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Abstract. Since 2013 there have been several developments in algorithms for com-
puting discrete logarithms in small-characteristic finite fields, culminating in a quasi-
polynomial algorithm. In this paper, we report on our successful computation of discrete
logarithms in the cryptographically-interesting characteristic-three finite field F36·509 us-
ing these new algorithms; prior to 2013, it was believed that this field enjoyed a security
level of 128 bits. We also show that a recent idea of Guillevic can be used to compute
discrete logarithms in the cryptographically-interesting finite field F36·709 using essen-
tially the same resources as we expended on the F36·509 computation. Finally, we argue
that discrete logarithms in the finite field F36·1429 can feasibly be computed today; this
is significant because this cryptographically-interesting field was previously believed to
enjoy a security level of 192 bits.

1. Introduction

Let Fq denote a finite field of order q. The discrete logarithm problem (DLP) in Fq is
the following: given an element g ∈ F∗q of order r, and h ∈ 〈g〉, find the integer x ∈ [0, r−1]
such that h = gx. The integer x is called the discrete logarithm of h to the base g and is
denoted by logg h. Before 2013, the fastest general-purpose algorithm known for solving
the DLP in the case where q is a prime was the Number Field Sieve [21, 35] with running
time Lq[

1
3 , 1.923], and the fastest general-purpose algorithm known for solving the DLP

in the case where q is a power of 2 or 3 was Coppersmith’s algorithm [13] with running
time Lq[

1
3 , 1, 526]. Here, Lq[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(log q)α(log log q)1−α

)
that is subexponential in log q.

Since the DLP in small-characteristic fields was a little easier than the DLP in prime-
order fields, the vast majority of early research and development of discrete-logarithm
cryptographic protocols used prime-order fields. This situation changed at the beginning
of the present century with the introduction of pairing-based cryptography (see [10]),
which employs non-degenerate bilinear pairings derived from elliptic curves and genus-2
hyperelliptic curves. In particular, some influential early papers [11, 17, 8, 18, 7] considered
symmetric pairings e : G×G→ GT derived from supersingular elliptic curves E and genus-
2 hyperelliptic curves C defined over finite fields Fq of characteristic 2 or 3. Here, G is a
subgroup of prime-order r of E(Fq), the group of Fq-rational points on E, or of JacC(Fq),
the jacobian of C over Fq; GT is the order-r subgroup of the multiplicative group of Fqk ;
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and the embedding degree k is the smallest positive integer such that r | (qk − 1). Three
symmetric pairings that were widely studied and implemented are:

(1) the k = 6 pairings derived from supersingular elliptic curves Y 2 = X3−X+ 1 and
Y 2 = X3 −X − 1 over Fq with q = 3n;

(2) the k = 4 pairings derived from supersingular elliptic curves Y 2 + Y = X3 + X
and Y 2 + Y = X3 +X + 1 over Fq with q = 2n;

(3) the k = 12 pairings derived from supersingular genus-2 curves Y 2 + Y = X5 +X3

and Y 2 + Y = X5 +X3 + 1 over Fq with q = 2n.

In all cases, n is chosen to be a prime such that #E(Fq) or #JacC(Fq) is divisible by a
large prime r. A necessary condition for the security of these pairings is the intractability
of the DLP in GT , and thus also in Fqk [34, 16]. Consequently, the DLP in such finite fields
F36n , F24n and F212n became especially important from a cryptographic point of view; we
will henceforth say that these fields are ‘cryptographically interesting’.

In 2013, there were several spectacular developments in algorithms for computing dis-
crete logarithms in small-characteristic finite fields, culminating in a quasi-polynomial time
algorithm [26, 19, 6]. These developments were accompanied by some striking computa-
tional results such as the computation of discrete logarithms in the 6120-bit field F28·3·255

in only 550 CPU hours [20]; see [29] for a complete list. In 2014, Granger, Kleinjung
and Zumbrägel [22] reported the first computation of discrete logarithms in one of the
cryptographically-interesting finite fields F36n , F24n , F212n that was believed to offer 128
bits of security against Coppersmith’s attack, namely the 4404-bit field F212·367 .

Let q = 36. In this paper, we shall focus on the DLP in cryptographically-interesting
fields Fqn = F36n . In [3] and [4], Adj et al. showed that the new algorithms can in
principle be used to compute logarithms in F36·509 and F36·1429 in 281.7Mq2 and 295.8Mq2

time, respectively, where Mq2 denotes the time to perform one multiplication in Fq2 .
These results were cryptographically significant because the fields F36·509 and F36·1429 were
believed to offer 128 and 192 bits of security against Coppersmith’s attack (see [31]).
However, the computations were still infeasible using existing computer technology. Then,
in [5], Adj et al. used ideas from [28] and [22] to improve their estimates for discrete
logarithm computations in F36·509 and F36·1429 to 258.9Mq and 278.8Mq2 , respectively, where
Mq denotes the time to perform one multiplication in Fq.

In §3, we describe our computation of discrete logarithms in the 4841-bit field F36·509 .
This is the second computation of discrete logarithms in a cryptographically-interesting
finite field that was purported to provide 128 bits of security against Coppersmith’s at-
tack. Then, in §4, we show that a recent idea of Guillevic [25] can be used to compute
discrete logarithms in F36·709 using essentially the same resources as we expended on the
F36·509 computation. Furthermore, in §5 we lower the estimates for discrete logarithm
computations in F36·1429 to 263.4Mq. We argue that this computation is feasible today,
even though it is just beyond the reach of the computer resources available to the authors
of this paper. This is the first demonstration that pairing-based cryptosystems originally
believed to offer 192 bits of security can be broken in practice today.

We begin in §2 by providing an overview of the key ingredients in the DLP algorithm.
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2. Overview of the DLP algorithm

For the sake of concreteness, we focus on DLP instances in cryptographically-interesting
finite fields F36n . Let q = 36 and let n be prime. Let r be a large prime divisor of

3n ±
√

3n+1 + 1, whence r | (qn − 1). Let g be a generator of F∗qn , and let h be an element
of the order-r subgroup of F∗qn . We wish to determine x = logg h mod r.

The elements of Fqn are represented as polynomials of degree at most n − 1 over Fq.
The algorithm begins by building a factor base of logarithms of all degree-one, degree-
two and degree-three polynomials over Fq, and a proportion of degree-four polynomials.
Then, in the descent stage, various techniques are used to recursively express logg h as a
linear combination of logarithms of smaller-degree polynomials until all these polynomials
belong to the factor base.

