
Revealing Encryption for Partial Ordering

Helene Haagh1, Yue Ji2, Chenxing Li2, Claudio Orlandi1, and Yifan Song2

1 Aarhus University
2 IIIS, Tsinghua University?

Abstract. We generalize the cryptographic notion of Order Revealing Encryption (ORE) to arbitrary
functions and we present a construction that allows to determine the (partial) ordering of two vectors
i.e., given E(x) and E(y) it is possible to learn whether x = y, x > y, x < y or whether x and y are
incomparable. This is the first non-trivial example of a Revealing Encryption (RE) scheme with output
larger than one bit, and which does not rely on cryptographic obfuscation or multilinear maps.

Keywords: secret-key cryptography, order-revealing encryption, revealing encryption

1 Introduction

Computing on encrypted data is a promising approach to privacy preserving cloud computing. Using
techniques such as (fully) homomorphic encryption [RAD78, Gen09], a client can upload sensitive
data on a partially untrusted cloud which can perform computation on the data without learning
anything about the data, including the result of the computation. However in many applications
it is desirable for the server to learn the result of the computation, so that the server can make
decisions based on this result without further interaction with the client. Imagine as an example a
server running an encrypted spam filter: using homomorphic encryption the server can, given an
encrypted message, determine whether the message is spam or not but, since the server does not
learn this bit, the server is unable to place the encrypted message in the user’s spam folder.

Revealing Encryption. To solve the above class of problems a different kind of cryptographic
primitive is needed, which we refer to as revealing encryption or RE. Intuitively, an RE scheme
is an encryption scheme that allows to compute (selected) functions of the plaintexts by having
access to the encrypted data only. In other words, given a target function f we want to construct
an encryption scheme E and a public function F such that if X1 = E(K,x1) and X2 = E(K,x2)
(for a random key K) then we have that F (X1, X2) = f(x1, x2).

Order Preserving Encryption. The first attempt towards building RE was taken by Agrawal
et al. [AKSX04] when they introduced order preserving encryption (OPE), which using our lan-
guage can be phrased as the very special case of RE where both f and F are numeric comparison.
The “preserving” part of OPE is both a strength and a weakness: since f = F it is very easy to
use OPE in practical applications (a client outsourcing an encrypted database using OPE does
not even need to inform the server that the database is encrypted, as the database can compare
encrypted data in the exact same way as it would compare plaintext data). Unfortunately pre-
serving numeric ordering implies that OPE cannot achieve strong security guarantees, as shown
by [BCLO09, BCO11]. To overcome this limitation order revealing encryption (ORE) was intro-
duced by Boneh et al. [BLR+15]. The main conceptual contributions of this paper is to generalize
the notion of ORE to arbitrary functions (the formal definition of RE is given in Section 3).

? Work done while visiting Aarhus University.

While the first (fully-secure) ORE schemes could only be instantiated using extremely heavy
cryptographic tools (see below) and were therefore completely impractical, Chenette et al. [CLWW16]
proposed a very elegant and simple construction of ORE which is extremely efficient in practice (at
the price of leaking slightly more information than in the ideal case).

Obfuscation & Co. On the other end of the scale, it is trivial to construct secure RE for any
function using ideal circuit obfuscation. In a nutshell, one can let F be an obfuscated circuit that
takes as input two ciphertexts X1, X2, contains a (hardwired) secret key K, and outputs

F (X1, X2) = f(D(K,X1), D(K,X2))

i.e., the obfuscated program simply outputs the output of f evaluated on the result of the decryption
of its inputs.

Unfortunately general purpose ideal obfuscation or even virtual black-box obfuscation does not
exist [BGI+01]. While a weaker notion of obfuscation (called indistinguishability obfuscation), might
be plausibly instantiated under cryptographic assumptions (as shown by the fascinating research
direction started by Garg et al. [GGH+13]), it seems unlikely that this will turn into a practical
solution in the foreseeable future. Note that using obfuscation it is possible to instantiate multi-
input functional encryption (MIFE) [GGG+14, BLR+15, BKS16]: using MIFE, one can implement
RE in a similar way as we sketched above, where the obfuscated program is replaced by a MIFE
secret key skf for the function f .

Note that despite the fact that MIFE implies RE, RE does not imply MIFE3. It is therefore
plausible that RE can be instantiated more efficiently and under weaker assumptions than MIFE,
and our results show that this is indeed the case.

Our Contributions. Given the state of affairs, it is natural to ask:

For which functions can we construct practically
efficient revealing encryption (RE) schemes?

In this paper we begin answering the question by showing a construction of revealing encryption for
partial order of vectors. This is a naturally interesting function motivated by concrete applications
such as privacy-preserving skyline queries [BKS01, PTFS03] (or enhancing privacy in any other
algorithm based on the partial order relation). In particular, given a dataset of d-dimensional
vectors, the goal of a skyline query is to determine the set of dominating vectors. As a classic
example, in a skyline query a client (e.g., a department committee) wants to evaluate a number of
different offers (e.g., job candidates for a faculty position) based on a set of incomparable parameters
(e.g., teaching experience, research output, funding, etc.). In this case the department committee
is interested in evaluating all candidates for which there does not exist another candidate who is
better qualified under all parameters, which is exactly the output of a skyline query. Using RE it
is possible to compute the output of a skyline query by performing the partial-comparison directly
in the encrypted domain i.e., without having to first decrypt the vectors. We note that there are
plenty of protocols and algorithms in the computer science literature which use the partial ordering
relation (lattice-based access control, timestamps based on vector clocks, topological ordering, etc.),
and we therefore believe that the notion of RE for partial order is as natural as the case of RE for
the total order relation.

3 A MIFE scheme must not reveal any information (e.g., satisfy IND-CPA security) until a secret key for a function
f is released, while in an RE scheme anyone can compute the authorized function on the encrypted data.

2

Note that the notion of revealing encryption has also been independently introduced by Joye
and Passelgue [JP16]. (Interestingly, we came to the notion of RE by generalizing ORE while they
reached the same notion by simplifying 2-input FE). In their work they present RE constructions for
functions different than those considered in this paper, including: comparison (ORE), orthogonality
testing and cardinality of intersection.

Technical Overview. The starting point of our solution is the recent ORE scheme of Chenette
et al. [CLWW16]. In this scheme, a value x ∈ {0, 1}n is encrypted using n evaluations of a pseu-
dorandom function (PRF) FK for key K, i.e., for each index i = 1, . . . , n the encryption algorithm
outputs a value

ci = FK(i, prefix(x, i− 1)) + xi

where prefix(x, i) is the function that outputs the i most significant bits of x, xi is the ith most
significant bit, and where + is integer addition.

Now, take two values x and y and let i∗ be the largest index such that

prefix(x, i∗ − 1) = prefix(y, i∗ − 1)

i.e., i∗ is the smallest index such that xi∗ 6= yi∗ . Then the first i∗ − 1 ciphertexts will be identical
for both x, y (since the PRF is evaluated on exactly the same value, and the added bit is the same),
while the i∗-th ciphertext will be “in the right order” (since the PRF is evaluated on exactly the
same value but in only one of the two cases 1 will be added) and therefore one can compare x and
y by finding the first ciphertext component in which the encryptions differ and perform a simple
numerical comparison of this value. For security, note that the bottom n− i∗−1 ciphertexts will be
independently random since the PRF is evaluated on different values. Therefore, the scheme reveals
the order as well as the first position in which the value differs. A very recent work shows that it is
possible to limit this leakage [CLOZ16], but unfortunately their construction requires heavy public
key operations (we believe that similar techniques could be applied to our scheme as well).

