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Abstract. Secure multiparty computation platforms are often provided with a programming language that allows
to write privacy-preserving applications without thinking of the underlying cryptography. The control flow of these
programs is expensive to hide, hence they typically disallow branching on private values. The application program-
mers have to specify their programs in terms of allowed constructions, either using ad-hoc methods to avoid such
branchings, or the general methodology of executing all branches and obliviously selecting the effects of one at the
end. There may be compiler support for the latter.
The execution of all branches introduces significant computational overhead. If the branches perform similar private
operations, then it may make sense to compute repeating patterns only once, even though the necessary bookkeeping
also has overheads. In this paper, we propose a program optimization doing exactly that, allowing the overhead
of private conditionals to be reduced. The optimization is quite general, and can be applied to various privacy-
preserving platforms.

1 Introduction

There exist a number of sufficiently practical methods for privacy-preserving computations [35, 14, 8] and secure
multiparty computation (SMC) platforms implementing them [24, 5, 7, 11]. To facilitate the use of such platforms, and
to hide the cryptographic details from the application programmer, the platforms allow the compilation of protocols
from higher-level descriptions, where the latter are specified in some domain-specific language [4, 24, 26, 31, 25] or in
a subset of some general language, e.g. C, possibly with extra privacy annotations [12, 37]. Operations with private
values are compiled to protocols transforming the representations of inputs of these operations to the representation of
the output. If there is no protocol for some operation, then it either has to be forbidden or transformed out.

In SMC protocol sets based on secret sharing [14, 8, 6, 10], the involved parties are usually partitioned into input,
computation, and output parties [28], with the computation parties holding the private values in secret-shared form
between them, and performing the bulk of computation and communication. In this case, if- and switch-statements
with private conditions are among unsupported operations, because the taken branch should not be revealed to anyone,
but it is difficult to hide the control flow of the program. Instead, a program transformation can be applied, where all
branches are executed and the final values of all program variables are chosen obliviously from the outcomes of all
branches [37, 27]. This introduces a significant overhead. An obvious optimization idea, but which has not received
much attention so far except for [19] in a different setting, is to locate similar operations in different branches and
try to fuse them into one. The operation is not trivial, because the gathering of inputs to fused operations introduces
additional oblivious choices. This paper is devoted to the study of fusing the operations in different branches and
evaluating them on top of the Sharemind SMC platform [6].

In this work, we consider a simple imperative language with variables typed “public” and “private”, invoking
SMC protocols to process private data. It allows to use private types in the conditions of if and switch statements.
We translate a program written in this language into a computational circuit. We optimize the circuit, trying to fuse
together the sets of operations, where the outcome of at most one of them is used in any concrete execution.

2 Preliminaries

Secure multiparty computation In secure multiparty computation (SMC), several parties are communicating over a
network. They want to compute some function on secret inputs, where each party is allowed to see only its own



inputs and outputs, but not the inputs of the other parties. In secret-sharing based SMC, the actual values of the inputs
are provided by input parties and are not known to any of the computing parties, and the values are shared amongst
the computing parties according to some secret sharing scheme. The final output of the function that the parties
compute can be either revealed to certain output parties, or it may stay shared, being used as an input in subsequent
computations.

Languages for secure multiparty computation A programmer who writes a particular application for secure multiparty
computation would not like to write out the protocol for each party separately. It is easier to write a program that
describes the computed functionality on a higher level, without taking into account how exactly the inputs are shared,
and hiding all the underlying cryptography. Existing privacy-preserving application platforms are usually provided
with such a language [37, 6, 24, 9]. A program looks very similar to an ordinary imperative language (such as Java,
Python, or C), but it does much more, as it is being compiled to a sequence of cryptographic protocols.

Oblivious choice Suppose that there are n secret values x1, . . . ,xn and a secret index i ∈ {1, . . . ,n}. The goal is to
compute xi. In the case of branchings with private conditions, we are given the bits b1, . . . ,bn, at most one of which
is 1, where bi = 1 means that the i-th branch should be taken. In particular, if xi is the value that the variable x gains
after executing the i-th branch, then the value of x can be computed as x = b1x1 + . . .+bnxn (after executing all the n
branches).

Computation Circuits A computation circuit is a directed acyclic graph where each node is assigned a value that can be
computed from its immediate predecessors, except the input nodes which have no predecessors and obtain their values
externally. We use circuits to represent the computation that takes place inside the branches of private conditionals.

Mixed integer linear programming [30] A linear programming task is an optimization task stated as

minimize cT ·x, subject to Ax≤ b,x≥ 0 , (1)

where x∈Rn is a vector of variables that are optimized, and the quantities A∈Rm×n, b∈Rn, c∈Rn are the parameters
that define the task itself.

Adding constraints xi ∈ N for i ∈ I for some I ⊆ {1, . . . ,n} gives us a mixed integer linear programming task.
Adding constraints xi ∈ {0,1} for i ∈ I gives us a mixed binary integer linear programming task:

minimize cT ·x, s.t Ax≤ b,x≥ 0,xi ∈ {0,1} for i ∈ I . (2)

We will reduce the optimization of a computational circuit to a mixed binary integer linear programming task.

Notation We denote the subset of integers {1, . . . ,n} by [n]. We write e[x← v] to express the substitution of the variable
x in the expression e with some variable or value v. We denote vectors by x = [x1, . . . ,xn].

3 Related Work

There are a number of languages for specifying privacy-preserving applications to be run on top of SMC platforms,
these may be either domain-specific languages [4, 24, 31] or variants of general-purpose languages [12]. Often these
languages do not offer support for private conditionals.

The support of private conditionals is present in SMCL [26], as well as in newer languages and frameworks, such
as PICCO [37], Obliv-C [36], Wysteria [29], SCVM [21], or the DSL embedded in Haskell by Mitchell et al. [25]. A
necessary precondition of making private conditions possible is forbidding any public side effects inside the private
branches (such as assignments to public variables or termination), since that may leak information about which branch
has been executed. All the branches are executed simultaneously, and the value of each variable that could have been
modified in at least one of these branches is updated by selecting its value obliviously. Planul and Mitchell [27] have
more thoroughly investigated the leakage through conditionals. They have formally defined the transformation for
executing all branches and investigated the limits of its applicability to programs that have potentially non-terminating
sub-programs.
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prog ::= stmt

f ::= arithmetic blackbox function

exp ::= xpub | xpriv | c | f( exp∗ ) | declassify( exp )

stmt ::= x := exp

| skip

| stmt ; stmt

| if exp then stmt else stmt

Fig. 1: Syntax of the imperative language

The existing compilers that support private conditionals by executing both branches do not attempt to reduce the
computational overhead of such execution. We are aware of only a single optimization attempt targeted towards this
sort of inefficiencies [19], but the details of their setting are quite different from ours. They are targeting privacy-
preserving applications running on top of garbled circuits (GC), building a circuit into which all circuits representing
the branches can be embedded. Their technique significantly depends on what can be hidden by the GC protocols
about the details of the circuits. Our approach is more generic and applies at the language level.

More generally, the hiding of conditionals can be seen as an instance of oblivious computation. There exist methods
for executing Random Access Machines (RAM) in a fully oblivious manner, without taking all branches [16, 22,
32], these techniques make heavy use of Oblivious RAM [15, 33]. Currently, these techniques are not competitive
performance-wise with non-oblivious methods of execution, even if the latter support private conditionals only through
the execution of all branches. However, oblivious computation can be highly efficient if ad-hoc methods for decoupling
the control flow from private data are available, which is the case for e.g. sorting [17] or for certain graph algorithms [2].
Still, these techniques are not closely related to the optimizations we propose in this paper.

4 Our Contribution

In this work, we reduce the computational overhead of private conditionals by fusing mutually exclusive operations
of different branches into a single operation, introducing additional oblivious choice gates that allow to select the
appropriate inputs for it. Our optimization is based on mixed integer linear programming, but some greedy heuristics
are proposed as well for better performance. The main difference from related work is that our optimization is very
generic and can be applied on the program level, without the need of decomposing high-level operations to arithmetic
or boolean circuits. We do the optimization for some simple programs with private conditionals, and benchmark their
running time on a particular SMC platform, showing that the optimization is indeed useful in practice.

We describe the settings in Sec. 5, describe the optimization in Sec. 6, and report the benchmark results in Sec. 7.

5 Programs and Circuits

5.1 The imperative language with Private Conditions

We start from a simple imperative language, given in Fig. 1, which is just a list of assignments and conditional state-
ments. The variables x in the language are typed either as public or private, these types also flow to expressions.
Namely, the expression f (e1, . . . ,en) is private iff at least one of ei is private. The declassification operation turns a
private expression to a public one. An assignment of a private expression to a public variable is not allowed. Only pri-
vate variables may be assigned inside the branches of private conditions [37, 27]. The syntax c denotes compile-time
constants.

During the execution of a program on top of a secret-sharing based SMC platform, public values are known by
all computation parties, while private values are secret-shared among them [4]. An arithmetic blackbox function is
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an arithmetic, or relational, or boolean, etc. operation, for which we have implementations for all partitionings of its
arguments into public and private values. E.g. for integer multiplication, we have the multiplication of public values,
as well as protocols to multiply two private values, as well as a public and a private value [6].

The programs in the language of Fig. 1 cannot all be executed due to the existence of private conditionals. They
can be executed after translating them into computational circuits. These circuits are not convenient for expressing
looping constructs. Also, our optimizations so far do not handle loops. For this reason, we have left them out of the
language. We note that loops with public conditions could in principle be handled inside private conditionals [37].

The semantics of the initial imperative language are formally defined in App. A.

5.2 Computational Circuits

Given a set Var a program variables, we define a circuit that modifies the values of (some of) these variables. It consists
of the set of gates G doing the computation, the mapping X that maps the input wires of G to the program variables
Var, so that we can feed their valuations to the circuit, and the mapping Y that maps the variables of Var to the output
wires of G, so that we may assign to the program variables the new valuations obtained from the circuit execution.

Definition 1. Let V be the global set set of wire names. Let Val be the set of program variables. A computational
circuit is a triple G= (G,X ,Y ) where:

1. G = {g1, . . . ,gm} for some m ∈ N, where each g ∈ G is of the form g = (v,op, [v1, . . . ,vn]) where:
– v ∈V is a unique gate identifier;
– op is the operation that the gate computes (an arithmetic blackbox function of the SMC platform);
– [v1, . . . ,vn] for vi ∈ V is the list of the arguments to which the operation op is applied when the gate is

evaluated.
2. X is a mapping whose domain defines the input wires I(G)⊆V of the circuit G. Formally X : I(G)→Var assigns

to each wire v ∈ I(G) the variable X(v).
3. Y is a mapping whose range defines the set of output wires O(G)⊆V whose values are finally output.

Formally, Y : Var→ O(G) assigns to y ∈Var a wire Y (y).

We define the set of all wires of G as the set of all gate identifiers and their arguments (which do not necessarily
have to be in turn some gate identifiers):

V (G) := {v | ∃op,v : (v,op,v) ∈ G}∪{v | ∃u,op,v : (u,op,v) ∈ G,v ∈ v} .

In order to easily switch between the sets of G and V (G), we define a function gate : V (G)→G s.t gate(v) = (v,op,v)
if ∃op,v : (v,op,v) ∈ G, and gate(v) =⊥ otherwise. Since the gate names are unique, the function inverse gate−1 is
well-defined.

We use G to denote the set of all circuits.
The circuits that we work on are going to contain gates whose operation is the oblivious choice; such gates are

introduced while transforming out private conditionals. Such gate is defined as (v,oc, [b1,v1, . . . ,bn,vn]), and it returns
the output of gate(vi) iff the output of gate(bi) is 1. If there is no such bi, then it outputs 0. It works on the assumption
that at most one gate(bi) outputs 1. This assumption needs to be ensured by the transformation that constructs a circuit
from a program.

The formal definition of evaluating the set of gates G on the input X , and the definition of the oblivious choice gate
in particular, are given in App. B.1. The composition of circuits as syntactic objects and the semantics preservation
proof of this operation are given in App. B.2.

Example 1. A circuit that chooses z obliviously from x1 ∗ y1, x2 ∗ y2, x3 ∗ y3 according to the choice bits b1, b2, b3
would be defined as:

– G = {(u1,∗, [v1,w1]),(u2,∗, [v2,w2]),(u3,∗, [v3,w3]),(v,oc, [vb
1,u1,vb

2,u2,vb
3,u3])};

– X = {v1← x1,v2← x2,v3← x3,w1← y1,w2← y2,w3← y3,vb
1← b1,vb

2← b2,vb
3← b3};

– Y = {z← v}.

This circuit is depicted in Fig.2.
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Fig. 2: Example 1

5.3 Transforming a Program to a Circuit

We need to transform the private conditional statements of the initial imperative language to a circuit. Intuitively,
each assignment y := f (x1, . . . ,xn) of the initial program can be viewed as as single circuit computing a set of gates
G defined by the description of f on inputs x1, . . . ,xn, where X maps the input wires of the circuit to the variables
x1, . . . ,xn, and Y maps y to the output wire of the circuit. A sequence of assignments is put together into a single circuit
using circuit composition.

If the program statement is not an assignment, but a private conditional statement, all its branches are first trans-
formed to independent circuits (Gi,Xi,Yi). The value of each variable y is then selected obliviously amongst Yi(y) as
y := ∑i biYi(y), where bi is the condition of executing the i-th branch. So far, the transformation is similar to the related
work [37, 27], and the only formal difference is that we construct a computational circuit at this point.

The formal definition of transforming a program to a circuit is given in App. C.

Example 2. Suppose we are given the following conditional statement with a private condition b:

if b:

x := x + y;

else:

y := 5*x;

x := 2;

This would be transformed to the following circuit:

– G = {(uadd ,+, [vx,vy]),(v̄b,¬, [vb]),(umul ,∗, [vconst5,vy]),
(wx,oc, [vb,uadd , v̄b,vconst2]),(wy,oc, [vb,vy, v̄b,umul ])};

– X = {vx← x,vy← y,vb← b,vconst5← 5,vconst2← 2};
– Y = {x← wx,y← wy}.

This circuit is depicted by Fig.3.

6 Optimizing the Circuit

The circuit G obtained from the transformation of Sec. 5.3 may be non-optimal. Namely, it contains executions of all
the branches of private conditional statements, although only one of the branches will be eventually needed. In this
section, we present an optimization that eliminates excessive computations caused by the unused branches.
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Fig. 3: Example 2

Fig. 4: Example 3

6.1 Informal Description of the Optimization

Let G = (G,X ,Y ) be a computational circuit. The weakest precondition φG
v of evaluating a gate g = gate(v) ∈ G is a

boolean expression over the conditional variables, such that φG
v = 1 if the result of evaluating gate g is needed for the

given valuations of conditional variables. A more formal definition of the weakest precondition is given in App. D.
The main idea of our optimization is the following. Let g1 = (v1,op, [x1

1, . . . ,x
1
n]), . . . ,gk = (vk,op, [xk

1, . . . ,x
k
n])∈G.

Let φG
v1
, . . . ,φG

vk
be mutually exclusive. This happens for example if each gi belongs to a distinct branch of a set of

nested conditional statements. In this case, we can fuse the gates g1, . . . ,gk into a single gate g that computes the same
operation op, choosing each of its inputs x j obliviously amongst x1

j , . . . ,x
k
j . This introduces n new oblivious choice

gates, but leaves just one gate g computing op.

Example 3. Let a comparison operation (==) be located in both the if-branch, and the corresponding else-branch.
Let the gates be (v1,==, [x1,y1]),(v2,==, [x2,y2]) ∈ G. Let b ∈V (G) be the wire whose value is the condition of the
if-branch, and b̄ ∈V (G) the wire whose value is b’s negation (which is the condition of the else-branch). Since the
branches can never be executed simultaneously, we may replace these gates with (x,oc, [b,x1, b̄,x2]), (y,oc, [b,y1, b̄,y2]),
and (v,==, [x,y]). All the references to v1 and v2 in the rest of the circuit are now substituted with the reference to v.
The transformation is shown in Fig. 4.

We now describe this optimization in more details.

Preprocessing Let n = |V (G)|, and m = |G|. First, we find the set U of all pairs of gates that can never be evaluated
simultaneously. For each gate gi, find the weakest precondition φG

i that be must true for gi to be evaluated. Define U =
{(gi,g j) | gi,g j ∈ G,φG

i ∧φG
j is unsatisfiable}. Although there is no efficient algorithm for solving the unsatisfiability
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Fig. 5: Fusing gates into cliques

problem, in practice, it suffices to find only a subset U ′ ⊆U . It makes the optimization less efficient (we do not fuse
as many gates as we could), but nevertheless correct.

For each formula φG
i , we need to construct the circuit that computes the value of φG

i . Depending on how exactly φG
i

is computed, evaluating this circuit may in turn have some cost. Each φG
i is represented by a boolean formula over the

conditions of the if-statements of the initial program, which can be read out from G by observing its oblivious choice
gates. The additional ∨ and ∧ gates are need in the cases where a gate is located inside several nested if-statements
(need ∧), or it is used in several different branches (need ∨).

Plan We partition the gates into sets Ck, planning to leave only one gate of Ck after the optimization. The following
conditions should hold:

– ∀gi,g j ∈Ck : gi 6= g j =⇒ (gi,g j) ∈U : we put together only mutually exclusive gates, so that indeed at most one
gate of Ck will actually be executed.

– ∀gi,g j ∈Ck : opi = op j: only the gates that compute the same operation are put together.
– Let E := {(Ci,C j) | ∃k, ` : gk ∈Ci,g` ∈C j,gk is an immediate predecessor of g` in G}. In this way, if (Ci,C j) ∈ E,

then Ci should be evaluated strictly before C j. We require that the graph ({Ck}k∈[m],E) is acyclic. Otherwise, we
might get the situation where some gates of C j have to be computed necessarily before Ci, and at the same time
some gates of Ci should be computed necessarily before C j, so evaluating all the gates of Ci at once would be
impossible.