Notation. Nq(m,n) denotes the number of monic m-smooth degree-n polynomials in
Fq[X], and Sq(m, d) denotes the cost of testing m-smoothness of a degree-d polynomial in
Fq[X]. Formulas for Nq(m,n) and Sq(m,n) are given in [3] and [23], respectively.

2.1. Frobenius representation. Let h0, h1 ∈ Fq[X] be polynomials such that h1X
q−h0

has a degree-n irreducible factor IX in Fq[X] and max(deg h0, deg h1) = 2. The field Fqn
is represented as Fq[X]/(IX). This Frobenius representation, introduced by Joux [26], has
the useful property that

Xq ≡ h0/h1 (mod IX).

2.2. Small degrees. We use the Joux-Pierrot [28] method for computing logarithms of
small-degree polynomials. The main idea is to partition the set of irreducible cubics and
quartics into smaller families, and to exploit the special form of h0 and h1 to find relations
of logarithms of elements within a family. The Joux-Pierrot method requires that h0 and
h1 have the form h0(X) = α0X + α1 and h1(X) = X2 + α2X.

2.2.1. Linear and quadratic polynomials. The dominant cost of finding logarithms of el-
ements in B2, the set of all linear and irreducible quadratic polynomials over Fq, is the
solution of a linear system of size ≈ q2/2× q2/2 and row density ≈ 3q/2. The linear sys-
tem can be solved using Wiedemann’s algorithm [36] at a cost of approximately 9q5/8Ar,
where Ar denotes the cost of an addition modulo the integer r.1

2.2.2. Cubic polynomials. The set B3 of irreducible cubics over Fq is partitioned into q−1
families B3,γ = {X3+aX2+bX+γ}, each of size exactly (q2+q)/3. The dominant cost of
finding logarithms of polynomials in a family B3,γ is the solution of a linear system of size
≈ q2/3× q2/3 and row density ≈ q/3; the total cost of solving the q − 1 linear systems is
≈ q6/9Ar. Note that the q − 1 linear systems can be generated and solved independently
of each other.

1The dominant cost of Wiedemann’s algorithm for solving an N × N system of linear equations with
row density λ and where the nonzero entries are small (e.g., 0,±1,±2) is 3λN2Ar.
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2.2.3. Quartic polynomials. The irreducible quartics over Fq are partitioned into q − 1
families B4,γ = {X4 +aX3 + bX2 + δX+γ}, each of size approximately q3/4. Each family
B4,γ is further partitioned into q subfamilies B4,γ,δ according to the coefficient δ of the
linear term in a polynomial; we have |B4,γ,δ| ≈ q2/4.

To compute logarithms of all quartics Q in a subfamily B4,γ,δ, one first attempts a 4-to-3
Gröbner bases descent on Q (see §2.5). This is expected to be successful about 50% of the
time. If unsuccessful, then the ‘Frobenius strategy’ described in [5] is employed. Namely,
one has

Q̃(X) = h41Q(Xq) = h41Q(h0/h1) = h40 + ah30h1 + bh20h
2
1 + δh0h

3
1 + γh41.

The polynomial Q̃ is either irreducible or a product of two irreducible quartics, the latter
occurring with probability2 approximately 1

2 (see Lemma 2 in [28]). In the latter case,
a 4-to-3 Gröbner bases/Frobenius descent is recursively attempted on each of the two

quartic factors of Q̃. If both are successful, then we have succeeded in descending Q.
About 58.6% of all quartics Q can be descended in this way [28]. Thus, one expects

there to be (1 − 0.586) · q2/4 ≤ 0.11q2 quartics in B4,γ,δ whose logarithms are yet to be
determined. The Joux-Pierrot technique is then used to generate relations of logarithms
of these quartics, yielding a linear system of size ≈ 0.11q2 × 0.11q2 and row density ≈
0.11q. The 0.00399q5Ar cost of solving this linear system dominates the cost of computing
logarithms of all polynomials in a subfamily. Thus, the cost of computing logarithms of
all polynomials in a family is 0.00399q6Ar, and the cost of computing logarithms of all
quartics is 0.00399q7Ar.

Note that the q(q−1) linear systems can be generated and solved independently of each
other. While sacrificing some parallelizability, Joux and Pierrot [28] described how the
linear systems associated with families can be recursively halved in dimension using the
family-based Gröbner bases descent method described in §2.2.4. With this modification,
the dominant cost of computing logarithms of irreducible quartics is the cost of the linear
algebra for the first few of the q − 1 families.

2.2.4. Family-based Gröbner bases descent for quartics. To avoid the high storage and
lookup costs for the factor base of logarithms of all (q4 − q2)/4 irreducible quartics, one
can instead compute and store the logarithms of quartics in a relatively small number of
families, say B4,γi for i = 1, 2, . . . , s. Suppose that Q ∈ Fq[X] is an irreducible quartic
that is not in one of these s families. Then logg Q can be computed on-the-fly as follows.

We first attempt a 4-to-3 Gröbner bases descent and the Frobenius strategy on Q. If
this fails, we consider the first family B4,γ1 . Our goal is to find polynomials k1(X) =
X4 + a2X

2 + a1X + γ1 and k2(X) = X3 + b2X
2 + b1X ∈ Fq[X] such that Q | G, where

G = h41(k
q
1k2 − k1k

q
2) mod IX .

In this case, we have

G(X) ≡ h41 · (X3 + b2X
2 + b1X)(1)

·
∏
α∈Fq

(
X4 − αX3 + (a2 − αb2)X2 + (a1 − αb1)X + γ1

)
(mod IX)

2All statements in this paper about probability are heuristic, and assume that polynomials generated
in the course of the algorithm are distributed uniformly at random from a certain set of polynomials.
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as can be seen by making the substitution Y 7→ k1/k2 into the systematic equation

Y q − Y =
∏
α∈Fq

(Y − α)

and clearing denominators. It is clear that all the irreducible quartics appearing in the
right side of (1) are B4,γ1-elements. Note that

G = (h40 + a1h
2
0h

2
1 + a2h0h

3
1 + γ1h

4
1)(X

3 + b2X
2 + b1X)

− (X4 + a2X
2 + a1X + γ1)(h

3
0h1 + b2h

2
0h

2
1 + b1h0h

3
1),

which is a degree-11 polynomial divisible by X(h1X − h0) and Q. The cofactor of X ·
(h1X − h0) · Q in G is a degree-3 polynomial. Thus, equation (1) yields an expression
for logg Q in terms of logarithms of polynomials of degree ≤ 3 and polynomials in B4,γ1 .
Since these logarithms are all known, we can determine logg Q.

