
Mistakes Are Proof That You Are Trying:
On Verifying Software Encoding Schemes’

Resistance to Fault Injection Attacks

Jakub Breier1, Dirmanto Jap1,2, and Shivam Bhasin1

1Physical Analysis and Cryptographic Engineering
2School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

{jbreier,djap,sbhasin}@ntu.edu.sg

Abstract. Software encoding countermeasures are becoming increas-
ingly popular among researchers proposing code-level prevention against
data-dependent leakage allowing an attacker to mount a side-channel
attack. Recent trends show that it is possible to design a solution that
does not require excessive overhead and yet provides a reasonable secu-
rity level. However, if the device leakage is hard to be observed, attacker
can simply switch to a di↵erent class of physical attacks, such as fault
injection attack.
Instead of stacking several layers of countermeasures, it is always more
convenient to choose one that provides decent protection against several
attack methods. Therefore, in our paper we use our custom designed
code analyzer to formally inspect a recently proposed software encoding
countermeasure based on device-specific encoding function, and compare
it with other solutions, either based on balanced look-up tables or bal-
anced encoding. We also provide an experimental validation, using the
laser fault injection setup.
Our results show that the device-specific encoding scheme provides a
good protection against fault injection attacks, being capable of pre-
venting majority of faults using di↵erent fault models.

Keywords: software encoding schemes, formal code analysis, fault injection
attacks, countermeasures

1 Introduction

Small general-purpose microcontrollers can be found everywhere nowadays. With
emerging technology frameworks like internet-of-things and cyber-physical sys-
tems, these devices can control various functions depending on environmental
conditions and requirements. As with any other computing devices communi-
cating over unsecured networks, security is one of the primary concerns. For
securing communication channels, the obvious choice is to use cryptography.
However, despite it is infeasible to break current cryptographic algorithms with

2 J. Breier, D. Jap, and S. Bhasin

current computing capabilities, these devices can be attacked using physical at-
tack techniques. As majority of these devices are low-cost, they usually do not
contain comprehensive protection from attackers exploiting the implementation
properties of the algorithm.

In the context of physical attacks, fault attacks pose a serious threat against
cryptographic implementations and currently are among the most popular topics
in this area. Since the first theoretical attack proposed by Biham and Shamir [1],
researchers keep finding new ways to disturb the execution of cryptographic al-
gorithms in devices every year. This has led to development of various sorts of
countermeasures, aiming at protecting di↵erent parts of the system – at either
hardware level, algorithm level, or design level. Many commercial products have
been a victim to practical faults attacks leading to economical losses to com-
panies. A (in)popular example is hacking of pay TV access cards using basic
voltage glitch.

Since side-channel attacks are another well-utilized subclass of physical at-
tacks, it makes sense to provide countermeasures that can help to prevent against
both. Otherwise designers can only pile-up countermeasures. When it comes to
masking countermeasures [6], it cannot be directly used to thwart fault attacks,
because the masked value can be attacked in the same way than the original
value. Hiding countermeasures [12] lower the data-dependent leakage by decreas-
ing the signal-to-noise ratio utilizing various techniques. In contrast to masking,
some of these techniques can be used in order to prevent or minimize the chance
of successful fault attack.

In this paper, we focus on three software-based hiding countermeasures that
can be hardened against fault injection attacks. More specifically, we analyze a
bit-sliced software countermeasure following the dual-rail precharge logic (DPL),
published by Rauzy et al. [9], a balanced encoding scheme providing constant
side-channel leakage [4], and a customized encoding scheme built according to
leakage model based on stochastic profiling [8]. For this purpose, we have de-
veloped a customized code analyzer that can show vulnerabilities in assembly
code. Details on how such analyzers work can be further found, e.g. in [5], and
implementation details of our analyzer are described in [2].

The rest of the paper is organized as follows. Section 2 provides the nec-
essary background for our work, describing software encoding countermeasures
proposed so far. Details on our custom code analyzer are stated in Section 3.
Results of the analysis are detailed in Section 4 and their discussion is provided
in Section 5. Finally, Section 6 concludes this paper and provides motivation for
further work.