In a nutshell, we generalize the construction presented by Chenette et al. [CLWW16] in the
following way: consider for simplicity the 2-dimensional case x = (x1, x2). Then for each pair of
indices i, j we compute

ci,j = FK (i, j, prefix(x1, i− 1), prefix(x2, j − 1)) + αi,j(x1, x2)

where αi,j is a carefully chosen function that allows to perform the comparison between two vectors
in such a way that no information is leaked when the vectors are incomparable. The main challenge
in coming up with the right function α, is that we are trying to encode a non-binary output (i.e.,
x = y, x > y, x < y, or incomparable) into a binary relation (i.e., the numerical comparison
between the scalars α(x) and α(y)). Details of the constructions are given in Section 4 and in
Section 5 we give a performance analysis of our scheme.

Revealing Encryption Beyond Partial Ordering. We think that discovering which functions
admit revealing encryption schemes is an exciting and important future research direction. In Ap-
pendix C, we discuss simple (unconditionally secure) examples of revealing encryptions for absolute
distance and for hamming distance (which unfortunately is only secure for a limited number of
queries).

Other related work. During recent years, OPE and ORE have been active research areas: Bun
and Zhandry [BZ16] have studied the connection between ORE and differentially private learn-
ing [DMNS06, KLN+11]. Concurrent with this work, Lewi and Wu [LW16] presented a new and

3

efficient ORE construction based on the work of Chenette et al. [CLWW16]. This construction splits
the message in blocks (i.e. a sequence of bits) and the scheme leaks the position of the first block in
which the messages differ. Roche et al. [RACY16] proposed a new primitive called partial order pre-
serving encoding, which achieves ideal OPE security (IND-OCPA [BCLO09]) while providing fast
insertion and search in an encrypted database. Furthermore, interactive OPE [PLZ13, KS14, Ker15]
was introduced to achieve stronger security guarantees (like ideal security) for OPE schemes. In
these schemes, ciphertexts are mutable, meaning that whenever a new value is encrypted the ex-
isting ciphertexts can be updated.

During the last couple of decades there has been a long line of work concerning encryption
schemes, where either the ciphertexts preserve some information about the underlying messages
or it is possible to perform a public test that reveals some information about the encrypted data:
searchable encryption [SWP00, GSW04, BBO07, BHJP14] allows users to outsource their data
in a private manner, while maintaining the possibility to do efficient search over it. Variants of
searchable encryption are public-key encryption with keyword search [BCOP03, CGKO06], secure
indexes [Goh03], and (privacy-preserving) attribute-based searchable encryption [WLLX13, KHY13,
ZXA14, CD15b]. Other related encryption schemes are prefix preservering encryption [XFAM02,
XY12] and format preserving encryption [BRRS09, WRB15], which are concerned with preserv-
ing some specific information about the encrypted data. Property preserving symmetric encryp-
tion [PR12, CD15a] is a generalization of OPE that enables users to learn the properties of a
massive data set.

The applications of RE schemes is closely related to the applications of encryption schemes, like
attribute-based encryption [GPSW06, GVW13], functional encryption [BSW11], predicate encryp-
tion [KSW08], (anonymous) identity-based encryption [Sha84, KSW08], and access control encryp-
tion [DHO16]. All these encryption schemes deal with payload privacy, user privacy, computation
on outsourced encrypted data, fine-grained access control on data, etc.

Finally, in Appendix D, we review the (in)security of some existing systems which offer alter-
native solutions to privacy-preserving skyline queries.

2 Preliminaries

For n, n1, n2 ∈ N, let [n1 : n2] be the set {n1, n1 + 1, . . . , n2 − 1, n2} and [n] be the set [1 : n]. For
x ∈ Z, let |x| denote the absolute value of x. Let x←$ S denote that x is sampled uniform random
from the set S.

Definition 1 (Pseudorandom Function). We say that F : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a
pseudorandom function (PRF) if for all PPT adversaries A

advA = 2 · |Pr[AOb(·)(1κ) = b]− 1/2| < negl(κ)

with O0 a uniform random function and O1 = FK for some key K ∈ {0, 1}κ.

We interpret x ∈ {0, 1}n both as a string of bits i.e. x = (x1, . . . , xn) and as an integer x =∑n−1
i=0 2ixn−i i.e., x1 is the most significant bit of x. Given such an x and an index i ∈ [n] it is

convenient to define the function prefix : {0, 1}n × [0 : n]→ {0, 1}n × [0 : n]

prefix(x, i) := (x1, . . . , xi, 0
n−i, i)

4

so that prefix(x, 0) = (0n, 0), prefix(x, 1) = (x1, 0
n−1, 1) and so on. Note that prefix has the useful

property that for all x ∈ {0, 1}n prefix(x, i) 6= prefix(x, j) if i 6= j. Given a d-dimensional vector
m = (x1, . . . , xd) ∈ ({0, 1}n)d we define prefix to output the vector4

prefix(m, (i1, . . . , id)) := (prefix(x1, i1), . . . , prefix(xd, id)).

Given two strings x, y ∈ {0, 1}n we define pos(x, y) to return the largest i such that prefix(x, i−
1) = prefix(y, i−1) or equivalently the smallest i such that xi 6= yi. If x = y, then we define pos(x, y)

to output n+ 1. Given two d-dimensional vectors m(1) = (x
(1)
1 , . . . , x

(1)
d),m(2) = (x

(2)
1 , . . . , x

(2)
d) we

define pos to output the vector

pos(m(1),m(2)) := (pos(x
(1)
1 , x

(2)
1), . . . , pos(x

(1)
d , x

(2)
d)).

3 Revealing Encryption

In this section we formally define Revealing Encryption (RE).

Authorized Function. Let M be the input space and I the output space, then a RE scheme is
parametrized by `-ary authorized function

f :M` → I.

Revealing Encryption. Given an authorized function f , a RE scheme for f is a triple of algorithms
Πf = (Setup,Enc,Eval) defined as follows:

Setup: On input the security parameter κ, the randomized algorithm Setup outputs a secret key
sk and the public parameters pp.

Encryption: On input a message m ∈ M and a secret key sk, the randomized algorithm Enc
outputs a ciphertext c.

Eval: On input ` ciphertexts {ci = Enc(sk,mi)}i∈[`] and the public parameters pp, the Eval algo-
rithm outputs f(m1, . . . ,m`) ∈ I.

Remark 1. Note that here and in the rest of the paper we do not mention the decryption algorithm,
since any RE can be enhanced to allow for decryption by appending an IND-CPA secure encryption
to the RE ciphertext.

Definition 2 (Correctness). Let f be an authorized function and κ be the security parameter.
Let Πf = (Setup,Enc,Eval) be a RE scheme for f . We say that Πf is correct if for all messages
{mi}i∈[`] ∈M` the following probability

Pr
[
Eval

(
pp, {Enc(sk,mi)}i∈[`]

)
6= f

(
{mi}i∈[`]

)]
is negligible in κ, where (sk, pp)← Setup(1κ) and the probabilities are taken over the random coins
of all algorithms.

4 To ease the notation we use bold subscripts to indicate the entries in the vector.

5

Leakage Function. Following the work of Chenette et al. [CLWW16], our definition also allows
for a leakage function L : M∗ → {0, 1}∗ that exactly characterizes the information leaked by our
constructions. In the best case L({mi}i∈[q]) outputs f({mj}j∈S) for every subset S ⊂ [q] of size
`, and in this case we talk about optimal leakage. Note that the work of Chenette et al. leaks
extra information as well (the first digit at which two integers x, y are different) and our main
construction inherits this leakage.

Definition 3 (Security, [CLWW16]). Let κ be the security parameter, let q ∈ N, and let f be
an authorized function. Let Πf = (Setup,Enc,Eval) be a RE scheme for f . Consider the following
experiments, where A = (A1, . . . ,Aq) is an adversary, S = (S0, . . . ,Sq) is a simulator, and L(·) is
a leakage function.