To find polynomials (k1, k2) such that Q | G, one proceeds as in the classical Gröbner
bases descent (see §2.5), with the same computational cost, whereby a system of multi-
variate bilinear equations is solved using a Gröbner basis finding algorithm.

As discussed in §2.2.3, this descent method, together with the Frobenius strategy, is
successful for only about 58.6% of all irreducible quadratics Q not in B4,γ1 . If the descent
fails, then the procedure is iterated with the other families B4,γi for i = 2, . . . , s. The
probability that the descent fails after s iterations is (1− 0.586)s+1.

2.3. Continued-fractions descent. Suppose that deg h = n − 1. The descent begins
by multiplying h by a random power of g. The extended Euclidean algorithm is used to
express the resulting field element h′ in the form h′ = w1/w2 where degw1, degw2 ≈ n/2
[9]. This process is repeated until both w1 and w2 are m-smooth for some chosen m <
(n−1)/2, thus giving logh h as a linear combination of logarithms of polynomials of degree
at most m. The expected cost of this continued-fractions descent is approximately

(2)

(
q(n−1)/2

Nq(m, (n− 1)/2)

)2

· Sq(m, (n− 1)/2).

The logarithms of the polynomials of degree ≤ m are then expressed as linear combinations
of logarithms of smaller-degree polynomials using one of the descent methods described
in §2.4, §2.5 and §2.6.

2.4. Classical descent. The classical descent method has its origins in the work of Joux
and Lercier [27]. We follow the description in §5.5 of [4] and refer to that paper for further
details.

Suppose that we wish to determine logg Q, where degQ = D. One selects parameters
m < D, s ∈ [0, 6], and δ ≥ 1. The classical descent method yields candidate polynomials
(R1, R2) with Q | R1, degR1 = t1 ≈ (bD/2c+δ)+36−s, degR2 = t2 ≈ (bD/2c+δ) ·3s+2,
and such that logg Q can be written in terms of logg(R1/Q) and logg R2. Pairs (R1, R2)
are generated until one is found where both R1/Q and R2 are m-smooth. In order to
ensure that there are sufficiently many candidates (R1, R2), the parameters m, s and δ
must be selected so that

(3) q2δ � qt1−D

Nq(m, t1 −D)
· qt2

Nq(m, t2)
.
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If this condition is satisfied, then the expected cost of the D-to-m classical descent is

(4)
qt1−D

Nq(m, t1 −D)
· qt2

Nq(m, t2)
·min(Sq(m, t1 −D), Sq(m, t2)).

2.5. Gröbner bases descent. Let Q ∈ Fq[X] be an irreducible polynomial of degree D,
and let m ≥ 1. In Joux’s D-to-m descent [26] (see also §2.5 of [5]), one obtains a system of
3m+1 bilinear equations in 5m−D+3 variables over Fq. The system of equations can be
solved by finding a Gröbner basis for the ideal it generates. Provided that the condition

(5) q2m+1−D � q3m−D/Nq(m, 3m−D)

is satisfied [22], one expects to obtain an expression for logg Q in terms of the logarithms
of slightly more than q (not necessarily irreducible) polynomials of degree m.

2.6. Zigzag descent. Let Q ∈ Fq[X] be an irreducible polynomial of degree 2m, m ≥ 3.
In [24], one begins by lifting Q to Fqm [X], where it factors into m irreducible quadratics.

The factors Qi, where 0 ≤ i < m, are conjugates and can be ordered so that Qi = Q
[i]
0

where Q
[i]
0 denotes the polynomial obtained by raising each coefficient of Q0 to the power

qi.
Next, the 2-to-1 on-the-fly descent method [19, 20] is employed to obtain a relation

involving Q0 and slightly more than q linear polynomials over Fqm . The descent is always
expected to be successful if m ≥ 4. In contrast, when m = 3 only 50% of the irreducible
quadratics over Fqm are expected to descend.

Suppose now that we have a relation

Q0 ·
∏
s

Fs =
∏
t

Gt,

where the Fs and Gt are linear polynomials over Fqm . Then, for each 0 ≤ i < m, we have

Qi ·
∏
s F

[i]
s =

∏
tG

[i]
t . This gives

Q ·
∏
s

(
F [0]
s · · ·F [m−1]

s

)
=
∏
t

(
G

[0]
t · · ·G

[m−1]
t

)
.

Since for every pair of indexes (s, t), the products F
[0]
s · · ·F [m−1]

s and G
[0]
t · · ·G

[m−1]
t are

nothing more than the respective polynomial norms of the linear polynomials Fs and Gt
over Fq and, therefore, are degree-m polynomials in Fq[X], we get an expression for logg Q
in terms of the logarithms of polynomials of degree (at most) m over Fq.

3. Discrete logarithms in F36·509

The DLP instance we solved is described in §3.1. Some details of our implementation
are presented in §3.2.
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3.1. Problem instance. Let N denote the order of F∗36·509 . Using the tables from the

Cunningham Project [14], we partially factored N as N = C · p31 ·
∏21
i=2 pi, where the pi

are the following primes (and r = p21):

p1 = 2 p2 = 7 p3 = 13 p4 = 1019 p5 = 7127 p6 = 21379 p7 = 54973 p8 = 97729

p9 = 14495303 p10 = 39115633 p11 = 324927277 p12 = 1644550169868135799

p13 = 59561824373572167761652488341 p14 = 1408323592065265621229603282020508687

p15 = 19724128725821325379688781664270351435664812399

p16 = 445822414421517590127833782065296611184663760610930675526963377000813

p17 = 7469589208981657559358234454652029713337290698769130712039564064844959830743

p18 = 3163016399054661453216167356713635396334196841905270027907771196291310871346

25858897091297678698363249

p19 = 2321404946852574407463368383953127746140259615234678007610408233057803930650

5889278179026503395282728989110957696917932365850935308873749615837273

p20 = 4481615016192797792064736092967441840962676013893578289418828353437587210956