2 Background

The first proposal of side-channel information hiding in software was made by
Hoogvorst et al. [7]. They suggested to adopt the dual-rail precharge logic (DPL)
in the software implementation to reduce the dependance of the power consump-
tion on the data. Their design uses a look-up table method – instead of computing

On Verifying Software Encoding Schemes against Fault Injection Attacks 3

the function value, the operands are concatenated and used as an address to the
resulting value. The idea was explained on PRESENT implementation on AVR
microcontroller.

Building on the idea of the seminal work, there were three notable publica-
tions published in recent years. The rest of this section provides a short overview
of each of them.

2.1 Software DPL Countermeasure

In 2013, Rauzy et al. [9] published a work that follows DPL encoding by utilizing
bit-sliced technique for assembly instructions. They developed a tool that con-
verts various instructions to a balanced DPL, according to their design. In their
implementation, each byte is used to carry only one bit of information, encoded
either as ‘01’ for ‘1’, or ‘10’ for ‘0’. In the proposal, bits are chosen according to
their leakage characteristics. In our work, we use the two least significant bits
of the byte. This implementation uses look-up tables with balanced addressing
instead of computing the operations directly. Assembly code we used in the code
analysis is stated in Appendix A. For the sake of simplicity, we refer to this
implementation as to the ‘Static-DPL XOR’ throughout the paper.

2.2 Balanced Encoding Countermeasure

Published in 2014 by Chen et al. [4], this work provides assembly-level protec-
tion against side-channel attacks by balancing the number of ‘1’s and ‘0’s in
each instruction. The code proposed by the authors is aimed for 8-bit platforms
and the constant leakage is achieved by adding complementary bit to every bit
of information being processed. Therefore, in each instruction, there are four
e↵ective bits of information and four balancing complementary bits. Encoding
follows b3b̄3b2b̄2b1b̄1b0b̄0. Other order of bits may be chosen depending on the
leakage model. This choice was done based on empirical results. For fault in-
jection evaluation, it does not matter which format is chosen, therefore all the
data is transformed. Assembly code we used in the code analysis is stated in
Appendix B. In [4], two basic operations are used, i.e. XOR and look-up table
(LUT). For the rest of this paper, we will refer to these operations as ‘Static-
Encoding XOR’ and ‘Static-Encoding LUT’.

2.3 Device-Specific Encoding Countermeasure

In 2016, there was another encoding countermeasure proposal, by Maghrebi et
al. [8]. The proposed encoding aims to balance the side-channel leakage by min-
imizing the variance of the encoded intermediate values. Previous encoding pro-
posals were based on the assumption of Hamming Weight (HW) leakage model.
However, the actual leakage model often deviates from HW, which leads to re-
duction in practical side-channel security of the encoding scheme. The proposal
of [8] designs the encoding scheme by taking the actual leakage model into ac-
count.

4 J. Breier, D. Jap, and S. Bhasin

Algorithm 1: Selection of the optimal encoding function [8].

Input : m: the codeword bit-length, n: the sensitive variable bit-length, �i:
the leakage bit weights of the register, where i in [[1,m]]

Output: 2n codewords of m-bit length
1 for X in [[0, 2m � 1]] do
2 Compute the estimated power consumption for each codeword X and store

the result in table D: D[X] = ⌃m
i=1�iX[i];

3 Store the corresponding value of the codeword in the index table
I : I[X] = X;

4 Sort the estimated power consumption stored in table D and the index table I
accordingly

5 for j in [[0, 2m � 2n]] do
6 Find the argmin of [[D[j]�D[j + 2n]]];

7 return 2n codewords corresponding to [[I[argmin], I[argmin+ 2n]]

The side-channel leakage is dependent on the device, and for the microcon-
troller case, each register leaks the information di↵erently (though the paper
argued that most of the registers have more or less similar leakage pattern). In
general, the leakage normally depends on the processed intermediate value. The
leakage can be formulated as follows:

T (x) = L(x) + ✏, (1)

where L is the leakage function that maps the deterministic intermediate value
(x) processed in the register to its side-channel leakage, and ✏ is the (assumed)
mean-free Gaussian noise (✏ ⇠ N(0,�2)). The commonly used leakage function
used is the n-bit representation. For example, in 8-bit microcontroller, the leak-
age could be represented as L(x) = �0 +�1x1+ �8x8, where xi is the i-th bit
of the intermediate value, and �i is the i-th bit weight leakage for specific regis-
ter [11]. For HW model, �1 to �8 are considered to be unity. In reality, due to
several physical device parameters, � will deviate from unity in either polarity.