If we consider U as edges, we get that Ck form a set of disjoint cliques on the graph. A possible fusing of gates into a
clique is shown in Fig. 5, where the gray lines connect the pairs (gi,g j) ∈U , and the dark gates are treated as a single
clique.

Transformation The plan gives us a collection of sets of gates C j, each having gates of certain operation op j. Consider
any C j = {g1, . . . ,gm j}. Let the inputs of the gate gi be xi

1, . . . ,x
i
n. Let bi be the wire that outputs the value of φG

i .
Introduce n new oblivious choice gates (v`,oc, [b1,x1

` , . . . ,bm j ,x
m j
` ]) for ` ∈ [n]. Add a new gate (g,op j, [v1, . . . ,vn]).

Discard all the gates gi. If any gate in the rest of the circuit has used any gi as an input, substitute it with g instead. We
may additionally omit any oblivious choice in the graph if there is just one option to select from.

For each oc gate that has been already present in the circuit, check how many distinct inputs it has. It is possible
that some inputs have been fused into one due to belonging to the same clique. In this case, it may happen that the oc
gate is left with a single choice, and since (v`,oc, [bi,xi

`]) just returns xi
`, its cost is 0. An example of leaving just one

clique representative that allows to eliminate the further oblivious choice can be seen in Fig. 6.

The Cost Our goal is to partition the cliques in such a way that the cost of the resulting circuit is minimal. Each
gate operation corresponds to some SMC protocol that requires some amount of bits to be communicated between the
parties. We choose the total number of communicated bits as the cost. Since this metric is additive, we may easily
estimate the total cost of the circuit by summing up the communicated bits of the gates. The particular costs of the
gates depend on the chosen SMC platform.

We note that introducing intermediate oblivious choices may increase the number of of rounds. We need to be
careful, since increasing the number of rounds may make executing the circuit with a lower communication cost
actually take more time.
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Fig. 6: Leaving just one clique representative

6.2 Notation for describing the optimization

We do some formalization on the circuit that allows to make further optimization easier.

Shorthand Notation Let G= (G,X ,Y ), (g,op, [v1, . . . ,vn]) ∈ G. We introduce the following shorthand notation:

– opG(g) = op;
– argsG(g) = [v1, . . . ,vn];
– arityG(g) = n;

For g ∈V (G), we write g ∈ G for gate(g) ∈ G.

Gate and Clique Enumeration Without loss of generality, let V (G) = {1, . . . ,n}. This ordering allows to define the
constraints for linear program variables more easily.

The number of cliques varies between 1 (if all the gates are fused together into one) and |G| (if each gate is a
singleton clique). For simplicity, we assume that we always have exactly |G| cliques, and some of them may just be
left empty. We denote the clique {i1, . . . , ik} by C j, where j = min(i1, . . . , ik) is the representative of the clique C j.
Without loss of generality, let the representative be the only gate that is left of C j after the fusing.

The Weakest Precondition We write φG(i) to refer to the weakest precondition of the gate i ∈V (G), as it is defined by
the structure of G. The particular algorithm for computing the mapping φG for the circuit G is given in App. D.2.

Direct and Conditional Predecessors In order to ensure that the optimized circuit contains no cycles, we need to
remember which gates have been predecessors of each other. We define the following auxiliary predicates that can be
easily computed from the initial circuit.

– predG(i,k) = 1 iff k ∈ argsG(i);
– cpredG(i,k) = 1 iff k ∈ φG(i);

The predicate predG(i,k) is true just if k is an immediate predecessor of i in G. The predicate cpredG(i,k) is true if k
is used to compute the weakest precondition of i. This means that k does not have to be computed strictly before i in
general. However, if i is fused with some other gate, we will need the value of k for computing the oblivious choice
of the arguments of i, and in this case k has to be computed strictly before i. In this way, k is a predecessor of i on the
condition that i is fused with at least one other gate.

Which gates can be fused We define an auxiliary predicate that denotes which gates are allowed to be fused:

fusableG(i, j) = 1 iff (i = j)∨ (φG(i)∧φ
G( j) is unsatisfiable) .

Although there exists no efficient algorithm for computing unsatisfiablity in general, we may allow some algorithm
that provides false negatives. This results in having fusableG(i, j) = 0 for gates that could have actually been fused,
and hence the final solution may be non-optimal, but nevertheless correct.

Since fusing forces all the gate arguments to become chosen obliviously, all the inputs of a fused gate in general
become private (unless there was just one choice for some public input). Depending on the SMC platform and the
particular operation, this may formally change the gate operation. Some operations still retain the same cost, while
some gates may increase their cost significantly if some of their public inputs become private. Moreover, it may happen
that the new operation is not supported by the SMC platform at all. We define fusableG(i, j) = 0 for the gates that have
any public inputs, and whose cost depends on their privacy.
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6.3 Uniting Gates Into Subcircuits

Let G = (G,X ,Y ) ∈ G. In some cases, there are obvious repeating patterns of gates in G which could be treated as a
single gate. Uniting them into one gate would reduce the total number of gates involved in the optimization, increasing
its efficiency.

We propose a particular algorithm for partitioning G into a set of disjoint subcircuits. We define the sets of subcir-
cuits Ak inductively as follows.

A0 := {{g} | g ∈ G} ;

A′n+1 := {S∪
⋃
{Si ∈ argsAn(S) | 6 ∃T ∈ A′n+1 : Si ⊆ T, 6 ∃S′ 6= S ∈ An : Si ∈ argsAn(S′)} | S ∈ An} ;

An+1 = {S | count(S,A′n+1)≥ 2}
∪ {S′ | S ∈ A′n+1,count(S,A

′
n+1) = 1,S′ v S} ;

Where S′ v S denotes that S′ ∈ An is a subcircuit that has been united into S ∈ An+1, and count(S,A′n+1) is the
number of elements in A′n+1 that are isomorphic to S. The isomorphisms, which require the sameness of structure and
operations, are simple to find out due to the inputs of all gates being ordered.

The arguments of the subcircuits are also defined inductively as

argsA0({g}) := {{a} | a ∈ argsG(g)} ;
argsAn+1(S) := {Si| S′ v S,Si ∈ argsAn(S′),Si 6v S} .

We start from the initial set of gates G, treating each gate as a singleton subcircuit. On each iteration, we extend
each subcircuit with its argument gates that it does not share with any other subcircuits. We want the subcircuits to
be disjoint, and hence if some Si ∈ An has already been extended on this iteration, then we are not trying to use Si to
extend some other S ∈ An – that is how the condition Si ⊆ T /∈ A′n+1 should be interpreted.

If any subcircuit S occurs only once in An+1, then it does not make sense to include S into the optimization, since
it cannot be merged with any other gate anyway. In this case, after each iteration we may leave only those subcircuits
of An+1 that occur at least twice. Each S ∈ A′n+1 that occurs only once is decomposed back to its subcircuits S′ v S,
S′ ∈ An.

Let Subcircuit(G,n) be a function computing the set of subcircuits An for the given G and n. After composing the
subcircuits in this way, we are only allowed to use the final outputs of the subcircuits. The outputs of the gates that are
swallowed by a subcircuit can only be used inside that subcircuit. Hence we need to prove that the set of new gates An
still does exactly the same computation as G. This is stated and proved in Thm. 3, which can be found in App. E. In
this way, the optimizations proposed in further subsections can be applied to single gates as well as to the partitions
formed by the function Subcircuit.

6.4 Simple Greedy Optimizations

We have investigated simple, heuristic optimizations, described in this subsection. We have also considered more
complex optimizations based on integer linear programming; these are described in the next subsection. The outline
of a simple optimization is the following.

Grouping Gates by Operations First of all, the gates G are grouped as subsets Gss = {{g ∈ G | opG(g) = F} | F is a
gate operation} by their operation. These subsets are sorted according to the cost of their operation, so that more
expensive gates come first.

Forming Cliques The subsets are turned into cliques one by one, starting from the most expensive operation. A clique
Ck is formed only if it is valid and is not in contradiction with already formed cliques, i.e:

– any two gates gi,g j ∈Ck satisfy fusableG(gi,g j) = 1;
– no gi ∈Ck has already been included into some other clique;
– Ck does not introduce cycles.
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We use three different strategies for forming a set of cliques for a particular subset of gates Gs ∈ Gss:

1. Largest Cliques First. In this approach, we are trying to extract from Gs as large clique as possible before
proceeding with the other cliques. The task of finding one maximum clique is NP-hard, and so we approximate
the task by generating some bounded amount of cliques and taking the largest of them.

2. Pairwise Merging. The gates are first merged pairwise. We are not trying to maximize the number of pairs, and
just take the first valid pair that we find. After no more pairs can be formed, we proceed merging the obtained
pairs in turn pairwise. We continue until the number of cliques formed by Gs cannot be decreased anymore.

3. Pairwise Merging with Maximum Matching. This approach is similar to the previous one, and the only differ-
ence is that, instead of fixing the first valid pair, it finds the maximum matching on each step.

The more formal descriptions of the algorithms are given in App. F. We also prove in App. F that these strategies
do not lead to a dead end, i.e after a clique has been fixed, it is always possible to assign the remaining gates to cliques
without backtracking.

6.5 Reduction to an integer programming task

As an alternative to greedy algorithms, we may reduce the gate fusing task to an integer program and solve it using an
external integer linear program solver (such as [13]).

We consider mixed integer programs of the form (2). Let ILP be the set of all mixed binary integer pro-
grams defined as tuples (A,b,c,I). For our particular task, we define a transformation T→ILP : G → ILP , such that
T→ILP(G,X ,Y ) = (A,b,c,I). We now describe in details how these quantities are constructed.

In order to make integer programming solutions better comparable to greedy algorithms, we consider two levels
of optimization:

– Basic: try to optimize only the total cost of the gates, without taking into account the oc gates.
– Extended: take into account the new oc gates, the weakest preconditions, and also the number of inputs of the old

oc gates.

Throughout this section, we use G to refer to the initial circuit, and G′ to refer to the circuit obtained after the
transformation.

Variables For a clique C j, let us denote set of all possible choices for the `-th input of the clique C j as argsG(C j)[`] :=
{k | i ∈C j,k = argsG(i)[`]}. We will now describe the meaning of different variables in our ILP task.

The core of our optimization are the variables that affect the cost of the transformed circuit.

– g j
i =

{
1, if i ∈C j

0,otherwise
for i, j ∈ G.

The gate j will be the representative of C j. Namely, g j
j = 1 iff C j is non-empty. Fixing the representative reduces

the number of symmetric solutions significantly. This also allows us to compute the cost of all the cliques.
– uc j = |argsG′( j)|−1 for j ∈G, opG( j) = oc is number of decisions left for the oc gate j, after some of its choices

have potentially been fused together.

– u j =

{
1, if |argsG′( j)|> 1
0,otherwise

for j ∈ G, opG( j) = oc.

If u j = 0, then the oc gate j can be removed since there is only one choice left. The variables uc j and u j allow to
count for the updated cost of the old oc gates.

– sc j
` = |args

G′( j)[`]|−1 for j ∈G, ` ∈ arityG( j) is the number of decisions to make for choosing the `-th argument
of C j.

– s j
` =

{
1, if the `-th input of j should be a new oc gate
0,otherwise

for j ∈ G, ` ∈ arityG( j).
The variables sc j

` and s j
` allow to count for the total cost of the new oc gates introduced by the optimization.
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– bi =

{
1, if the weakest precondition of i is needed
0,otherwise

for i ∈ G.
Fusing the gates requires their inputs to be chosen obliviously. For that, we may need to compute the weakest
preconditions of the participating gates.

We also need some variables that help to avoid cycles after fusing the gates.

– ` j ∈ R for j ∈ G is the circuit topological level on which the j-th gate is evaluated, where all the gates with the
same level are evaluated simultaneously. Each gate must have a strictly larger level than all its predecessors.

– c j =

{
1, if the gate g j is fused with some other gate
0,otherwise

for j ∈ G.

Each gate should have a strictly larger level than all its conditional predecessors iff it participates in a clique of
size at least 2. After the gates are fused into a clique, their inputs are going to be chosen obliviously, and hence
the condition will have to be known strictly before the fused gates are evaluated.

The vector x of variables will actually contain some more auxiliary variables that help to establish relations between
the main variables, but do not have special meaning otherwise. We will see these variables when we define constraints.

Cost function The total cost of the circuit is defined by the following quantities.

– Cg = ∑
|G|
j=1,opG( j)6=oc cost(opG( j)) ·g j

j is the total cost of the cliques after fusing (except the oc gates).

– Coc1 = ∑
|G|
j=1,opG( j)=oc cost(ocbase) ·u j +cost(ocstep) ·uc j is the total cost of all the old oc gates, where cost(ocbase)

is the base cost of using an oc gate, and cost(ocstep) is the cost of a single choice of the oc gate.

– Coc2 = ∑
|G|,arityG( j)
j,`=1,1 cost(ocbase) · s j

`+ cost(ocstep) · sc j
` is the total cost of all the new oc gates.

– Cb = ∑
|G|
j=1 cost(φG( j)) ·b j is the cost of all the boolean conditions needed for the new oc gates.

We may now take one of the following quantities as the cost:

– Basic cost: Cg, which is just the total cost of the obtained cliques (in this case, the costs of the old oc gates are
included into Cg).

– Extended cost: Cg +Coc1 +Coc2 +Cb, which takes into account also the cost of the new oc gates.

This describes the full cost of the gates involved in the sum, since the bit communication metric of the gates is
additive. This sum would not work if we had chosen the number of rounds as the cost.

Inequality constraints The constraints Ax ≤ b state the relations between the variables defined in Sec. 6.5. Since
Ax≥ b can be expressed as −Ax≤−b, we may as well use ≤, ≥, and = relations in the constraints.

Building blocks for constraints There are some logical statements that are used several times in the constraints. We
will now describe how such statements are encoded as sets of constraints (possibly with some auxiliary variables). We
also define special notations for these sets of constraints.

– Multiplication by a bit: z = x · y for x ∈ {0,1}, y,z ∈ R, where C is a known upper bound on y. This can be
expressed by
• C · x+ y− z≤C;
• C · x− y+ z≤C;
• C · x− z≥ 0.

We denote this set of constraints by P(C,x,y,z).
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– Threshold:

y =

{
1 if ∑x∈X x≥ A
0 otherwise

for ∀x ∈ X : x ∈ {0,1}, y ∈ R, some constant A. This can be expressed by
• P(1,y,x,zx) for all x ∈ X , where zx are fresh variable names;
• A · y−∑x∈X zx ≤ 0;
• ∑x∈X x−∑x∈X zx +(A−1)y≥ (A−1).

We denote this set of constraints by F(A,X ,y).
– Implying inequality: (z = 1) =⇒ (x−y≥ A) for z∈ {0,1}, x,y∈R, some constant A, where C is a known upper

bound on x,y. This can be expressed by
• (C+A) · z+ y− x≥C.

We denote this constraint by G(C,A,x,y,z).

The correctness of these sets of constraints is proven in Appendix G.1.

Basic constraints The particular constraints of the integer program are the following.

1. g j
i +g j

k ≤ 1 for i,k ∈ G, ¬fusableG(i,k).
If the gates are not mutually exclusive, then they cannot belong to the same clique.

2. ∑
|G|
j=1 g j

i = 1 for all i ∈ G.
Each gate belongs to exactly one clique.

3. g j
i = 0 if opG(i) 6= opG( j).

The clique and gate operations should match. In order to avoid putting gates of different operations into one clique,
we assign operations to the cliques, such that the operation of the j-th clique equals the operation of the j-th gate.
The gates are allowed to belong only to the cliques C j of the same operation as the gate i is.

4. g j
j−g j

i ≥ 0 for all i ∈ G, j ∈ G.
If the clique C j is non-empty, then it contains the gate no. j. This makes gate j the representative of C j.

5. g j
j = 1 for all j such that cost(opG( j)) = 0.

We are more interested in fusing the gates with positive cost. Actually, in some cases, even fusing gates of cost 0
can be useful, since it may in turn eliminate some oc gates. This constraint makes the optimization faster, although
we may lose some valuable solution in this way.

6. (a) `i− `k ≥ 1 for all i,k ∈ G,predG(i,k);
(b) G(|G|,0, `i, ` j,g

j
i ) for all i, j ∈ G;

(c) G(|G|,0, ` j, `i,g
j
i ) for all i, j ∈ G;

(d) `i ≥ 0, `i ≤ |G|.
After the gates are fused into cliques, their dependencies on each other are not allowed to form cycles. We assign
a level `i to each gate i. If i is a predecessor of k, then `i < `k, but to avoid degenerate solutions to the ILP, we
introduce some difference between the levels. If a gate i belongs to the clique C j, then `i = ` j. We may split the
implication g j

i = 1 =⇒ `i = ` j into two parts g j
i = 1 =⇒ (`i− ` j)≥ 0, g j

i = 1 =⇒ (` j− `i)≥ 0, reducing them
to the constraint G. We take the maximal value for `i as |G|, since we need at most |G| distinct levels even if all
the gates are on different levels.
We would also like to take into account the conditional predecessors.
(e) d j = (1−g j

j) for all j ∈ G;

(f) F(1,{d j}∪{g j
i | i ∈ G, i 6= j},c j) for all j ∈ G;

The constrains fix the variable c j so, that c j = 1 iff the gate j is fused with some other gate. That is, either d j = 1
(implying g j

j = 0, or that j belongs to some other clique), or ∑i∈G,i 6= j g j
i ≥ 1, implying that there is some other

gate belonging to g j
j.

(g) G(|G|,1, `i, `k,ci) for all i,k ∈ G, cpredG(i,k);
The last constraint states that, if ci = 1 (the gate i is fused with some other gate), then lk− li ≥ 1 (the gate i should
be computed strictly before its conditional predecessor k).
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Extended constraints The basic constraints are sufficient to optimize the total cost of the gates, at the same time
avoiding cycles (as the greedy optimizations do). Since computing the boolean conditions may also produce some
additional costs, we define some more variables with associated constraints that take them into account.