6942820514222439432850646355157098126051586360410836283973747433357183937067

44237385203

p21 = 1022399462025868524098098874180930214571506124952557066147330033275262790815

6368783078274830574618706026498586928352444181958959275099808618631525078106

7131293823177124077445718802216415539934838376431091001197641295264650596195

201747790167311

and C = (31018 + 3509 + 1)/13 is a 1610-bit composite number.
We verified that gcd(C,N/C) = 1 and that C is not divisible by any of the first 107

primes. Consequently, if an element g is selected uniformly at random from F∗36·509 , and g

satisfies gN/pi 6= 1 for 1 ≤ i ≤ 21, then g is a generator of F∗36·509 with very high probability.
We chose the representation F36 = F3[u]/(u6 + 2u4 + u2 + 2u + 2), with u generating

F∗36 . The field F36·509 is represented as F36 [X]/(IX), where IX is the degree-509 irreducible
factor of h1(X)Xq − h0(X) with h0(X) = u316X + u135 and h1(X) = X2 + u424X.

We chose the (presumed) generator g = X + u2 of F∗36·509 . To generate an order-r
discrete logarithm challenge h, we computed

h′ =
508∑
i=0

(
ubπ·(3

6)i+1c mod 36
)
Xi

and then set h = (h′)N/r. The discrete logarithm x = logg h mod r was found to be

x = 149187399860318266360216633693296993377456281891569921325313817877770378643049306

648080952565298353676579007451593201607464390995536601538742899221984651896794008

85502189766284148692964779627944571222053133596965907357777487989092312353851456.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r. Magma
script for this verification is available at http://tinyurl.com/GF3-6-509.

3.2. Experimental results. The computation described in this section was done using
clusters from Cinvestav’s ABACUS supercomputer [1] (Intel Xeon E5-2697 v3 2.60 GHz
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cores, 5096 CPU cores used), Cinvestav’s Computer Science Department (290 CPU cores
used), and University of Waterloo’s Faculty of Mathematics (120 CPU cores used). We
used Magma’s implementation of Faugère’s F4 algorithm for Gröbner bases finding [15, 32].
Polynomial smoothness testing was implemented in C [2, 12]. Table 1 gives the number
of CPU years that were expended on each stage of the computation. The CPU frequency
column lists the average clock speed of the cores used.

Computation stage CPU time (years) CPU frequency (GHz)

Finding logarithms of quadratic polynomials

Relation generation 0.0003 3.20

Linear algebra 0.49 2.40

Finding logarithms of cubics

Relation generation 0.14 3.20

Linear algebra 43.28 2.60

Finding logarithms of quartics (29 families)

Relation generation 4.01 2.60

Linear algebra 94.70 2.60

Descent

Continued-fractions (508 to 40) 51.00 2.87

Classical (40 to 21) 9.85 2.66

Classical (21 to 15) 10.10 2.66

Small degree (15 to 4) 6.18 3.00

Total CPU time (years) 219.75

Table 1. CPU times of each stage of the computation of discrete loga-
rithms in F36·509 .

3.2.1. Quadratics. There are 266, 086 ≈ 218 linear and irreducible quadratics. Relation
generation took 2.4 CPU hours using Magma on an Intel i7-3930K 3.20GHz CPU core.
The resulting sparse system of linear equations was solved using our C implementation of
Wiedemann’s algorithm; the computation took 4, 320 CPU hours on Intel Xeon E5-2658
v2 2.40 GHz CPU cores.

3.2.2. Cubics. For every γ ∈ F∗q , B3,γ has size exactly 177, 390. The total relation gen-
eration running time is 1, 232 CPU hours using Magma on Intel i7-3930K 3.20GHz CPU
cores. The resulting 728 sparse systems of linear equations were solved using our C im-
plementation of Wiedemann’s algorithm. Each linear system was solved in parallel on 7
ABACUS cores.3 The 728 linear systems were solved simultaneously using 5096 ABACUS
cores. The total execution time was 379, 142 CPU hours. This time, and also the time for
the linear algebra for the quartics (see §3.2.3), was more than expected in part because
ABACUS was still running in an experimental phase and the machine was under-clocked

3The dominant operation in Wiedemann’s algorithm is the computation of Av where A is a sparse
matrix with small entries and v is a vector. This operation can be parallelized on k cores by partitioning
the rows of A into k submatrices A1, A2, . . . , Ak and computing Aiv on the ith core.
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to prevent over-heating. The increased CPU time did not have a significant impact on the
total calendar time for the discrete log computation because of the large number of cores
that we were at our disposal.

The logarithms were stored in files whose total size is 26.4 gigabytes.

3.2.3. Quartics. We computed logarithms of s = 29 families B4,ui , 0 ≤ i ≤ 28. We elected
not to used the technique of iteratively decreasing the size of the corresponding linear
systems. Consequently, each subfamily of quartics yielded a linear system of dimension
approximately 55,050. The total relation generation running time was 35, 118 CPU hours
using Magma on Intel Xeon E5-2650 v2 2.60GHz CPU cores. The resulting 29 × 729 =
21, 141 sparse systems of linear equations were solved using our C implementation of
Wiedemann’s algorithm in 829, 573 CPU hours on ABACUS. Each linear system was
solved in parallel on 2 cores. We used approximately 5000 cores to solve all 21,141 linear
systems. The logarithms of a family were stored in files whose total size is 20.4 gigabytes.
The total size of the files of factor base logarithms is 618 gigabytes. Note that the total size
of the files for logarithms of all polynomials of degree ≤ 4 would be about 14.9 terabytes.

Theorem 4 of [30] shows that the expected number of degree-d irreducible factors of a
randomly selected degree-n polynomial over Fq is approximately 1/d. Using this result,
we computed the expected number of degree-4 elements obtained after a descent of a
polynomial of degree in the interval [5, 15]. We then used Table 4 to estimate the expected
number of irreducible quartics that result from all the descent steps. These estimates are
shown in Table 2; the total number of irreducible quartics is 231.15.

Degree 5 6 7 8 9 10 11 12 13 14 15
Number of

214.18 214.26 221.27 216.13 222.11 223.88 228.54 223.97 228.74 224.88 230.45degree-4
polynomials

Table 2. Expected number of irreducible quartics resulting from all the
Gröbner bases and zigzag descent steps for each degree in [5, 15].