The deterministic part of the leakage can then be determined as L̃ = A · �,
where A = (xi,j)1iN ;0jn, with xi as a row element of A and N denotes the
number of measurements. We can then determine � = (�j)0j8 based on the
set of traces T, as follows:

� = (AT
A)�1

A

T
T. (2)

After profiling of the device to obtain the weight leakages �, the encoding func-
tion can be calculated based on the method used in Algorithm 1.

Thus, the main aim of the algorithm is to choose a set of encoding, repre-
sented as a look-up table, which minimizes the variance of the estimated power
leakage. This is done by considering the leakage bit weights, which are tightly
connected to the device, specifically to its registers. Hence, for di↵erent registers,
di↵erent encoding setup has to be considered.

On Verifying Software Encoding Schemes against Fault Injection Attacks 5

Assembly code with look-up tables is stated in Appendix C. In this paper,
we will refer to this implementation as to the ‘Device-Specific Encoding XOR’,
as the dependence on leakage model, makes the encoding specific to a device
register.

2.4 Evaluating Resistance to Fault Injection Attacks

The first two countermeasures mentioned in this section were in-depth analyzed
with respect to fault injection attacks in [3]. To summarize the results, it was
shown that the Static-Encoding XOR implementation is more vulnerable to fault
attacks due to fault propagation. Static-DPL XOR benefits from the table look-
up properties that force the value to 0x00 every time a bad address is fetched to
the loading instruction. This implementation was further analyzed and improved,
making the chance of a successful attack negligible.

In this paper, we analyze the Device-Specific Encoding XOR implementation,
compare it with previous results and we provide insights that can help designers
in developing encoding schemes that are resistant against fault attacks. To make
the paper self-contained, we reproduce the attacks of [3] and extend it to device-
specific encoding.

3 Verification with the Code Analyzer

In order to formally verify the resistance of assembly code against fault injection
attacks, we have developed a code analyzer. This section contains the design
and implementation details as well as the methodology we used for analyzing
the encoding implementations.

The architecture of our code analyzer is depicted in Fig. 1. Left side of the
figure shows the architecture of a standard microcontroller and right side is a
high-level class diagram of our analysis software written in Java language. The
code analyzer is a custom instruction set simulator that is capable of simulating
faults at any stage of the code execution. Time complexity of the evaluation is
linear.

Program code is fetched into the analyzer as a text file, following the assembly
code structure. It is then broken into instructions – di↵erent subclasses of the
Instruction class. Memory contains all the look-up tables that are statically pre-
programmed instead of fetching them from a file. Registers are implemented as
arrays, containing 0x00 before the program execution. MuC class serves as the
instruction set simulator, executing instructions and performing operations on
registers and memory. This class also provides the fault injection functionality
– it analyzes every instruction against a chosen fault model.

The modular approach to the code analyzer improves its reusability, where
it is only necessary to extend the instruction set in order to analyze a di↵erent
device.

6 J. Breier, D. Jap, and S. Bhasin

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Data
SRAM

EEPROM

I/O Lines

General
Purpose
Registers

ALU

Status
and

Control

8-bit Data Bus

Memory

Map

Instruction

Class

Class

LDI

Class

MOV

Class

ADD ...

n

Registers

Array
1

1

MuC

Class

1 1 1

.txt File

Microcontroller Code Analyzer

Fig. 1: Representation of microcontroller components in the Java code analyzer.

3.1 Fault Injection Analysis

The abstraction of the process of code execution and fault injection is depicted
in Fig. 2. The middle part serves as a standard instruction set simulator, taking
the given input, executing the code and producing the output. This process
is repeated for every possible combination of inputs for every instruction and
every fault model. We are analyzing resistance against four basic fault models:
bit flip, random byte fault, instruction skip, and stuck-at fault. After the output
is produced, it is analyzed by the validator which decides whether the fault
changed the resulting value and if this value is useful for fault attack. We consider
inputs and outputs already encoded, analyzing fault tolerance with respect to
encoding/decoding is out of scope of this paper.