7. We want to define sc j
` = |args

G′( j)[`]|−1, and s j
` = 1 iff argsG′( j)[`] is an oc gate. The `-th argument of C j requires

a new oc gate iff the number of distinct `-th inputs used by the gates i ∈C j is at least 2.

(a) F(1,{g j
i | i ∈ G,k = argsG(i)[`]}, f x jk

` ):
Define f x jk

` = 1 iff k ∈ argsG(C j)[`];
(b) P(1, f x jk

` ,gi
k,e

jk
i` ) for all k ∈V (G):

Define e jk
i` = 1 iff k ∈ argsG(C j)[`], and k ∈Ci;

(c) F(1,{e jk
i` | k ∈V (G)}, f g ji

` ) for all i ∈ G:
Define f g ji

` = 1 iff ∃k ∈Ci : k ∈ argsG(C j)[`];
(d) f g jk

` = f x jk
` for k ∈ I(G);

Together with (7c), it defines f g jk
` = 1 iff Ck ∈ argsG(C j)[`] for k ∈ V (G), where for k ∈ I(G) we denote

Ck = k.
(e) F(2,{ f g jk

` | k ∈V (G)},s j
`):

Define s j
` = 1 iff the total number of `-th inputs after fusing the gates of C j is at least 2.

(f) sc j
` = ∑k∈V (G) f g jk

` −g j
j:

This defines sc j
` = |args

G(C j)[`]|−1 for a non-empty clique. If g j
j = 0, then also ∑k∈V (G) f g jk

` = 0, so it is not
counted for empty cliques (we discuss it in more details when we prove the feasibility of the task in App. G.2).

8. Similarly, for the old oc gates, we are going to define uc j = |argsG′( j)|−g j
j, and u j = 1 iff |argsG′( j)|> 1.

(a) F(1,{ f g jk
` | ` ∈ [arityG( j)]∩2N}, f g jk) for all j ∈ G, k ∈V (G), opG( j) = oc;

Define f g jk = 1 iff Ck is a choice of the oc gate j.
(b) F(2,{ f g jk | k ∈V (G)},u j) for all j ∈ G, opG( j) = oc;

Define u j = 1 iff there are at least 2 choices left for the oc gate j.
(c) uc j

` = ∑k∈V (G) f g jk−g j
j:

This defines uc j
` = |args

G′( j)|−g j
j for opG( j) = oc.

9. We would like to check whether the weakest precondition φG( j) of the gate g j must be computed. We want to
define b j = 1 iff φG( j) is needed.

(a) F(1,{s j
` | ` ∈ [arityG( j)]}, t j) for j ∈ G.

This checks if there will be an oblivious choice of at least one input of the clique C j. If it is so, then we will
need to compute φG(i) for i ∈C j.

(b) P(1,g j
i , t

j, t j
i ) for j 6= i ∈ G.

(c) t j
j = 0 for j ∈ G.

The variable t j
i now denotes if the weakest precondition of gi is needed for the clique C j. Since we may set

one of the choices to negation of all the other choices, we may eliminate one of the weakest preconditions
participating in the choice. We choose it to be the choice of gate j, and hence we set t j

j = 0.

(d) bi = ∑ j∈G t j
i for i ∈ G.

Since we know that each gate belongs to exactly one clique, we know that, for a fixed i, we have t j
i = 1 for

exactly one j, and so it suffices to sum them up.

Binary constraints Since we are dealing with a mixed integer program, we need to state explicitly that some variables
are binary:

g j
i ∈ {0,1} for all i, j ∈ G .

The statement sc j
`,uc j

` ∈ Z, and the binariness of all the other variables (except ` j ∈ R) follow from the binariness
of g j

i . We prove it in Appendix G.1. We will need this property in our further proofs of transformation correctness.
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Feasibility We want to be sure that the obtained integer linear program indeed has at least one solution.

Theorem 1. For any (G,X ,Y ) ∈ G, if (A,b,c,I) = T→ILP(G,X ,Y ), then the integer linear programming task

minimize cT x, s.t Ax≤ b,x≥ 0,xi ∈ {0,1} for i ∈ I

has at least one feasible solution.

The proof on this theorem can be found in Appendix G.2. It just shows that it is always possible to take the solution
where no gates are fused at all.

6.6 Applying the solution of ILP to G

Let (G,X ,Y )∈G be the initial circuit. Let Sol(G,X ,Y ) be the set of all feasible solutions to (A,b,c,I) = T→ILP(G,X ,Y ).
Now we define a backwards transformation T←ILP : Sol(G)×G → G, which takes any feasible solution to (A,b,c,I)
and applies it to (G,X ,Y ), forming a new circuit G′ = (G′,X ′,Y ′). Let cost : G → Z be function computing the total
communication cost of a circuit.

The work of T←ILP is pretty straightforward. If just fuses the gates according to the variables g j
i of the ILP solution

that denote which gate belongs to which clique. It introduces all the necessary oblivious choices, and also removes the
old oblivious choices that are left with just one choice. An algorithm implementing T←ILP and the proof of its correctness
are given in App. H.1.

We may use the same algorithm to construct a circuit from a set of cliques obtained from a greedy algorithm of
Sec. 6.4, as it can be easily reduced to a linear programming solution of T→ILP(G,X ,Y ). This is stated and proved in
Thm. 6 of App. H.3.

We also want to estimate the communication cost of (G′,X ′,Y ′). We show that it is indeed the value estimated by
the ILP, so it makes sense minimizing it. The corresponding theorem is stated and proved in Appendix H.2.

If we use the greedy algorithms of Sec. 6.4, or use only the basic constrains of the integer program for better
convergence, then it may happen that the found solution is worse than the initial one. Indeed, although the total cost
of the gates may only decrease, the additional oblivious choices provide computational overhead that is not taken into
account by these algorithms and may provide even larger overhead that the eliminated gates’ cost was. In Sec. 7, we
see that these approaches nevertheless give reasonable execution times, and their optimization times are significantly
better in practice.

7 Implementation and evaluation

We have implemented the transformation of the program to a circuit, the optimizations, and the transformation of
the circuit according to the obtained set of cliques in SWI-Prolog [34]. The ILP is solved externally by the GLPK
solver [13]. The optimized circuit is translated to a Sharemind program for evaluation.

The optimizations have been tested on small programs. Since we are dealing with a relatively new problem, there
are no good test sets, and we had to invent some sample programs ourselves. In general, the programs with private
conditionals are related to evaluation of decision diagrams with private decisions. We provide five different programs,
each with its own specificity. Their pseudocodes are given in App. I.

– loan (31 gates): A simple binary decision tree, which decides whether a person should be given a loan, based on
its background data. Such simple applications are often used as an introduction to the decision tree topic. Only the
leaves contain assignments, and the optimization is only trying to fuse the comparison operations that make the
decisions. Uses only integer operations.

– sqrt (123 gates): Uses binary search to compute the square root of an integer. Since the input is private, it makes a
fixed number of iterations. The division by 2 is on purpose inserted into both branches, modified in such a way that
it cannot be trivially outlined without arithmetic theory. The optimizer does this outlining by fusing the divisions.
Uses only integer operations.
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Table 1. Optimization times in seconds for loan

greed1 greed2 greed3 lpbasic lpext
0 0.046 0.047 0.053 0.097 0.121
1 0.049 0.041 0.042 0.095 0.109
2 0.042 0.043 0.05 0.083 0.115

Table 2. Optimization times in seconds for sqrt

greed1 greed2 greed3 lpbasic lpext
0 0.523 0.549 0.538 0.78 1.3
1 0.549 0.531 0.544 0.644 0.762
2 0.556 0.526 0.518 0.612 0.654
3 0.536 0.495 0.571 0.584 0.596
4 0.55 0.51 0.511 0.623 0.593

Table 3. Optimization times in seconds for driver

greed1 greed2 greed3 lpbasic lpext
0 0.119 0.11 0.125 0.181 0.381
1 0.084 0.082 0.081 0.159 0.164
2 0.075 0.083 0.076 0.138 0.157
3 0.082 0.077 0.078 0.118 0.171

Table 4. Optimization times in seconds for stats

greed1 greed2 greed3 lpbasic lpext
0 0.185 0.181 0.185 0.292 16.291
1 0.115 0.123 0.12 0.17 0.262
2 0.103 0.103 0.107 0.154 0.226
3 0.104 0.106 0.104 0.144 0.22
4 0.103 0.11 0.106 0.142 0.214
5 0.107 0.103 0.107 0.156 0.222

Table 5. Optimization times in seconds for erf

greed1 greed2 greed3 lpbasic lpext
0 43.405 43.111 – 47.03 47.601
1 5.532 5.523 – – –
2 3.581 3.649 8.468 8.136 –
3 3.243 3.267 6.082 6.275 –
4 2.719 2.754 2.702 3.496 –
5 2.613 2.626 2.608 3.088 525.34
6 2.559 2.583 2.578 2.983 15.248
7 2.604 2.64 2.838 3.008 15.27

– driver (53 gates): We took the decision tree that is applied to certain parameters of a piece of music in order to
check how well it wakes up a sleepy car driver [23], assuming a privacy-preserving setting of this task. In this tree,
some decisions require more complex operations, such as logarithms and inverses (computing Shannon entropy),
so it was interesting to try to fuse them. Works with floating point arithmetic [18].

– stats (68 gates): The motivation for the problem is that choosing a particular statistical test for the analysis may
depend on the type of data (ordinal, binary). Here we assume that the decision bits (which analysis to choose)
are already given, but are private. The complex computation starts in leaves, where a particular statistical test is
chosen. It chooses amongst the Student t-test, the Wilcoxon test, the Welch test, and the χ2 test, whose privacy-
preserving implementations are taken from [3]. Works with floating point arithmetic.

– erf (335 gates): The program evaluates the error function of a floating point number, which is represented as a
triple (sign, significand, exponent) of integers [18]. The implementation is taken from [20]. In this program, the
method chosen to compute the answer depends on the range in which the initial input is located, and since the
input is private, this choice cannot be leaked.

All our programs are vectorized. We treat vector operations as single gates, so that optimizing 106 operations
per gate would be feasible. For simplicity, we assumed that all vectors in the program have the same length. Fusing
together vector operations of different length can be treated as a future work.

We ran the optimizer on a Lenovo X201i laptop with a 4-core Intel Core i3 2.4GHz processor and 4GB of RAM
running Ubuntu 12.04. The execution times are given in the Tables 1- 5. The rows correspond to different subcircuit
depths, which are constructed as described in Sec. 6.3. We tried all possible depths, until it was not possible to in-
crease the depth anymore since all the subgraphs would have become unique. The columns correspond to the different
optimization techniques. The columns greed1, greed2, and greed3 are the three different greedy strategies that are de-
scribed in Sec. 6.4. The columns lpbasic and lpext correspond to the mixed integer programming approach of Sec. 6.5,
using the basic and the extended constraints respectively.
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n = 10 n = 103 n = 106

Running times in seconds for loan

n = 10 n = 103 n = 106

Running times in seconds for sqrt

n = 10 n = 103 n = 106

Running times in seconds for driver

n = 10 n = 102

Running times in seconds for stats

n = 10 n = 103 n = 106

Running times in seconds for erf

Fig. 7: Running times in seconds
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We compiled the optimized graphs into programs, executed them on Sharemind (three servers on a local 1Gbps
network; the speed of the network is the bottleneck in these tests) and measured their running time. The runtime
benchmarks can be found in the Figure 7. The X-axis corresponds to different optimizations, including all the combi-
nations of the 5 strategies with all used subcircuit depths, sorted by runtime. The Y -axis represents the running times.
The parameter n is the vector length — the number of executions run in parallel. We see that, since the computation
time depends not only on the communication, but also on the number of rounds, our optimization was rather harmful
on inputs of small size. However, as the total amount of communication and computation increases, our optimized
programs are becoming more advantageous.

For driver, sqrt, and loan, we see that the optimized programs are clearly grouped by their running times. The
differences inside a single group are insignificant, so we may treat the entire group as having the same cost. For stats
and erf, we do not see such a partitioning. The results are too varying, and hence we cannot claim if the optimizations
were harmful or useful. Running stats on 10 inputs shows advantage of lpbasicand lpext, but it gets lost on 100 inputs.
This most probably indicates that the advantage has come from fusing together non-vector operations which are less
significant for larger inputs.

In general, it is preferable not to merge the initial gates into subcircuits (take depth 0). The greedy strategies work
quite well for the given programs, but their results are too unpredictable and can be very good as well as very bad. The
results of ILP are in general better. In practice, it would be good to estimate the approximate runtime of the program
before it is actually executed, so that we could take the best variant. Our optimizations seem to be most useful for
library functions, where several different optimized versions can be compiled and benchmarked before choosing the
final one.

8 Conclusion

We have presented an optimization for programs written in an imperative language with private conditions. The re-
duction and the optimization are not restricted to any specific privacy-preserving platforms. We have optimized and
benchmarked some programs on Sharemind.

Currently, we are using arithmetic blackbox operations as the gates of the circuit. We have chosen arithmetic black
boxes as subcircuits, since then it should be relatively easy to transform programs without knowing how exactly the
blackbox operations are constructed (inside, they may actually be some asymmetric protocols that are not decompos-
able further). As a future work, we could try to decompose the operations as much as possible, getting an arithmetic (or
a boolean) circuit, possibly allowing to fuse together some parts of different blackbox functions. Taking into account
vectors of different lengths would be another useful improvement.
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A Semantics of The initial imperative language

Let Var be the set of program variables, and Val the set of values that the variables may take. Let State : Var→Val be
a program state, which assigns a value to each program variable.

The semantics [[·]] defines how executing a program statement modifies the state. Let P be a program written in a
language whose syntax is given in Sec. 5.1. We define [[P]] : State→ State as follows.

– [[skip]]s = s;
– [[y := e]]s = s[y← ([[e]]s)];
– [[S1 ; S2]]s = [[S2]] ([[S1]]s);

– [[if b then S1 else S2]]s =

{
[[S1]]s if [[b]]s 6= 0
[[S2]]s if [[b]]s = 0

;

For expressions e, we have [[e]] : State→Val.

– [[x]]s = s(x) if x ∈ dom(s);
– [[ f (e1, . . . ,ek)]]s = [[ f ]]([[e1]]s, . . . , [[en]]s), where [[ f ]] is defined by the underlying SMC platform of the program-

ming language.

B Circuit Evaluation and Composition

Let G= (G,X ,Y ) be defined as in Sec. 5.2. In this section we formally define the circuit evaluation and composition.

B.1 Circuit Evaluation

First of all, we formally define the circuit evaluation on its inputs, without treating it as a part of a program.

Definition 2. Let W : I(G)→ Val be an arbitrary valuation of the input wires of G. Let u ∈ V (G). We define [[G]]W
inductively on |G|.

– [[ /0]]W u =W (u), which is correct since u ∈V (G) = I(G)∪ /0 = I(G).
– [[G∪ (v, f , [v1, . . . ,vn])]]W u

= (u 6= v ? [[G]]W u : [[ f ]]([[G]]W v1, . . . , [[G]]W vn)).
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In Sec. 5.2, we have defined a special oblivious choice gate. We now formally define its evaluation.

Definition 3. Let b1, . . . ,bn ∈V (G) be such that, for any input wire valuation W : I(G)→Val, ∑
n
i=1[[G]]W bi ∈ {0,1},

and ∀i : [[G]]W bi ∈ {0,1}. The output of an oblivious choice gate (v,oc, [b1,v1, . . . ,bn,vn]) is defined as

[[G]]W v =
n

∑
i=1

([[G]]W bi) · ([[G]]W vi) .

In this definition, we allow ∑
n
i=1[[G]]W bi ∈ {0,1}, although ∑

n
i=1[[G]]W bi = 1 may seem more reasonable, espe-

cially if we want to treat one of the choices as the default choice that is the negation of all the other choices. The formal
reason why we allow ∑

n
i=1[[G]]W bi = 0 is that, since we use the weakest preconditions of gates for making the choice,

it may happen that all the preconditions of the fused gates are false. In this case, the output of the oblivious choice
gate is not going to matter because later there will be some other oblivious choice gate that drops it. Hence it does not
matter whether it outputs 0 or some particular vi. Therefore, one of the choices is allowed to be set to a default choice
anyway, and there is no difference whether we allow ∑

n
i=1[[G]]W bi ∈ {0,1} or just ∑

n
i=1[[G]]W bi = 1. The first option

just makes the presentation simpler.
Since we use the circuit evaluation as a part of the program execution, we must translate it to a program statement.

Let v be a name of a circuit wire. We extend the syntax of the program with a new type of statement.

exp ::= eval ( gate∗ , (x, v)∗ ,( x, v )∗ )

gate ::= ( v , abb ,[ v∗] )

The statement eval(G,X ,Y ) evaluates the gates G, where X assigns the input values to the input wires I(G) of
G, and Y defines the set of output wires O(G) from which the values have to be eventually taken. The gates of G are
evaluated according to the definition of [[G]].

The evaluation statement is defined as

[[eval(G,X ,Y )]]s = upd(Y ◦ [[G]](s◦X),s)

where
upd(s′,s) = x ∈ dom(s′) ? s′(x) : s(x)

is the result of updating the state s with the variable valuations of some other state s′.
As a shorthand notation, we write eval(G) = eval(G,X ,Y ) for G= (G,X ,Y ).

B.2 Circuit composition

Lemma 1. Let G1 = (G1,X1,Y1) and G2 = (G2,X2,Y2) where

1. V (G1)∩V (G2) = /0;
2. dom(Y1)∩dom(Y2) = /0;
3. dom(Y1)∩ ran(X2) = /0.

We can define a new circuit G= (G = G1∪G2,X = X1∪X2,Y = Y1∪Y2) such that

∀s : [[eval(G,X ,Y )]]s = [[eval(G2)]]([[eval(G1)]]s) .