Security Experiments

REAL
Πf

A (κ):
1. (sk, pp)← Setup(1κ);
2. (m1, stA)← A1(1κ, pp);
3. c1 ← Enc(sk,m1);
4. for 2 ≤ i ≤ q;

a. (mi, stA)← Ai(stA, c1, . . . , ci−1);
b. ci ← Enc(sk,mi);

5. output (c1, . . . , cq) and stA;

IDEAL
Πf

A,S,L(κ):
1. (stS , pp)← S0(1κ);
2. (m1, stA)← A1(1κ, pp);
3. (c1, stS)← S1(stS ,L(m1));
4. for 2 ≤ i ≤ q;

a. (mi, stA)← Ai(stA, c1, . . . , ci−1);
b. (ci, stS)← Si(stS ,L(m1, . . . ,mi));

5. output (c1, . . . , cq) and stA;

We say that Πf is a q-secure RE scheme wrt L(·) if for all adversaries A that makes no more than
q queries, there exists a simulator S such that the output distributions of the two experiments are
computationally indistinguishable

REAL
Πf
A (κ) ∼c IDEAL

Πf
A,S,L(κ)

We say a scheme is simply secure if it is q-secure for every q = poly(κ).

Definition 3 captures the requirement that given an a priori bounded number of ciphertexts,
the adversary should not be able to learn more than the allowed leakage. The security experiments
formalize this requirement by creating the challenge ciphertexts either as real encryptions of the
adversarial chosen plaintexts or simulated based on the allowed leakage of the adversarial chosen
plaintexts. Note that the output of the experiment contains an arbitrary output from the adversary
(i.e., stA), which is a very conservative way of allowing the adversary to output any information
that might be useful to distinguish between the ideal experiment and the real experiment.

4 Partial Order Revealing Encryption (PORE)

In this section, we present a construction of revealing encryption for partial ordering of vectors.
For the sake of presentation, we will start by showing our construction in the 2-dimensional case
(which already requires a significant amount of notation and indices). In Appendix B, we generalize
to the multidimensional case. LetM = {0, 1}n×{0, 1}n be the message domain, and the authorized
function for a 2-dimensional PORE is

f :M×M→ {(0, 0), (0, 1), (1, 0), (1, 1)}

6

For m(1) = (x(1), y(1)) ∈ M and m(2) = (x(2), y(2)) ∈ M we define a function that determines the
order

ord(m(1),m(2)) :=

{
1 if x(1) ≤ x(2) ∧ y(1) ≤ y(2)

0 otherwise

Then we can define the authorized function as

f(m(1),m(2)) := (ord(m(1),m(2)), ord(m(2),m(1)))

which means that

f(m(1),m(2)) :=


(1, 1) if m(1) = m(2)

(1, 0) if m(1) <m(2)

(0, 1) if m(1) >m(2)

(0, 0) if they are incomparable

We will prove the security of our scheme with respect to the following leakage function (with f
as defined above and pos as defined in Section 2):

L(m(1), · · · ,m(q)) =
{
f(m(i),m(j)), pos(m(i),m(j)) | i, j ∈ [q]

}
i.e. the construction reveals the order as well as the first position in which each coordinate differ.

Given a pseudorandom function F : {0, 1}κ × {0, 1}∗ → {0, 1}κ, we define the following four
functions:

F1,K , F2,K :M× [n+ 1]2 → {0, 1, 2}
F3,K , F4,K : {0, 1}n × [n]→ {0, 1}

where given a plaintext m = (x, y) ∈M and two indices i, j ∈ [n+ 1] we define

F1,K(m, (i, j)) = FK(1, prefix(x, i− 1), prefix(y, j − 1)) mod 3

F2,K(m, (i, j)) = FK(2, prefix(x, i− 1), prefix(y, j − 1)) mod 3

F3,K(x, i) = FK(3, prefix(x, i− 1)) mod 2

F4,K(y, j) = FK(4, prefix(y, j − 1)) mod 2

On a high level, the construction works as follows: given a point m = (x, y) and a key K
for the pseudorandom function F , then the ciphertext consist of a two-dimensional matrix cm ∈
{0, 1, 2}(n+1)×(n+1) and two bit strings bx, by ∈ {0, 1}n (i.e. one bit string for each entry in the
point). These bit strings are constructed to fulfil the property: given encryptions of two points,
we can for each entry (x and y) determine at which position they differ, but without revealing the
order. These positions can then be used to look up an entry in the matrix cm, which will determine
the partial order of the two points.

Construction 1 Fix a security parameter κ ∈ N. We define a PORE scheme for two dimensions
ΠPORE = (Setup,Enc,Eval) as follows

Setup: On input κ ∈ N, sample and output a key K ←$ {0, 1}κ.

7

Encryption: Given a point m = (x, y) ∈M and a secret key K compute for all i, j ∈ [n+ 1]

cmi,j = F2,K (m, (i, j)) + α (m, (i, j)) mod 3

where α is a function defined as follows

α (m, (i, j)) :=



0 if (xi, yj) = (0, 0)
1 if (xi, yj) = (1, 1)
xi if i 6 n, j = n+ 1
yj if i = n+ 1, j 6 n
0 if i = n+ 1, j = n+ 1
zi,j otherwise

where zi,j = F1,K(m, (i, j)). Next, we compute for all i, j ∈ [n]

bxi = F3,K(x, i) + xi mod 2

byj = F4,K(y, j) + yj mod 2

Then, output the ciphertext C = (cm, bx, by), where

cm := (cmi,j)i,j∈[n+1] ∈ {0, 1, 2}
(n+1)×(n+1)

bx := (bx1, . . . , bxn) ∈ {0, 1}n

by := (by1, . . . , byn) ∈ {0, 1}n

Evaluation: On input two ciphertexts

C(1) = (cm(1), bx(1), by(1)) = Enc(K,m(1))

C(2) = (cm(2), bx(2), by(2)) = Enc(K,m(2))

Compute pos(bx(1), bx(2)) = `x and pos(by(1), by(2)) = `y. If `x = n + 1 and `y = n + 1, the

algorithm outputs (1, 1) (since m(1) = m(2)). Otherwise, lookup the two entries cm
(1)
`x,`y

and

cm
(2)
`x,`y

and compute

t = cm
(1)
`x,`y
− cm(2)

`x,`y
mod 3

Next, the algorithm branches on the value of t:
– If t = −1, output (1, 0) (since m(1) <m(2));
– If t = 1, output (0, 1) (since m(1) >m(2));
– Otherwise output (0, 0), since the two points are incomparable.

Correctness. Let m(1) = (x(1), y(1)) and m(2) = (x(2), y(2)) be two plaintexts such that

pos(m(1),m(2)) = (`x, `y)

(i.e. x(1) and x(2) differ at position `x and y(1) and y(2) differ at position `y). We consider the
encryptions of these messages

C(1) = (cm(1), bx(1), by(1)) = Enc(K,m(1))

8

C(2) = (cm(2), bx(2), by(2)) = Enc(K,m(2))

We first argue that bx
(1)
i = bx

(2)
i for i < `x. This is easy to see:

bx
(1)
i = F3,K(x(1), i) + x

(1)
i mod 2

= FK(3, prefix(x(1), i− 1)) + x
(1)
i mod 2

= FK(3, prefix(x(2), i− 1)) + x
(2)
i mod 2

= bx
(2)
i

Since by definition of `x we know that ∀i < `x, prefix(x(1), i−1) = prefix(x(2), i−1) and x
(1)
i = x

(2)
i .