In the following, we will briefly describe parts of the code analyzer:

– Instruction Set Simulator: As stated previously in this section, the as-
sembly code is fetched to the simulator as a text file. It accepts three di↵erent
data encoding formats, according to what algorithm is currently being used.
For the Static-DPL XOR, it accepts input in the bit-sliced complement form:
000000b0b̄0, therefore there are 4 possible input combinations. The Static-
Encoding XOR accepts four bit complement format: b3b̄3b2b̄2b1b̄1b0b̄0, result-
ing to 256 input combinations. The same number of combinations is analyzed
for the Device-Specific Encoding XOR, where the number of codewords is 16
for 8-bit code.

– Fault Injection Simulator: In order to get the information about algo-
rithm resistance against fault injection, we analyze four fault models. In the

On Verifying Software Encoding Schemes against Fault Injection Attacks 7

Instruction Set
Simulator

Fault Injection
Simulator

Validator

a = 10101010
b = 01010101

Input

r4 = 11010110

r4 = 11000110'

Fault Position

bit flip
random byte fault
instruction skip
stuck-at fault

Fault Model

x = 11110011
Output

x = 11110011

Valid/Invalid

?

Output Checker

Target
Code

LDI
LDI
EOR
ST

a
b
r5
r4

r4
r5
r4
c...

Fig. 2: Schematic of injecting a fault during the execution in the code analyzer.

case of a fault being injected into the data, we change the content of the
destination register of an instruction.

In bit flip fault model, we inject single and double bit flips into the Static
countermeasures. There is no need to test other multiple bit flips, since all of
them are just a subset of those two, because of DPL properties. Therefore,
e.g. if an algorithm is not vulnerable against single bit flips, it will not be
vulnerable against other odd-number bit flips, and vice-versa. In case of the
Device-Specific Encoding XOR, we test all possible combinations of bit flips.

Random byte fault model is a subset of bit flip fault model when it comes
to code analysis, therefore this model is already included in the previous
testing.

To analyze vulnerable parts against instruction skip attack, we skip either
one or two instructions from the code, checking all the possible combinations.
More complex instruction skip models are not considered because of the
impracticability to implement them in the real environment.

Finally, to analyze the resistance against the stuck-at-fault model, we change
the value of the destination register either to 0x00 or to 0xFF.

– Validator: The final part of the code analyzer checks the resulting output
and assigns it to one of the following pre-defined groups:

• VALID: This is the most useful type of output an attacker can get. Out-
puts in this category follow the proper encoding of analyzed algorithm,
but the value deviates from the expected value with respect to given
inputs. A VALID fault can be directly exploited with fault injection
attack.

8 J. Breier, D. Jap, and S. Bhasin

• INVALID: This type of output does not follow the encoding. Therefore,
it can be easily recognized by an output checker which can then decide
to discard the value instead of further propagation.

• NULL: This type of fault has one of the following values: 0x00 or 0xFF.
These outputs are mostly produced by look-up table implementations
and can be easily recognized as well.

4 Results

To analyze di↵erent software encoding countermeasures against fault injection
attacks, we implemented the basic operations of each previously discussed encod-
ing scheme, i.e. Static-DPL XOR, Static-Encoding XOR, Static-Encoding LUT
and Device-Specific Encoding XOR implementation. The corresponding code is
provided in the appendices. The analysis follows a two-step approach. The first
step involves a comprehensive fault analysis by putting the code under specially
designed code analyzer. The main objective of this comprehensive code analysis
is to uncover any native vulnerabilities in the encoding scheme under individual
fault models. Such analysis cannot be done in a practical setting due to limited
control over the injected fault model for a given equipement setting. Albeit it is
possible to inject all the discussed fault models, it is not easy to control the fault
model at will. In the following step, the corresponding code is implemented on a
real AVR microcontroller and tested under laser fault injection. The objective of
practical validation is to find which of the known vulnerabilities are producible
with equipement at hand.

