiple rounds of communication between the client and
server to store or retrieve ciphertexts. Examples of such
schemes include [25,26,37].

Statefulness, mutability, and interactivity all hinder de-
ployability. The reason to consider such schemes is that
the more deployable stateless schemes (e.g., [5]), which

are the only ones currently used in practice, leak more
information about plaintexts than just ordering and frequency
information. We will only consider these more advanced
schemes in Section IV and Section VIII.

III. OVERVIEW AND METHODOLOGY

To experimentally evaluate OPE and ORE security, we fix
a methodology in which we empirically evaluate security
using public datasets as stand-ins for sensitive plaintexts.
Prior work by NKW focused on medical settings, where a
database of patient data was outsourced in encrypted form.
The attributes (columns) of the databases they considered
had plaintext values falling within small domains, the largest
being the days of the year (365 possible values). We want to
explore security for larger domains where it is not known if
effective attacks can be mounted.

Customer records as case study. We therefore fix a
running case study of an outsourced database of customer
information. In industry currently, OPE is used to encrypt
customer records before uploading to cloud services such as
Salesforce. A client (sometimes an encryption proxy acting
on its behalf) takes as input plaintext records, encrypts their
attributes independently, and uploads them to a cloud service
using (often) an existing API. While customer data can take
on a number of forms, we focus particularly on a subset:
(1) first name, (2) last name, (3) US ZIP code, and (4)
date of birth. All such attributes benefit from server-side
processing that takes advantage of the ability to compare
plaintext ordering, and OPE in industry is used to encrypt
such data for exactly this reason.

We restrict our attention to male first names, because
research on inference attacks has shown that the binary
“gender” attribute cannot be hidden by any PRE scheme [34].
Partitioning database records based on gender would be a
trivial preprocessing step to remove some uncertainty about
the underlying plaintexts of encrypted values. To model real
adversaries as closely as possible, we perform this prepro-
cessing as well.

In these contexts, revealing plaintext order to servers en-
ables a variety of server-side operations. Sorting is the most
obvious, and for names this allows sorting alphabetically. It
also allows range queries, such as finding all names starting
with “A”, “B”, or “C”. Perhaps more subtly, OPE enables pre-
fix searches over ciphertexts, so one could search for “Dav*”
and retrieve Dave, David, Davik, etc. Date of birth and ZIP
codes also benefit from such range and prefix searches be-
cause prefixes have structural meaning. For example, query-
ing “606*” gives all ZIP codes associated with the city of
Chicago. Together, all this allows preserving functionality on
the server-side, in some cases allowing drop-in replacement



of plaintext data with encrypted without modifying server
implementations at all.

Threat model. We investigate the security of OPE/ORE
encrypted attributes when an adversary obtains a one-time
snapshot of the encrypted database. Our attacks will target
each attribute (column) independently (i.e., we won’t use
information about the encrypted last name column to help
improve recovering first names). Exploring the benefit of
such cross-column attacks in this setting remains an inter-
esting topic for future work. So our attacks will consider
an adversary that obtains a sequence C' = (cy,...,¢p) of
encryptions of one column of data. Here ¢; = & (m;) for
some unknown plaintext m; and encryption scheme £. The
key k remains unknown to the attacker, and we assume it
is intractable to recover it. The passive adversary can take
advantage of auxiliary information about the distribution
from which plaintexts are drawn. This is the same attack
setting as considered by NKW.

We also initiate investigation of stronger adversarial mod-
els. In Section VII we consider non-adaptive known-plaintext
attacks. In these, a subset of the n plaintexts are known by
the adversary. Despite not being considered in prior attacks
on OPE/ORE, we believe known-plaintext attacks are likely
to be prevalent risks in practice. As we discuss in Section VII,
for example, attackers in many contexts can obtain (perhaps
indirect) access to an encryption oracle before compromising
the encrypted database. We will not examine chosen-plaintext
attacks in great detail, though our known-plaintext attacks
clearly work in this setting as well.

In all attacks the adversary finishes by outputting a list of n
ciphertext, plaintext pairs indicating the attacker’s guesses.
We measure success in several ways. The raw recovery rate
is the fraction of n records that are mapped to the correct
plaintext. For deterministic encryption schemes, this means
that if we can correctly infer the mapping between the
ciphertext for “Michael” and the correct plaintext, and this
ciphertext accounts for (say) 4% of the database, then our raw
recovery rate will be at least 4%. We therefore also report on
unique recovery rate, which is the fraction of unique plaintext
values recovered correctly. Finally, neither of these measures
indicate how much partial information may arise, since the
attacker gets no credit for mapping an encryption of the
birthdate “19620105” to “19620106” despite the fact that this
leaks a lot of information. We report on prefix recovery rate as
the average, over the n data items, of the length of the prefix
that matches between the correct plaintext and the one output
by the adversary. Note that prefix accuracy for birthdates has
an important caveat: all our target birth dates occurred in
the twentieth century, so the baseline prefix accuracy is 25%
(because the first two characters are always “197).

Data sets. We use a number of datasets to drive our simu-
lated attacks. We have two kinds of datasets, target datasets
and, when used, auxiliary data sets. The latter is given to the

Dataset # 1st names # Last Names Total Records
FOP (FOP) 3,862 116,677 621,662
California Muni (CALC) 3,777 59,935 255,956
Washington (WA) 3,525 67,206 228,934
Texas Compt. (TXCOM) 2,416 33,802 149,678
Florida (FL) 2,091 32,986 112,566
Maryland (MD) 2,551 36,698 111,183
Connecticut (CT) 2,016 30,623 77,613
New Jersey (NJ) 1,964 29,094 73,119
Towa (IA) 1,734 22,616 60,035
Ohio (OH) 1,440 21,034 58,792
Texas A&M U. (TXAMU) 1,466 11,437 25,192
North Carolina (NCAR) 696 3,688 6,976
Tllinois (IL) 243 1,021 1,259

Figure 2: Unique and overall record counts for our target datasets
that include first and last names.

adversary in the clear to provide it an empirical estimate of
the target dataset’s distribution.

For target first and last name data sets, we used a mixture of
municipal, state, and public university government employ-
ees, publicly published by the government. We additionally
use the database dump from the Fraternal Order of Police
(FOP) breach.! This includes 623,372 records on police
officers for which all rows contain both first and last names,
237,392 rows contain birthdates, and 617,280 contain ZIP
codes. There are 22,485 unique birthdates and 26,914 unique
ZIP codes. A summary of the datasets is given in Figure 2.

The distributions observed in these datasets are non-
uniform. The most common first name appeared in 4.06%
of records on average across all the datasets (with variance
0.29% across data sets). The most common last name
appeared in 0.8% of records on average across all datasets
(with variance of 0.04%). This translates to an empirical
min-entropy of 4.63 bits for first names and 7 bits for last
names, on average. For the FOP data set, the most common
ZIP code appeared in 0.09% of the records (7.6 bits), and the
most common birth date in 0.01% of records (11 bits). For
reference, password leaks often indicate min-entropies of
about 6-7 bits [8]. The maximum accuracy of the baseline
guessing attack, in which the most frequent element of the
auxiliary data is matched to every ciphertext, was 5.0%
for first names from the Connecticut dataset and 1.2% for
last names from the North Carolina dataset. Below we will
consider first and last name datasets as subsets of the set
of all alphabetical strings less than or equal to some fixed
length. The effect of this is that our first and last name
datasets are quite sparse.

Most of our attack simulations require auxiliary data. We
restrict ourselves to publicly available data that would be
easy for any attacker to obtain, and do not consider scenarios
where an attacker obtains, say, an earlier version of the same
database. Our auxiliary data for experiments on first names is
statistics for baby names gathered by the US Social Security
Administration [46]. For our experiments, we used a year-by-

IFor privacy reasons we will not include links to these datasets, but they
are available from the authors by request.



year tally of the most popular American male first names for
the years 1945 to 1993. For experiments on last names, we
used statistics gathered by the US Census Bureau during the
2000 census on the exact frequency of last names for every
person who filled out the census that year [45]. The census
data included 5,023 and 151,672 distinct first and last names,
respectively.