To compute the logarithm of a polynomial in B4,ui , i > 28, we used the family-based
descent method described in §2.2.4. The descent considered the families in the order B3,
B4,u0 , B4,u1 , . . . ,B4,u28 . Table 3 shows, for each i ∈ [0, 28], the inverse of the probability
that a randomly-selected irreducible quartic descends based on that family. In particular,
note that the probability that a quartic fails to descend is less than 2−38.2. Since the
reciprocal of the failure probability is � 231.15, the number of quartics encountered that
fail to descend is expected to be very small. In the event that a quartic fails to descent,
the computation that yielded that quartic is repeated (with different parameters).

The computers available to us had at most 256 gigabytes of RAM. Thus, only the loga-
rithms of the cubics and the logarithms of the first 10 quartics families B4,u0 , B4,u1 , . . . ,B4,u9
were placed in RAM, and the logarithms of the remaining quartic families were stored in
hard disk (HD), which is much slower to access than virtual memory (VM). Since many
copies of the Magma code will be executed in parallel, each of which will be accessing the
same logarithm files, the memory accesses have to be carefully scheduled to avoid traffic
congestion. In addition, we had to deal with some restrictions on Magma’s file reading
capabilities (for example, whether the files are stored in hexadecimal encoding or binary
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B3 200.8297 B4,u0 202.1020 B4,u1 203.3742 B4,u2 204.6466 B4,u3 205.9189

B4,u4 207.1912 B4,u5 208.4635 B4,u6 209.7358 B4,u7 211.0081 B4,u8 212.2803

B4,u9 213.5526 B4,u10 214.8250 B4,u11 216.0972 B4,u12 217.3695 B4,u13 218.6418

B4,u14 219.9141 B4,u15 221.1864 B4,u16 222.4587 B4,u17 223.7310 B4,u18 225.0033

B4,u19 226.2756 B4,u20 227.5479 B4,u21 228.8202 B4,u22 230.0925 B4,u23 231.3648

B4,u24 232.6371 B4,u25 233.9094 B4,u26 235.1817 B4,u27 236.4540 B4,u28 237.7263

Table 3. For every family from B3, B4,ui , i ∈ [0, 28], the inverse of the
probability for a random irreducible quartic to descend based on that fam-
ily.

encoding) and with limits on the total number of open files permitted on Linux. In the
end, the average time to descend a randomly selected quartic was found to be 0.0614
seconds of CPU time (0.0640 seconds of real time) on a 20-core Intel Xeon E5-2658 v2
2.40GHz machine with 256 gigabytes of RAM. For further details, see [2].

3.2.4. Continued-fractions descent. The two degree-254 polynomials yielded 22 irreducible
factors with 2 of degree 40, 1 of degree 39, 1 of degree 38, 1 of degree 37, and 7 of degree
in the interval [22, 35]. The computation took 446, 768 CPU hours on CPU cores with
average frequency 2.87 GHz (270 cores of different frequencies were used in this stage).

3.2.5. Classical descent. In the first classical descent phase, 255 polynomials of degree
≤ 21 were obtained from the 12 polynomials of degree ≥ 22. These computations took
86, 323 CPU hours on CPU cores with average frequency 2.66 GHz (390 cores of different
frequencies were used in the two phases of the classical descent).

The second classical descent phase was used on the 84 polynomials of degree ≥ 16
arising from the first phase, to obtain polynomials of degree ≤ 15. These computations
took 88, 452 CPU hours.

The number of polynomials of each degree in [5, 15] that were obtained from the
continued-fractions and classical descents is shown in Table 4.

Degree 5 6 7 8 9 10 11 12 13 14 15
Number of polynomials 101 107 94 98 92 116 137 123 155 173 213

Table 4. Number of polynomials of each degree in the interval [5, 15]
obtained after the continued-fractions and classical descents. The total
number of polynomials is 1409.

3.2.6. Small-degree descent. In the last descent stage, the 1409 polynomials of degrees in
[5, 15] that resulted from the continued-fractions and classical descents should have their
logarithms expressed in terms of logarithms of elements in the factor base, namely, in B2,
B3 and B4,ui , i ∈ [0, 28].
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The Gröbner bases descent expresses the logarithm of a degree-D element, D ∈ [5, 15],
as a linear combination of logarithms of polynomials of degree ≤ d where d = bD/2c+ 2.
This is the best that can be done because of condition (5).

Gröbner bases descent was used on polynomials of odd degree. For those of even degree
the zigzag descent was employed (except for degree-14 polynomials, see below) because of
its more aggressive descent character. Indeed, a polynomial of degree 2d, d > 2, is related
with polynomials of degree d using the zigzag descent instead of polynomials of degree
d+ 2 when using the Gröbner bases descent. The degree-4 polynomials which are not in
the factor base are descended using the classical or family-based Gröbner bases descent
combined with the Frobenius strategy.

As mentioned in §2.6, the zigzag descent is successful for only 50% of degree-6 polyno-
mials. For the remainder, we used a hybrid Gröbner bases-zigzag descent. In this hybrid
descent, a degree-6 polynomial is lifted to the quadratic extension of F36 , where it splits
into two cubics. Over F312 , we adapted the Gröbner bases descent in §2.5 and used it to
perform a 3-to-2 descent on one of the two degree-3 polynomials. Then, using the poly-
nomial norm as in §2.6, we obtained the logarithm of the degree-6 polynomial expressed
in term of logarithms of polynomials of degree (at most) 4. This strategy allowed us to
avoid the more costly 6-to-5 and then 5-to-4 Gröbner bases descent steps (recall that each
of these descents has a branching factor of q).

We also employed the hybrid descent on the degree-14 polynomials to perform 14-to-8
descents instead of zigzag 14-to-7 descents. In fact, a complete descent is more costly on a
degree-7 polynomial than on a degree-8 polynomial since in the former two Gröbner bases
descent stages, 7-to-5 then 5-to-4, are needed whereas only one zigzag 8-to-4 descent stage
is needed in the latter.

Table 5 lists the (scaled) times for computing the logarithms of all polynomials of degrees
in the interval [5, 15] that arose from the continued-fractions and classical descents stages.