4.1 Code Analysis

To analyze vulnerabilities in the software encoding schemes, the basic operations
were fed to the code analyzer. The analyzer considers 3 di↵erent fault models,
i.e. stuck-at, bit flips and instruction skip. Both single and multiple bit-flips
are possible. The first three analysed operations i.e. Static-DPL XOR, Static-
Encoding XOR, Static-Encoding LUT are a special case, where more than 2-
bit flips are equivalent to 1-bit or 2-bit flips eventually. The analyzer reports
the impact on the final output in presence of discussed fault models. This is
represented as a normalized distribution of faulty output for each considered
fault models. Three outputs are expected: VALID, INVALID and NULL. VALID
implies that final faulty output stays within the encoding. Similarly, INVALID
refers to the faulty output which is no longer in the applied encoding. NULL
faults are 0x00 or 0xFF values at the output. While VALID faults stay within
the encoding and can lead to di↵erential fault analysis (DFA), it is rather less
likely with INVALID faults. On the other hand, NULL deletes any data dependent
information, disabling any further exploitation by DFA. Therefore, VALID faults
must be prevented at all costs, while keeping INVALID in check and maximizing
NULL faults. The analysis results for Static-DPL XOR, Static-Encoding XOR,

On Verifying Software Encoding Schemes against Fault Injection Attacks 9

(a) (b)

(c)

Fig. 3: Fault distributions of (a) Static-Encoding XOR,(b) Static-Encoding LUT,
(c) Static-DPL XOR code analysis.

Static-Encoding LUT are shown in Fig. 3. We discuss each of the results in the
following.

The fault distribution of Static-Encoding XOR is shown in Fig. 3 (a). This
encoded operation does not produce any VALID faults for 1-instruction skip and
1-bit flip. The percentages of VALID faults for other fault models stay between 4-
6%. Majority of the faults (92-100%) result in INVALID faults while only double
instruction skip result in a non-negligible NULL faults (2.7%). Although INVALID

faults are more desirable than VALID faults, later we will show that some INVALID
can be exploitable in particular for Static-Encoding XOR.

The Static-Encoding LUT shows an altogether di↵erent fault resistance (Fig. 3
(b)). This encoded operation produces much more NULL faults than the previous
case, which is a desirable property. Instruction skips result in 100% NULL faults,
while stuck-at and 1-bit flips produce 50% INVALID and 50% NULL faults. The
only way to produce VALID faults in this operation is to inject 2-bit flips which
result in 14.2% VALID faults. Rest of the faults would result in INVALID or NULL
faults with equal probability.

The analysis results of Static-DPL XOR are shown in Fig. 3 (c). While no
VALID faults are possible for stuck-at and 1-bit flip, it stays below 6% for 1-
instruction skips and 2-bit flips. The worst performance is under 2-instruction
skip model, where the percentage of VALID faults is as high as 15.3%. The high

10 J. Breier, D. Jap, and S. Bhasin

vulnerability against 2-bit flips can be explained by the fact, that 2-bit flips are
the limit of the dual-rail encoding scheme. Apart from these, the other faults
are more likely to be NULL rather than INVALID, which is desirable.

Fig. 4: Fault distributions of Device-Specific Encoding XOR code analysis.

Finally we applied the code analysis on Device-Specific Encoding XOR opera-
tion as shown in Fig. 4. The di↵erence from previous cases is that, here multi-bit
flips cannot be dealt as a subset of 1-bit and 2-bit flips. Therefore the analysis
covers bit flips from 1-bit to 8-bits, i.e. the data width of the target processor. It
can be easily observed that this encoding scheme is more likely to produce NULL
faults which is highly desirable. For the VALID faults, stuck-at model produce
nones, while only < 2% can be achieved by instruction skips. In case of bit flips,
the percentage of VALID faults stays between 2-7% with the exception of 7 and 8
bit flips. However, for di↵erent � coe�cients used in the leakage function, results
on bit flips should be slightly di↵erent, but consistent with the expectations. The
total value of VALID bit flips for all the possibilities range within 4.2-4.7%, but
their distribution is di↵erent, depending on used coe�cient.