Our auxiliary data for birth dates came from the American
Community Survey (ACS) 2013, a yearly survey conducted
by the US Census Bureau. First, since our target dataset
is a database of law enforcement union members, we used
the 2013 American Community Survey (ACS) to compute a
histogram for the ages of all respondents who marked “law
enforcement” as their current line of work. Using known
statistics on birth month frequency we synthesized an accu-
rate distribution for birth dates with per-day granularity for
all days between 1920 and 1999.

Our auxiliary data for ZIP codes is a list of the reported
population of each assigned ZIP code according to the 2010
census. The frequency of a ZIP code in the auxiliary data
was computed as the proportion of the total US population
living there. Intuitively, it seems like the distribution of ZIP
codes in a nationwide database like the FOP dump will be
similar to the distribution of people into ZIP codes because
more populous areas will likely have more police officers,
and therefore more FOP members. However, we note that
the two distributions are not particularly well-correlated and
that our attacks below would probably be more effective with
better auxiliary data.

For large, sparse domains like the ones considered here,
it is possible for a target datum to be “un-recoverable”
according to our accuracy metrics for attacks with auxiliary
data, meaning its underlying plaintext does not exist in the
auxiliary data. For birth dates and ZIP codes this is not the
case, but it is for first and last names. On average for our
datasets, above 99% of first name records are recoverable
but only 91% of unique first names are. For last names, only
89% of records and 71% of unique values are recoverable on
average. Below, we will not correct our results to account for
this artificial cap on attack accuracy, since a real adversary
would likely face this same problem. This is in line with
our very conservative approach to auxiliary data overall.
However, in Section V we will evaluate an attack that does
not require auxiliary data, so this limitation does not apply
there.

IV. THE NON-CROSSING ATTACK

In this section we recall the NKW cumulative attack which
can work against OPE and ORE schemes that leak both
frequency and order. This includes all deterministic OPE
schemes, including [5,12,26,31,37].

We discuss some limitations both in terms of efficiency
and accuracy of their attack, and suggest a new attack that
performs significantly better. We call this the non-crossing

attack. It works for any scheme for which the original NKW
cumulative attack works, and it also will be what we build
off in later sections when we take advantage of more leakage
and stronger adversarial models.

Attack setting. In this section, we follow NKW and con-
sider known-ciphertext attacks with auxiliary information,
but no knowledge of any plaintexts. More precisely, an at-
tacker obtains a sequence of ciphertexts C' = (¢1,...,¢y)
for ¢; = Ek(m;). Plaintexts may repeat and are drawn
according to some (typically unknown) distribution p,,, over
a message space M. The attacker additionally has auxiliary
information about p,,, which in practice is simply a sequence
Z = (#1,...,2yp) of plaintexts that is believed to be drawn
from M using a distribution close to p,,. For our datasets, it’s
always the case that n < 1. The attacker outputs a guess of
each ciphertexts’ plaintexts, and we measure success as per
the three recovery rate types defined in the previous section.

The NKW attacks. NKW describes two attacks against
schemes which leak order and frequency: the sorting attack
and the cumulative attack. The sorting attack simply sorts
C and Z and matches the i largest element of C' to the
i largest element of Z. When the target data is sparse, or
when |C| # |Z| (as is the case for our datasets), this attack
performs poorly, so we will not consider it further.

In the cumulative attack, NKW models the inference task
as a linear sum assignment problem [9]. We find it conceptu-
ally simpler to cast the problem NKW solves in the language
of graph algorithms. Let G = (U, V, E') be a bipartite graph
where every vertex in U corresponds to a distinct ciphertext
and every vertex V' corresponds to a plaintext value in the
auxiliary data. Thus n = |U| and ¢ = |V|. For v € U and
v € V, the edge (u,v) € FE is labeled according to a cost
(or weight) of mapping ciphertext u to auxiliary datum v. A
matching for G is a subset of edges for which no two share a
common vertex. For our context, any matching is a potential
decryption of some or all of the target ciphertexts. Finding
a minimum cost (equivalently, maximum weight) matching
should help an attacker obtain a good solution.

NKW explore the following approach to labeling edges.
Given a ciphertext sequence C' and a side information se-
quence Z, their attack lets edge (i,7) € U x V have label
given by

w(i, j) = [Ho(i) =Hz (§)* + [Fe (i) = Fz()P (D)

where H and F are as in Section II. The attacker seeks a
minimal-cost bipartite matching of the graph G, one that
contains an edge for each node in U. To do so they use the
Hungarian algorithm, padding if necessary U with dummy
nodes until |U| = |V|. The algorithm runs in time O(¢)?).

NKW also briefly discuss labeling edges with only the
square distance of CDFs, but they conclude that using CDF




and frequency as in Equation 1 performs substantially better.
We therefore only use the latter in our experiments.

Limitations of the cumulative attack. NKW show that
the cumulative attack can effectively recover plaintexts, albeit
only ones from relatively small domains. The largest message
space they consider is 365 elements (days of the year).
This has left open the question of whether plaintexts drawn
from larger domains might still be secure when encrypted
under OPE. Unfortunately the performance of the attack is
prohibitive for large datasets such as the last name, birthdate,
and ZIP code datasets we consider in this paper.

We observe that there exists a classic greedy heuristic that
works to find min-cost bipartite matchings efficiently [4,9]. It
just takes the minimum cost for each ciphertext individually,
and gives a 2-approximate solution in time O(n). In exper-
iments we have observed that this heuristic often produces
fairly accurate approximations. For first names, the average
gap between the cumulative attack’s recovery rate and the
greedy heuristic’s recovery rate is 14%. Below we will refer
to the attack that finds the matching with the greedy heuristic
as “NKW greedy”.

The NKW attack, when using either the exact Hungarian
algorithm or greedy approximation to find the matching,
does not necessarily enforce adversarially-known ordering
constraints on plaintexts. The algorithm can obtain solutions
from the Hungarian algorithm that include edges that “cross”,
i.e. ciphertext ¢ is mapped to p’ and ciphertext ¢’ is mapped
to pbut ¢ < ¢ and p’ > p. In fact, the NKW attack
violated ordering constraints in every one of our experiments
on real datasets. One can avoid such crossings by labeling
edges with just the square distance of CDFs, but as mentioned
this performs poorly. We therefore seek a way to avoid
violating ordering constraints, while still taking advantage of
the available frequency information.

The non-crossing attack. We introduce what we refer to as
the non-crossing attack. An attacker can avoid crossings in
their solution by solving a max-weight non-crossing bipartite
matching problem on the graph G. Since ordering constraints
are encoded into the matching algorithm, we will not include
any ordering information in our edge labels. Rather, we will
use the L1 distance of frequencies. For ciphertext 7 and
auxiliary datum j, the labeling function is
w(i, j) = o —[Ho(i) —Hz (j)]

where « is a fixed constant parameter that converts a min-
cost problem into a max-weight problem. In our context,
any choice of & > 1 will not change which matchings are
maximum-weight, so the solution to the inference problem
will be the same for any « > 1. Different choices of o will
change what that maximum weight is, but for our purposes
this is inconsequential.

This approach also significantly improves computational
performance over NKW: there is a well-known dynamic-

programming approach that runs in time O(n) to find the
optimal non-crossing matching [32].