Proof: Let us write the expressions out.

– [[eval(G1,X1,Y1)]]s = upd(Y1 ◦ [[G1]](s◦X1),s);
– [[eval(G2,X2,Y2)]]s = upd(Y2 ◦ [[G2]](s◦X2),s);
– [[eval(G,X ,Y )]]s = upd((Y1∪Y2)◦ [[G1∪G2]](s◦ (X1∪X2)),s).

Let y ∈Var. Let s′ = upd(Y ◦ [[G]](s◦X),s).
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– If y /∈ dom(Y1)∪ dom(Y2), then s′(y) = upd((Y1 ∪Y2) ◦ [[G1∪G2]](s ◦ (X1 ∪X2)),s)(y) = s(y), and also upd(Y2 ◦
[[G2]](upd(Y1 ◦ [[G1]](s◦X1),s)◦X2),upd(Y1 ◦ [[G1]](s◦X1),s)) = upd(Y1 ◦ [[G1]](s◦X1),s) = s(y).

– If y ∈ dom(Yi), then there is u ∈ V (Gi) such that Yi(y) = u. For any input wire valuations W1 : I(G1)→ Val,
W2 : I(G2)→Val, and since V (G1)∩V (G2) = /0, we can define W1∪W2 =W : I(G)→Val. We have

[[G1∪G2]]W u =

{
[[G1]]W1 u if u ∈V (G1)

[[G2]]W2 u if u ∈V (G2)

1. If y ∈ dom(Y1)\dom(Y2), then

s′(y) = upd(Y ◦ [[G]](s◦X),s)(y)

= upd((Y1∪Y2)◦ [[G1∪G2]](s◦ (X1∪X2)),s)(y)

= upd(Y1 ◦ [[G1]](s◦X1),s)(y) .

Let s′′ = upd(Y1 ◦ [[G1]](s ◦X1),s). Since updating the variables of dom(Y2) does not affect the value of y /∈
dom(Y2), we have

s′(y) = s′′(y)

= upd(Y2 ◦ [[G2]](s′′ ◦X2),s′′)(y)

= [[eval(G2)]]([[eval(G1)]]s(y) .

2. Let y ∈ dom(Y2).

s′(y) = upd(Y ◦ [[G]](s◦X),s)(y)

= upd(Y2 ◦ [[G2]](s◦X2),s)y .

Let s′′ = upd(Y1 ◦ [[G1]](s ◦X1),s). Note that, for all x ∈ ran(X2), we have s(x) = s′′(x) due to dom(Y1)∩
ran(X2) = /0. We get

s′(y) = upd(Y2 ◦ [[G2]](s′′ ◦X2),s)(y) .

Also, if y ∈ dom(Y2), then s(y) = s′′(y) due to dom(Y1)∩dom(Y2) = /0. We get

s′(y) = upd(Y2 ◦ [[G2]](s′′ ◦X2),s′′)(y)

= [[eval(G2)]]([[eval(G1)]]sy .

We have proven the claim for all y ∈Var. �

C Transformations of Programs to Circuits

Formally, we define a transformation TP : prog → prog that substitutes all private conditionals of the initial program
with circuit evaluations. The transformation TP does not modify the statements outside of the private conditionals. If
it is applied to a private conditional, it uses an auxiliary transformation TC : statement → G to construct a circuit,
and substitutes the private conditional block with eval(G,X ,Y ), where (G,X ,Y ) are generated by TC. We give the
recursive definitions of TP and TC.

– TP(S1 ; S2) = TP(S1) ; TP(S2).
– TP(a := b) = (a := b).
– TP(if b then S1 else S2) = if b then TP(S1) else TP(S2) for a public b.
– TP(if b then S1 else S2) = eval(G,X ,Y ) where (G,X ,Y ) = TC(if b then S1 else S2) for a private b.

The transformation TC creates the circuits corresponding to the computation inside the private conditionals, and
arranges the mappings X and Y that establish relations between the circuit wires and the program variables.

– TC(skip) = ( /0, /0, /0).
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– TC(y := x) = ( /0,{v← x},{y← v}), where x is a variable name or a constant. There are no gates, and the value for
y is taken directly from the wire to which the value of x is assigned.

– TC(y := f (x1, . . . ,xn)) = (G,X ,Y ), where
• x1, . . . ,xn are program variables and constants;
• f is some arithmetic blackbox function defined in the programming language;
• G = (w, [[ f ]], [v1, . . . ,vn]) is a gate computing f ;
• X = {v1← x1, . . . ,vn← xn};
• Y = {y← w}.

– TC(y := f (e1, . . . ,en))
= TC(yi1 := ei1 ; . . . ; yin := ein ; y := f (y1, . . . ,yn)), where
• {ei1 , . . . ,ein} ⊆ {e1, . . . ,en} are compound expressions (not variables/constants);
• yi = ei for i /∈ {i1, . . . , in}.

– TC(S1 ; S2) = (G,X ,Y ) where
• (Gi,Xi,Yi) = TC(Si) for i ∈ {1,2};
• X = X1∪X ′2 where X ′2 = (X2 \{v← x | x ∈ dom(Y1)}): the inputs of both X1 and X2 will be needed during the

computation, but the variables of X2 that are modified by S1 should be taken from the output of S1’s circuit
instead.
• Y = Y2 ∪Y ′1 where Y ′1 = (Y1 \ {y← w | y ∈ dom(Y2)}): all the variables that are modified throughout the ex-

ecution of S1 ; S2 are in Y . If a variable is modified in both S1 and S2, its value is taken from the output of
S2.
• Now G1 and G2 should be combined. Take G = G1 ∪G′2 where G′2 = G2[{v← w | (v← x) ∈ X2,(x← w) ∈

Y1})]. This connects the inputs of G2 to the outputs of G1.
– TC(if b then S1 else S2) = TC(S) where
• (Gi,Xi,Yi) = TC(Si) for i ∈ {1,2},
• Y ′i = {ziy← w | (y← w) ∈ Yi} for i ∈ {1,2}: this renames the variables y of Yi by introducing new variable

names ziy,

• S =



b1 := b;
b2 := (1−b);
S′1 = S1[(y← z1y) ∈ Y ′1 | ∃w (y← w) ∈ Y1];
S′2 = S2[(y← z2y) ∈ Y ′2 | ∃w (y← w) ∈ Y2];
y := oc(b1,r(1,y),b2,r(2,y)) ∀y ∈ Y ;

,

• r(i,y) =

{
Y ′i (w) if (y← w) ∈ Yi

y otherwise
.

This computes S1 and S2 sequentially (renaming all the assigned variables in order to ensure that there are no
conflicts), and then applies a new binary oblivious choice (b or ¬b) to the outputs of G1 and G2. All the outputs
of all the branches should be available in an oblivious selection. If any variables are modified only in one of the
branches, they should be output also by the circuit that corresponds to the other branch, in order to make them
indistinguishable. Such variables y are just copied from the input directly.

As the result, if P is the initial program with private conditions, TP(P) is a program without private conditions, but
with some instances of function call eval(G,X ,Y ) in its code. We need to prove that TP(P) does the same computation
as P.

Theorem 2. For any program P, s ∈ State, [[P]]s = [[TP(P)]]s.

Proof It is sufficient to prove the correctness of TP, which it turn will require to prove the correctness of TC. Since
the transformations TP and TC are defined inductively, we prove their correctness also inductively.

– TP(S1 ; S2) = TP(S1) ; TP(S2).

[[TP(S1 ; S2)]]s = [[TP(S1) ; TP(S2)]]s

= [[TP(S2)]]([[TP(S1)]]s)

= [[S2]]([[S1]]s) = [[(S1 ; S2)]]s .
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– TP(a := b) = (a := b).
[[TP(a := b)]]s = [[(a := b)]]s.

– TP(if b then S1 else S2) = if b then TP(S1) else TP(S2) for a public b.

S = [[if b then TP(S1) else TP(S2)]]s

=

{
[[TP(S1)]]s if [[b]]s 6= 0
[[TP(S2)]]s if [[b]]s = 0

=

{
[[S1]]s if [[b]]s 6= 0
[[S2]]s if [[b]]s = 0

= [[if b then S1 else S2]]s .

– TP(if b then S1 else S2) = eval(G,X ,Y ) where (G,X ,Y ) = TC(if b then S1 else S2) for a private b. Assuming
the correctness of TC, we have

[[eval(G,X ,Y )]](s) = [[if b then S1 else S2]]s .

We now prove the correctness of TC.

– TC(skip) = ( /0, /0, /0).
[[eval( /0, /0, /0)]]s = upd( /0,s) = s = [[skip]]s.

– TC(y := x) = ( /0,{v← x},{y← v}), where x is a variable name or a constant. There are no gates, and the value for
y is taken directly from the wire to which the value of x is assigned.

[[eval( /0,{v← x},{y← v})]]s = upd((y← v)◦ [[ /0]](s◦ (v← x)),s)

= upd((y← v)◦ s◦ (v← x),s)

= s[y← s(x)]

= [[y := x]]s ;

– TC(y := f (x1, . . . ,xn)) = (G,X ,Y ), where
• x1, . . . ,xn are program variables and constants;
• f is some arithmetic blackbox function defined in the programming language;
• G = (w, [[ f ]], [v1, . . . ,vn]) is a gate computing f ;
• X = {v1← x1, . . . ,vn← xn};
• Y = {y← w}.

[[eval(G,{v1← x1, . . . ,vn← xn},{y← w})]]s = upd((y← w)◦ [[G]](s◦{v1← x1, . . . ,vn← xn})),s)
= upd((y← w)◦ s′[w← f (x1, . . . ,xn)],s)

= upd((y← f (x1, . . . ,xn)),s)

= s[y← f (x1, . . . ,xn)]

= [[(y := f (x1, . . . ,xn)]]s .

– TC(S1 ; S2) = (G,X ,Y ) where
• (Gi,Xi,Yi) = TC(Si) for i ∈ {1,2};
• X = X1∪X ′2 where X ′2 = (X2 \{v← x | x ∈ dom(Y1)}): the inputs of both X1 and X2 will be needed during the

computation, but the variables of X2 that are modified by S1 should be taken from the output of S1’s circuit
instead.
• Y = Y2 ∪Y ′1 where Y ′1 = (Y1 \ {y← w | y ∈ dom(Y2)}): all the variables that are modified throughout the ex-

ecution of S1 ; S2 are in Y . If a variable is modified in both S1 and S2, its value is taken from the output of
S2.
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• Now G1 and G2 should be combined. Take G = G1∪G′2 where

G′2 = G2[{v← w | (v← x) ∈ X2,(x← w) ∈ Y1})] .

This connects the inputs of G2 to the outputs of G1.
Denote:
X2

Y1 = {(v← x) ∈ X2 | x ∈ dom(Y1)},
Y2

Y1 = {(y← w) ∈ Y2 | y ∈ dom(Y1)}.
We can now write

[[eval(G2,X2,Y2)]]s = [[eval(G2[X2
Y1 ],X2 \X2

Y1 ,Y2)]]s

= [[eval(G2[X2
Y1 ],X ′2,Y2)]]s ,

since the wires that are not evaluated by X ′2 are defined inside G2 as G2[X2
Y1 ]. Note that

X2
Y1 ◦Y1 = {(v← x) ∈ X2 | x ∈ dom(Y1)}◦{(y← w) ∈ Y1}

= {v← w | (v← x) ∈ X2,(x← w) ∈ Y1} ,

and hence G′2 = G2[X2
Y1 ◦Y1].

The composition:

[[eval(G2,X2,Y2)]] ([[eval(G1,X1,Y1)]]s) = [[eval(G2[X2
Y1 ],X2 \X2

Y1 ,Y2)]]([[eval(G1,X1,Y1)]]s)

= [[eval(G2[X2
Y1 ◦Y1],X2 \X2

Y1 ,Y2)]] ([[eval(G1,X1,Y1 \Y2
Y1)]]s)

= [[eval(G′2,X
′
2,Y2)]] ([[eval(G1,X1,Y ′1)]]s) .

By definition, we have
• dom(Y ′1)∩dom(Y2) = /0;
• dom(Y1)∩ ran(X ′2) = /0.

By Lemma 1,

[[eval(G′2,X
′
2,Y2)]]([[eval(G1,X1,Y ′1)]]s) = [[eval(G1∪G′2,X1∪X ′2,Y

′
1∪Y2)]]s.

– TC(y := f (e1, . . . ,en))=TC(yi1 := ei1 ; . . . ; yin := ein ; y := f (y1, . . . ,yn)), where ei1 , . . . ,ein are non-variable/constant
expressions, and yi = ei for i /∈ {i1, . . . , in}. Since we have already defined TC on a sequential composition, by in-
duction hypothesis, TC(yi1 := ei1 ; . . . ; yin := ein = (G1,X1,Y1) such that, for each i ∈ [n], we have Y1(yi) = [[ei]].
We also have TC(y := f (y1, . . . ,yn)) = (G2,X2,Y2) where Y2(y) = [[ f (y1, . . . ,yn)]], as y1, . . . ,yn are now all ei-
ther program variables or constants, so it has also been treated on the previous induction steps. Composing them
together, get TC(y := f (e1, . . . ,en)) = (G,X ,Y ) such that Y (y) = [[ f ]]([[e1]]s, . . . , [[en]]s)y = [[ f (e1, . . . ,en)]].

– TC(if b then S1 else S2) = TC(S) where
• (Gi,Xi,Yi) = TC(Si) for i ∈ {1,2},
• Y ′i = {ziy← w | (y← w) ∈ Yi} for i ∈ {1,2}: this renames the variables y of Yi by introducing new variable

names ziy,

• S =



b1 := b;
b2 := (1−b);
S′1 = S1[(y← z1y) ∈ Y ′1 | ∃w (y← w) ∈ Y1];
S′2 = S2[(y← z2y) ∈ Y ′2 | ∃w (y← w) ∈ Y2];
y := oc(b1,r(1,y),b2,r(2,y)) ∀y ∈ Y ;

,

• r(i,y) =

{
Y ′i (w) if (y← w) ∈ Yi

y otherwise
.

First, we claim that [[if b then S1 else S2]]s = [[S]]s. Let y ∈Var.

24



• If y /∈ Y , then ([[S]]s)(y) = s(y) since S reassigns only b1 and b2 (which are not the part of s) and y ∈ Y .
At the same time, y /∈Y =⇒ y /∈ (Y1∪Y2), and since Si reassigns only variables of Yi, ([[if b then S1 else S2]]s)(y)=
s(y).

• Let y ∈ Y . Let [[b]]s = 1, Then b1 = 1, and b2 = 0, so y = oc((b1,r(1,y)),(b2,r(2,y)) = r(1,y).
∗ If (y ← w) ∈ Y1, then r(1,y) = Y ′1(w) = z1y. The only place where z1y can be assigned is the state-

ment S′1, and ([[S1[(y← z1y) ∈ Y ′1 | (y← w) ∈ Y1]]]s)(z1y) = ([[S1]]s)(y). Hence if b = 1, then ([[S]]s)(y) =
([[S1]]s)(y).

∗ Otherwise, r(1,y) = y, so the final statement is y := y. Since it is the first assignment of y in S, we have
([[S]]s)(y) = s(y). At the same time, ([[S1]]s)(y) = s(y) since if z1y /∈ dom(Y ′1), then y /∈ dom(Y1), and hence
it is not reassigned in S1.

The proof is analogous for [[b]]s = 0. We have got that:

([[S]]s)(y) =

{
([[S1]]s)(y) if [[b]]s = 0
([[S2]]s)(y) otherwise

= ([[if b then S1 else S2]]s)(y) .

By induction hypothesis, [[eval(Gi,Xi,Yi)]]s = [[Si]]s for i ∈ {1,2}. Hence

[[S′i]] = [[Si[(y← ziy) ∈ Y ′i | (y← w) ∈ Yi]]]

= [[eval(Gi,Xi,Yi)[(y← ziy) ∈ Y ′i | (y← w) ∈ Yi]]]

= [[eval(Gi,Xi,Y ′i )]] .

Let Sb =(b1 := b ; b2 :=(1−b)), SC =(y := oc(b1,r(1,y),b2,r(2,y)))∀y∈Y . We take (G′,X ′,Y ′)=TC(Sb ; S′1 ;S′2 ; SC).
Assuming by induction that TC is defined correctly on sequential composition,
[[eval(G′,X ′,Y ′)]]s = [[Sb ; S′1 ;S′2 ; SC]]s. �

D The Weakest Precondition (WP)

We describe in more details the weakest precondition of computing a gate, that we first defined in Sec. 6.1. We propose
an algorithm for computing the weakest preconditions of all the gates of a circuit.

D.1 Definitions

We give a more formal definition of the weakest precondition, that depends on the definition of semantics of circuit
evaluation (Def. 2) and the transformation of expressions to circuits TC (App. C).

Definition 4. Let G = (G,X ,Y ) be a circuit. Let s ∈ State. For a wire v ∈ V (G), we define a predicate used(v,s) as
follows.

1. used(v,s) = 1 for v ∈ O(G) for any s ∈ State.
2. If used(v,s) = 1, (v,op,a) ∈ G for op 6= oc, then used(w,s) = 1 for all w ∈ a.
3. If used(v,s) = 1, and (v,oc, [b1,v1, . . . ,bn,vn])∈G, then used(bi,s) = 1 for all i∈ {1, . . . ,n} (the choice conditions

bi), and used(v j,s) = 1 for [[G]] (s◦X)b j = 1 (the choice that the oc gate makes).