4.2 Experimental Evaluation

Following the code analysis, the fault resistance is experimentally verified. The
fault injection is done with a near-infrared diode pulse laser with a pulse power of
20 W (reduced to 8 W with 20⇥ objective). The pulse repetition rate is 10MHz
and spot size is 30⇥12 µm (15⇥3.5 µm with 20⇥ objective). Intentional nop are
inserted at beginning of each node to overcome the 100 ns delay between trigger
and laser injection. The target platform is Atmel ATmega328P microcontroller,

On Verifying Software Encoding Schemes against Fault Injection Attacks 11

de-packaged and mounted on Arduino UNO development board. The surface area
of the chip is 3x3 mm2, which is manufactured in 350 nm CMOS technology.
An X-Y positioning table with a step precision 0.05 µm is used to scan the chip
surface and perform laser injection. The timing of injection is synchronised with
executed code using a code-generated trigger. The injection platform along with
the target is shown in Fig. 5.

Fig. 5: ATmega328P device under a near-infrared diode laser injection setup.

The prime di↵erence from the previous analysis is that in the experimen-
tal validation, we do not precisely control the fault model. Moreover the fault
models are not uniformly distributed. Before starting the real experiment, we
performed some profiling on the target with basic assembly code and verified
that all the fault models are possible to produce experimentally. Next, we flash
the assembly code of the four previously discussed software encoding operations.
We essentially note the percentage of VALID, INVALID and NULL faults produced
for each tested operation. The results are summarised in Fig. 6.

Static-Encoding XOR shows the best consistency with the simulated anal-
ysis previously (see Fig. 6 (a)). While 93.56% of the faults are INVALID, only
5.88% VALID were produced. Moving towards Static-Encoding LUT, we observe
a 32.42% VALID faults in Fig. 6 (b). Since a VALID fault in this implementation
can only result from even bit flips, this infers that the fault model distribution is
biased towards multiple bit flips in our experiments. Similarly, we also observe
a 22.2% VALID faults in Static-DPL XOR (Fig. 6 (c)) owing to the prevalent
multiple bit flip model.

12 J. Breier, D. Jap, and S. Bhasin

When it comes to Device-Specific Encoding XOR (Fig. 6 (d)), results show
distribution very similar to the one obtained by the code analysis. Because it is
more likely to produce bit flips when injecting faults in the microcontroller, at
13.5% an inflated number of VALID faults can be observed in this case, with
a relatively small number of INVALID faults. As expected, NULL outputs are
dominant i.e. 82.5% , because of the look-up table properties.

(a) (b)

(c) (d)

Fig. 6: Fault distributions of (a) Static-Encoding XOR,(b) Static-Encoding LUT,
(c) Static-DPL XOR, and (d) Device-Specific Encoding XOR experiments.

5 Discussion

In this section, we will discuss some important parameters of particular encoding
implementation with respect to fault injection attacks.

5.1 Selection of � Coe�cients

We considered several parameters for the code analysis of Device-Specific En-
coding XOR. We analyzed di↵erent � values scenarios. We considered the case
where the variance of the � is relatively high (the �s might be cancelling each
other), and the case where the variance of the � is low (almost Hamming weight).

On Verifying Software Encoding Schemes against Fault Injection Attacks 13

The most significant di↵erence can be observed in the result for implemen-
tation with � coe�cients that do not follow Hamming weight leakage model
(stated in Fig. 7 (a)). From the figure, it can be observed that the number of
1-bit flips is inflated, compared to the almost Hamming weight case (stated in
Fig. 7 (b)). The behavior of the faults shows contrast between di↵erent beta
values, which is not the case for other encoding schemes, and hence could be
further investigated.

(a) (b)

Fig. 7: Fault distributions of Device-Specific Encoding XOR code analysis with
(a) high variance and (b) almost Hamming weight

5.2 Fault Propagation

When considering security of di↵erent implementations, fault propagation is an
important factor that can significantly a↵ect the possibility to mount an attack.
In case we want to prevent a successful fault attack, it is necessary to avoid
the propagation of an INVALID output when it is fed as an input to a next
iteration of the algorithm. Otherwise, this output could leak some information
about the processed data and therefore, allow an attacker to use the di↵erential
fault analysis.

From this point of view, look-up table implementations have an advantage,
since every input that does not follow the encoding will be automatically con-
verted to NULL. Analysis results of Static-DPL XOR, Static-Encoding LUT, and
Device-Specific Encoding XOR show that if any of the inputs is either INVALID
or NULL, it will always output NULL. Situation with the Static-Encoding XOR
is di↵erent because of the algorithm design. There are several combinations of
inputs that lead to VALID faults – more specifically, any combination of:

– Two INVALID inputs,
– Two NULL inputs,
– INVALID and NULL inputs.