Results. We compare the non-crossing and cumulative at-
tacks for our customer record datasets detailed in Section III.
We could not scale the NKW’s use of the Hungarian algo-
rithm to complete in reasonable time for last name, birthdate,
or ZIP code datasets. With the largest last name dataset,
we estimated the NKW attack would have taken roughly
one hundred days to complete a single experiment on the
well-provisioned compute cluster we used for the first name
experiments. The Hungarian algorithm is highly nontrivial to
parallelize, compounding its scalability issues. For last name,
birthdate, and ZIP codes, we will compare our non-crossing
attack to the NKW greedy attack. For first names, we will
compare the non-crossing attack with the exact Hungarian
algorithm.

Figure 3 compares the success of the two attacks for first
names (left bars) and last names (right bars), showing raw
recovery rates for each dataset. The non-crossing attack al-
ways performs strictly better than NKW’s cumulative attack,
and some times substantially so, nearly doubling the average
recovery rate (44% vs. 83%) for first names and septupling
(5% vs. 38%) the average recovery rate for last names.
When taken as percentage of the “recoverable” names (those
plaintexts that also appear in the auxiliary data), on average
we recover 84% of first names and 42% of last names.

The unusually low performance on the Illinois dataset is
due to its small size — it is only about one-third of the size of
the next smallest dataset. Its small size is problematic because
it impacts the statistical quality of the sample. For example,
the most frequent first name only occurs 34 times and the
most frequent last name only occurs 10 times.

Figure 4 shows the average unique recovery rate for high-
frequency first and last names. It is cumulative, so the x
axis labels refer to the recovery rate for that number of top
names. For example, the point (40,95) means the attack
recovered 38 of the top 40 most frequent names, on average.
Our attack is especially accurate for these values. From this,
we can conclude that for almost all datasets no real security
guarantee can be made for high-frequency names. We do not
include a separate graph for unique recovery rates for first
and last names, but the overall trend is very similar.

Inference on birthdates and ZIP codes is much less accu-
rate for both attacks: exact recovery rates were less than 2%
across the board. This occurred for two reasons. First, the
auxiliary information available for attackers is not as accurate
a reflection of the target data distribution, compared to the
names data. For example, our ZIP code data is not really a
sample from the same distribution as our auxiliary data — the
ZIP code frequencies in our auxiliary data are proportional
to the number of people living there, but the frequencies in
our target dataset are proportional to FOP membership, which
varies state-to-state. Second, the distributions themselves are
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Figure 3: Comparison of raw recovery rates of NKW and the non-crossing attack on first and last names. The non-crossing attack outperforms

NKW for all target datasets.

flatter and do not have frequency “peaks” which can be easily
recovered by inference attacks.

We do note that partial information is often leaked. The
non-crossing attack’s prefix recovery rate was 34% for birth-
dates and 23% for ZIP codes. The corresponding prefix
recovery rates for the NKW attack are similar. The non-
crossing attack outperforms the baseline by about ten percent
in overall prefix recovery for birth dates: we recovered the
decade of birth for 75% of the unique birth dates in the
database (16,847 out of 22,485). The non-crossing attack also
recovered, on average, the first digit of a target ZIP code,
giving the adversary the region of residence of the record
(e.g. eastern seaboard, midwest, southwest). In all cases, the
NKW with greedy heuristic attack performs worse than non-
crossing.

In terms of runtime performance, both the NKW with
greedy heuristic and the non-crossing attack are reasonably
fast. They require at most ten and twelve hours, respectively,
to run to completion on the FOP last name dataset, the
largest of any we examined. It includes n ~ 116, 000 unique
ciphertexts and ¢ ~ 151,000 unique values in the auxiliary
data. The induced bipartite graph has around 17.4 billion
edges. The non-crossing attack is slower than the greedy
heuristic due to the need for a backtracking step (similar
to the one used in the classical edit distance algorithm) to
recover the edges of the max-weight matching. It also writes
to two large data structures at each iteration of the inner loop,
which can be slow if the memory layout is not tuned. We
optimized our implementation by exploiting the fact that the
algorithm only needs to examine two rows of the dynamic
programming table at a time: the one currently being written
to, and the previous one. We reuse two fixed-width buffers
for these rows rather than allocating an entire n X ) matrix
in memory. These two buffers are small enough to fit in the
CPU’s cache, so the number of slow operations on DRAM
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Figure 4: Average unique recovery rates for high-frequency first and
last names for non-crossing attack. The red line with circles is first
names. The blue line with squares is last names. Note that the y-axis
starts from 70.

is effectively halved. It also reduces the overall memory
footprint by about 90%.

V. ATTACKING THE BCLO SCHEME

The attacks discussed in the previous section only take ad-
vantage of frequency and order information. While there exist
schemes that leak only this information (or even less), they
are not deployed in any real-world systems because all such
schemes require either inefficient multilinear maps or client
state, mutable ciphertexts (their value changes over time),
and multiple rounds of communication to insert a ciphertext
or perform a search. Instead, practitioners have widely been
deploying more efficient schemes such as the classic one
due to Boldyreva, Chenette, Lee, and O’Neill (BCLO) [5].
This scheme is known to leak more than just frequency and
order [6], and we now show how to build highly damaging



attacks that augment our non-crossing attack to exploit this
additional leakage.

The BCLO scheme. The BCLO scheme realizes an OPE
scheme by a recursive procedure that samples according to
the hypergeometric distribution based on coins pseudoran-
domly derived from a secret key. The details of the con-
struction are not important to our attacks, and so for brevity
we refer readers to [5] for details. It is secure in the sense
of being indistinguishable from a random order-preserving
function (ROPF).

An ROPF, however, still may leak significant information
about the plaintext. Boldyreva, Chenette, and O’Neill [6] ana-
lyzed ROPFs relative to a notion of security they call window
one-wayness. Let M = | M| be the size of the domain. They
show that an adversary, given the encryption of a uniformly
chosen plaintext, can use the ciphertext to immediately infer
with high probability that the hidden plaintext falls within
a set of size b - v/M for some small constant b. When b is
small relative to v/M, this means the attacker learns most of
the first half of the plaintext.

We will explore how this leakage affects security for in
our running case study, and then show how to build even
more damaging inference attacks by augmenting our non-
crossing attack to take advantage of the additional leakage.
First, however, we discuss one security-critical issue that
arises in practical use of the BCLO scheme.

The problem of padding. In previous work on OPE and
ORE, the question of variable-length inputs is rarely dis-
cussed. Real systems that use OPE for variable-length plain-
texts, though, must pad to preserve the functionality of being
able to compare strings of different length.

For encryption schemes that reveal or preserve order,
variable-length inputs represent a trickier problem than
for other types of encryption, because different ways
of ordering strings of characters handle variable lengths
differently. For example, take the two strings “banana” and
“z00”. Viewed as English words, it is clear that “banana”
is lexicographically less than “zoo”. However, some OPE
algorithms (in particular [5]) only accept inputs that are
integers in some set. Thus, the question becomes how
to convert strings in a specified alphabet to integers but
preserve their alphabetical order. The naive way to do
this for “banana” and “zoo” is to treat them as big-endian
numbers base 26, and convert to base 2 (or 10) before
encrypting with OPE. It is not hard to see that this approach
fails, because the base-2 number represented in base-26 as
“banana” is larger than the corresponding base-2 number for
“z00”. Encrypted with OPE, their relative ordering would be
reversed.

The solution is to right-pad all strings to a common input
length (i.e., the length of the longest possible input) with
the lexicographically smallest character (in our case, a space)
before converting the string to an integer for encryption with
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Figure 5: Length distributions of first and last names. The right
vertical line is half of the longest last name length, which roughly
means every last name to the left of that line will be leaked fully.
The left vertical line is the same boundary for first names.

