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Abstract

Differentially 4-uniform permutations on F22k with high nonlinearity and algebraic degree are
often used in block ciphers and some stream ciphers as Substitution boxes. Recently,Chen
et al.(An equivalent condition on the switching construction of differentially 4-uniform per-
mutations on from the inverse function, International Journal of Computer Mathematics,
DOI:10.1080/00207160.2016.1167884) presented a n equivalent condition on the switching
construction. More precisely,they presented a sufficient and necessary condition on differen-
tially 4-uniform permutations on F22k of the form G(x) = x−1+f(x−1), where f is a Boolean
function. However, the number of the satisfied functions is so enormous that it is difficult
to find all the functions. In this paper,a new class of such functions are constructed. These
functions may provide more options for the design of Substitute boxes.
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1. Introduction

In the design of many block ciphers, permutations are often chosen as Substitution
boxes(S-boxes) to bring confusion into ciphers. To prevent various attacks on the cipher,
such permutations are required to have low differential uniformity, high algebraic degree
and high nonlinearity. Furthermore, for software implementation, such functions are usually
required to be defined on fields with even degrees, namely F22k . Throughout this paper, we
always let n = 2k be an even integer.

It is well known that the lowest differential uniformity of a function defined on F22k can
achieve is 2 and such functions are called almost perfect nonlinear (APN) functions. On
this aspect, they are the most ideal options for the design of Substitution boxes. However,
it is difficult to find APN permutations over F22k , which is called BIG APN Problem.
Due to the lack of knowledge on APN permutations on F22k , a natural trade-off solution
is to use differentially 4-uniform permutations as S-boxes. Recently, many constructions
of differentially permutations were introduced [1]–[5], [7]–[13]. In 2013, Qu et al. used
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the powerful switching method [6] to successfully construct many infinite families of such
permutations from the inverse function [7],[8]. In 2015, Chen et al. proved an equivalent
condition on this method. More precisely, they studied the functions with the form G(x) =
x−1 + f(x−1), where f is a Boolean function. They proved that G is a differentially 4-
uniform permutation over F22k if and only if f is a 4-uniform Boolean function with respect to
the inverse function (4-uniform BFI).Furthermore, they construct a family of differentially
4-uniform permutations which is a subclass of all the 4-uniform BFIs. The number of
permutations in this family is about 2n−5.

In this paper, we construct a new infinite family of differentially 4-uniform permutations
which is a subclass of all the 4-uniform BFIs. The number of permutations in this family is
at least 22n−2

which is far more than before. These functions may provide more choices for
the design of Substitution boxes.

2. Necessary Definition and Useful Lemmas

In this section, we give necessary definitions and results which will be used in the paper.
Given two positive integers n and m, a function F : F2n → F2m is called an (n,m)-

function. Particularly, when m = 1, F is called an n-variabke Boolean function, or a Boolean
function with n variables. Clearly, a Boolean function may be regarded as a vector with
elements on F2 of length 2n by identifying F2n with a vector space Fn2 OF dimension n over
F2. In the following, we will switch between these two points of view without explanation if
the context is clear.

Let f be a nonzero Boolean function. Define the set Supp(f) = {x ∈ F2n|f(x) = 1}
and call it the support set of f . The value |Supp(f)| is called the (Hamming) weight of f .
Denote by Tr(x) =

∑n−1
i=0 x

2i the absolute trace function from F2n to F2. Note that for the
multiplicative inverse function x−1, we always define 0−1 = 0 below.

Let F be an (n,m)-function. Then F can be expressed uniquely as a polynomial over F2n

with degree at most 2n−1. It is called a Permutation Polynomial if it induces a permutation
over F2n . Denote by F∗2n the set of all nonzero elements of F2n . For any (a, b) ∈ F∗2n × F2n ,
define

δF (a, b) = ]{x : x ∈ F2n|F (x+ a) + F (x) = b}.

Note that we denote the cardinality of S by ]S. The multiset {∗ δF (a, b) : (a, b) ∈ F∗2n ×F2n

∗} is called the differential spectrum of F . The value

∆F , max(a,b)∈F∗
2n×F2n

δF (a, b)

is called the differential uniformity of F , or we call F a differentially ∆F -uniform function.
In particular, we call F almost perfect nonlinear(APN) if ∆F = 2. It is easy to see that
APN functions achieve the lowest possible differential uniformity for functions defined on
fields with an even characteristic.
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3. Construct New Differentially 4-uniform Permutations

In [4] the authors introduced a type of functions called 4-uniform boolean function with
respect to the inverse function (4-uniform BFI for short), and proposed a method to construct
infinite families of permutations whose differentially uniformity are at most 4 of the form
G(x) = x−1 + f(x−1).