14 J. Breier, D. Jap, and S. Bhasin

Moreover, for a combination of VALID and NULL inputs leaks a complete infor-
mation about the VALID input in the form v̄3v̄3v̄2v̄2v̄1v̄1v̄0v̄0, where v3v2v1v0

is the original input.
To summarize, table look-up implementations provide solid protection against

fault attacks when it comes to fault propagation. Any other implementation that
uses standard operations performed by using ALU, can be vulnerable if it is not
directly designed with such goal in mind. Therefore, when designing a fault resis-
tant algorithms along with the side-channel resistance, look-up tables can o↵er
fault propagation cancellation by default.

6 Conclusion

This paper summarizes fault attack resistance of three software-based encoding
schemes that were introduced to prevent side-channel attacks. We mainly aim at
analyzing the Device-Specific Encoding XOR implementation that was proposed
recently. Our results provide insights and comparison against the other schemes
(‘Static’ encoding schemes) that have been analyzed in previous work [3].

In general, table look-up schemes o↵er higher level of security by thwart-
ing the fault propagation in case of several algorithm iterations. Static-Encoding
XOR might look the best from the experimental results, however, fault propa-
gation properties of this design allow attacker to easily mount a DFA attack or
to directly observe inputs passed to the algorithm in case of other input being
of a NULL type. After considering this phenomenon together with code analysis
and experimental results, we conclude that the Device-Specific Encoding XOR
is currently the most secure scheme with respect to fault attacks and provides a
decent level of security.

For the future work, we would like to extend the code analyzer to support
pipelined architectures, being able to discover vulnerabilities w.r.t. more com-
prehensive fault models, like cache attacks (e.g. as described in [10]).

References

1. Biham, E., Shamir, A.: Di↵erential Fault Analysis of Secret Key Cryptosystems.
In: CRYPTO ’97, LNCS, vol. 1294, pp. 513–525 (1997)

2. Breier, J.: On analyzing program behavior under fault injection attacks (to appear).
In: Availability, Reliability and Security (ARES), 2016 Eleventh International Con-
ference on. pp. 1–5. IEEE (Aug 2016)

3. Breier, J., Jap, D., Bhasin, S.: The other side of the coin: Analyzing software encod-
ing schemes against fault injection attacks. In: 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). pp. 209–216. IEEE (2016)

4. Chen, C., Eisenbarth, T., Shahverdi, A., Ye, X.: Balanced Encoding to Mitigate
Power Analysis: A Case Study. In: CARDIS. Lecture Notes in Computer Science,
Springer (November 2014), paris, France

5. Dureuil, L., Potet, M.L., de Choudens, P., Dumas, C., Clédière, J.: From Code
Review to Fault Injection Attacks: Filling the Gap Using Fault Model Inference,
pp. 107–124. Springer International Publishing, Cham (2016), http://dx.doi.

org/10.1007/978-3-319-31271-2_7

On Verifying Software Encoding Schemes against Fault Injection Attacks 15

6. Goubin, L., Patarin, J.: DES and Di↵erential Power Analysis. The ”Duplication”
Method. In: CHES. pp. 158–172. LNCS, Springer (1999), Worcester, MA, USA

7. Hoogvorst, P., Danger, J.L., Duc, G.: Software Implementation of Dual-Rail Rep-
resentation. In: COSADE (2011), Darmstadt, Germany

8. Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harnessing the strengths
of your enemy: Customized encoding to thwart side-channel attacks – extended
version –. Cryptology ePrint Archive, Report 2016/183 (2016), http://eprint.
iacr.org/

9. Rauzy, P., Guilley, S., Najm, Z.: Formally Proved Security of Assembly Code
Against Leakage. IACR Cryptology ePrint Archive 2013, 554 (2013)

10. Rivière, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High preci-
sion fault injections on the instruction cache of ARMv7-M architectures. In: Hard-
ware Oriented Security and Trust (HOST), 2015 IEEE International Symposium
on. pp. 62–67 (May 2015)

11. Schindler, W., Lemke, K., Paar, C.: A stochastic model for di↵erential side chan-
nel cryptanalysis. In: International Workshop on Cryptographic Hardware and
Embedded Systems. pp. 30–46. Springer Berlin Heidelberg (2005)

12. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: DATE’04. pp. 246–251 (2004), Paris,
France.