OPE. This approach was suggested in a technical report by
Kolesnikov and Shifka [27], in the context of randomizing
OPE ciphertexts while preserving sort order. This is painful
when it comes to security of schemes like BCLO that leak
high order bits: the padding pushes sensitive data into those
bits that are leaked. Figure 5 gives histograms of the lengths
of first names and last names across our datasets. As can
be seen, a bit more than half of first names and the vast
majority of last names fall below half the maximal length.
This means that many or, for last names, most plaintexts will
be immediately leaked when encrypted under BCLO.

In theory, one could pad to a shorter length and truncate
values that are too long. Besides the obvious loss of strict
order preservation for all plaintexts, this also removes the
ability to decrypt all ciphertexts to the correct plaintext. In
practice this truncation would necessitate appending another
encryption of the plaintext to the end of the OPE ciphertext
so that decryption could occur correctly, which would at least
double the storage required for that column in the database.
Thus, this method of handling variable-length inputs is at
best much more expensive than the alternative, and at worst
impossible because of, e.g., unchangeable constraints in SaaS
applications.

In our experiments, we encoded first and last names as
base-27 integers and padded plaintexts to the length of the
longest possible plaintext with the space character, which
we defined to be the lexicographically smallest character
of our input alphabet. This method of encoding strings as
integers may seem strange initially, but observe that the naive
way of treating each byte as a base-256 digit will cause
the parameters (and, by extension, the ciphertexts) to be
much larger than they need to be, since only a small subset
of the 256 possibilities are valid characters. As mentioned
before, the longest first name appearing in our data sets is
14 characters, and the longest last name is 28 characters.



Birth dates and ZIP codes are fixed-width, so padding is not
required.

BCLO’s additional leakage. Since the BCLO scheme leaks
additional information other than order and frequency, it is
logical to ask how much information an adversary learns just
by computing the BCLO leakage. This is not an “inference
attack” as we have defined it above, because it does not
use auxiliary data. It does require knowledge of the input
alphabet and padding rules. Below, we will describe how to
combine this attack with inference.

We first describe how to compute the leakage given a
ciphertext as per [6]. Let M be the message space with size
M = | M| and let the ciphertext space be C = {1,...,C}.
Typically in implementations of BCLO one uses message and
ciphertext spaces that are of size a power of two, and sets
log C' = 3 + log M as suggested in [6]. Then let

M -c b
= |2 Y F
" {O+J an o/ —1

where b is a parameter. Roughly speaking, m. is the
ciphertext-specific point around which a window of size
up to 20 can be drawn that contains the plaintext with
high probability. The larger the parameter b, the larger the
window. Of course we must truncate the window by the
endpoints of the message space, meaning that m will be
with high probability contained in the range

R, = [max{1,m. — [6M|} , min{M,m.+ |6M]}]

The analysis of Boldyreva et al. shows that for b = 3 the
probability of landing in this window is negligibly far from
one for uniformly sampled plaintexts [6]. For non-uniform
message distributions, it is likely that more careful analysis
could shrink the window and obtain more leakage, but we
will be conservative and use the larger window for our first
and last name attacks. We will use b = 1 for our attacks
on ZIP codes and birth dates. Making the window smaller
slightly increases the leakage and helps reduce the overlap
in leaked ranges for nearby values, though it increases the
likelihood that the true plaintext falls outside the range.
Our birthdate and ZIP code datasets contained a substantial
fraction of all the possible plaintexts?, so there is a great deal
of overlap in the leakage which, intuitively, gives the non-
crossing attack more chances to match a value incorrectly.
Having a smaller window mitigates this.

Abusing just the BCLO leakage. An adversary can attempt
to immediately recover the plaintext for each ciphertext in a
database using just the leaked range R. and knowledge of
the input alphabet and padding rules. This approach does not
require any auxiliary data, and requires just a few elementary
computations for each ciphertext. In fact, a human attacker

2This fraction is about 56% for ZIP codes and 66% for birthdates,
precluding effective use of the sorting attack from NKW, which requires
almost all plaintexts to be present.

Plaintext Ciphertext Me

michael cyrzjipnouushzh michaekypfbkfr
david aenpse cevvpkmr david Jwbvhec
robert emlgrnycvblggnd robert lwyeorr
john ccnnczzzpruvijhd — johmzzzysfbunn
james bzkxrg gzortby Jjames zyovtqg
daniel aelfspocabjdvjc daniel jgaginu
richard ekrzjmjhjxykbba richardkmfnwwx
jose ccgrlzzziozokby josdzzzxviruqg
mark cwnlfzzzjxhlklh marjzzzxzgyduv
christopher  zokwwbrbibyouo christotngfolw

Figure 6: The value m. computed for encryptions of ten first names
in the California dataset.

can easily just read off partial or even full plaintexts from
the m, values trivially computable from a ciphertext. Some
examples are shown in Figure 6.

To automate this, we fix a simple heuristic that an attacker
can use to guess a message given the ciphertext c. First,
compute m, and the range R.. Let [m;,m,] = R.. Check
if any of m;, m., m, contains two consecutive spaces in the
first half of their string representations. Some names contain
a single space, so we can only confirm padding after seeing
two consecutive spaces. If none do, then forego outputting
a guess. Otherwise, for (an arbitrary) one of the strings that
does contain two consecutive spaces, simply take the prefix
preceding these spaces as the plaintext guess. Observe that
this is not guaranteed to be the correct plaintext as there
could be other validly padded plaintexts in the range R..

This heuristic performs quite well, particularly for last
names. On average across all our datasets, the raw recovery
rate is 45% for first names and 97% for last names. Referring
back to Figure 5, our heuristic is able to do almost as well
as predicted by simply halving the maximum length and
observing the fraction of plaintexts that lie below that length:
on average across datasets, 67% of first names are less than
7 characters long, and 99% of last names are less than
14 characters long. While this leakage has been known in
the academic literature [6], we believe its severity was not
understood for practical scenarios before our work.

We have described above how to directly exploit BCLO’s
leakage for first and last names, but this approach is readily
generalizable to any plaintext distribution containing mes-
sages of different lengths. In the case of fixed input length
plaintexts, such as ZIP codes and birth dates, there is no need
for padding, and so it is impossible to exactly recover any
plaintexts using the heuristic above. Nevertheless significant
partial information leaks that we will exploit next.

Inference attack with BCLO leakage. The heuristic above
recovers less than half of first names on average, and as
just mentioned cannot recover full plaintexts for fixed-input-
length domains. We can however integrate the BCLO leakage
into our non-crossing inference attack.



Let G = (U, V, E) be a bipartite graph where every vertex
in U corresponds to a unique ciphertext in C' and vertices
in V correspond to unique auxiliary data from Z. The sets
U and V are sorted, so that the ith largest unique ciphertext
is vertex u; and likewise for v. For each ciphertext v € U
where the ciphertext corresponding to u is ¢, the adversary
computes R. and then adds an edge (u,v) for each v whose
corresponding value p falls within R.. This excludes edges
that fall outside the window for c. Each edge is weighted
as before, by a — |[Ho (i) — Hz(4)|. The adversary outputs
the mappings implied by the solution to the max-weight non-
crossing bipartite matching problem the graph defines.

For fixed-length inputs such as ZIP codes and birth dates,
we run the inference as described above. For variable-length
data such as first names and last names, we first run our
heuristic attack, and then run the inference as described above
only on the ciphertexts for which the heuristic fails to make
a guess. The reason to do this is that many plaintexts that are
not in the auxiliary data are nevertheless fully recovered by
the heuristic.

Inference attack results. Combining the heuristic with
inference increases first name recovery rate from 45% to
99% on average across datasets. The smallest recovery rate
in any single dataset was 97%. For last names the increase
from inference was negligible, as the heuristic alone already
obtained 97% recovery on average. The average unique re-
covery rate was 90% for first names and 94% for last names,
with standard deviation less than 2% for both. Our attack
here recovers the vast majority of plaintext records, as well
as most unique plaintexts. The few unrecovered plaintexts
are ones for which the heuristic fails to retrieve them fully
and they additionally do not appear in the auxiliary data (i.e.,
names that are both longer than average and quite rare). Of
course, even for these long and rare names, a prefix of the
name is nevertheless apparent to attackers.