Definition 5. In the circuit G = (G,X ,Y ), the weakest precondition φG
v of the wire v ∈ V (G) is a boolean expression

over V (G) such that [[φG
v ]]s = 1 iff used(v,s) = 1, where the semantics of a boolean expression is defined as [[φG

v ]]s :=
[[u := φG

v ]]su.
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Algorithm 1: WP finds the weakest preconditions of all wires of G
Data: A circuit G= (G,X ,Y )
Result: A mapping φ : V (G)→ BF(V (G))) that maps a wire to its weakest precondition
begin WP(G,X ,Y )

φ ←{}; ψ ←{};1
foreach v ∈ O(G) do2

process(v,1)3

return φ4

end
begin process(v,φin)

φv← φ (v);5
if φv 6=⊥ then6

φ (v)← (φin∨φv)7
return ψv8

else9
φ (v)← φin10

switch opG(v) do11
case bop // bop ∈ {∧,∨}12

[a1,a2]← argsG(v)13

ψ1
out ← process(a1,φ (v))14

ψ2
out ← process(a2,φ (v))15

return ψ1
out bop ψ2

out16

case oc17
a← []; b← [];18

foreach (b,a) ∈ argsG(v) do19
b′← process(b,φ (v))20
a′← process(a,b′∧φ (v))21
a← a‖(a′)22
b← b‖(b′)23

return ∑
|a|=|b|
i=1 bi ·ai24

otherwise25
foreach a ∈ argsG(v) do26

process(v,φ (v))27

return v28

end
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D.2 Computing the weakest precondition

We define a particular algorithm for computing the weakest preconditions. Let BF(V ) denote the set of all boolean
formulas over a set of variables V . The algorithm constructs a mapping φ : V (G)→ BF(V (G)), such that φ (v) = φG

v .
The construction of φ is given in Algorithm 1.

The function process(v,φin) takes a wire v ∈V (G) and some initially known overestimation of φin ∈ BF(V (G)) of
v, which is in general the weakest precondition of some of the v’s successors. This function returns a boolean formula
that a wire v ∈ V outputs, decomposed to boolean operations as far as possible. If the decomposition is impossible
(for example, the gate operation is not a boolean operation, or it is an input wire), it just returns v. As a side effect,
it updates the definition of function φ , and also the auxiliary function ψ that is used to remember the outcome of
process(v,φin) in order to avoid processing the same wire multiple times.

We start from running process on each final output gate of G (lines 2-3). The first precondition that we propagate
is 1, This means that there are no conditional constraints on v yet. Since the graph G is actually a statement of a larger
program, it may happen that, instead of 1, there is a more precise condition that is coming from some public variable.

If v has already been visited (φ (v) 6=⊥), it means that we have found another computational path that uses v. The
condition of executing that path is φin, and we have already found another path with condition φv = φ (v) before. Since
both conditions are sufficient for forcing the computation of v, we update φ (v)← φv ∨ φin, and return ψ(v) that we
have already computed before (lines 7-8).

If v has not been visited yet (φ (v) = ⊥), then, since φin is the weakest precondition of one of the computational
paths that use v, we initialize φ (v)← φin on line 10. If opG(v) = ∧, then we compute the outputs ψ1

out and ψ2
out of its

arguments, and return ψ1
out ∧ψ2

out (lines 13-16). We do it analogously for ∨.
The precondition φin will be propagated to both arguments as φ (v). It is important that here φ (v) is passed not by

value, but by reference, and in the case φ (v) gets updated after v will be reached via some other branch on further
steps, this update will be propagated to all its predecessors.

In the case of oc, we process the arguments in pairs (b,a), where b is condition, and a is the choice. The conditions
are just processed recursively as b′← process(b,φ (v)). However for choices we have to extend φ (v) with the output of
the corresponding condition as a′← process(a,φ (v)∧b′), since b′ adds an additional restriction on the precondition of
a (lines 19-23). The output of the oc gate is defined by the line 24. The output condition of an oc gate is ∑

|a|=|b|
i=1 bi ·ai,

where bi is a condition that has to be satisfied in order that the choice ai would be output.
For any other gate, we just process the arguments recursively (line 27), and return v on line 28.
As the result, each wire v ∈V (G) will be assigned a boolean formula φG

v = φ (v) over V (G). For a wire that should
be computed in any case, we have φG(v) = 1. We will never fuse gates having such output wires.

The cost of the weakest precondition (denoted cost(φG
i )) is just the total cost of all the ∨ and ∧ operations used in

it, without taking into account the complexity of computing its variables (their cost is estimated separately). In order
to improve the optimization, we could try to rearrange ∨ and ∧ operations in each φG

i to make the cost optimal. This
is not in scope of this work.

The correctness of Algorithm 1 is stated in Proposition 1.

Proposition 1. On input G ∈ G, Algorithm 1 returns a mapping φ such that, for all v ∈ V (G), φG(v) is the weakest
precondition of v according to Def. 5.

Proof: The proof of Algorithm 1 is split into two steps: the correctness of ψ definition and the correctness of φG

definition. We prove it as two separate lemmas.

Lemma 2. For each v ∈V (G) and for any φin, process(v,φin) returns an boolean expression ψout over V (G) such that
[[ψout ]] [[G]](s◦X) = [[G]](s◦X)v (i.e ψout is an expression over V (G) that computes the same value as v).

Proof: The proof is based on induction, starting from the inputs I(G).

– Base: for v∈ I(G), the algorithm returns ψout = v (there is no gate operation), so [[ψout ]] [[G]](s◦X)= [[u := v]] [[G]](s◦
X)u = [[G]](s◦X)[v].

– Step: If φ (v) 6=⊥, then v has already been processed, and the algorithm returns ψ(v), which is correct by induction
hypothesis. Let us now assume that φ (v) =⊥. Let [[ψ i

out ]] [[G]](s◦X) = [[G]](s◦X)[vi] for all vi ∈ argsG(v). There
are now several cases for opG(v).
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• If opG(v) = ∧, then

[[G]](s◦X)[v] = [[∧]]([[G]](s◦X)[v1], [[G]](s◦X)[v2])

= [[∧]]([[ψ1
out ]] [[G]](s◦X), [[ψ2

out ]] [[G]](s◦X))

= [[ψout ]] [[G]](s◦X)

The proof is analogous for ∨.
• If opG(v) = oc, arityG(v) = n, then

[[ψout ]] [[G]](s◦X) =
n

∑
i=1

([[G]](s◦X)[bi]) · ([[G]](s◦X)[ai]) ,

where (ai,bi) ∈ argsG(v). By Definition 3, we have

[[G]](s◦X)[v] =
n

∑
i=1

([[G]](s◦X)[bi]) · ([[G]](s◦X)[ai]).

• Otherwise, the algorithm returns ψout = v. This is similar to the base case. �

Lemma 3. Algorithm 1 outputs φ such that, for all v ∈ G, s ∈ State, we have φ (v) = 1 iff used(v,s) = 1 according to
Definition 4.

Proof: The proof is based on induction, starting from the subset of outputs O f (G)⊆O(G) that are not used by any
other gate as as an argument. Since our circuits are finite acyclic graphs, at least one such output does exist.

– Base: for v ∈ O f (G), the function process takes the argument φin = 1. Since each v ∈ O f (G) is not an input of
any other gate, is visited only once. In this case, φ (v) = ⊥, and the algorithm assigns φ (v) = φin = 1. We have
[[φ (v)]]s = 1 for all s ∈ State, and by the condition 1 of Definition 4 for all v ∈ O(G) we have used(v,s) = 1.

– Step: The definition of φ (v) may be constructed in several steps if v is visited several times. Only the final result
must satisfy the lemma statement. Let [[φvi

]]s = 1 iff used(vi,s) = 1 for all vi such that v ∈ argsG(vi). By Lines 7
and 10, we finally have φ (v) = φ 1

in∨·· ·∨φ n
in, where φ i

in has been passed as the second argument of process(v,φ i
in)

by its successor vi. The exact value of φ i
in depends on opG(vi).

• If opG(vi) 6= oc, then process(v,φ i
in) may be called on the Lines 14, 15, 27. In either case, φ i

in = φ (vi), since
φ i

in was passed as not a value, but as a reference, so it updates dynamically and is finally equal to φ(vi). We get
φ (v) = φ (v1)∨ ·· ·∨φ (vn). This is sufficient for the proof since [[φ (vi)]]s = 1 iff used(vi,s) = 1, and having
φ (v) = φ (v1)∨ ·· · ∨ φ (vn) assigns [[φ (v)]], s = 1 if for at least one i we have s(vi) = 1. This satisfies the
condition 2 of Definition 4, since if used(vi,s) = 1, then used(v,s) = 1.

• If opG(v) = oc, then process(v,φ i
in) for an odd i is called at the Line 20 with φ i

in = φ (vi). For an even i, this
happens on the Line 21 with φ i

in = b′i ∧ φ (vi) where [[b′i]] [[G]](s ◦X) = [[G]](s ◦X)[bi] by Lemma 2. Let s be
now fixed. Let j be such that [[G]](s ◦X)[b j] = 1. For all even arguments, we have [[φ j

in]]s = [[φ (v j)]]s and
[[φ i

in]]s = 0 for all i 6= j. This satisfies the condition 3 of Definition 4: if used(vi,s) = 1, then used(v,s) = 1 if
v is an odd argument bi, or an even argument a j such that [[G]](s◦X)[b j] = 1.

So far we have proven that [[φG
v ]]s = 1 =⇒ used(v,s). Now we prove the other direction. Considering now both

cases together, we see that, if [[φG
v ]]s = 1, then either at least one [[φG

vi
]]s = 1 for some opG(vi) 6= oc, or at least one

[[φG
vi
]]s = 1 for some opG(vi) = oc such that v is an odd input of vi, or [[φG

vi
]]s = 1 and [[G]](s◦X)[bi] = 1 such that

v is an even input of vi. There are no other options. Hence used(v,s) = 0 unless one of the conditions 1-3 of Def. 4
is satisfied. �

Lemma 2 and Lemma 3 together immediately prove Proposition. 1.
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E Proof of Correctness of Subcircuit Partitioning Algorithm

Let the sets An be defined as in Sec. 6.3. We need to show that, after the gates are merged into subcircuits, the resulting
circuit still has the same impact on the state as the initial circuit.

First, we need to formally define the operation that a subcircuit S computes, as we did it for the gates. By construc-
tion, each Ak has only one output wire w ∈ O(S), since except the root gate, we do not include any subgraphs whose
outputs are used by some other subgraphs. Hence we may define the operation computed by S as

opAk(S)(x1, . . . ,xn) = [[S]] (v1← x1, . . . ,vn← xn)w ,

for vi ∈ I(S), n = |argsAk(S)|.

Theorem 3. Let G ∈ G, n ∈ N. Then the following statements hold:

– I(G) = I(An);
– for all W : I(G)→Val we have [[G]](W ) = [[An]](W );

Proof: For shortness of notation, let us define the predicate correct(S) for S ∈ An, s.t correct(S) = 1 iff for all
W : I(S)→Val, w ∈ O(S) we have

[[S]] ([[An]](W )argsAn(S))w = [[S]] ([[G]](W )argsG(S))w .

In other words, correct = 1 iff the output of S is the same, regardless of whether its inputs are evaluated in An or G.
This is a bit weaker property than the one we are proving.

– Base: If n == 0, then each gate g is treated as a separate subcircuit, so opA0({g}) = opG(g), argsA0({g}) =
argsG(g), arityA0({g}) = arityG(g). The circuit has not changed, so G = A0 and hence I(G) = I(A0), and ∀W :
I(G)→Val, [[G]](W ) = [[A0]](W ). Moreover, correct(S) holds for any subcircuit S of A0.

– Step: Assume that we have I(G) = I(An), and ∀W : I(G)→Val, [[G]](W ) = [[An]](W ) for a circuit An obtained for
depth n. Now we are trying to unite each subcircuit S of An with argsAn(S). Only those elements of argsG(S) that
are used only by S are added, and each element is used on the current iteration only once. Hence, if the subcircuits
of An are mutually exclusive, then so are the subcircuits of A′n+1.
The subcircuits S that occur at most one time are decomposed back to the subcircuits S′ of An, and by induction
hypothesis I(S′) = I(T ′), ∀W : I(S′)→Val, [[S′]](W ) = [[T ′]](W ), where T ′ are the circuits of the gates of S′ in G.
The subcircuit S that occurred at least 2 times is left in An+1, and the function argsAn+1(S) is updated. Each such
subcircuit is of the form S = {S0,S1, . . . ,Sn}, where {S1, . . . ,Sn} ⊆ argsAn(S0), and ∀i ∈ {0, . . . ,n}, correct(Si)
hold by induction hypothesis. For all W : I(Si)→Val, we have

[[Si]]([[An+1]](W )argsAn(Si))wi = [[Si]]([[G]](W )argsAn(Si))wi

for wi ∈O(Si), and hence the subcircuits {S1, . . . ,Sn} provide to S0 the same inputs it would get in G. Therefore S0
also outputs the same value it would output in G, so for all W : I(S)→Val we have [[S]]([[An+1]](W )argsAn+1(S)) =
[[S]]([[G]](W )argsG(S)), and correct(S) holds.
All the subcircuits of An have been included into An+1, either in their initial form, or united together with some
other circuits. We have

⋃
S∈An+1

= An, and hence I(An) = I(An+1), and ∀S ∈ An, correct(S) implies ∀W : I(An)→
Val, [[An]](W ) = [[An+1]](W ). By transitivity, I(G) = I(An+1), and ∀W : I(G)→Val, [[G]](W ) = [[An+1]](W ). �

F Greedy Algorithms

We give particular algorithms for fusing the gates in a greedy manner, using the strategies mentioned in Sec. 6.4.
Just for this section, we will extend the predicates predG and cpredG to their transitive closures, i.e define additionally
predG(i, j)= ∃k : predG(i,k)∧predG(k, j) and cpredG(i, j)= ∃k : cpredG(i,k)∧cpredG(k, j). Moreover, we also define
cpredG(i, j) = ∃k : cpredG(i,k)∧predG(k, j), since all the predecessors j of a conditional predecessor k of i will also
become predecessors of i if i gets fused into some clique. We note that making cpredG transitive is an overestimation,
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Algorithm 2: Greed fuses mutually exclusive gates of G into cliques
Data: A set of gates G
Result: A set of cliques Cs of gates G
Gs←{(cost(F),{g| g ∈ G,opG(g) = F}) | F is a gate op};1
Gs← sort(Gs,0,1);2

Cs← /0;3
foreach G ∈ Gs do4

Cs←Cs∪{FuseX(G,Cs)};5

return Cs;6

since if i is fused, then j is not necessarily a predecessor of i if k is not fused. This reduces the number of allowed
fusings in the circuit, but nevertheless does not introduce any incorrect solutions.

The outline of all our strategies starts from the function Greed given in Alg. 2. First of all, the set of gates G is
partitioned into subsets Gs = {G1, . . . ,Gn} (line 1), where each Gi corresponds to a gate operation. The sets Gi are
sorted according to the cost of their gates (the operation uniquely determines the cost, so all the gates of Gi have the
same cost). The function sort(x, i, j) on line 2 can be any algorithm that sorts a list of tuples x according to their i-th
elements, leaving behind the j-th component of each tuple.

After that, the algorithm starts fusing the gates into cliques, starting from the most expensive gates, adding a
clique only if it is not in contradiction with already formed cliques. The function call FuseX(G,Cs) on line 5 returns a
partitioning of gates G to cliques, choosing a particular strategy X, which can be any of Alg. 4, Alg. 5, and Alg. 6. It
takes into account the set of already formed cliques Cs to avoid contradictions.

The function goodClique(C,Cs) (Alg. 3) checks whether a clique C is not in contradiction with already formed
cliques Cs, and it also assigns a level to each good clique – the round on which the gate should be evaluated. In this
way, if some predecessor of a gate is not computed on a strictly earlier round than the gate itself, then we have a cycle
in the circuit, so something must be wrong with the formed cliques. For this, the maximal level of all the predecessors
of C and the minimal level of all the successors of C (the sets PredLevels and SuccLevels computed on lines 3-4),
checking if each gate of C can be assigned a level strictly between these two (lines 5-7). For conditional predecessors
cpredG, we additionally check whether the size of the successor clique is more than 1, i.e whether the conditional
predecessor actually becomes a predecessor after fusing. The number 10000 on line 6 is just an upper bound on the
number of levels, and it could be as well assigned to 1 since we may treat levels as rational numbers.

The particular strategies of extracting a clique are given in Alg. 4, Alg. 5, and Alg. 6.
Largest Cliques First. In Alg. 4, we are trying to fuse into one clique as many gates as possible before proceeding

with the other cliques. The task of finding one maximum clique is NP-hard, and so we just generate some bounded
amount of maximal cliques, taking the largest of them. Extracting one clique is done in the function largestClique.
Fixing some gate as a starting point, we sequentially try to add each other gate, checking whether we still have a clique
(line 4). Having done it for each gate as a starting point, the obtained cliques are sorted by size on line 5. The loop on
line 6 takes the largest clique that is valid w.r.t already existing cliques. After extracting a clique on line 2 of function
Fuse1, the function largestClique is applied again to the remaining gates, doing a recursive call to Fuse1.

Pairwise Merging. In Alg. 5, we first try to fuse the gates pairwise, and only after the pairs are formed, we proceed
fusing the obtained cliques in turn pairwise, until the number of cliques cannot be decreased anymore. The function
matching just takes the first valid matching that it succeeds to construct.

Pairwise Merging with Maximum Matching. Alg. 6 is very similar to Alg. 6, and the only difference is that
it finds the maximum matching on each step. The function someMatching(Gs) generates non-deterministically all
possible matchings of Gs, including the invalid cliques (in contrast, matching of Alg. 5 takes the first valid solution it
finds). Alg. 6 then takes the largest of them that satisfies valid clique definition.