16 J. Breier, D. Jap, and S. Bhasin

A Assembly Code For Static-DPL XOR Implementation

Table in this section contains assembly code used for the code analysis. Note that
there are several di↵erences in comparison to the original paper. We precharge
all the registers before the code execution, therefore there is no need to use
precharge instructions. The other change is in instructions 7 and 8, where we
first load the operation code (can take values 01010101 for and, 10101010 for or,
and 01100110 for xor) and then we execute ldd instruction using the destination
register, operation code and value. Look-up tables are stated in Table 2.

Table 1: Assembly code for DPL XOR in AVR
Instruction # Instruction

0 ldi r1 a 5 andi r2 00000011

1 ldi r2 b 6 or r1 r2

2 andi r1 00000011 7 ldi r4 operation

3 lsl r1 1 8 ldd r3 r4 r1

4 lsl r1 1 9 mov d r3

Table 2: Look-up tables for and, or, and xor

index 0000 - 0100 0101 0110 0111 - 1000 1001 1010 1011 - 1111

and 00 01 10 00 10 01 00

or 00 01 01 00 01 10 00

xor 00 10 01 00 01 10 00

On Verifying Software Encoding Schemes against Fault Injection Attacks 17

B Assembly Code for Static-Encoding XOR
Implementation

The code stated in Tab. 3 follows the originally proposed algorithm for Static-
Encoding XOR. This implementation uses several constants, either for clearing
and precharging the registers before loading the data (e.g. ldi r16 11110000),
or for changing the data to proper encoding format (e.g. ldi r17 01011010).

Table 3: Assembly code for Encoding XOR in AVR
Instruction # Instruction

0 ldi r1 a 19 and r20 r1

1 ldi r2 b 20 and r21 r1

2 ldi r16 11110000 21 swap r21

3 ldi r17 11110000 22 or r20 r21

4 and r16 r1 23 ldi r22 00001111

5 and r17 r1 24 ldi r23 00001111

6 swap r17 25 and r22 r2

7 or r16 r17 26 and r23 r2

8 ldi r18 11110000 27 swap r23

9 ldi r19 11110000 28 or r22 r23

10 and r18 r2 29 ldi r21 10100101

11 and r19 r2 30 eor r20 r21

12 swap r19 31 eor r20 r22

13 or r18 r19 32 ldi r24 11110000

14 ldi r17 01011010 33 ldi r25 11110000

15 eor r16 r17 34 and r24 r16

16 eor r16 r18 35 and r25 r20

17 ldi r20 00001111 36 or r24 r25

18 ldi r21 00001111

18 J. Breier, D. Jap, and S. Bhasin

C Assembly Code for Device-Specific Encoding XOR
Implementation

In this section, we describe the code used for Device-Specific Encoding XOR.
After determining the bit leakage weights, and computing the encoding based on
Algorithm 1, several look up tables are constructed. In Table 4, the pseudocode
for the encoding is presented. First, the upper nibble is retrieved for input a
and b (ah and bh) under the encoding format (f(ah) and f(bh)), using the
luthb table, followed by the lookup table lutop used to perform xor operation
(LUT (f(ah) << 4||f(bh)) = f(ah� bh)). Similar procedure is done for the lower
nibble, using the lutlb.

Table 4: Assembly pseudocode for Device-Specific Encoding XOR in 8-bit AVR.
Instruction # Instruction

1 ldi r1 a 12 eor r4 r4

2 ldi r2 b 13 ldd r4 lutlb r1

3 eor r3 r3 14 eor r5 r5

4 ldd r3 luthb r1 15 ldd r5 lutshift r4

5 eor r4 r4 16 eor r6 r6

6 ldd r4 lutshift r3 17 ldd r6 lutlb r2

7 eor r5 r5 18 or r5 r6

8 ldd r5 luthb r2 19 eor r4 r4

9 or r5 r4 20 ldd r4 lutop r5

10 eor r3 r3

11 ldd r3 lutop r5