Figure 7 summarizes the inference attack’s recovery rates
for birthdates and ZIP codes, for b = 3 and b = 1. The
attacks are much more accurate with b = 1. With b = 3
we only recover about 1.5% more ZIP codes than with the
non-crossing attack. Our accuracy for birthdates with b = 3
does not improve compared to the non-crossing attack. With
b = 1 the attack performed well for birthdates, recovering
more than 90% of records and nearly 70% of unique values.
This attack performed more modestly on ZIP codes, but we
still recovered about 12% of the ZIP code records and 8%
of the unique values. The BCLO leakage by itself revealed,
on average, 36% of the plaintext for ZIP codes and 31% for
birth dates.

That our attack performs well with b = 1 is surprising
because the probability that the correct plaintext is in the
computed window is (roughly) an inverse exponential of b.
When b = 1 the success probability of their lower-bound
attack should ostensibly be only about 0.3 for each ciphertext,

Birthdates | ZIP codes
Raw, b =1 91 12
Unique, b = 1 70 9
Raw, b =3 0 4
Unique, b = 3 0 3

Figure 7: Raw and unique recovery rates for birthdates and ZIP
codes encrypted with BCLO. The value b refers to the window width
discussed above.

but this was clearly not the case in our experiments. The
probability of success for the attack in [6] is, however, only
analyzed for uniformly-sampled messages, and so they may
not be predictive for the non-uniform birthdate and ZIP code
distributions.

VI. ATTACKING THE CLWW SCHEMES

Our results show that the BCLO scheme’s additional leak-
age represents a significant threat to plaintext confidentiality
for real datasets. We now turn to suggestions by Chenette,
Lewi, Weis, and Wu (CLWW) to provide ORE and OPE that
they prove leak less than the BCLO scheme, yet remains
practical [12]. We will test this empirically.

The CLWW ORE scheme. In [12] the authors construct a
new ORE scheme. As with BCLO, we will for brevity omit
the details of the CLWW scheme; our attacks will only abuse
its leakage profile. Towards that profile, for two equal-length
bit strings x, y let indgige(2, y) be the index of the first bit that
differs between x and y. If x = y then indg(x,y) outputs
|z| + 1. Then, a sequence of ciphertexts C' = (cq, ..., ¢, ) for
which ¢; = &, (m;) leaks order as well as, for every pair 1 <
i < j < n, the value indgig(m;, m;). (Note that frequency of
plaintexts is leaked by the latter.)

The CLWW authors argue that their scheme leaks less than
BCLO for uniform messages: for only one ciphertext their
scheme is semantically secure, and for n revealed ciphertexts
of length k, the probability that more than log k bits leak is
negligible. The BCLO scheme, in contrast, always reveals
approximately one-half of the bits of a plaintext. While
this is true, it may not matter in practice, as for certain
plaintext distributions the CLWW leakage may be worse (or
better) than BCLO. Indeed, we will see that for ZIP codes
in particular the CLWW leakage reveals nearly every bit of
every plaintext.

The CLWW attack. Because the scheme leaks the index
of the first bit that differs between two ciphertexts and the
ordering of their underlying plaintexts, it also leaks the value
of the plaintext bit at that index: the lesser plaintext has a 0 at
that position, and the greater plaintext has a 1. We now detail
how to take advantage of this leakage. Like the attack against
BCLO in the last section, we first compute leakage, modify
the bipartite graph to include only viable solutions relative to
this leakage, and then apply the non-crossing attack.
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Raw RR 93 57 98 7
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Figure 8: Results of CLWW and decomposition attacks.

In more detail, for each ciphertext, compute the leaked
bit relative to every other ciphertext in the database. This
gives the values of bits at certain positions in the plain-
text, which we can represent as a list of pairs L(¢) =
((po,b0), - - -, (pe, be)). Then, initialize a bipartite graph G =
(U,V, E) as per the BCLO attack. The edge set F is initially
empty. An edge (4, j) corresponding to ciphertext ¢; and aux-
iliary datum z; is added only if for each (py, by) pairin £(c;),
the value of the p; bit position of z; equals by. Such edges
are given weight as in the non-crossing attack. Finally, the
adversary solves the non-crossing bipartite matching problem
and outputs the resulting guesses.

CLWW attack results. Recovery rates for our CLWW
are presented in Figure 8. For first and last names, the
average raw recovery rate across all datasets for the attack
against CLWW is 98% and 75%. When these percentages
are taken as a fraction of the “maximum” recovery rate,
meaning names that cannot be matched are not included,
the recovery rate for first names is 98% on average, and
85% on average for last names. Our attack against CLWW
is nearly as accurate as the attack against BCLO, meaning
that despite the difference in leakage profiles (and proofs
by CLWW that it leaks less for uniform plaintexts), the
leakage is, in effect, the same for our non-uniform plaintext
distributions. For first and last names, the ORE leakage by
itself removes most of the uncertainty from the ciphertexts.
We can measure this explicitly by looking at the number of
auxiliary data elements that have the same bits in the same
positions as those that are leaked from a ciphertext. These are
the auxiliary elements that will have edges to this ciphertext
in the graph G above. For first names on average, there were
only four such elements in the auxiliary data. For last names
on average there were nineteen elements. The variance in
this number was quite high for last names — there was one
dataset whose average was only 1.3 elements, but another
dataset whose average was 148 elements.

The recovery rates for birthdates and ZIP codes show that
the CLWW attack is quite devastating, recovering almost
100% of values. This is better than the attack against BCLO,
suggesting that empirically at least, there are realistic distri-
butions for which CLWW performs poorly. The reason is that
the birthdates and ZIP codes target datasets contain a large
fraction of the possible plaintexts, for example the ZIP codes
dataset has about 56% of the approximately 40,000 possible
values. In such a situation, the leakage of CLWW is very
bad: 85% of all plaintext bits were immediately leaked by

indgisr. The non-crossing step has little trouble recovering the
remaining unknown bits.

Composed OPE and ORE. CLWW also suggest that one
might improve security by first encrypting with an OPE
scheme and then double-encrypting using an ORE scheme.
They argue that this at least inherits the security of the OPE
scheme, and may do even better. We refer to this as the
composed scheme, and investigate it for the case of applying
first the BCLO scheme and then the CLWW scheme.

The decomposition attack. We can combine the CLWW
and BCLO attacks to recover a smaller prefix of the message
(than would be revealed directly by BCLO ciphertexts). At
a high level the attack will simply compute the individual
bits leaked by CLWW, which are now intermediate BCLO
OPE ciphertext bits. We can nevertheless still use these bits
to define a window within which the plaintext falls with high
probability. The window now will be larger, because we must
conservatively span the windows for all possibilities of the
unknown intermediate ciphertext bits. In turn, larger windows
mean a smaller prefix being leaked. In more detail the attack
works as follows, given target ciphertext C' = {co,...,cp}
and auxiliary data Z = {29, ..., 2y }.

In the first step, the adversary computes the CLWW leak-
age for each ciphertext, resulting in a list of pairs for each
ciphertext £(¢;) = ((po,bo),---,(pe,be)). Note that the
bit values by, ..., by are not plaintext values, but rather the
intermediate OPE ciphertext bits. Form a bit string for each
ciphertext ¢; by setting bit p; to b; and all other bits to zero.
Call this bit string ck. Form another bit string ! similarly,
except now setting bits whose positions do not appear in the
list to one. The true intermediate ciphertext must lie in the

L R
]

range [c;, 5

Now the attacker computes a BCLO leakage window that
contains the leakage windows for both cf and cR. Do so
by computing the leakage for each of those two ciphertexts,
and then taking the lower bound on the window for ¢} and
the upper bound on the window for c&. Call this range R...
The probability (for uniformly-sampled messages) that the
message lies in this range is at least the same probability for
the BCLO leakage function, since the range is computed in
the same way but is larger.