Theorem 3.1. [4]. Let n be an even integer and f be an n-variable Boolean function. Let ω
be an element of F2n with order 3. Then f is a 4-uniform BFI if and only if f(x) = f(x+1)
holds for any x ∈ F2n and for any z ∈ F2n\F4, at least one of the following two equations
holds.

f(0) + f(z + z−1 + 1) + f(ωz + (ωz)−1 + 1) + f(ω2z + (ω2z)−1 + 1) = 0 (1)

f(0) + f(z + z−1 + 1) + f(ω(z + (z)−1 + 1)) + f(ω2(z + (z)−1 + 1)) = 0 (2)

Theorem 3.2. [4]. Let n be an even integer and f be an n-variable Boolean function. Then
G(x) = x−1 + f(x−1) is a differentially 4-uniform permutation over F2n if and only if f is a
4-uniform BFI.

Lemma 3.3. Let n be an even integer and ω be an element of F2n with order 3. We call
the set Aα = αF∗4 + F4 = {α, α + 1, α + ω, α + ω2, ωα, ωα + 1, ωα + ω, ωα + ω2, ω2α, ω2α +
1, ω2α+ω, ω2α+ω2} a space set, where α ∈ F2n\F4}. Then {Aα|α ∈ F2n\F4} is a partition
of F2n\F4.

Proof. Clearly F2n\F4 =
⋃
α∈F2n\F4

Aα. Assume that x ∈ Aα∩Aβ,then there exists a1, b1 ∈ F∗4
and a2, b2 ∈ F4 such that x = a1α+ a2 = b1β+ b2.Therefore, we have α = a−11 b1β+ a−11 (a2 +
b2) ∈ Aβ and β = b−11 a1α+ b−11 (a2 + b2) ∈ Aα. It is easy to verify that Aα = Aβ. The proof
is finished.

Theorem 3.4. Let n be an even integer. Assume 4 - n. Let Aα be the same with the
definition in Lemma 1. First, given the values of f(0) and f(ω). Second, for arbitrary space
set Aα, given the values of f(α), f(α + ω) and f(ωα). Third, let

f(ω2α) = f(α) + f(ωα) + f(0) + 1,

f(ω2α + ω) = f(α + ω) + f(ωα) + f(0) + 1,

f(ωα + ω) = f(α) + f(α + ω) + f(ωα).

In the end, define f(x) = f(x+ 1) for every x ∈ F2n. Then f(x) is a 4-uniform BFI. Hence
G(x) = x−1 + f(x−1) is a differentially 4-uniform permutations in F2n. The number of such
differentially 4-uniform permutations is 22n−2+1.

Proof. By Lemma 1, the boolean function is well defined. It is easy to verify that for any
z ∈ F2n\F4, equation (2) of Theorem 1 holds. We know that f(x) = f(x+1) for any x ∈ F2n

by the last step of the construction. Therefore, f(x) in the theorem is a 4-uniform BFI by
Theorem 1.
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During the construction, we have 2 + 2n−4
12
× 3 = 2n−2 + 1 independent values. Hence the

number of such permutations is 22n−2+1.
We finish the proof.

Theorem 3.5. Let n be an even integer. Assume 4|n. Let Aα be the same with the definition
in Lemma 1. Let z ∈ F16 such that z + z−1 = ω. First, given the values of f(0) and f(ω).
Second, for arbitrary space set Aα ∈ {Aα|α ∈ F2n\F16}, given the values of f(α), f(α + ω)
and f(ωα). Third, let

f(ω2α) = f(α) + f(ωα) + f(0) + 1,

f(ω2α + ω) = f(α + ω) + f(ωα) + f(0) + 1,

f(ωα + ω) = f(α) + f(α + ω) + f(ωα).

Then given the values of f(z) and f(ωz), define

f(ω2z) = f(z) + f(ωz) + f(0) + 1,

f(ω2z + ω) = f(z) + f(ωz) + f(ω) + 1,

f(ωz + ω) = f(ωz) + f(0) + f(ω).

f(z + ω) = f(z) + f(0) + f(ω).

In the end, define f(x) = f(x+ 1) for every x ∈ F2n. Then f(x) is a 4-uniform BFI. Hence
G(x) = x−1 + f(x−1) is a differentially 4-uniform permutations in F2n. The number of such
differentially 4-uniform permutations is 22n−2

.

4. Concluding Remarks

In this paper, a new infinite family of differentially 4-uniform permutations is constructed.
The structure of these functions is very simple and the number of these functions are much
more than the constructions in [4]. For further research, it is interesting to find other
subclasses of 4-uniform BFI. A more inmortant chanllenge is the BIG APN Problem.
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