The same can be argued about the y part. We then argue that if `x < n+ 1, then there ∃i < n+ 1

such that bx
(1)
i 6= bx

(2)
i . This is easy to see since by definition of `x the output of prefix is the same

but x
(1)
`x
6= x

(2)
`x

.

So, we turn our attention to the comparison between cm
(1)
`x,`y

and cm
(2)
`x,`y

by computing

t = cm
(1)
`x,`y
− cm(2)

`x,`y
mod 3

Note that by definition of `x, `y, the output of prefix is the same for both ciphertexts and therefore
the output of F2,K is the same so we can rewrite this as

t = α(m(1), (`x, `y))− α(m(2), (`x, `y)) mod 3

We now have the following cases:

1. `x < n + 1 ∧ `y < n + 1: In this case we know that x
(1)
`x
6= x

(2)
`x
∧ y(1)

`y
6= y

(2)
`y

, which means that

we are either in the case (comparable)

(x
(1)
`x
, y

(1)
`y

) = (0, 0), (x
(2)
`x
, y

(2)
`y

) = (1, 1) or

(x
(1)
`x
, y

(1)
`y

) = (1, 1), (x
(2)
`x
, y

(2)
`y

) = (0, 0)

or (incomparable)

(x
(1)
`x
, y

(1)
`y

) = (0, 1), (x
(2)
`x
, y

(2)
`y

) = (1, 0) or

(x
(1)
`x
, y

(1)
`y

) = (1, 0), (x
(2)
`x
, y

(2)
`y

) = (0, 1)

In the comparable case we have that one of the α is 1 and the other is 0. When we are in the case
m(1) <m(2) (i.e. the first of the two comparable cases), then we have that α(m(1), (`x, `y)) = 0
and α(m(2), (`x, `y)) = 1, thus t = −1 and the evaluation algorithm will output (1, 0) meaning
that m(1) <m(2). Similar, we argue that the evaluation algorithm correctly outputs (0, 1) (since
t = 1) when m(1) >m(2).
In the incomparable case we have that t = 0 since the value zi,j is the same in both cases (since
as argued before prefix’s output is the same and so is F1,K ’s output).

2. `x = n + 1 ∧ `y < n + 1: following a similar reasoning in this case x
(1)
`x

= x
(2)
`x
∧ y(1)

`y
6= y

(2)
`y

therefore t = y
(1)
`y
− y(2)

`y
= −1 when m(1) <m(2), and t = 1 when m(1) >m(2).

9

3. `x < n + 1 ∧ `y = n + 1: following a similar reasoning in this case x
(1)
`x
6= x

(2)
`x
∧ y(1)

`y
= y

(2)
`y

therefore t = x
(1)
`y
− x(2)

`y
= −1 when m(1) <m(2), and t = 1 when m(1) >m(2).

4. `x = n + 1 ∧ `y = n + 1: by the definition of the pos function this means that m(1) = m(2),
and by definition the evaluation algorithm will output (1, 1) meaning that the two messages are
equal.

4.1 Security

To prove the security of the construction, we present a simulator that constructs the ciphertexts
based on information provided by the leakage function and the previous generated ciphertext.

On a high level the simulator works as follows: each component of the ciphertext C(i) is generated
using the leakage L(m(1), . . . ,m(i)). For each j < i, the leakage reveals at which position `x (resp.
`y) the messages m(i) and m(j) differ for coordinate x (resp. y) and the partial order of the messages.

Given this information, we can construct the entries cm
(i)
`x,`y

, bx
(i)
`x

and by
(i)
`y

in cm(i), bx(i) and by(i)

such that they reveal the order. Next, for each entry cm
(i)
s,t, bx

(i)
s and by

(i)
t with s < `x and t < `y,

the content of the entry will be equivalent to (some of) the previous generated ciphertexts (which
are contained in the state of the simulator), since the encryption algorithm uses a pseudorandom

function. Finally, for each entry cm
(i)
s,t, bx

(i)
s and by

(i)
t with s > `x and t > `y, the content of the

entry will be generated uniformly at random, since the corresponding input to the pesudorandom
function has never been used before.

Simulator. Denote the adversarial chosen message as m(1), · · · ,m(q), where m(i) = (x(i), y(i)) ∈
M. Initially, simulator S0 is empty and S1 sets C(1) = (cm(1), bx(1), by(1)), where cm(1), bx(1), by(1)

are all drawn uniformly at random. Furthermore, it sets the state stS = (C(1)). Next, define the
simulator Si (for 2 ≤ i ≤ q) as in Figure 1.

Theorem 1. The RE scheme ΠPORE from Construction 1 is secure with leakage function L.

The complete proof of Theorem 1 is presented in Appendix A.

5 Efficiency of PORE

In this section we analyze the efficiency of our PORE construction.

5.1 Theoretical Efficiency

Let κ be the security parameter, d the number of dimensions and n the bit length of each entry.
Then we can compute the storage and computational complexity of our scheme.

Storage Complexity. The bit length of a ciphertext in our PORE scheme is exactly:

1.6(n+ 1)d + nd = O(nd)

Computational Overhead. Performing an encryption requires

2(n+ 1)d + nd = O(nd)

calls to a PRF (with unbounded domain). Note that running the evaluation algorithm requires no
invocation of the PRF (only d binary searches into vectors of n bits each and a single addition
modulo 3).

10

(C(i), stS)← Si(stS ,L(m(1), . . . ,m(i)))

For all j < i we have that pos(m(i),m(j)) = (`
(j)
x , `

(j)
y) is provided by L(m(1), . . . ,m(i)).

For each s, t ∈ [n+ 1] define entry cm
(i)
s,t ∈ cm(i) as:

1. If ∃j < i such that `
(j)
x > s and `

(j)
y > t, then set cm

(i)
s,t := cm

(j)
s,t .

2. Else if ∃j < i such that `
(j)
x = s and `

(j)
y = t, then

– if m(i) >m(j), set cm
(i)
s,t := cm

(j)
s,t + 1 mod 3;

– if m(i) <m(j), set cm
(i)
s,t := cm

(j)
s,t − 1 mod 3;

– if they are incomparable, set cm
(i)
s,t := cm

(j)
s,t .

3. Else set cm
(i)
s,t ←$ {0, 1, 2}.

For each s ∈ [n] define entry bx
(i)
s ∈ bx(i) as:

4. If ∃j < i such that `
(j)
x > s, then set bx

(i)
s := bx

(j)
s .

5. Else if ∃j < i such that `
(j)
x = s, then set bx

(i)
s := bx

(j)
s + 1 mod 2.

6. Else set bx
(i)
s ←$ {0, 1}.

For each t ∈ [n] define entry by
(i)
t ∈ by(i) as:

7. If ∃j < i such that `
(j)
y > t, then set by

(i)
t := by

(j)
t .

8. Else if ∃j < i such that `
(j)
y = t, then set by

(i)
t := by

(j)
t + 1 mod 2.

9. Else set by
(i)
t ←$ {0, 1}.

Output C(i) = (cm(i), bx(i), by(i)) and stS = (C(1), . . . , C(i)).

Fig. 1. Simulator Si (for 2 ≤ i ≤ q) for 2-dimensional PORE.

5.2 Implementation Choices

In this section we describe the result of our experimental validation of the efficiency of our PORE
scheme.

Plaintext Space. We have implemented our scheme for a range of parameters d and n. We report
here the results for all combinations (d, n) with d ∈ {2, . . . , 8} and n = 2i for i ∈ {1, . . . , 13} s.t. the
ciphertext size is less than 20MB.

PRF Choice. We implement the PRF F : {0, 1}κ×{0, 1}∗ → {0, 1}κ using AES-CBC mode, with
key size κ = 128 bits. This is a particularly convenient choice thanks to the AES native instruction
in modern CPUs.