Initialize a bipartite graph G = (U, V, E) as before, and
add edge (c;, ;) only if z; € R.,. Weight edges as before,



by the distance in frequencies. Finally solve the non-crossing
bipartite matching instance and output the associated guesses.

Decomposition attack results. Recovery rates for the de-
composition attack are also presented in Figure 8. Compo-
sition does reduce attack efficacy, suggesting the CLWW
intuition about composition improving security is sound, with
average raw recovery rates of 85% and 44% for first and
last names. This is about two percent and seven percent
better for first and last names than the attacks with just order
and frequency leakage discussed in Section IV. When taken
as a percentage of the “maximum”, the recovery rates are,
on average, 86% for first names and 50% for last names.
Composition also seems to improve security for birthdates
and ZIP codes, reducing the raw recovery rates by 13%
and 86% respectively. These are still much better than the
corresponding numbers from Section IV. Unfortunately, this
reduction in attack efficacy is probably not enough to con-
clude security, and it may be that one can improve on our
composition attack somehow.

VII. KNOWN-PLAINTEXT ATTACKS

The threat models considered in the OPE literature thus
far have excluded known- and chosen-plaintext attacks. In
some use-cases of OPE/ORE, untrusted parties may not be
able to know or add values. However, this assumption seems
unfounded in many practical scenarios, as we now discuss.

Adversarial capabilities in practice. Recall from
Section II that ORE and OPE are often deployed to encrypt
customer data ultimately stored in customer relationship
management systems such as Salesforce. A typical practice
of companies is to allow any website visitor to download
technical reports if they provide some personal information
in a contact form. This technique, sometimes referred to as
marketing automation, is widely used. For those companies
that use encryption tools, the information entered in these
forms is automatically encrypted and then stored in a cloud
service used for marketing analytics.

This immediately gives rise to the ability to mount chosen-
plaintext attacks. The adversary can fill out the form as
desired, and later see the encryptions of this data in the
database. It will be apparent to the adversary what encryp-
tions relate to the adversarially chosen inputs, if for no other
reason than the timing of submission of data and receipt of
new encrypted database items. A similar (albeit artificial)
example of a chosen-plaintext oracle on email encrypted
with OPE was given in a technical report by Kolesnikov and
Shifka [27]. As far as we know, we are the first to report on
a chosen-plaintext attack on OPE which arose naturally from
a customer use case. A diagram of the attack is shown in
Figure 9.

There exists a folklore chosen-plaintext attack against any
OPE construction that allows an adversary to learn every bit
of a plaintext from a ciphertext given only log(M ) encryption

(publicly-available website)

Input your |——— Engryption Cloud ST
name and roxy Service Gt
email to Store 'm OPE('m')
download

report!

My email is ... and my name is 'm"

Figure 9: A chosen-plaintext attack against cloud-hosted marketing
automation

oracle queries, where M is the size of the ciphertext space.
Call the ciphertext the adversary wants to decrypt c;. The
attack is a simple binary search, as follows: first the adversary
queries the plaintext % and gets a ciphertext c1. If ¢; < ¢ it
queries %, else it queries %. It repeatedly halves the range
until it finds the point p; whose ciphertext is c;.

Since this attack can trivially recover every plaintext from
any message distribution, we will not present results for it
in this work. We will instead look at the weaker assumption
where the plaintexts are known but not chosen, which may
make the attack even easier to mount in practice. As we
show below, just a handful of known values combined with
inference is enough to improve success rates. It may be
interesting to explore weaker versions of the chosen-plaintext
setting, such as one where the adversary has a limited number
of queries or must choose its queries non-adaptively. We
expect these attacks to perform even better than the ones
presented below, but we leave detailed investigation to future
work.

The partitioning attack. We now sketch a simple, generic
approach to taking advantage of known or chosen plaintexts.
It can be used against any scheme that leaks at least fre-
quency and order, and in conjunction with any of the chosen-
ciphertext inference attacks against such schemes.

Assume the attacker is given not only the ciphertext se-
quence C' = (cq,...,¢,) and auxiliary information Z =
(z1,...,2y), but also the plaintexts for some g < n of these
ciphertexts. The adversary knows the positions of these ¢
ciphertexts, let those positions be p1, ..., p,. For notational
simplicity assume that p; > 1 and p, < n.

The adversary can then partition the inference problem
for the n ciphertexts into (at most) ¢ + 1 sub-problems
by splitting at each location p;. In more detail, for each
1 <4 < q and letting py = 1 and p,1 = n, define the
new problem instances to be C* = (¢p, ,+1,...,Cp;—1) and
Z" = (2p;_141+---+2pi—1)- Bach (C%, Z%) pair we can then
run independently using whichever ciphertext-only inference
attack we prefer. The adversary then takes the union of the
resulting guesses, adds the ¢ known plaintexts to this solution
appropriately, and outputs the result as its guess.



Birth dates ZIP codes
0.25% | 2.75% | 525% | 0.25% | 2.75% | 5.25%
Raw RR 90 95 96 22 51 61
Unique RR 68 78 81 14 35 41

Figure 10: Known-plaintext attacks on Birth dates and ZIP codes
with order and frequency leakage. Numbers in the second row refer
to the percentage of known plaintexts.

Results. We perform experiments using the partitioning
attack together with the non-crossing attack using just fre-
quency and order leakage. While the attack increases suc-
cess for the BCLO, CLWW, and decomposition attacks as
well, the relative gain will be more modest as those attacks
(without known plaintexts) already perform well. To enable
comparison across the various names datasets, we set the
number of known plaintexts to be a fraction of the total
number of target plaintexts. We experiment with 0.25%,
2.75%, and 5.25% of randomly-sampled plaintexts being
known by the adversary. These correspond to somewhere
between 5 and 300 plaintexts for 0.25% and 150 and 6,000
plaintexts for 5.25%, depending on the dataset. Recovery
rates are averaged over five trials. Because the distribution
is uniform over unique names and first and last names are
long-tailed in terms of frequency, the raw frequency of the
randomly-sampled known plaintexts was very low in all
experiments. Intuitively, this is because only a small fraction
of unique names have high frequency; most occur only once
or twice. Birthdates and ZIP codes have a flatter distribution,
so the sampled plaintexts had very low frequency there as
well.

Figure 10 shows the results of our known-plaintext parti-
tioning attack for 0.25%, 2.75%, and 5.25% of the unique
birthdates and ZIP codes. The partitioning attack performs
extremely well for birthdates. With only 0.25% of values
known, the raw recovery rate jumps from less than one
percent (in our attack with no known plaintexts) to nearly
90%. This jump can be attributed to the density of birth
months and days for high-frequency years. Since the known
plaintexts will, with high probability, reveal the year of most
birth dates by upper- and lower-bounding unknown values,
the non-crossing attack simply matches the days of the year
in sequence. Another way of looking at this is that once the
partitioning occurs, the non-crossing attack just performs a
kind of sorting attack on the days in each partition. This
“density” property is not specific to our datasets — any
real birthdate dataset of comparable size to ours will have
this density property. The partitioning attack also increases
accuracy for ZIP codes substantially.

For first names, the increase in average recovery rates was
modest. For 0.25% the average was 84%, only about 0.5%
higher than the attack with no known plaintexts. With 5.25%
the average was 87%, again a modest gain. The non-crossing

attack with no known values already does quite well for
first names, so having known plaintexts can only aid us in
recovering very low-frequency values. For last names the
known plaintexts had a bigger effect. Compared to a 38%
average with no known plaintexts, having 0.25% of values
known gives a 40% average, and having 5.25% of values
known gives a large increase to 49% on average. The standard
deviation of attacks on first names was around 7%, and for
last names it was between 11% and 14%.