Degree 5 6 7 8 9 10 11 12 13 14 15

Total 210.21 210.29 217.30 212.16 218.14 219.92 224.57 220.00 224.78 220.91 226.48

Average 23.55 23.55 210.69 25.64 211.62 213.06 217.47 213.06 217.50 213.48 218.75

Table 5. Total and average CPU times in seconds to obtain the logarithms
of all the polynomials of degrees in [5, 15] that resulted from the continued-
fractions and classical descents. The times assume that an Intel Xeon E5-
2658 v2 2.40 GHz machine with 256 gigabytes of RAM is used.

Remark 1. In hindsight, the total running time for computing logarithms in F36·509 can be
reduced substantially with two modifications to the algorithm. First, as mentioned at the
end of §2.2.3, the linear systems associated with families of quartics can be reduced after
discrete logarithms of a few families have been computed. Second, a 508-to-32 Guillevic
descent (see §4.1) could be used instead of the 508-to-40 continued-fractions descent. The
estimated cost of the 508-to-32 Guillevic descent is only 0.05 CPU years as compared
to the estimated cost of 31.8 CPU years for the 508-to-40 continued-fractions descent.
Moreover, the estimated costs of the subsequent 32-to-19 and 19-to-15 classical descents
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and the 15-to-4 small-degree descents are also substantially lower — 0.93, 0.99 and 2.13
CPU years, respectively (cf. Table 1).

4. Discrete logarithms in F36·709

Recall that the Frobenius representation of F36n requires a degree-n irreducible factor
of h1(X) · Xq − h0(X) over Fq where max(deg h0,deg h1) = 2. Now, n = 709 is the
largest prime ≤ 731 for which there is a supersingular elliptic curve E over F3n with
r = #E(F3n) a prime. More precisely, we have r = 3709 − 3355 + 1 = #E(F3709) where E
is the supersingular elliptic curve Y 2 = X3 −X − 1 defined over F3. The Weil and Tate
pairings can be used to embed E(F3709) in the multiplicative group of the 6743-bit field
F36·709 . Thus, we are interested in computing x = logg h mod r, where g is a generator of
F∗36·709 and h is an element of the order-r subgroup of F∗36·709 .

In §4.1 we describe a slight modification of a descent method proposed by Guillevic
[25] that is considerably more effective than the continued-fractions descent. Then, in
§4.2, we demonstrate that Guillevic’s descent method can be utilized to compute discrete
logarithms in the cryptographically-interesting field F36·709 with essentially the same re-
sources as we expended on the F36·509 discrete logarithm computation. Thus, we conclude
that discrete logarithms in the cryptographically-interesting field F36·709 can be feasibly
computed today.

4.1. Guillevic descent. Let q = 36 and let r be a prime divisor of Φ6(3
n), where Φ6(X)

denotes the 6th cyclotomic polynomial. Suppose that elements of the finite field Fqn are
represented as polynomials of degree at most n−1 over Fq, with multiplication performed
modulo a degree-n irreducible polynomial. Let g be a generator of F∗qn , and let h ∈ F∗qn .
We wish to determine x = logg h mod r.

Since h is an arbitrary element of F∗qn , its degree can be as high as n− 1. Without loss
of generality, we can suppose that h has degree exactly n − 1. Guillevic observed that if
h′ = hv, where v is an element of the proper subfield F33n of Fqn , then

logg h
′ ≡ logg h (mod r).

Her descent method consists of searching for v until h′ has degree n′ ≈ n/2 and is smooth
with respect to some smoothness bound m.

Let n′ = bn/2c + c, where c is chosen so that 36n
′−3n � qn

′
/Nq(m,n

′), the right hand
side of the inequality being the reciprocal of the proportion of degree-n′ polynomials over
Fq that are m-smooth. Let {1, w, w2, ..., w3n−1} be a basis for F33n over F3. Thus, we
can write v = v0 + v1w + · · · + v3n−1w

3n−1, where vi ∈ F3. Let H be the 6n × 3n
matrix over F3 whose columns are the coefficients of h,wh,w2h, . . . , w3n−1h. Here, if
wih = h0 + h1X + · · · + hn−1X

n−1 with hj ∈ Fq, then the column vector corresponding
to wih is (h0, h1, . . . , hn−1) where each hj is written as a length-6 vector over F3. Thus,
we wish to find vectors v such that h′ = Hv is an F3-vector corresponding to a monic
polynomial of degree n′ over Fq.

Now, let H ′ be the 6(n−n′)× 3n matrix consisting of the last 6(n−n′) rows of H. We
expect that H ′ has full row rank (otherwise we can randomize h and repeat). Thus, each

of the 36n
′−3n solutions v to the matrix equation H ′v = e, with e being the unit vector

having a 1 in it first position, yields a monic polynomial h′ = Hv of degree n′ over Fq.
These polynomials are tested for m-smoothness until an m-smooth polynomial is found.
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The expected running time is Sq(m,n
′) ·qn′/Nq(m,n

′), the cost of the linear algebra being
negligible.

As proof-of-concept, we used the new descent method to write a degree-708 polynomial
h ∈ F36·709 in terms of a 52-smooth degree-358 monic polynomial h′ (so n = 709, c = 4,
n′ = 358, and m = 52). The estimated cost of finding such an h′ is only 243.8Mq. We
found a 52-smooth h′ in about 245 CPU hours, after testing about 219.6 candidates h′ (the
search was implemented in Magma using a sub-optimal procedure for smoothness testing).
In contrast, the expected cost of continued-fractions descent to write h as w1/w2 where
each wi is 52-smooth and has degree approximately 354 is 262.5Mq; this computation is
feasible but only with a considerable effort.

4.2. Estimates. Let F36 = F3[u]/(u6 + 2u4 + u2 + 2u + 2), h0(X) = u10X + 1, and
h1(X) = X2 + u110X. Then h1(X) · Xq − h0(X) has a degree-709 irreducible factor
IX , and the cofactor is an irreducible polynomial of degree 22. The field F36·709 can be
represented as F36 [X]/(IX).

To find x = logg h mod r, we first use Guillevic’s descent to find a degree-358 monic

polynomial h′ that is 40-smooth. The expected cost of this step is 253.3Mq. (In con-
trast, the expected cost of continued-fractions descent to express h as the ratio of two
40-smooth degree-354 polynomials is 281.3Mq.) Thus, the expected cost of the 708-to-40
Guillevic descent is less than the expected cost of the 508-to-40 continued-fractions de-
scent. Furthermore, the 709-to-40 Guillevic descent will yield fewer polynomials of degree
≤ 40 than the 508-to-40 continued-fractions descent.