Note that in the theoretical analysis we stated that the complexity of the encryption is O(nd)
when measured as the number of calls to a PRF with unbounded domain. However in practice,
when instantiating F with AES in CBC mode the running time (in terms of number of calls to AES)
grows linearly with the number of blocks needed for the plaintext, namely ddn/128e. Therefore, a
näıve implementation would be significantly slower than promised. We notice, however, that thanks

11

n
d

2 3 4 5

2 2.0 (±0.42) µs 4.0 (±0.61) µs 18.2 (±4.56) µs 45.1 (±7.53) µs
4 7.0 (±0.76) µs 23.9 (±1.98) µs 100.2 (±4.81) µs 411.4 (±36.60) µs
8 16.2 (±0.98) µs 107.5 (±4.31) µs 749.3 (±95.20) µs 5.6 (±0.60) ms
16 49.2 (±1.81) µs 622.3 (±63.24) µs 7.6 (±1.12) ms 110.6 (±6.49) ms
32 154.8 (±5.05) µs 3.5 (±0.37) ms 93.0 (±6.40) ms 3.2 (±0.01) s
64 546.8 (±47.95) µs 21.9 (±2.21) ms 1.4 (±0.01) s
128 1.8 (±0.22) ms 162.5 (±8.32) ms
256 6.5 (±0.83) ms 1.3 (±0.02) s
512 21.8 (±2.53) ms
1024 83.3 (±5.95) ms
2048 326.5 (±7.58) ms
4096 1.3 (±0.02) s
8192 5.3 (±0.03) s

n
d

6 7 8

2 124.1 (±7.18) µs 342.8 (±25.00) µs 744.3 (±21.90) µs
4 1.6 (±0.22) ms 7.4 (±1.03) ms 33.7 (±4.03) ms
8 39.3 (±0.59) ms 358.0 (±12.67) ms
16 1.9 (±0.01) s

Table 1. Encryption time and standard deviation

to the special structure of the inputs of our PRF it is possible to get rid of this extra factor. In
particular, we note that in our matrix of ciphertexts we evaluate the PRF on inputs of the form

FK(prefix(x1, i1), . . . , prefix(xd, id))

where each value prefix(xk, ik) is given as input to n different PRFs. Therefore we modify the way
we evaluate the PRF by first precomputing

uk,i = F kK(prefix(xk, i)) ∀k ∈ [d], i ∈ [n]

and then implement

FK(prefix(x1, i1), . . . , prefix(xd, id)) = F 0
K(u1,i1 ⊕ · · · ⊕ ud,id)

so that the inputs to F 0
K is of fixed length 128. Therefore (even adding the O(n2d) extra AES

invocations on “long” n-bit values used to precompute the u’s), the total number of calls to AES
and hence the running time is O(nd) as initially promised.

Note, the XOR operation over d strings takes O(d) time. However, the points which are in the
same position in the first k dimensions shares the value u1,i1 ⊕ · · · ⊕ uk,ik . By making these values

reusable, we can reduce the amortized complexity to
∑d

i=1
1

ni−1 = O(1).

5.3 Experimental Setup

The reported encryption timings (Table 1) are the average taken over 100 executions of the en-
cryption algorithm. For the evaluation timings (Table 2), we randomly pick 500 pairs from the 100
ciphertexts and take the average of the 500 executions of the evaluation algorithm. To measure

12

n
d

2 3 4 5

2 0.27 (±0.02) 0.56 (±0.05) 0.59 (±0.05) 0.62 (±0.06)
4 0.54 (±0.05) 0.57 (±0.05) 0.61 (±0.05) 0.54 (±0.06)
8 0.54 (±0.05) 0.58 (±0.06) 0.43 (±0.05) 0.37 (±0.05)
16 0.55 (±0.05) 0.42 (±0.05) 0.35 (±0.04) 0.91 (±0.57)
32 0.43 (±0.04) 0.32 (±0.02) 0.30 (±0.22) 0.35 (±0.28)
64 0.42 (±0.05) 0.56 (±0.51) 0.95 (±0.79)
128 0.37 (±0.04) 0.71 (±0.62)
256 0.30 (±0.04) 0.80 (±0.73)
512 0.39 (±0.31)
1024 0.40 (±0.35)
2048 0.52 (±0.60)
4096 0.50 (±0.44)
8192 0.24 (±0.02)

n
d

6 7 8

2 0.61 (±0.06) 0.64 (±0.73) 0.48 (±0.06)
4 0.49 (±0.07) 0.41 (±0.06) 3.78 (±3.24)
8 0.91 (±0.53) 1.40 (±0.76)
16 1.27 (±0.78)

Table 2. Evaluation time and standard deviation (µs)

the size of the ciphertexts (Table 3), we keep track of the size of the required space each time the
encryption algorithm applies the memory.

Hardware. The experiments were executed on a machine with the following characteristics:

– OS: Linux TitanX1 3.19.0-15-generic #15-Ubuntu SMP

– CPU: Intel(R) Xeon(R) CPU E5-2675 v3 1.80GHz

– Memory: 128GB

– GCC: gcc version 4.9.2 (Ubuntu 4.9.2-10ubuntu13) (Compile option -O2)

5.4 Results

Encryption Complexity. Table 1 shows how long it takes to encrypt a single plaintext for different
values of d and n. As expected, we observe that the encryption time grows as the dimension d and
bit lengths n increases.

Evaluation Complexity. Note that the theoretically complexity of the evaluation algorithm is
O(d). However, the actual running time of the evaluation algorithm from Table 2 indicates that
the algorithm is so fast that for most choices of parameters it is hard to appreciate the theoretical
complexity.

When the combined size of all 100 ciphertext from the experiments does not exceed 6MB
(i.e. each ciphertext does not exceed 60kB), then all ciphertexts fits inside the L2 cache of the
CPU. By observing the variation of the evaluation timings in Table 2 and the ciphertext size in
Table 3, we can conclude that there is a tendency that when the ciphertexts fits inside the L2 cache,
then the variation stays below 0.07 µs (this observation is indicated in the tables by splitting the
columns in two).

13

n
d

2 3 4 5 6 7 8

2 32 B 84 B 232 B 668 B 1.9 kB 5.7 kB 17.1 kB
4 48 B 212 B 1016 B 4.9 kB 24.4 kB 122.1 kB 610.4 kB
8 80 B 660 B 5.7 kB 51.3 kB 461.3 kB 4.1 MB
16 144 B 2.3 kB 38.4 kB 652.5 kB 10.8 MB
32 536 B 17.0 kB 561.5 kB 18.1 MB
64 1.5 kB 99.0 kB 6.3 MB
128 5.1 kB 650.1 kB
256 18.1 kB 4.5 MB
512 68.3 kB
1024 264.5 kB
2048 1.0 MB
4096 4.0 MB
8192 16.1 MB

Table 3. The size of a ciphertext

6 Conclusion

In this work, we introduced a generalization of order-revealing encryption (ORE) called revealing
encryption (RE), which is an encryption scheme that allows to compute a (selected) function f
of the plaintexts given only the encrypted data. We adopt the simulation-based security notion
presented by Chenette et al. [CLWW16], which define security with respect to a leakage function.
This enables one to determine the exact information that the ciphertexts leak about the underlying
messages (which will always include the function f evaluated on all possible ciphertexts).

Revealing encryption is of special interest in relation to applications like computation or queries
on outsourced encrypted data. However, these encryption schemes leak potentially sensitive infor-
mation about the encrypted data depending on the actual application in which RE is used. This
means that before using RE in a concrete application one should make a proper analysis to under-
stand whether the leakage provided is problematic or not. A recent line of work has been concerned
with attacking applications built on top of this kind of encryption schemes [NKW15, DDC16,
GSB+17].