VIII. ATTACKING FREQUENCY-HIDING SCHEMES

All our previous attacks are against deterministic OPE and
ORE schemes. OPE and ORE are not inherently determinis-
tic but no security notions or constructions of randomized
OPE/ORE were known until recently. The first notion of
security for randomized ORE was provided by Boneh et
al. [7], and they also give a scheme based on multilinear
maps that provably meets their definition. A more efficient
randomized OPE scheme was proposed by Kerschbaum [25]
along with a suitable security notion it was shown to provably
meet. The scheme preserves order by storing state (in the
form of a binary search tree) on the client. When a value
is added, the tree is traversed as it would be in a standard
binary tree insertion operation. If the value to be inserted is
already present in the tree, randomness is used to choose a
new ciphertext for the value, while preserving order.

The Kerschbaum scheme is requires an interactive pro-
tocol, and the client must store state whose size is propor-
tional to the number of elements in the database. It also
has mutable ciphertexts. All these issues are inherent hurdles
to deployment. Nevertheless, there may in the future be
settings in which deployment is feasible, or other schemes
may be produced that hide frequency while being more
practical. We therefore seek to analyze security of schemes
that only leak order. To that end, we will describe a simple
attack that targets high-frequency elements of a distribution
by estimating where the ciphertexts of those elements are
relative to the others. We call this attack the “binomial” attack
because it uses a simple biased-coin model to estimate the
locations of plaintexts.

Plaintext ranges and coin flips. We’ll start with some
preliminaries. Let C = (¢y,...,¢,) be an ordered list
of (randomized) ciphertexts. For simplicity, assume each
ciphertext is an encryption of some element of the attacker’s
auxiliary data Z. As in all our attacks, the basic task we
need to perform is a kind of labelling or matching — given a
ciphertext, we need to guess what is its underlying plaintext.
None of our prior approaches apply here, though, since
frequency is not leaked. So, more precisely, we need to find
the range of ciphertexts which are all encryptions of the same
underlying plaintext. Let the plaintext whose range we’re
trying to find be z;. The encryptions of z; are, by correctness,
a contiguous sub-list of C', and we need to find the first and



c < z 2 > z Cn

Figure 11: Pictorial aid for explaining the binomial attack. To
recover the plaintext z;, the attacker must locate the range [¢, u]
of ciphertexts whose encryptions are z;.

last indices of this sub-list. In Figure 11 these two indices are
denoted ¢ and u. We can estimate ¢ and u using two simple
observations.

The first observation is that if we know ¢, we can esti-
mate u by estimating the number of times the element z;
occurs in an n-element draw with replacement from Z. If z;
is drawn k times, then u = k + ¢. With the auxiliary data Z,
estimating k is trivial: if f,, is the probability of drawing z;,
the distribution of £ is the number of times heads occurs in n
flips of a biased coin where the probability of a single head
is f,,. Thus, the expected value of kK is n - f,,.

We know how to estimate the upper bound given the lower
bound, so to finish we only need to show how to estimate
the lower bound. Our second observation is that if we can
estimate the number of elements of Z strictly less than z; in
our sample, call this number j, then we know /¢ right away.
Namely, / = j + 1. In Figure 11 this is the dashed blue
region labelled “< z;”. Estimating j is, again, another biased
coin model: if f.,, is the total probability of all elements
strictly less than z;, the distribution of j is the number of
heads in n flips of a biased coin, where heads occurs with
probability f.,.. The expected value of jisn - f.,,.

Confidence intervals. To account for deviations from the
expected values of ¢ and v which can happen by chance,
we will instead bound the values ¢ and u using Hoeffding’s
inequality. This inequality says that for n i.i.d. tosses of a
coin which returns heads with probability p, for any € > 0,
the number of heads H (n) obeys the inequality

Prip—em<H(n)<(p+en]>1 —2e72

Clearly, a larger € leads to a larger range of possible values
for H(n), which compensates for more uncertainty about the
exact plaintext distribution. However, a larger ¢ also lowers
the precision (i.e., causes false positives) and can cause
ranges to overlap, which requires special handling (as we will
describe below). Using the bound, an e can be computed for
any desired confidence d € [0,1] as

[log 1=d
€= 87 .
—2n

To sum up, for plaintext z; with f,, and f.., defined
above, we will estimate the range [¢, u] for z; as in Figure 11
as

(fezi —€n , (fezi +en+ ([ +e)n] .

First names Last names
Rank | RR Rank RR Rank RR Rank | RR
1 94 6 | 100 1 83 6 98
2 91 7 95 2 63 7 82
3 85 8 83 3 87 8 62
4 89 9 94 4 | 100 9 74
5 72 10 72 5 37 10 63

Figure 12: Average recovery rates (RR) for top ten first and last
names in the auxiliary data with our binomial attack. Rank refers to
its position in the histogram sorted descending by frequency.

This takes the lower bound of the estimate for £ and the upper
bound of the estimate for w.

There is one issue of practical importance we have not
resolved: if ranges for two different plaintexts overlap, the
attacker has some ambiguity about which guess is correct.
In our implementation, we resolve overlaps by splitting the
range proportional to the probabilities of the two elements.
So, for example, if ranges corresponding to plaintexts z; and
z; overlap, we allot a fraction f., /(f., + f-,) of the overlap
to plaintext z; and f.. /(f., + f:,) to plaintext z;. This is
a heuristic that seems to work well, but a more principled
approach may be possible.

Running the binomial attack. To actually run the bi-
nomial attack to recover plaintexts from an ordered list of
ciphertexts (ci,. .., c,) of size n, choose the first k& highest
frequency plaintext elements Z' = {z1,...,2;} in the
auxiliary data. For each z;, compute the range [¢.,,u.,]
using the method described above and output the mapping
(zis{ce,Coq1s---yCu}).

The attacker can target any number %k of the highest-
frequency elements of the plaintext distribution. There is a
point of diminishing returns, though: when an element is
too low-frequency we will fail to find any of its ciphertexts
because small mismatches between the predicted and actual
frequency will cause its ciphertexts to be shifted entirely out
of the predicted range.

Results. For all experiments we computed the interval
width € using confidence d = 0.99. Our recovery rates for
birthdates and ZIP codes were low. However, our prefix
recovery rate was 37% for birthdates, one full character
over the baseline on average. This means our hypothetical
attacker can (on average) learn the decade of birth for some
records in the database. Our prefix recovery rate for ZIP
codes was 12%. Our attack did not perform particularly well
for ZIP codes, which is unsurprising — its distribution is
closer to uniform than the others.

For first and last names we will discuss two different
notions of “recovery rate”. Since we are explicitly attack-
ing certain elements of the distribution, one logical way to
quantify recovery is as the fraction of ciphertexts of elements
we attacked that we correctly matched to their underlying
plaintext. We will refer to this as “average recovery rate
for the top k£ names”. The other notion of “recovery rate”



is the standard one from above — namely, the number of
correctly recovered ciphertexts divided by the total number
of ciphertexts.

Recovery rates for the top 10 highest-frequency first and
last names (i.e., & = 10 in the attack description above)
are presented in Figure 12. For first names, we recovered
the name “michael” with 94% accuracy on average. For last
names, we recovered the name “brown” with 100% accuracy
in all datasets. The average recovery rate for the top 10
most frequent first names was 86%, and for the top 10 most
frequent last names was 76%. Attacking only the top 10 most
frequent names, the average whole-dataset recovery rate for
first names was 21% and for last names was 4%.