We need to show that the proposed strategies are indeed terminating, i.e if we already have fixed a clique greedily,
it will not prevent the other gates from being taken at all. Intuitively, whatever cliques we have fixed, as far as they do
not contradict each other, all the other gates may be at least added as singleton cliques without causing any problems.
We state it in the following lemma.
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Algorithm 3: goodClique checks if the clique is valid
Data: A clique C whose correctness we check, and the set of already existing cliques Cs
Result: A bit denoting whether C is valid w.r.t Cs
begin goodClique(C,Cs)

foreach i, j ∈C do1

if not fusableG(i, j) then2
return false

PredLevels←{level(k) | i ∈C,predG(i,k)∨ cpredG(i,k)∧|C|> 1};3

SuccLevels←{level(k) | i ∈C,predG(k, i)∨ cpredG(k, i)∧ k ∈C′,C′ ∈Cs, |C′|> 1};4
n1←max({0}∪PredLevels);5
n2←min({10000}∪SuccLevels);6
if n2 < n1 then7

return false;
foreach i ∈C do8

level(i)← (n1 +n2)/2;

return true;9

end

Algorithm 4: Fuse1 partitions the gates into cliques
Data: A set of gates G of the same operation type
Result: Partitioning Cs of cliques of G
begin Fuse1(G,Cs)

if G = /0 then1
return /0;

C← largestClique(G,Cs);2
return Fuse1(G\C,Cs∪{C});3

end
begin largestClique(G,Cs)

Gss←{(|Hs|,Hs) | i ∈ G,Hs←{i}∪{ j | j ∈ G,∀k ∈ Hs : fusable(k, j)}};4
Gss← sort(Gss,0,1);5
repeat6

Gs ∈ Gss;7
until ∀G ∈ Gs : goodClique(G,Cs∪Gs) ;
return Gs;8

end

Lemma 4. The function Greed terminates for any set of gates G with properly defined predicates fusableG, predG, and
cpredG, producing a partitioning Cs of gates G that satisfy goodClique(C,Cs) = true for any C ∈Cs.

Proof: The loops of Alg. 5 and Alg. 6 that wait until the set of gates Gs does not decrease anymore (both on lines
2-6) will definitely terminate since the size of a finite set cannot decrease infinitely. The other source of possible non-
terminations are the loops that look for the solution that satisfies goodClique. We want to show that, regardless of the
cliques that have already been fixed, it is always possible to add all the remaining gates at least as singleton cliques.

Let Cs be the set of cliques collected so far. Each strategy fixes a clique only if it has passed the goodClique test
at some point. Assume that goodClique(C,Cs) = true for all C ∈Cs. Now we want to add a clique {g} to Cs, where
g ∈ G is an arbitrary gate. We need to show that goodClique(C,Cs∪{g}) = true for all C ∈Cs∪{g}.

1. First, we show that goodClique({g},Cs∪{g}) = true holds. Suppose by contrary that it is impossible. This may
happen in the following cases:
(a) For some g ∈ {g}, fusableG(g,g) = false. By definition, is should be fusableG(g,g) = true.
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Algorithm 5: Fuse2 partitions the gates into cliques
Data: A set of gates G of the same operation type
Data: A set of already existing cliques Cs
Result: Partitioning Gs of cliques of G
begin Fuse2(G,Cs)

Gs←{{g} | g ∈ G};1
repeat2

n← |Gs|;3
Gs←matching(Gs, /0,Cs);4

until |Gs| ≥ n ;
return Gs;5

end
begin matching(Gs,Hs,Cs)

if Gs = /0 then6
return Hs;

repeat7
G1 ∈ Gs;8
G2 ∈ Gs;9
C← G1∪G2;

until goodClique(C,Cs∪Hs) ;
return matching(Gs\{G1}\{G2},Hs∪{C},Cs);10

end

Algorithm 6: Fuse3 partitions the gates into cliques
Data: A set of gates G of the same operation
Data: A set of already existing cliques Cs
Result: Partitioning Gs of cliques of G
begin Fuse3(G,Cs)

Gs←{{g} | g ∈ G};1
repeat2

n← |Gs|;3
Gs←maxMatching(Gs,Cs);4

until |Gs| ≥ n ;
return Gs;5

end
begin maxMatching(Gs,Cs)

Hss←{(|Hs|,Hs) | Hs← someMatching(Gs)};6
Hss← sort(Hss,0,1);7
repeat8

Hs ∈ Hss;9
until ∀H ∈ Hs : goodClique(H,Cs∪Hs) ;
return Hs;10

end
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(b) It happens that n1≥ n2 for n1←max({0}∪PredLevels), n2←min({10000}∪SuccLevels), where PredLevels←
{level(k) | g ∈ C,predG(g,k)∨ cpredG(g,k)∧ |C| > 1}, and SuccLevels ← {level(k) | g ∈ C,predG(k,g)∨
cpredG(k,g)∧k ∈C′,C′ ∈Cs, |C′|> 1}. This means that there are some gates k, j belonging to cliques Ck and
C j such that predG(g,k) (for cpredG(g,k) case, |{g}| > 1 never holds) and predG( j,g) (or cpredG( j,g) and
|C j| > 1), and level( j) ≤ level(k). However, by transitivity of predG and cpredG, the statements predG( j,k)
(or cpredG( j,k) and |C j| > 1) are also true, which contradicts the fact that goodClique(C j,Cs) = true and
goodClique(Ck,Cs) = true.

Since goodClique({g},Cs∪{g}) = true, we assign level(g) = ng for some ng as a side-effect.
2. After having assigned level(g) = ng, we need to prove that it has not broken the correctness of any old cliques, i.e

goodClique(C,Cs∪{g}) = true holds for all C ∈Cs, where Cs is the set of old cliques. Since goodClique(C,Cs) =
true holds due to induction hypothesis (adding a gate does not modify any predicates concerning the cliques that
are already fixed), it remains to prove that we have goodClique(C,{g}) = true.
Let C ∈Cs. Let n1 and n2 be the sizes of old sets Predlevels and SuccLevels before adding {g}. After adding {g},
there may be now more values that may get into these sets. Without loss of generality, let g be some successor of
C. The minimal successor level is now n′2 = min(ng,n2). Since we have already shown that goodClique({g},Cs∪
{g}) = true holds, we have assigned level(g) = ng > level(k) for all k ∈ Cs, so ng > (n1 + n2)/2, and we have
level(k) = n1 < (n1 +min(ng,n2))/2 < min(ng,n2) = n′2, so n′1 < n2, and goodClique(C,Cs∪{g}) = true. �

In App. H.3, we prove that the obtained cliques provide a valid transformation.

G Integer Linear Programming

In this section, we prove the correctness of the definitions of the building block constraints of Sec. 6.5. We also prove
which variables are binary.

G.1 Proofs of some Auxiliary Lemmas

Lemma 5. If x ∈ {0,1}, y≤C ∈ R, then
P(C,x,y,z) = true ⇐⇒ z = x · y.

Proof: The correctness and completeness of these constraints can be easily verified by case distinction on x for any
y≤C.

1. Substitute x = 0 into the constraints:
– y− z≤C,
– −y+ z≤C,
– −z≥ 0.

The last constraint uniquely defines z = 0. The first two constraints are true since y≤C.
2. Substitute x = 1 into the constraints:

– y− z≤ 0,
– −y+ z≤ 0,
– C− z≥ 0.

The first two constraints uniquely define z = y. The last constraint is true since z = y≤C. �

Lemma 6. If x ∈ {0,1} for all x ∈ X , 0≤ y≤C ∈ R, then
F(A,C,X ,y) = true iff y = 1 ⇐⇒ ∑x∈X x≥ A.

Proof: =⇒ Let the constraints be satisfied. By Lemma. 5, we have zx = x · y for all x ∈ X . Substituting zx into the
last two constraints, we get:

– A · y− y ·∑x∈X x≤ 0,
– ∑x∈X x− y ·∑x∈X x+(A−1)y≤ (A−1).
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We can rewrite these constraints as

– y(A−∑x∈X x)≤ 0,
– ∑x∈X x(1− y)≤ (A−1)(1− y).

We get that ∑x∈X x ≥ A unless y = 0, and ∑x∈X x ≤ (A−1) unless y = 1. Hence the constraints are satisfiable only if
y ∈ {0,1}. If y = 1, then ∑x∈X x≥ A, and if y = 0, then ∑x∈X x≤ (A−1).
⇐= Let y = 1 ⇐⇒ ∑x∈X x ≥ A. In order to satisfy the constraints P(C,y,x,zx), by Lemma. 5 we take zx = x · y.

We show by case distinction that the remaining two constraints are satisfied for both y = 0 and y = 1.

1. Let y = 0.
– A ·0−0 ·∑x∈X x≤ 0,
– ∑x∈X x−0 ·∑x∈X x+(A−1) ·0≤ (A−1).

The first constraint is always true, and the second one is satisfied if ∑x∈X x ≤ (A− 1), which is equivalent to
∑x∈X x < A since x ∈ {0,1}.

2. Let y = 1.
– A−∑x∈X x≤ 0,
– ∑x∈X x−∑x∈X x+(A−1)≤ (A−1).

The second constraint is always true, and the first one is satisfied if ∑x∈X x≥ A. �

Lemma 7. If z ∈ {0,1}, 0≤ x,y≤C ∈ R, then
G(C,A,y,x,z) = true iff z = 1 =⇒ (x− y)≥ A.

Proof: The correctness and completeness of the constraint (C+A) · z+(y− x) ≤C can be easily verified by case
distinction on z for any 0≤ x,y≤C.

1. Substitute z = 0: get y− x≤C, which is always true for any 0≤ x,y≤C.
2. Substitute z = 1: get (C+A)+ y− x≤C, which is equivalent to A+ y− x≤ 0, or x− y≥ A. �

Lemma 8. For (A,b,c,I) = T→ILP(G,X ,Y ), the following variables of any feasible solution of (A,b,c,I) are binary:
g j

i for j, i ∈ G;
b j c j, u j, for j ∈ G;
f x jk

` for j ∈ G, k ∈V (G), ` ∈ [arityG( j)];
e jk

i` for j, i ∈ G, k ∈V (G), ` ∈ [arityG( j)];
f g ji, f g ji

` for j, i ∈ G, ` ∈ [arityG( j)];
s j
` for j ∈ G ` ∈ [arityG( j)].

Proof: By Lemma 5, if x ∈ {0,1} and y ≤C, then P(C,x,y,z) ensures z ∈ {0,1}. By Lemma 6, if ∀x ∈ X : x ∈
{0,1}, then F(A,X ,y) ensures y ∈ {0,1}. We use these properties to propagate binariness.

We will make the proof for all types of variables one by one.

– The condition g j
i ∈ {0,1} is stated explicitly in the MIP description (the set I).

– By constraints (6f), ci ∈ {0,1} since g j
i ∈ {0,1}, and d j = (1−g j

j) ∈ {0,1}.
– By constraints (7a), f x jk

` ∈ {0,1} since g j
i ∈ {0,1}.

– By constraints (7b), e jk
i` ∈ {0,1} since g j

i ∈ {0,1} and f x jk
` ∈ {0,1}.

– By constraints (7c), for k ∈ I(G), f g ji
` ∈ {0,1} since e jk

i` ∈ {0,1}.
– By constraints (7d), for k /∈ I(G), f g ji

` = f x jk
` and hence ∈ {0,1}

– By constraints (7e), s j
` ∈ {0,1} since f g jk

` ∈ {0,1}.
– By constraint (8a), f g jk ∈ {0,1} since f g jk

` ∈ {0,1}.
– By constraints (8b), u j ∈ {0,1} since f g jk ∈ {0,1}.
– By constraints (9a), t j ∈ {0,1} since s j

` ∈ {0,1}. Hence, by constraints (9b-9c), t j
i ∈ {0,1}. Note that, for a fixed

i, exactly one g j
i = 1 due to constraints (2). By definition of P , we have t j

i = g j
i · t j, and hence at most one t j

i = 1.
By constraints (9d), bi = ∑ j∈G t j

i , and so bi ∈ {0,1}. �
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G.2 Proof of feasibility of the integer programming task (Theorem 1)

Let (A,b,c,I) be the mixed integer linear programming task. It has a solution iff the system Ax ≤ b has at least one
solution, assuming that ∀i ∈ I : xi ∈ {0,1}. We show that any solution in which g j

j = 1 for all j ∈G and g j
i = 0 for all

j, i ∈ G, i 6= j, is feasible. Intuitively, this means that it is always possible not to fuse any gates, leaving the circuit as
it is.

By Lemma 5 and Lemma 6 the constraints P(C,x,y,z) and F(A,X ,z) are always satisfied if z is a new variable
that has not been present in any other constraints before at this point.

Let ∀ j ∈ G : g j
j = 1, and ∀ j, i ∈ G, i 6= j : g j

i = 0. We show one by one, that all the constraints are satisfied.

1. g j
i +g j

k ≤ 1 for i,k ∈ G, ¬fusableG(i,k).
Since fusableG(i, i) holds for all i, here we have i 6= k, and never get the case g j

j +g j
j ≤ 1. For all the other g j

i +g j
k

at least one term is 0.
2. ∑

|G|
j=1 g j

i = 1 for all i ∈ G.

For any i ∈ G, the only j such that g j
i = 1 is j = i.

3. g j
i = 0 if opG(i) 6= opG( j).

We have g j
i = 1 only if i = j, but then opG(i) = opG( j).

4. g j
j−g j

i ≥ 0 for all i ∈ G, j ∈ G.

This is true since g j
j = 1 and all g j

i are binary by Lemma 8.

5. g j
j = 1 for all j such that cost(opG( j)) = 0.

All g j
j = 1 anyway.

6. We show that a possible evaluation of `i is the topological ordering of gates in the initial circuit.

(a) `i− `k ≥ 1 for all i,k ∈ G,predG(i,k);
the constraint is satisfied by definition of predG(i,k) and the fact that we use topological ordering which
assigns a strictly smaller level to the gate predecessors.

(b) The constraints G(|G|,0, `i, ` j,g
j
i ) and G(|G|,0, ` j, `i,g

j
i ) are satisfied since we only have g j

j = 1, and ` j = ` j
is trivially satisfied.

(c) `i ≥ 0, `i ≤ |G|.
This holds by definition of topological order: it assigns a unique number to each gate.

(d) d j = (1−g j
j);

Satisfied since d j is a newly introduced variable.
(e) F(1,{d j}∪{g j

i | i ∈ G, i 6= j},c j);
Satisfied since c j is a newly introduced variable. Namely, since g j

j = 1, and g j
i = 0 for i 6= j, we have c j = 0

for all j.
(f) G(|G|,1, `i, `k,ci) for cpredG(i,k).

By Lemma 7, ci = 1 implies `i− ` j ≥ 0. Since we have ci = 0, the implication is trivially true.

7. The constraints (7) are satisfied due to introducing new variables f x jk
` , e jk

i` , f g ji
` , s j

` , and sc j
` .

8. The constraints (8) are satisfied due to introducing new variables f g jk, u j, and uc j.
9. The constraints (9) are satisfied due to introducing new variables t j, t j

i , and bi. �

H Circuit Transformation

In this section, we give an algorithm that performs the transformation of the circuit according to the ILP solution.
We prove its correctness, estimate the cost, and show that the same algorithm can be used with any of the greedy
algorithms of App. F.
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H.1 Transformation Correctness

The work of the transformation function T←ILP is given in Alg. 7. Let sol be the dictionary mapping ILP variables to their
valuations. After evaluating sol by solving the ILP problem on line 1, the circuit is constructed sequentially, starting
from an empty set of gates initialized on line 2.

The loop of line 3 iterates through all the cliques C j. We assume that the cliques are sorted topologically, according
to their level ` j, so that the arguments of the clique are processed before the clique itself. The clique C j is defined on
line 4 as the set of all gates belonging to it. The arguments of C j are processed one by one by the loop on line 5.
On line 6 all the `-th arguments of C j and their weakest preconditions are collected into the set B j

` . Since we have
computed the weakest preconditions φG

i in the initial graph G, some variables of φG
i may be unavailable in G′ due to

gate fusing. Hence each gate of φG
i is substituted with the corresponding clique representative that is left in G′ after

the fusing.
A fresh name v j

` is created for the new oc gate on line 7. Then, Alg. 8 is called on line 8, and it actually decides if
an oc gate is needed. On line 1 of Alg. 8, all the values from which to choose are collected into the set K. If |K|> 1,
then there are at least 2 choice candidates, and hence an oblivious choice needs to be introduced. The new node vbk
is needed to construct the choice of the argument k, which may be chosen by several different mutually exclusive
choices. Hence the condition of choosing k is the sum of all the conditions b such that (b,k) ∈ B (here we are allowed
to use addition instead of ∨ since the gates are mutually exclusive). TC transforms the boolean expression to a set of
gates. The oc gate itself is formally constructed on line 6 of Alg. 8. If |K| ≤ 1, then the new oc gate is not needed, and
the the only element of |K| can be used straightforwardly (we substitute oc with id to make the presentation simpler).

After the inputs of C j are handled, if opG( j) 6= oc, the representative of C j is included into G on line 15. If
opG( j) = oc, the algorithm collects the choices and their conditions directly from the arguments of j, and then calls
Alg. 8 to check if it remains an oc gate, or becomes an id. This happens on lines 10-13 of Alg. 7.

Some variables of Y may point to improper output wires if the corresponding gates have been fused into cliques.
These references are rearranged on line 16.

We now prove the correctness of T←ILP. We prove that the semantics of the transformed circuit do not change.

Theorem 4. Let (G,X ,Y )∈G. Let solve be an arbitrary integer linear programming solving algorithm. Let (A,b,c,I)=
T→ILP(G,X ,Y ). Then [[eval(G,X ,Y )]]s = [[eval(T←ILP(solve(A,b,c,I),(G,X ,Y )))]]s for any s ∈ State.

Proof Let G = (G,X ,Y ) be the initial circuit. Let G′ = (G′,X ′,Y ′) be the transformed circuit. We show that
[[eval(G,X ,Y )]]s = [[eval(G′,X ′,Y ′)]]s.