Acknowledgements

This research received funding from the Danish National Research Foundation and The National
Science Foundation of China (grant 61361136003) for the Sino-Danish Center for the Theory of
Interactive Computation (CTIC), the Danish Independent Research Council under Grant-ID DFF-
6108-00169 (FoCC), and the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 731583 (SODA).

References

AKSX04. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-preserving encryption for
numeric data. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Paris, France, June 13-18, 2004, pages 563–574, 2004.

BBO07. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable encryp-
tion. In Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, pages 535–552, 2007.

14

BCLO09. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-preserving symmetric
encryption. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, pages 224–241, 2009.

BCO11. Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption revisited: Im-
proved security analysis and alternative solutions. In Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 578–
595, 2011.

BCOP03. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. IACR Cryptology ePrint Archive, 2003:195, 2003.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 1–18, 2001.

BHJP14. Christoph Bösch, Pieter H. Hartel, Willem Jonker, and Andreas Peter. A survey of provably secure
searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51, 2014.

BKS01. Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In Proceedings of
the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany, pages
421–430, 2001.

BKS16. Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-key
setting: Stronger security from weaker assumptions. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 852–880, 2016.

BKV13. Suvarna Bothe, Panagiotis Karras, and Akrivi Vlachou. eskyline: Processing skyline queries over encrypted
data. Proc. VLDB Endow., 6(12):1338–1341, August 2013.

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Seman-
tically secure order-revealing encryption: Multi-input functional encryption without obfuscation. In Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages
563–594, 2015.

BRRS09. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving encryption.
In Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary, Alberta,
Canada, August 13-14, 2009, Revised Selected Papers, pages 295–312, 2009.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Theory
of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30,
2011. Proceedings, pages 253–273, 2011.

BZ16. Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of private learning. In Theory
of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part I, pages 176–206, 2016.

CD15a. Sanjit Chatterjee and M. Prem Laxman Das. Property preserving symmetric encryption revisited. In
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part II, pages 658–682, 2015.

CD15b. Payal Chaudhari and Maniklal Das. Privacy-preserving attribute based searchable encryption. Cryptology
ePrint Archive, Report 2015/899, 2015. http://eprint.iacr.org/2015/899.

CGKO06. Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages
79–88, 2006.

CLOZ16. David Cash, Feng-Hao Liu, Adam O’Neill, and Cong Zhang. Reducing the leakage in practical order-
revealing encryption. Cryptology ePrint Archive, Report 2016/661, 2016. http://eprint.iacr.org/

2016/661.

CLWW16. Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-revealing encryption
with limited leakage. In Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, pages 474–493, 2016.

15

http://eprint.iacr.org/2015/899
http://eprint.iacr.org/2016/661
http://eprint.iacr.org/2016/661

DDC16. F. Betül Durak, Thomas M. DuBuisson, and David Cash. What else is revealed by order-revealing
encryption? In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 1155–1166, 2016.

DHO16. Ivan Damg̊ard, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing information flow
with cryptography. In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part II, pages 547–576, 2016.

DMNS06. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, pages 265–284, 2006.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
169–178, 2009.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Advances in Cryptol-
ogy - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 578–602, 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
40–49, 2013.

Goh03. Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.iacr.

org/2003/216.
GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained

access control of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98,
2006.

GSB+17. Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 655–672, 2017.

GSW04. Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunctive keyword search over encrypted
data. In Applied Cryptography and Network Security, Second International Conference, ACNS 2004,
Yellow Mountain, China, June 8-11, 2004, Proceedings, pages 31–45, 2004.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
545–554, 2013.

JP16. Marc Joye and Alain Passelgue. Function-revealing encryption. Cryptology ePrint Archive, Report
2016/622, 2016. http://eprint.iacr.org/2016/622.

Ker15. Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 656–667, 2015.

KHY13. Dongyoung Koo, Junbeom Hur, and Hyunsoo Yoon. Secure and efficient data retrieval over encrypted
data using attribute-based encryption in cloud storage. Computers & Electrical Engineering, 39(1):34–46,
2013.

KLN+11. Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.
What can we learn privately? SIAM J. Comput., 40(3):793–826, 2011.

KS14. Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-security order-preserving
encryption. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 275–286, 2014.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology - EUROCRYPT 2008, 27th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April
13-17, 2008. Proceedings, pages 146–162, 2008.

LLM+16. Ximeng Liu, Rongxing Lu, Jianfeng Ma, Le Chen, and Haiyong Bao. Efficient and privacy-preserving
skyline computation framework across domains. Future Generation Comp. Syst., 62:161–174, 2016.

LW16. Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions, applications, and lower
bounds. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, Vienna, Austria, October 24-28, 2016, pages 1167–1178, 2016.

16

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2016/622

NKW15. Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-6, 2015, pages 644–655, 2015.

PLZ13. Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol for order-preserving
encoding. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 463–477, 2013.

PR12. Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 375–391, 2012.

PTFS03. Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and progressive algorithm for
skyline queries. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June 9-12, 2003, pages 467–478, 2003.

RACY16. Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich. POPE: partial order preserv-
ing encoding. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 1131–1142, 2016.

RAD78. Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11):169–180, 1978.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages 47–53, 1984.

SWP00. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In 2000 IEEE Symposium on Security and Privacy, Berkeley, California, USA, May 14-17, 2000,
pages 44–55, 2000.

WLLX13. Changji Wang, Wentao Li, Yuan Li, and Xi-Lei Xu. A ciphertext-policy attribute-based encryption scheme
supporting keyword search function. In Cyberspace Safety and Security - 5th International Symposium,
CSS 2013, Zhangjiajie, China, November 13-15, 2013, Proceedings, pages 377–386, 2013.

WRB15. Mor Weiss, Boris Rozenberg, and Muhammad Barham. Practical solutions for format-preserving encryp-
tion. CoRR, abs/1506.04113, 2015.

XFAM02. Jun (Jim) Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B. Moon. Prefix-preserving IP address
anonymization: Measurement-based security evaluation and a new cryptography-based scheme. In 10th
IEEE International Conference on Network Protocols (ICNP 2002), 12-15 November 2002, Paris, France,
Proceedings, pages 280–289, 2002.

XY12. Liangliang Xiao and I-Ling Yen. Security analysis and enhancement for prefix-preserving encryption
schemes. IACR Cryptology ePrint Archive, 2012:191, 2012.

ZXA14. Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In 2014 IEEE Conference on Computer Communications, INFOCOM
2014, Toronto, Canada, April 27 - May 2, 2014, pages 522–530, 2014.

17

A Proof of Theorem 1

In the proof we replace the pseudorandom function F with a truly random function g : {0, 1}∗ →
{0, 1}κ, and we define the following four functions

g1, g2 :M× [n+ 1]2 → {0, 1, 2}
g3, g4 : {0, 1}n × [n]→ {0, 1}

where given a plaintext m = (x, y) ∈M and two indices i, j ∈ [n+ 1] we define

g1(m, (i, j)) = g(1, prefix(x, i− 1), prefix(y, j − 1)) mod 3

g2(m, (i, j)) = g(2, prefix(x, i− 1), prefix(y, j − 1)) mod 3

g3(x, i) = g(3, prefix(x, i− 1)) mod 2

g4(y, j) = g(4, prefix(y, j − 1)) mod 2

These functions fulfil the following property, which follows directly from the definition of the
functions g1, g2, g3, g4, prefix and pos.