Attacking the top 40 most frequent names, the whole-
dataset recovery rates go up (to 30% for first names and 7%
for last names) but the per-name recovery rates are lower.
For example, when attacking the top 40 first names we only
recover 58% of the “michael”s on average. Note that this
whole-dataset recovery rate for last names is actually higher
than the corresponding recovery rate for the NKW greedy
attack on last names discussed in Section IV, despite the
fact that this attack (unlike NKW greedy) does not use any
frequency information.

One would expect that recovery rates might go down for
lower-frequency names, but the results suggest that some
lower-frequency names have higher recovery rates. This is
because of overlaps. For example, the names “james” and
“john” are lexicographically close, so fixing the overlaps in
their intervals introduces dataset-dependent error. This is also
the reason why the recovery rates for some names go down
as we attack more names (e.g., “michael” with k& = 10 vs.
k = 40 in the previous paragraph).

Attack variants. The attack’s use of confidence intervals
allows the attacker to tune the precision/recall trade-off of the
attack. For example, if the attacker only cares about attacking
those people named “michael” but wants to be very sure only
“michael”s are attacked, it can lower the confidence value d
above to make fewer guesses which have high precision. If it
wants to maximize recall, it can instead set the d value very
close to 1.

We leave exploring the trade-off between accuracy and the
confidence value as an open problem. An interesting setting is
one in which the attacker has some model of the discrepancy
between its auxiliary data and the true plaintext distribution.
With this, an attacker could use different confidence values
for different plaintexts.

The bigger picture. Stepping back, we should reflect on
the implication of these results for the security of any OPE
or ORE. Our results show that high-frequency elements
encrypted with OPE or ORE can be reliably recovered (with
probability many times better than the baseline) even if their
[frequency is not leaked. This raises questions about the fitness

of OPE and ORE for the highly non-uniform distributions
that arise in practice.

IX. RELATED WORK

Property-revealing encryption schemes. The study of en-
cryption schemes that reveal order was initiated by Agrawal
et al. [1], who constructed a scheme that preserved the order
property for numeric inputs, but lacked provable guarantees.
The first study of OPE with reductionist security guarantees
was due to BCLO [5]. Their scheme’s window one-wayness
security was subsequently analyzed by Boldyreva, Chenette,
and O’Neill [6]. We use their analysis in our attacks against
the BCLO scheme, as discussed in Section V.

In [6], it was shown that any OPE scheme provably leaking
only frequency and order must have exponentially large
ciphertexts. Popa et al. [37] extended this negative result
to cover stateful, interactive schemes that have immutable
ciphertexts. They also introduced an interactive OPE scheme
with mutable ciphertexts that leaks at most order and fre-
quency information. Kerschbaum and Schropfer propose a
more efficient interactive OPE scheme [26]. Our attacks in
Section IV work against these schemes. Later, Kerschbaum
proposed a frequency-hiding, interactive OPE scheme [25],
our attack in Section VIII applies to this scheme.

ORE was introduced by Boneh et al. [7] with the hope of
providing better security while still allowing order compar-
ison. Their scheme relies on multilinear maps [18], making
them currently inefficient [29] and potentially insecure given
doubt about the validity of cryptographic hardness assump-
tions related to multilinear maps [2, 21, 33]. Our attack in
Section VIII would affect these schemes. CLWW provide a
practical ORE scheme that also leaks frequency [12], our
attacks in Section VI affect this scheme, as well as their sug-
gestion of composing OPE with ORE. Lewi and Wu [30] de-
veloped a new ORE construction that leaks less than CLWW,
but does not achieve ideal leakage. Their construction is
elegant but is not yet practical due to large ciphertext sizes.
For security parameter A ~ 128 and plaintext domain of
size n, their ciphertexts require O(An) space.

Schemes supporting range queries Recent schemes [16,
30,41] have been developed that only support range queries.
Lewi and Wu’s scheme [30] can be modified to support
only range queries. Their modified scheme has security sim-
ilar to the frequency-hiding scheme of Kerschbaum, and is
vulnerable to our attacks on that scheme. The scheme of
Roche et al. [41] is designed with the assumption that not
all values will be queried. This assumption allows them
to achieve stronger security at the cost of applicability to
most applications of ORE. Faber et al. [16] adapt the OXT
searchable encryption protocol of Cash et al. [11] to support
range queries by transforming them into disjunctive queries,
but at the cost of a very large increase in database size.



To enable range queries on a column containing M n-
bit values with security parameter A ~ 128, they require
size O(AM]logn). Their scheme does resist offline inference
attacks, but the large increase in space complexity greatly
diminishes its practical deployability. Since these are not
ORE schemes they are outside the scope of this work.

Systems using ORE/OPE. Several companies and ser-
vices advertise encryption that preserves functionality, in-
cluding CipherCloud and Skyhigh Networks [13,22,36,43].
CryptDB [38,40] was the first system in the academic litera-
ture that introduced a scheme for running a large subset of the
SQL language on the server side, given an encrypted database
(EDB). It used deterministic encryption and OPE, as well as
standard encryption. Since then, the popularity of EDBs has
increased. Many companies such as IQrypt [22] and SAP [42]
are producing their own CryptDB-inspired solutions. Some
more recent academic systems use OPE or ORE as well, such
as Seabed [35] and Minicrypt [48].

Attacks against property-revealing encryption. Inference
attacks were first considered against searchable symmetric
encryption [14, 44] by Islam, Kuzu, and Kantarcioglu [23]
with subsequent improvements and investigation of active
attacks by Cash et al. [10] and Zhang et al. [47]. Grubbs
et al. [19] presented an active attack against the multi-user
searchable encryption scheme used in Mylar [39]. Naveed et
al. [34] were the first to consider inference attacks against
CryptDB-style EDBs, as discussed in Section IV.

Concurrent work. In a concurrent and independent work,
Durak, DuBuisson, and Cash [15] show how the sorting
attack from NKW [34] can be extended to the multi-column
case, when two or more columns contain correlated data.
They demonstrate that multi-column attacks are more devas-
tating than separate attacks on individual columns. They also
show attacks on non-ideal OPE/ORE schemes that leak more
than the order and frequency of the ciphertexts, including the
BCLO scheme. Their primary focus is sparse datasets such
as GPS coordinates, and do not look at names, birthdates, or
ZIP codes as we consider in our running case study.

Durak et al. do not exploit auxiliary information, and
instead rely only on leakage, whereas our attacks show
how to both exploit leakage by itself and to augment an
auxiliary-information-using inference attack. Their attacks
therefore only provide approximate recovery of plaintexts
(e.g., determining that a plaintext lies within some 10km
radius), whereas our attacks recover entire plaintexts, and in
many cases fully recover most records in a database.

X. CONCLUSION AND FUTURE WORK

In this work we have studied the security of OPE and ORE
as they are used in real systems. We developed new cryptan-
alytic techniques for several extant OPE and ORE schemes
and evaluated them experimentally by performing plaintext

recovery attacks against first and last names, birthdates, and
ZIP codes from several real datasets. Our attacks are effective
in fully recovering plaintexts from OPE and ORE ciphertexts.

Our work here has been empirical, but we believe our
attacks will prove effective against many other kinds of data
sets used in practice. We also leave as an open question
providing a more formal analysis of inference attacks. Future
work could also develop adaptive inference attacks, where
an attacker can make a limited number of adaptive chosen
plaintext queries while running an inference attack.

Our results suggest that OPE/ORE often provides only
marginal security for an important use case. We believe
the results will generalize to many other settings. We also
do not know if these attacks are optimal, so future work
may surface even more damaging attacks. Given all this, we
recommend practitioners avoid using OPE/ORE if possible.
In some deployment scenarios the only practical alternative in
the short term is leaving data in the clear, and here OPE/ORE
is clearly better than no encryption. For such cases, we hope
our methodologies can be used to help evaluate the security
achieved.
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