In order to make the proof easier, let us rewrite the expressions according to their definitions:

– [[eval(G,X ,Y )]]s = upd(Y ◦ [[G]](s◦X),s);
– [[eval(G′,X ′,Y ′)]]s = upd(Y ′ ◦ [[G]](s◦X ′),s).

Since Alg. 7 defines Y ′←Y on line 2, and only the range of Y ′ is modified on line 16, we have dom(Y )= dom(Y ′)=:Y .
It suffices to prove that

∀y ∈ Y : [[G]](s◦X)(Y (y)) = [[G′]](s◦X ′)(Y ′(y)) .

For all j, we have defined Y ′ =Y [i← j | g j
i = 1] on line 16. Since there is exactly one j such that g j

i = 1 (by constraints
(2) of Sec. 6.5), we should actually prove

∀i, j ∈ G, i, j ∈ Y : (g j
i = 1) =⇒ [[G]](s◦X)(i) = [[G′]](s◦X ′)( j) . (3)

Since all the output wires of (G,X ,Y ) are evaluated in any case (by circuit definition), for each i such that i ∈ Y we
may add an additional assumption [[φG

i ]] [[G]](s ◦X) = 1, where φG
i is the weakest precondition of evaluating i. This

will be useful during the proof by induction. We may now replace the assumption i, j ∈ Y with [[φG
i ]] [[G]](s◦X) = 1 in

(3), proving a less general result

∀i, j ∈ G : ([[φG
i ]] [[G]](s◦X) = 1∧g j

i = 1) =⇒ [[G]](s◦X)(i) = [[G′]](s◦X ′)( j) . (4)

We prove this statement by induction on the number of the first j topologically ordered cliques that have already been
processed. More precisely, for the clique ordering we use the variables `i from the constraints (6).

First, we prove that the gate ordering defined by `i creates no cycles. Namely, we prove that if a gate g j is computed
on the level ` j, then each its argument has been computed on the level `k for `k < ` j.
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Algorithm 7. T←ILP reconstructs the circuit G according to the variables g j
i

Data: A circuit G= (G,X ,Y ) ∈ G
Data: An ILP (A,b,c)
Result: A transformed circuit G′ = (G′,X ′,Y ′)
sol← solve(A,b,c);1
G′← /0, X ′← X , Y ′← Y ;2

foreach j ∈ G, sol(g j
j) = 1 do3

C j←{i | sol(g j
i ) = 1};4

foreach ` ∈ [arityG( j)] do5

B j
` ←{(φ

G
i [i′← j′ | i′ ∈C j′ ],k) | k ∈ I(G), i ∈C j,k = argsG(i)[`]}6

∪{(φG
i [i′← j′ | i′ ∈C j′ ],k) | k /∈ I(G), i ∈C j,∃u : u = argsG(i)[`],u ∈Ck};

v j
` ← fresh();7

G j
` ← ocSubgraph(v j

` ,B
j
`);8

G′← G′∪G j
` ;9

if opG( j) = oc then10

B j←{(argsG( j)[`−1][i′← j′ | i′ ∈C j′ ],v
j
`) | ` ∈ arityG( j), ` ∈ 2N};11

G j← ocSubgraph( j,B j);12

G′← G′∪G j;13

else14

G′← G′∪{( j,opG( j), [v j
1, . . . ,v

j
arityG( j)

])};15

Y ′← Y ′[i← j | i ∈C j];16
return (G′,X ′,Y ′);17

Algorithm 8: ocSubgraph constructs either an oc gate, or an id gate
Data: B – a set of condition and choice pairs (b,k)
Data: v – the name of the wire that outputs the choice result
Result: A set of gates computing the oc and its conditions
K←{k | ∃b : (b,k) ∈ B};1

if |K|> 1 then2
foreach k ∈K do3

vbk← fresh();4
(Gk,Xk,Yk)← TC(vbk := ∑(b,k)∈B b);5

return{Gk}k∈K∪{(v,oc, [vbk,k]k∈K)};6

else7
{w}←K;8
return {(v, id,w)};9
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Lemma 9. The following claims hold.

– For all j ∈ G, k ∈ argsG( j): `k < ` j.
– For all j, i ∈ G: if g j

i = 1, then `i = ` j.
– For all i ∈ G, k ∈ argsG(φG

i ): if g j
i = 1 for some j 6= i, then `k < `i.

Proof: Recall the constraints 6:

(a) `i− `k ≥ 1 for all i,k ∈ G,predG(i,k);
since we define predG(i,k) for all k ∈ argsG(i), this constraint ensures that ∀ j ∈ G,k ∈ argsG( j) : `k < ` j.

(b-d) G(|G|,0, `i, ` j,g
j
i ), G(|G|,0, ` j, `i,g

j
i ), and 0≤ `i ≤ |G| for all i, j ∈ G;

since g j
i are binary variables, by Lemma 7 this ensures that, if g j

i = 1, then `i ≤ ` j and ` j ≤ `i, so `i = ` j.
(e-f) d j = (1−g j

j) and F(1,{d j}∪{g j
i | i ∈ G, i 6= j},c j) for all j ∈ G;

By Lemma 6, the constraints ensure that c j ∈ {0,1}, and that c j = 1 iff either g j
i = 1 for some j 6= i, or there is k

s.t gk
j = 1.

(g) G(|G|,1, `i, `k,ci) for all i,k ∈ G, cpredG(i,k);
By definition, cpredG(i,k) = 1 iff k ∈ argsG(φG

i ). By Lemma 7, since ci is a binary variable, ci = 1 implies
`i− `k ≥ 1, which is `k < `i, and ci = 1 is implied by g j

i = 1, i 6= j according to the previous constraints. �

Let G j be the subcircuit of G consisting just of the gates belonging to the first j cliques ordered by `k (i.e G j =
{Ck | `k ≤ ` j} where Ck = {i | gk

i = 1}). Let G′j be the subcircuit of G′ obtained after processing the first j cliques by
Alg. 7. In this way, if there are m cliques in total, then G′ = G′m, and G = Gm.

Base: G0 = /0, and the statement (4) is trivially true.
Step: Suppose that we are adding the clique C j to the subcircuit G j−1. By induction hypothesis, the statement (4)

already holds for all i, j ∈ G\C j, so it suffices to prove that

∀i ∈C j : ([[φG
i ]] [[G]](s◦X) = 1∧g j

i = 1) =⇒ [[G j]](s◦X)(i) = [[G′j]](s◦X ′)( j) . (5)

Since by definition of C j we have ∀i ∈C j : g j
i = 1, we may simplify (5) and prove

∀i ∈C j : [[φG
i ]] [[G]](s◦X) = 1 =⇒ [[G j]](s◦X)(i) = [[G′j]](s◦X ′)( j) . (6)

Let i ∈C j. Let t = arityG( j). Before the transformation, for all i s.t g j
i = 1, due to the constraint (2), which states

that a gate belongs to exactly one clique, there should have been exactly one gate (i,opG(i), [k1, . . . ,kt ]) in C j, and, due
to constraints (3), which state that a gate has the same operation as the clique representative, opG(i) = opG( j).

First, let opG( j) 6= oc. In this case, new the input wires of j are exactly the new variables v j
` . By definition,

[[G′j]](s◦X ′)( j) = [[opG′( j)]]([[G′j]](s◦X ′)(v j
1), . . . , [[G

′
j]](s◦X ′)(v j

t )) ,

and
[[G j]](s◦X)(i) = [[opG( j)]]([[G j]](s◦X)(k1), . . . , [[G j]](s◦X)(kt)) .

Since opG( j) 6= oc, we have opG( j) = opG′( j), and it suffices to show that the arguments of [[opG( j)]] in both cases
are the same, i.e

∀` ∈ [t] : ([[φG
i ]]s = 1) =⇒ [[G j]](s◦X)(k`) = [[G′j]](s◦X ′)(v j

`) . (7)

Let K j
` denote the set K formed by Alg. 8 when called by Alg. 7 with the input B j

` . We will prove statement (7) for
different cases of |K j

` |.

1. If |K j
` | ≤ 1, then Alg. 8 creates a gate (v j

`, id,w
j
`) for {w j

`}←K
j
` . Since a non-empty clique C j has at least one `-th

input (the one belonging to the gate j), we have |K j
` |= 1, and so such w j

` exists, and the definition of v j
` is correct.

Since w j
` is the only `-th input of C j, and k` is the `-th input of some gate of C j by definition, we have w j

` = k`,
and since id does not modify the value, we have [[G′j]](s◦X ′)(v j

`) = [[G′j]](s◦X ′)(w j
`).
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(a) If w j
` ∈ I(G), then trivially w j

` ∈ G′i since Alg. 7 keeps all the input gates of the initial circuit on line 2.
(b) If w j

` /∈ I(G), then there is u ∈Ci such that u = argsG( j)[`]. We have predG( j,u), and by Lemma 9, `u < ` j.
Hence w j

` ∈ G′u ⊆ G′j.
As the result, the values w j

` chosen by Alg. 7 satisfy w j
` ∈ G′j. Since w j

` = k`, we have [[G j]](s◦X)(k`) = [[G′j]](s◦
X ′)(w j

`) = [[G′j]](s◦X ′)(v j
`).

2. If |K j
` | > 1, Alg. 8 defines a subcircuit (G jk

` ,X jk
` ,Y jk

` ) computing b jk
` := ∑i∈I jk

`
φG

i [i
′← j′ | g j′

i′ = 1)], where, by

definition of B j
` ,

I jk
` = {i | k ∈ I(G),k = argsG(i)[`]}

∪{i | k /∈ I(G),k ∈Cu,u = argsG(i)[`]} .

The gate names of (G jk
` ,X jk

` ,Y jk
` ) are fresh, so there are no name conflicts with the gate names of G′j−1. Since all

the gates are new and do not belong to G, we do not need to prove statement (6) for them.
The following lemma proves the correctness of computing the conditions of the newly introduced oc gates. By
definition, we collect all the gates that use the k as the `-th argument into I jk

` , and hence the condition for choosing
i ∈ I jk

` should be ∑i∈I jk
`

φG
i .

Lemma 10. Let |K j
` |> 1. If [[φG

k ]] [[G]](s◦X) = 1, then

[[G′j]](s◦X ′)b jk
` = [[ ∑

i∈I jk
`

φ
G
i ]] [[G j]](s◦X) .

Proof: Since b jk
` = ∑i∈I jk

`
φG

i [i
′← j′ | g j′

i′ = 1], it suffices to show that

[[φG
i [i
′← j′ | g j′

i′ = 1]]] [[G′j]](s◦X ′) = [[φG
i ]] [[G j]](s◦X) .

We can rewrite it as
[[φG

i ]] [[G
′
j]](s◦X ′)[i′← j′ | g j′

i′ = 1] = [[φG
i ]] [[G j]](s◦X) .

For all variables i′ of φG
i , we have cpredG(i, i′). By Lemma 9, `i′ < `i, and by induction hypothesis, [[φG

i′ ]] [[G]](s◦
X) = 1 =⇒ [[G j]](s◦X)(i′) = [[G′j]](s◦X ′)( j′).
In order to apply the hypothesis, we need [[φG

i′ ]] [[G]](s ◦X) = 1 to hold, but we have [[φG
i ]] [[G]](s ◦X) = 1. Since

each i′ is involved in the computation of i and is its predecessor, we have

[[φG
φG

i
]] [[G]](s◦X) = 1 =⇒ [[φG

i′ ]] [[G]](s◦X) = 1 .

By assumption, [[φG
i ]] [[G]](s◦X) = 1, and in order that φG

i could be evaluated, it should be [[φG
φG

i
]] [[G]](s◦X) = 1.

We get an implication
[[φG

i ]] [[G]](s◦X) = 1 =⇒ [[φG
i′ ]] [[G]](s◦X) = 1 .

We get [[G j]](s◦X)(i′) = [[G′j]](s◦X ′)( j′) for all i′ that define the value of φG
i . Hence

[[φG
i [i
′← j′ | g j′

i′ = 1]]] [[G′j]](s◦X ′) = [[φG
i ]] [[G j]](s◦X) .

�
Alg. 7 then defines a new gate (v j

`,oc, [b jk
` ,k]k∈K j

`
) for a new variable v j

` that has not been used anywhere else
before. We have

[[G j]](s◦X)(v j
`) = [[oc]]([b jk

` ,k]k∈K j
`
) .
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By constraints (1) and the definition of fusableG, the weakest preconditions of the gates inside one clique are
mutually exclusive, and hence for any s, at most one of [[G′j]](s◦X ′)(b jk

` ) is 1, so this is a valid instance of oc.
We need to prove the equality [[G′j]](s◦X ′)(v j

`) = [[G j]](s◦X)(k`), where k` is the `-th input of i, on the assumption

[[φG
i ]] [[G j]](s◦X) = 1. Since k` ∈ K j

` , there is a pair (b jk`
` ,k`) in the oblivious choice.

By Lemma 10 we have
[[G′j]](s◦X ′)(b jk`

` ) = [[ ∑
i′∈I jk`

`

φ
G
i′ ]] [[G j]](s◦X) .

By definition of I jk`
` , k` is a predecessor of all i′ ∈ I jk`

` , so we have ([[φG
i′ ]] [[G j]](s◦X) = 1) =⇒ ([[φG

k`
]] [[G j]](s◦

X) = 1) for all i′ ∈ I jk`
` and since ([[φG

k`
]] [[G j]](s◦X) = 1) =⇒ ([[b jk`

` ]]s = 1), we also have ([[φG
i′ ]] [[G j]](s◦X) =

1) =⇒ ([[b jk`
` ]]s = 1), in particular ([[φG

i ]] [[G j]](s◦X) = 1) =⇒ ([[b jk`
` ]]s = 1).

Hence it suffices to prove ∀` : ([[b ji`
` ]]s = 1) =⇒ [[G′j]](s◦X ′)(v j

`) = [[G j]](s◦X)(k`). If [[b jk`
` ]]s = 1, then [[G′j]](s◦

X ′)(v j
`)= [[G′j]](s◦X ′)(k`) by definition of oc. Since k` ∈Ci′ for some i′< j, we have [[G′j]](s◦X ′)(k`)= [[G′j−1]](s◦

X ′)(k`), and due to ([[φG
i ]]s = 1) =⇒ ([[φG

k`
]]s = 1), by induction hypothesis equal to [[G j−1]](s◦X)(k`) = [[G j]](s◦

X)(k`).

If opG( j) 6= oc, then a gate ( j,opG( j), [v j
1, . . . ,v

j
t ]) is added to the clique C j. By the constraints (4) that define the

clique representative, if the clique C j is non-empty (there exists at least one g j
i = 1), then definitely j ∈C j (g j

j = 1),
and ∀i ∈ G : gi

j = 0 due to constraints (2). Hence it is the only gate with the name j, so there are no name conflicts.

If opG( j) = oc, then it may happen that opG′( j) changes, and moreover, the inputs v j
` may be rearranged by the call

to Alg. 8. We need to prove [[G j]](s ◦X)(i) = [[G′j]](s ◦X ′)( j) straightforwardly. The proof is analogous to the proof

that [[G j]](s◦X)(k`) = [[G′j]](s◦X ′)(v j
`), as we call the same Alg. 8 here, and even a bit simpler since we the conditions

for the choices are the inputs of j, and not the weakest preconditions. �

H.2 The Cost of the Transformed Circuit

First, we will prove some relations between different variables that are defined by the constraints. Let K j
` and K j

denote the sets K formed by Alg. 8 when called by Alg. 7 with the inputs B j
` and B j respectively.

Lemma 11. For all j ∈ G, ` ∈ arityG( j), k ∈V (G), we have:

– K j
` = {k | f g jk

` = 1};
– K j = {k | f g jk = 1}.

Proof: The proof is based on the fact that all the variables are binary (proven in Lemma 8), and on the definition of
constraints P and F for binary inputs (proven in Lemma 5 and Lemma 6).

1. By definition of F , since g j
i ∈ {0,1}, f x jk

` ∈ {0,1}, and f x jk
` = 1 iff at least one g j

i = 1 s.t k = argsG(i)[`]. Since
g j

i = 1 denotes i ∈C j, we get f x jk
` = 1 iff ∃i ∈C j : k = argsG(i)[`].

2. By definition of P , since f x jk
` and gi

k are binary, e jk
i` ∈ {0,1}, and e jk

i` = 1 iff f x jk
` ·g

i
k. Since gi

k = 1 denotes k ∈Ci,
we get e jk

i` = 1 iff k ∈Ci and k ∈ argsG(C j)[`].
3. By definition of F , for i ∈ G, since e jk

i` are binary, f g jk
` ∈ {0,1}, and f g ji

` = 1 iff there exists k ∈ I(G) s.t e jk
i` = 1,

so there is some k that causes k ∈Ci and k ∈ argsG( j)[`]. We get f g jk
` = 1 iff ∃i ∈C j,u ∈Ck : u = argsG(i)[`].

4. For k ∈ I(G), define f g jk
` = f x jk

` . We get f g jk
` = 1 iff ∃i ∈ C j : k = argsG(i)[`] for k ∈ I(G), and f g jk

` = 1
iff ∃i ∈ C j,u ∈ Ck : u = argsG(i)[`] for k /∈ I(G). By definition of B j

` and K, we have f g jk
` = 1 iff k ∈ K j

` , so
K j

` = {k | f g jk
` = 1}.

5. By definition of F , since f g jk
` ∈ {0,1}, also f g jk ∈ {0,1}, and f g jk = 1 iff at least one f g jk

` = 1 for ` ∈ 2N. We
get f g jk = 1 iff ∃i ∈C j : k ∈ argsG(i)[`] for some ` ∈ 2N. By definition of B j and K, we have f g jk = 1 iff k ∈K j,
so K j = {k | f g jk = 1}. �
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The following lemma intuitively proves that s j
` denotes if there are at least 2 choices for the `-th input of C j, and

that these choices are captured by the set K j
` . Similarly, u j denotes if there are at least 2 choices left for C j in the case

opG( j) = oc, and that these choices are captured by K j.