Lemma 1. For all points m(1) = (x(1), y(1)) and m(2) = (x(2), y(2)) in M, if pos(m(1),m(2)) =
(`x, `y), then for all i ≤ `x and all j ≤ `y it holds that

g1(m(1), (i, j)) = g1(m(2), (i, j))

g2(m(1), (i, j)) = g2(m(2), (i, j))

g3(x(1), i) = g3(x(2), i)

g4(y(1), j) = g4(y(2), j)

Proof (of Theorem 1). We prove that the simulator defined in Figure 1 generates ciphertexts, which
are indistinguishable from the actual ciphertexts. We start by defining a series of hybrid games:

H0: The real experiment: REALPORE
A (κ), where the ciphertexts are generated by the encryption

algorithm.

H1: Same as H0, except we replace the PRF F with a truly random function g (i.e. we replace
F1,K , . . . , F4,K with g1, . . . , g4).

H2: The ideal experiment: IDEALPORE
A,S,L(κ), where the ciphertexts are generated by the simulator S.

From the definition of pseudorandom function it is given that H1 is indistinguishable from H0

(the real experiment). Next, we prove by induction that the ciphertexts (C(1), · · · , C(q)) generated
by the simulator have the same distribution as the ciphertexts (Ĉ(1), · · · , Ĉ(q)) generated by H1

(i.e. that H1 is indistinguishable from H2). From the construction of hybrid H1, we notice that the
distribution of cmi,j , bxi and byi are independent of each other for all i, j ∈ [n+ 1]. Thus, to prove
that the distributions are indistinguishable, we can look at each part separately (i.e. we look at
each of the nine cases defined in the simulator, separately).

In the base case of the induction we show that C(1) is indistinguishable from Ĉ(1): note that
the simulator chooses each part of C(1) uniformly random, while in hybrid H1 each part of Ĉ(1) is
computed using the truly random function g with fresh inputs to each evaluation. Thus, we can

18

conclude that C(1) is indistinguishable from Ĉ(1) (note that we do not need to consider the leakage,
since we only have one ciphertext and thus not enough to perform an evaluation).

Assume that (C(1), . . . , C(i−1)) (generated by the simulator) is indistinguishable from (Ĉ(1), . . . ,
Ĉ(i−1)) (generated by the H1) for some 1 < i 6 q. Then, we prove that C(i) = (cm(i), bx(i), by(i))

and Ĉ(i) = (ĉm(i), b̂x
(i)
, b̂y

(i)
) are indistinguishable distributed. Denote the adversarial chosen mes-

sage by m(i) = (x(i), y(i)) for i = 1, . . . , q. For all j < i, let (`
(j)
x , `

(j)
y) = pos(m(i),m(j)) (which is

provided by the leakage function).

For each entry cm
(i)
s,t in cm(i):

1. If ∃j < i such that `
(j)
x > s and `

(j)
y > t, then we have that x

(i)
s = x

(j)
s and y

(i)
t = y

(j)
t . Thus,

from the definition of hybrid H1 and by Lemma 1 we get

ĉm
(i)
s,t = g2(m(i), (s, t)) + α(m(i), (s, t))

= g2(m(j), (s, t)) + α(m(j), (s, t))

= ĉm
(j)
s,t

From the definition of the simulator (in Figure 1) it is given that cm
(i)
s,t = cm

(j)
s,t , and by

assumption we have C(j) ∼ Ĉ(j), which means that cm
(j)
s,t ∼ ĉm

(j)
s,t . Thus, we can conclude

that cm
(i)
s,t = cm

(j)
s,t ∼ ĉm

(j)
s,t = ĉm

(i)
s,t.

2. Else if ∃i < j such that `
(j)
x = s and `

(j)
y = t, then x

(i)
s 6= x

(j)
s , y

(i)
t 6= y

(j)
t and g2(m(i), (s, t)) =

g2(m(j), (s, t)). The relation between ĉm
(i)
s,t and ĉm

(j)
s,t is defined from the relation between m(i)

and m(j) as follows
– If m(i) > m(j), then (x

(i)
s , y

(i)
t) = (0, 0) and (x

(j)
s , y

(j)
t) = (1, 1), which means that the

following must hold α(m(i), (s, t)) = 0 and α(m(j), (s, t)) = 1. Thus

ĉm
(i)
s,t = ĉm

(j)
s,t + 1 mod 3

– If m(i) < m(j), then (x
(i)
s , y

(i)
t) = (1, 1) and (x

(j)
s , y

(j)
t) = (0, 0), which means that the

following must hold α(m(i), (s, t)) = 1 and α(m(j), (s, t)) = 0. Thus

ĉm
(i)
s,t = ĉm

(j)
s,t − 1 mod 3

– If m(i) and m(j) are incomparable, then we have

[(x(i)
s , y

(i)
t), (x(j)

s , y
(j)
t)] = [(0, 1), (1, 0)] or [(1, 0), (0, 1)].

Thus, by Lemma 1 we get that that ĉm
(i)
s,t = ĉm

(j)
s,t , since

α(m(i), (s, t)) = g1(m(i), (s, t)) = g1(m(j), (s, t)) = α(m(j), (s, t))

By the definition of the simulator (see Figure 1) and the assumption that C(j) ∼ Ĉ(j), we can

conclude that cm
(i)
s,t and ĉm

(i)
s,t are indistinguishable in all three cases.

3. Else ∀j < i, we consider the remaining cases

19

– If `
(j)
x < s or `

(j)
y < t, then ĉm

(i)
s,t is uniformly random, since at least one of the inputs to g2

has never been used before.
– If `

(j)
x = s or `

(j)
y = t, then either x

(i)
s = x

(j)
s , y

(i)
t 6= y

(j)
t or x

(i)
s 6= x

(j)
s , y

(i)
t = y

(j)
t . Thus,

exactly one of α(m(i), (s, t)) and α(m(j), (s, t)) is random, and the other one is fixed.5

Thus, we can conclude that ĉm
(i)
s,t is uniformly random and independent from ĉm

(j)
s,t . Since the

simulator choose cm
(i)
s,t uniformly random, we can conclude that ĉm

(i)
s,t and cm

(i)
s,t are indistin-

guishable.

For each entry bx
(i)
s in bx(i):

4. If ∃j < i such that `
(j)
x > s, then x

(i)
s = x

(j)
s . Thus, from the definition of hybrid H1 and by

Lemma 1 we get

b̂x
(i)

s = g3(x(i), s) + x(i)
s = g3(x(j), s) + x(j)

s = b̂x
(j)

s

Thus, by the definition of the simulator and the assumption that C(j) ∼ Ĉ(j), we can conclude

that bx
(i)
s and b̂x

(i)

s are indistinguishable.

5. Else if ∃j < i such that `
(j)
x = s, then x

(i)
s 6= x

(j)
s , and by the definition of hybrid H1 we have

b̂x
(i)

s = g3(x(i), s) + x(i)
s , b̂x

(j)

s = g3(x(j), s) + x(j)
s

Thus, we can conclude that b̂x
(i)

s 6= b̂x
(j)

s , which implies that

b̂x
(i)

s = b̂x
(j)

s + 1 mod 2

By the definition of the simulator and the assumption that C(j) ∼ Ĉ(j), we can conclude that

bx
(i)
s and b̂x

(i)

s are indistinguishable.

6. Else ∀j < i, we have that `
(j)
x < s. In this case, the input to g3 has never appeared before,

thus b̂x
(i)

s is uniform random. Since the simulator choose bx
(i)
s uniformly at random, they are

indistinguishable.

For each entry by
(i)
t in by(i) the arguments follow closely the arguments for case 4-6. Thus,

C(i) and Ĉ(i) are indistinguishable, if (C(1), . . . , C(i−1)) and (Ĉ(1), . . . , Ĉ(i−1)) are indistinguishable
distributed. By induction, we can conclude that the simulator generates a distribution, which is
indistinguishable from the one generated by H1.