The remainder of the discrete logarithm computation in F36·709 proceeds in the same
way as the F36·509 discrete logarithm computation, except that we have to work modulo
the 1124-bit prime r instead of an 804-bit prime. The larger r will only have a slight
impact on the cost of the linear algebra. Hence, we can conclude that discrete logarithms
in F36·709 can be computed using essentially the same resources as we expended in the
F36·509 computation.

5. Discrete logarithms in F36·1429

The supersingular elliptic curve E : Y 2 = X3−X−1 defined over F3 has #E(F31429) =
cr, where c = 7622150170693 is a 43-bit cofactor and r = (31429 − 3715 + 1)/c is a 2223-
bit prime. The Weil and Tate pairings can be used to embed the order-r subgroup of
E(F31429) in the multiplicative group of the 13590-bit field F36·1429 . Thus, we are interested
in computing x = logg h mod r, where g is a generator of F∗36·1429 and h is an element of
the order-r subgroup of F∗36·1429 .

In §5.1, we show that discrete logarithms in the order-r subgroup of F∗36·1429 can be
computed in time 263.4Mq. In §5.2 we present our arguments that this computation is
feasible using existing computer technology.

5.1. Estimates. Let F36 = F3[u]/(u6 + 2u4 + u2 + 2u + 2), h0(X) = X + u28, and
h1(X) = X2 + u420X. Then h1(X

q) · X − h0(Xq) has a degree-1429 irreducible factor
IX , the cofactor being the product of six irreducible polynomials of degrees 1, 1, 1, 3,
12 and 12. The field F36·1429 can be represented as F36 [X]/(IX). This dual Frobenius
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representation, introduced in [22], has the useful property that

X ≡
(
h0(X)

h1(X)

)q
(mod IX).

The estimated costs of computing discrete logarithms in F36·1429 are given in Table 6
and explained in §§5.1.1–5.1.5.

Finding logarithms of polynomials of degree ≤ 4

Degrees 1 and 2 250.7Mq

Degree 3 256.9Mq

Degree 4 (36 families) 256.3Mq

Descent

Guillevic (1428 to 71) 262.4Mq

Classical (71 to 32) 261.8Mq

Classical (31 to {1, . . . , 16, 18, 20, 22, 24, 28, 32}) 259.2Mq

Small degree ({5, . . . , 16, 18, 20, 22, 24, 28, 32} to 4) 260.0Mq

Total cost 263.4Mq

Table 6. Estimated costs of the main steps for computing discrete loga-
rithms in F36·1429 .

Remark 2. To gauge the accurateness of our F36·1429 estimates, we generated estimates for
the F36·509 computation using the same methodology as for the F36·1429 estimates. The cost
estimates (in CPU years) for the main steps in the F36·509 computation are 15.7 (linear al-
gebra for cubics), 16.4 (linear algebra for 29 families of quartics), 31.8 (continued-fractions
descent), 7.4 (first classical descent), 7.9 (second classical descent), and 4.7 (small-degree
descent). These estimates compare well with the observed times in Table 1 with the
exception of the linear algebra as explained in §3.2.2.

5.1.1. Degrees 1, 2, 3, 4. The logarithms of irreducible polynomials of degrees 1, 2, 3 and
4 (36 families) are obtained using the Joux-Pierrot approach as described in §2.2. The
cost ratio Ar/Mq = 8 yields the cost estimates in Table 6.

We chose 36 quartic families to ensure that the probability of an irreducible quartic
failing to descend using the family-based Gröbner bases descent method (see §2.2.4) is
small. If we precompute logarithms of 36 quartic families, then this failure probability
is less than 2−47.15. This can be considered to be sufficiently small since we expect to
descend about 236.94 irreducible quartics during the entire computation.

In fact, we only need to compute the logarithms of 18 families of quartics since we then
get the logarithms of another 18 families for free. To see this, observe that the coefficients
of h0(X) and h1(X) are elements of F33 . Thus,

X33·1429 ≡ X (mod IX)

and so the order-2 F36·1429-automorphism σ : α 7→ α33·1429 fixes X. Now, if γ ∈ F36 \ F33 ,
then σ gives a one-to-one correspondence between elements of the quartic families B4,γ
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and B4,σ(γ). Hence, if we compute the logarithms of all elements in B4,γ , then we can
obtain the logarithms of elements f ∈ B4,σ(γ) for free via

logg f ≡ 33·1429 logg σ(f) (mod r)

since σ(f) ∈ B4,γ .

5.1.2. Guillevic descent (1428 to 71). Guillevic descent, as described in §4.1, is used to
express the target element h in terms of a 71-smooth degree-720 polynomial h′. The
matrix H ′ has dimensions 4254× 4287, and so solving H ′v = e takes negligible time. The
expected number of candidates h′ to be tested for 71-smoothness is 235.5. Since the cost of
testing a degree-720 polynomial for 71-smoothness is Sq(71, 720) = 226.9Mq, the expected
cost of the Guillevic descent is 262.4Mq.

In order to obtain a tighter estimate for the running time of the entire descent, we
undertake a top-down analysis of the expected number of polynomials of each degree that
are produced after each descent step. For this analysis, we use the generating function
Fk,m(u, z) for m-smooth monic polynomials over Fq, where z marks the degree of a poly-
nomial and u marks distinct degree-k monic irreducible factors of the polynomial. It is
easy to see that

Fk,m(u, z) =

 m∏
i=1
i 6=k

(
1

1− zi

)Ii(q)(1 +
uzk

1− zk

)Ik(q)
,

where Ii(q) denotes the number of monic irreducible polynomials of degree i over Fq. Then
the average number of distinct degree-k monic irreducible factors of an m-smooth degree-n
monic polynomial over Fq is

(6) ck,m,n =
[zn]

∂Fk,m

∂u

∣∣∣
u=1

[zn]Fk,m(1, z)
,

where [ ] denotes the coefficient operator. For any given k, m and n, ck,m,n can be obtained
by using a symbolic algebra package such as Maple [33]. Thus, for each k ∈ [1, 71], we can
deduce the average number ck,71,720 of degree-k polynomials obtained after the 1428-to-71
Guillevic descent.