Lemma 12. If g j
j = 1, then:

1. sc j
` = |K

j
` |−1;

2. s j
` = 0 iff |K j

` |= 1;
3. uc j

` = |K
j|−1;

4. u j = 0 iff |K j|= 1.

Proof: The proof is based on the fact that all the variables are binary (proven in Lemma 8), and on the definition of
constraints P and F for binary inputs (proven in Lemma 5 and Lemma 6).

By constraints (7d), sc j
` = ∑k∈V (G) f g jk

` − g j
j, and s j

` = 1 iff at least two of f g jk
` are 1. By Lemma 11 we have

K j
` = {k | f g jk

` = 1}. It immediately follows that sc j
` = |K

j
` |−1. If s j

` = 1, we get 1 6= |K j
` |> 2.

If s j
` = 0, there is at most one k such that f g jk

` = 1, and it remains to prove that there is at least one such k. Suppose
by contrary that there is no such k, and |K j

` | = /0. Then it should be argsG(C j)[`] = /0. By definition, argsG(C j)[`] =

{k | i ∈C j,g
j
i = 1,k = argsG(i)[`]}. By assumption, we have g j

j = 1, and since j∈C j and we have taken `∈ [arityG( j)],
at least k = argsG( j)[`] is a suitable candidate.

The proof is analogous for u j. �
The following lemma shows the relations of s j

` and bi.

Lemma 13. For all i ∈ G, if there exist j ∈ G, ` ∈ arityG( j) s.t s j
` = 1 and g j

i = 1 for j 6= i, then bi = 1.

Proof: The proof is based on the fact that all the variables are binary (proven in Lemma 8), and on the definition
of constraints P and F for binary inputs (proven in Lemma 5 and Lemma 6).

– By constraints (9a), if s j
` = 1, then t j = 1.

– By constraints (9b), if t j = 1 and g j
i = 1, for j 6= i, then t j

i = 1.
– By constraints (9d), if t j

i = 1 for j ∈ G, then bi = 1. �

Proof of the Cost of the Transformed Circuit

Theorem 5. Let (G,X ,Y )∈G. Let solve be an arbitrary integer linear programming solving algorithm. Let (A,b,c,I)=
T→ILP(G,X ,Y ). Then
cost(T←ILP(solve(A,b,c,I),(G,X ,Y ))) = cT · solve(A,b,c).

We prove the cost for different kinds of gates, one by one.

– Old non-oc gates Alg. 7 adds to G′ exactly those gates j for which g j
j = 1. While defining fusableG, we agreed

not to fuse the the gates whose complexity changes if their public inputs become private. Hence their total cost is
Cg = ∑

|G|
j=1,opG( j)6=oc

cost(opG( j)) ·g j
j.

– Old oc gates An old oc gate is replaced with an id by Alg. 7 if |K j|= 1.
• Let for u j = 1. By Lemma 12, u j = 1 implies |K j|> 1, causing Alg. 7 to leave the oc into G′.
• Let for u j = 0. By Lemma 12, u j = 0 implies |K j|= 1, and Alg. 7 does not construct an oc gate.

By Lemma 12, we have uc j = |K j|−g j
j, which is the number of choices that the old oc gate makes in the trans-

formed graph. We have defined the cost of an oc gate as cost(ocbase)+ cost(ocstep) · n, where n is the number of

choices that the oc gate makes. Hence the total cost of the new oc gates is Coc = ∑
|G|,arityG( j)
j,`=1,1 cost(ocbase) · u j

` +

cost(ocstep) ·uc j
` .

– New oc gates An oc gate is created by Alg. 7 if |K j
` |> 1.
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• Let for s j
` = 1. By Lemma 12, s j

` = 1 implies |K j
` | > 1, causing Alg. 7 to construct a new oc gate v j

` that is
included into G′.

• Let for s j
` = 0. By Lemma 12, s j

` = 0 implies |K j
` |= 1, and Alg. 7 does not construct an oc gate.

By Lemma 12, we have sc j
` = |K

j
` |−1, which is the number of choices that the new oc gate makes. The total cost

of the new oc gates is Coc = ∑
|G|,arityG( j)
j,`=1,1 cost(ocbase) · s j

`+ cost(ocstep) · sc j
` .

– New Gk gates These gates are computing the conditions vbk. For the old oc gates, vbk are just some wire names,
and the only other introduced operation is addition Hence these gates may have some cost only if they are com-
posed for a new oc gate. Let us assume that Alg. 8 has been called by Alg. 7 on some B j

` .
For simplicity, we defined Alg. 8 in such a way that it does not assign special default choices and uses only the
weakest preconditions straightforwardly. However, since oc gates are correctly defined (by Thm .4), all the vbk
arguments sum up either to 0 or 1. If they sum up to 0, then the weakest preconditions of all the choices are 0, and
hence the output of oc does not matter anyway, so we may as well make one of the choices 1. If they do sum up to
1, then one of the vbk arguments of the oc is actually a linear combination of the other its vbk arguments. We may
let Alg. 7 to choose any k to be the default one. Without loss of generality, let it be k = argsG( j)[`]. For g j

j = 1, we
have b j = 0 due to constraints (9a-9d). For k 6= argsG( j)[`], Alg. 7 does include Gk into G′.
We need to show that including Gk for k 6= argsG( j)[`] into G′ indeed implies including all φG

i for i 6= j. Suppose
by contrary that there is some i 6= j that only occurs in Gk for k′ = argsG( j)[`], regardless of the choice of `. In
other words, each `-th input of i is the `-th input of j, and hence argsG(i) = argsG( j). Since opG(i) = opG(i), and
the gates are unique, we have i = j. This contradicts the assumption i 6= j, so φG

i should have been used in at least
one vbk for k 6= argsG( j)[`].
We get that the gates of φG

i are included into G′ iff b j = 1. For all k ∈C j, Alg. 7 takes

vbk = ∑
(φG

i [i′← j′ | g j′
i′ =1],k)∈B

φ
G
i [i
′← j′ | g j′

i′ = 1] .

Substituting i′ with j′ does not affect the cost of φG
i , since by definition, cost(φG

i ) only counts the ∨ and ∧
operations of φG

i . The costs of j′ are already included in Cg, so they do not have to be computed again. Without
merging the repeating subexpressions that may occur in different φG

i , the cost of Gk is Cb = ∑
|G|
j=1 cost(φG

j ) ·b j.

In total, we get the cost Cg +Coc1 +Coc2 +Cb. �

H.3 Applying back the greedy algorithm solution

We show that we can use Alg. 2 for constructing the optimized circuit from the set of cliques returned by a greedy
algorithm.

Theorem 6. Let (G,X ,Y ) ∈ G. Let greed be the function of Alg. 2 that returns the set of cliques of gates of G. There
exists a transformation TC

G such that [[eval(G,X ,Y )]](s) = [[eval(T←ILP(T
C
G (greed(G),X ,Y )))]](s) for any s ∈ State.

Proof By Lemma 4, Alg. 2 terminates. Let Cs be the set of cliques returned by the greedy algorithm. We now may
reduce the cliques to an IP solution as follows. First, sort each C ∈Cs by the gate indices, so that the first index is the
smallest one. For all C ∈Cs, j =C[0], assign g j

i = 1 for all i ∈C. We show that this assignment satisfies IP constraints.

– In Alg. 2, the gates are first of all sorted by types, and only the gates of the same type are fused. This satisfies the
constraint (3) of IP.

– As soon as a gate has been taken into a clique, this is not added to any other clique. If any gate is left, it is treated
as a singleton clique. This satisfies the constraint (2).

– We have taken g j
i = 1 for j =C[0], so j is the unique clique representative, and (4) is satisfied.

– Alg. 2 stops when it reaches gates of cost 0 and puts all of them into separate cliques, so that (5) is satisfied.
– Whatever greedy strategy we take, each of them accepts a clique iff the function goodClique returns true. For any

gates i, j that belong to the same clique C, fusableG(i, j) holds. This satisfies the constraint (1) of IP. In addition,
goodClique assigns levels to the gates, which can be put into one-to-one correspondence with the variables `i of
the constraint (6). For predG(i,k), we have level(i) > level(k), and for cpredG(i,k) we have level(i) > level(k) iff
the size of the clique to which i belongs is at least 2. The function goodClique checks it on the fly, and since if a
clique has already been accepted, it will never be updated anymore, the condition will not be broken. �
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I The Sample Programs

I.1 driver

def mean(x):

return floatMult(floatSum(x), inv(length(x)));

def entropy (x):

return floatNeg(floatSum(floatMult(x, ln(x))));

def divide (x1, x2):

return floatMult (x1, inv(x2));

def AP (v):

return mean (v);

def AD (d):

return mean (d);

def PE (n, t):

return entropy (divide (n, t));

def PIE (i, ti):

return entropy (divide (i, ti));

def main:

private v, d, n, i, t, ti;

input v, d, n, i, t, ti;

private ap := AP(v);

private ad := AD(d);

private pe := PE(n,t);

private pie := PIE(i,ti);

if ap <= 900:

if ad <= 13:

if pe <= -5:

y := 6

else:

y := 7;

else:

if pie <= -6:

y := 5

else

y := 9;

else:

if ad <= 21:

if pe <= -3:

y := 8

else:

y := 7;

else:
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if pie <= -4:

y := 4

else:

y := 3;

return y;

I.2 sqrt

def main:

private a, x, y, mid;

private answer := -1;

input a;

x := 0;

y := a;

mid := a >> 1;

for i in range(10):

if (mid * mid > a):

y := mid;

mid := (x + mid) >> 1;

else if (mid * mid < a):

x := mid;

mid := (mid + y) >> 1;

answer := mid;

return answer;

I.3 loan

def main:

private age, num_of_parents, num_of_children,

income, answer;

input age, num_of_parents, num_of_children,

income;

if age < 18:

answer := 0

else if age < 65:

if num_of_children == 0:

if income > 20:

answer := 1

else:

answer := 0

else if num_of_parents == 1:

if income > 25:

answer := 1

else:

answer := 0

else:

if income > 30:

answer := 1

else:

answer := 0
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else if income > 40:

answer := 1

else:

answer := 0;

return answer;

I.4 stats

def mean (x):

return floatMult (floatSum(x), inv(length(x)));

def variance (x):

private w := floatMult (floatSquare (floatSum(x));

private z1 := floatNeg (w, inv(n)));

private z2 := floatSum (floatSquare(x));

return floatMult (floatAdd (z1,z2), inv(n - 1));

def sdev (x):

return sqrt (variance (x));

def sdev (x, y):

public nxy := length(x) + length(y) - 2;

public nx := length(x) - 1;

public ny := length(y) - 1;

private vx := floatMult (variance (x), nx);

private vy := floatMult (variance (y), ny);

return sqrt (floatMult (floatAdd (vx,vy), inv(nxy)));

def studenttest (x, y):

private mx := mean (x);

private my := mean (y);

private z1 := floatAdd (mx, floatNeg(my));

public nx := inv(length(x));

public ny := inv(length(y));

private sxy := sdev (x, y);

public w := sqrt (floatAdd (n1, n2));

private z2 := floatMult (sxy, w);

return floatMult (z1,inv (z2));

def welchtest (x, y):

private mx := mean (x);

private my := mean (y);

private z1 := floatAdd (mx, floatNeg(my));

public nx := inv(length(x));

public ny := inv(length(y));

private vx := floatMult (variance (x), nx);

private vy := floatMult (variance (y), ny);

private z2 := sqrt (floatAdd (vx,vy));
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return floatMult (z1, inv(z2));

def wilcoxontest (x, y):

private d := floatAdd (x, floatNeg(y));

private s := floatSign (d);

private dpr := floatAbs (d);

s := sort (dpr, s);

private r := rank0 (s);

return floatSum (floatMult (s, r));

def contingencytable (x, y, c):

private ct_x := floatOuterEqualitySums (x,c);

private ct_y := floatOuterEqualitySums (y,c);

return (ct_x, ct_y);

def chisquaretest (x, y, c);

private ninv := inv (length(x));

private (ct_x,ct_y) := contingencytable (x, y, c);

private rx := floatSum (ct_x);

private ry := floatSum (ct_y);

private p := floatAdd (ct_x,ct_y);

private ex := floatMult (floatMult(p,rx), ninv);

private ey := floatMult (floatMult(p,ry), ninv);

private nex := floatNeg(ex);

private ney := floatNeg(ey);

private z1 := floatSquare (floatAdd (ct_x, nex));

private z2 := floatSquare (floatAdd (ct_y, ney));

private w1 := floatSum (floatMult (z1,inv(ex)));

private w2 := floatSum (floatMult (z2,inv(ey)));

return floatAdd (w1,w2);

def main:

private result;

private b1; #is the distribution normal

private b2; #are the stdev and the mean known

private b3; #is it ordinal data

input b1, b2, b3;

# The first dataset

private x;

input x;

# The second dataset

private y;

input y;
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# The set of possible classes for chi-squared test

private c;

input c;

if b1 == 1:

if b2 == 1:

result := studenttest (x, y);

else:

result := welchtest (x, y);

else:

if b3 == 1:

result := wilcoxontest (x, y);

else:

result := chisquaretest (x, y, c);

return result;

I.5 erf

#fixpoint to floating point

def fix_to_float (y,t,n,q):

private u := getbit (y, t);

private s := 1;

private e;

private f;

if u == 1:

e := t + q + 1;

f := y * (1 << (n-t-1));

else

e := t + q;

f := y * (1 << (n-t));

return (s,e,f);

#Multiply two floating point numbers

def float_mult (s1,e1,f1,s2,e2,f2,n):

private lambda;

s := (s1 == s2);

e := e1 + e2;

f := f1 * f2;

#here --> and <-- are ring conversion operations

f := ((f1 --> (2*n))*(f2 --> (2*n))) <-- n;

lambda := f >> (n-1);

if lambda == 0:

f := f << 1;

e := e - 1;

return (s,e,f);

#Evaluate a polynomial of degree <= 12

def eval (x0,s,c):
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private x[13];

x[0] := 1;

x[1] := x0;

x[2] := x0 * x0;

x[3] := x[2] * x[1];

x[4] := x[2] * x[2];

x[5] := x[4] * x[1];

x[6] := x[4] * x[2];

x[7] := x[4] * x[3];

x[8] := x[4] * x[4];

x[9] := x[8] * x[1];

x[10] := x[9] * x[2];

x[11] := x[8] * x[3];

x[12] := x[8] * x[4];

private z1[13] := 0;

private z2[13] := 0;

for i in range(13):

if s[i] == 1:

z1[i] := z1[i] + c[i] * x[i];

else if s[i] == -1:

z2[i] := z2[i] + c[i] * x[i];

return z1 - z2;

def gaussian_poly_0 (x):

return eval (x,[0,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1],

[0, 37862129, 89, 12620065, 3115, 3797002, 27323,

850652, 68415, 238867, 35736, 22843, 6588]);

def gaussian_poly_1 (x):

return eval (x,[1,1,1,-1,1,-1,-1,1,1,1,1,1,1],

[945472, 31405311, 18236798, 40079935, 23153761,

5984925, 599861, 0, 0, 0, 0, 0, 0]);

def gaussian_poly_2 (x):

return eval (x,[-1,1,-1,1,1,1,-1,1,1,1,1,1,1],

[31613609, 134982639, 119986495, 59088711, 17266836,

2930966, 247133, 3236, 636, 0, 0, 0, 0]);

def gaussian_poly_3 (x):

return eval (x,[1,1,-1,1,-1,1,-1,1,1,1,1,1,1],

[28778930, 7535740, 4967310, 1750656, 347929,

36972, 1641, 0, 0, 0, 0, 0, 0]);

def main:

#the input

private s, e, f;

input s, e, f;
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public q := (1 << 14) - 1;

public n := 32;

public m := 25;

public shift0 := n - m + 0 - 2;

public shift1 := n - m + 1 - 2;

public shift2 := n - m + 2 - 2;

public shift3 := n - m + 3 - 2;

public shift4 := n - m + 4 - 2;

private f0 := f >> shift0;

private f1 := f >> shift1;

private f2 := f >> shift2;

private f3 := f >> shift3;

private f4 := f >> shift4;

private g0, g_1, g_1_0, g_1_1;

g0 := gaussian_poly_1 (f0);

g_1_0 := gaussian_poly_2 (f0);

g_1_1 := gaussian_poly_3 (f0);

private u := f <- m;

if u == 1:

g_1 := g_1_1

else

g_1 := g_1_0;

public t_1 := 0;

public t0 := 0;

public t1 := 2 - 1;

public t2 := 2 - 2;

public t3 := 2 - 3;

public t4 := 2 - 4;

if e <= q - 4:

e := q - 4;

if q + 3 <= e:

e := q + 3;

private s_pr, e_pr, f_pr;

private index := e - q;

if index == -2:

(s_pr,e_pr,f_pr) := float_mult(1,25,21361415,s,e,f,n);

else if index == -1:

(s_pr,e_pr,f_pr) := fix_to_float (g_1,t_1,n,q);

else if index == 0:

(s_pr,e_pr,f_pr) := fix_to_float (g0,t0,n,q);

else if index == 1:
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private g1 := gaussian_poly_0 (f1);

(s_pr,e_pr,f_pr) := fix_to_float (g1,t1,n,q);

else if index == 2:

private g2 := gaussian_poly_0 (f2);

(s_pr,e_pr,f_pr) := fix_to_float (g2,t2,n,q);

else if index == 3:

private g3 := gaussian_poly_0 (f3);

(s_pr,e_pr,f_pr) := fix_to_float (g3,t3,n,q);

else if index == 4:

private g4 := gaussian_poly_0 (f4);

(s_pr,e_pr,f_pr) := fix_to_float (g4,t4,n,q);

else

(s_pr,e_pr,f_pr) := (1, 0, 1);

return (s_pr, e_pr, f_pr);
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