5.1.3. Classical descent (71 to 32). Suppose that one wishes to express a degree-D poly-
nomial Q over Fq in terms of irreducible polynomials of degrees at most m. In the
alternative classical descent described in [4, §3.5], parameters s ∈ [0, 6] and δ ≥ 1
are selected. One then searches for a pair of polynomials (R1, R2) such that Q | R2,
degR1 = t1 ≈ 2(bD/2c + δ)36−s + 1, degR2 = t2 ≈ (bD/2c + δ) + 3s, and both R1 and
R2/Q are m-smooth. The expected cost of the classical descent is

CD1D,m =
qt1

Nq(m, t1)
· qt2−D

Nq(m, t2 −D)
·min(Sq(m, t1), Sq(m, t2 −D)).

For the 71-to-32 classical descent, we selected s = 5 and δ = 3. Then, the expected cost
of the 71-to-32 classical descent is

71∑
D=33

(CD1D,32 · cD,71,720) ≈ 261.8Mq.
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We also use the expression (6) to estimate the expected number dk of polynomials of each
degree k ∈ [1, 32] at the conclusion of this descent.

5.1.4. Classical descent (31 to S). Let S = {5, 6, . . . , 16, 18, 20, 22, 24, 28, 32}, and D ∈ D
where D = {17, 19, 21, 23, 25, 26, 27, 29, 30, 31}. Rationale for the choice of S is provided
in §5.1.5. Suppose that one wishes to express a degree-D polynomial Q over Fq in terms
of irreducible polynomials with degrees in S. In the classical descent described in [4,
§3.5], parameters s ∈ [0, 6] and δ ≥ 1 are selected. One then searches for a pair of
polynomials (R1, R2) such that Q | R1, degR1 = t1 ≈ (bD/2c + δ) + 2 · 36−s, degR2 =
t2 ≈ (bD/2c+ δ)3s + 1, and both R1/Q and R2 are S-smooth (i.e., all irreducible factors
of R1/Q and R2 have degrees in S). The expected cost of the classical descent is

CD2D,S =
qt1−D

Nq(S, t1 −D)
· qt2

Nq(S, t2)
·min(Sq(32, t1 −D), Sq(32, t2)),

where

Nq(S, n) = [zn]
∏
i∈S

(1− zi)−Ii(q)

is the number of S-smooth degree-n monic polynomials over Fq.
We selected s = 2 and δ = 2. Then, the expected cost of the 31-to-S classical descent

is ∑
D∈D

(CD2D,S · dD) ≈ 259.2Mq.

5.1.5. Small-degree descent (S to 4). We used the expression (6) to estimate the expected
number of polynomials eD of each degree D ∈ S at the conclusion of the second classical
descent. These numbers are listed Table 7. For each polynomial of degree D ∈ [5, 15],

D 5 6 7 8 9 10 11 12 13
eD 73 68 65 63 63 63 64 65 67
log2(cost) 36.7 36.6 43.7 38.6 44.6 46.0 50.5 46.1 50.6
D 14 15 16 18 20 22 24 28 32
eD 69 72 75 83 92 103 117 151 200
log2(cost) 46.6 51.9 48.4 54.5 56.1 56.4 56.4 57.2 59.3

Table 7. Mq costs of performing all the D-to-4 descents for each D ∈ S.

the D-to-4 descent is performed using the strategies in §3.2.6. For each polynomial of
degree D ∈ {16, 18, 20, 24, 28, 32}, one first performs a D-to-D/2 zigzag descent; in the
analysis we assume that the descent yields q irreducible polynomials of degree D/2. A
degree-22 polynomial is lifted to Fq2 , resulting in a degree-11 irreducible polynomial and its
conjugate. An 11-to-8 Gröbner-bases descent is performed, and the resulting polynomials
are projected down to Fq. One expects to obtain q/i polynomials of degree 2i, for each
i ∈ 8 [30]. The even degrees 26 and 30 are omitted from S because of the relative high
cost of performing 13-to-4 and 15-to-4 descents (see Table 5). The costs of all the descents
are given in Table 7. The total cost is 260.0Mq.
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5.2. Feasibility. In this section we argue that the computation outlined in §5.1 is feasible
today, even though it is just beyond the reach of the computer resources available to the
authors of this paper.

We assume that we have access to a 9000-core machine A such as ABACUS [1], where
each core has 16 gigabytes of RAM. In addition, we assume that we have access to a 1500-
core machine B with 1 terabyte of shared RAM. We further assume that both machines
can execute 227Mq per second; we achieved these speeds in our experiments using a look-up
table approach.

Table 8 shows the estimated calendar time for computing a discrete logarithm in F36·1429 .
All computations are performed on machine A except for the small-degree descents which

Computation # cores # days
Degree-3 logarithms 5824 2
Degree-4 logarithms 9000 1
Guillevic descent 9000 59
First classical descent 9000 39
Second classical descent 9000 7
Small degree descent 1500 65
Total time 173

Table 8. Estimated calendar time for computing a discrete logarithm in
F36·1429 using machines A and B .

are performed on machine B. The 728 matrices for degree-3 logarithms are solved simul-
taneously, with each linear system assigned to 8 cores. Then, 4,500 of the 13,122 matrices
for degree-4 logarithms are solved simultaneously using 2 cores per matrix. The next 4,500
matrices are solved after that, and finally the remaining 4,122 matrices. The estimated
size of the files containing logarithms of cubics is 38.3 gigabytes (only half the logarithms
have to be stored thanks to the automorphism σ). The estimated size of the files contain-
ing logarithms of one family of quartics is 59.2 gigabytes. Thus, the logarithms of cubics
and 15 quartic families, whose total size is 926.3 gigabytes, can be stored in shared RAM.
Since the family-based Gröbner bases descent can be performed with respect to 30 quartic
families without resorting to the quartic families stored in hard disk, we can reasonably
expect that the time to compute the logarithm of a randomly-selected irreducible quartic
to be no mor than the time for this operation in the F36·509 computation (where only 10
quartic families were stored in RAM), namely 0.064 seconds. Since we expect to perform
236.94 such descents in total, we obtain an upper bound of 65 days on the time for all the
small-degree descents.

The total estimated calendar time for computing a logarithm in F36·1429 is 173 days. It
would be worthwhile to consider alternate descent strategies to reduce the expected time to
the extent that the computation could be performed with relatively modest computational
resources.
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