B d-dimensional PORE

In this section we will generalize the 2-dimensional construction from Section 4 into d dimensions:
the matrix cm will be extended from 2 dimensions to d dimensions, and instead of two n-bit string,

5 This follows directly from the way α(m(i), (s, t)) and α(m(j), (s, t)) is chosen in the encryption algorithm, and the

fact that the two messages differs in exactly one coordinate (e.g. (x
(i)
s , y

(i)
t) = (0, 0) and (x

(j)
s , y

(j)
t) = (0, 1)).

20

we now have d n-bit strings bx1, . . . , bxd. Thus, given two ciphertexts C(1) = (cm(1), bx
(1)
1 , . . . , bx

(1)
d)

and C(2) = (cm(2), bx
(2)
1 , . . . , bx

(2)
d), we can use the bitstrings bx

(1)
k and bx

(2)
k for k ∈ [d] to determine

the entry in cm(1) and cm(2) that reveals the partial order of the vectors.
The message space is defined asM = ({0, 1}n)d, and the authorized function for a d-dimensional

PORE is
f :M×M→ {(0, 0), (0, 1), (1, 0), (1, 1)}

For m(1) = (x
(1)
1 , . . . , x

(1)
d) ∈ M and m(2) = (x

(2)
1 , . . . , x

(2)
d) ∈ M we define a function that

determines the order

ord(m(1),m(2)) :=

{
1 if x

(1)
k ≤ x

(2)
k ∀k ∈ [d]

0 otherwise

Then we can define the authorized function similar to the 2-dimensional case:

f(m(1),m(2)) := (ord(m(1),m(2)), ord(m(2),m(1)))

We will prove the security of our scheme with respect to the following leakage function (similar
to the one defined for the 2-dimensional case):

L(m(1), · · · ,m(q)) =
{
f(m(i),m(j)), pos(m(i),m(j)) | i, j ∈ [q]

}
Given a pseudorandom function F : {0, 1}κ × {0, 1}∗ → {0, 1}κ, we define the following d + 2

functions:

F1,K , F2,K :M× [n+ 1]d → {0, 1, 2}
Fk+2,K : {0, 1}n × [n]→ {0, 1} for k ∈ [d]

where given a plaintext m = (x1, . . . , xd) ∈M and d indices i1, . . . , id ∈ [n+ 1] we define

F1,K(m, (i1, . . . , id)) = FK(1, prefix(x1, i1 − 1), . . . , prefix(xd, id − 1)) mod 3

F2,K(m, (i1, . . . , id)) = FK(2, prefix(x1, i1 − 1), . . . , prefix(xd, id − 1)) mod 3

and for k ∈ [d] we define

Fk+2,K(xk, ik) = FK(k + 2, prefix(xk, ik − 1)) mod 2

Construction 2 Fix a security parameter κ ∈ N. We define a PORE for d-dimensional points
ΠPORE = (Setup,Enc,Eval) as follows

Setup: On input κ ∈ N, sample and output a key K ←$ {0, 1}κ.
Encryption: Given a point m = (x1, . . . , xd) ∈M and a secret key K. Compute for all i1, . . . , id ∈

[n+ 1]:

cmi1···id = F2,K(m, (i1, . . . , id)) + α(m, (i1, . . . , id)) mod 3

where α is a function defined as follows

α(m, (i1, . . . , id)) =


0 if xk,ik = 0 ∀k ∈ S ∨ S = ∅
1 if xk,ik = 1 ∀k ∈ S ∧ S 6= ∅

F1,K(m, (i1, . . . , id)) otherwise

21

where S = {k ∈ [d]|ik ≤ n},6 and xk,ik is the ik-th bit in xk. Next, compute for all k ∈ [d]

bxk,ik = Fk+2,K(xk, ik) + xk,ik mod 2 ∀ ik ∈ [n]

Then output C = (cm, bx1, . . . , bxd), where

cm = {cmi1···id}i1,...,id∈[n+1] ∈ ({0, 1, 2}(n+1))d

bxk = (bxk,1, . . . , bxk,n) ∈ {0, 1}n ∀ k ∈ [d]

Evaluation: On input two ciphertexts

C(1) = (cm(1), bx
(1)
1 , . . . , bx

(1)
d) = Enc(K,m(1))

C(2) = (cm(2), bx
(2)
1 , . . . , bx

(2)
d) = Enc(K,m(2))

For all k ∈ [d], compute pos(bx
(1)
k , bx

(2)
k) = `k. If `k = n + 1 for all k ∈ [d], the algorithm

outputs (1, 1) (since m(1) = m(2)). Otherwise, lookup the entry defined by `1, . . . , `d in cm(1)

and cm(2), and compute

t = cm
(1)
`1···`d − cm

(2)
`1···`d mod 3

Next, the algorithm branches on the value of t:

– If t = −1, output (1, 0) (since m(1) <m(2));

– If t = 1, output (0, 1) (since m(1) >m(2));

– Otherwise output (0, 0), since the two points are incomparable.

Correctness. Given m(1) = (x
(1)
1 , . . . , x

(1)
d) and m(2) = (x

(2)
1 , . . . , x

(2)
d) such that pos(m(1),m(2)) =

(`1, . . . , `d). Then, by the same arguments as in the 2-dimensional case, we can prove for all k ∈ [d]

that bx
(1)
k,ik

= bx
(2)
k,ik

for ik < `k, and if `k < n+1 then there exists ik < n+1 such that bx
(1)
k,ik
6= bx

(2)
k,ik

.

Thus, we can identify the entry (l1, . . . , ld) in cm(1) and cm(2) that determines the partial order of
the vectors. Next, we can do the same case analysis as in the proof for 2 dimensions by a natural
extensions to d dimensions.

B.1 Security.

The security proof of the d-dimensional PORE scheme is a direct generalization of the security
proof for the 2-dimensional PORE.

Simulator. Denote the adversarial chosen message as m(1), . . . ,m(q), where m(i) = (x
(i)
1 , . . . , x

(i)
d) ∈

M. Initially, simulator S0 is empty, and simulator S1 sets C(1) =
(
cm(1), bx

(1)
1 , . . . , bx

(1)
d

)
, where

cm(1), bx
(1)
k for k ∈ [d] are all drawn uniformly at random. Furthermore, it sets stS = (C(1)). Define

the simulator Si (for 2 ≤ i ≤ q) as in Figure 2.

Theorem 2. The RE scheme ΠPORE from Construction 2 is secure with leakage function L.

6 Given i1, . . . , id, the set S contains all the k’s such that ik ≤ n.

22

(C(1), stS)← Si(stS ,L(m(1), . . . ,m(i)))

For all j < i we have that pos(m(i),m(j)) = (`
(j)
1 , . . . , `

(j)
d) is provided by L(m(1), . . . ,m(i)).

For each i1, . . . , id ∈ [n+ 1] define the entry cm
(i)
i1···id ∈ cm(i) as:

1. If ∃j < i such that `
(j)
k ≥ ik for all k ∈ [d], and ∃k such that `

(j)
k > ik, then set cm

(i)
i1···id :=

cm
(j)
i1···id .

2. Else if ∃j < i such that (`
(j)
1 , . . . , `

(j)
d) = (i1, . . . , id), then

– if m(i) >m(j), set cm
(i)
i1···id := cm

(j)
i1···id + 1 mod 3

– if m(i) <m(j), set cm
(i)
i1···id := cm

(j)
i1···id − 1 mod 3

– if they are incomparable, set cm
(i)
i1···id := cm

(j)
i1···id

3. Else set cm
(i)
i1···id ←$ {0, 1, 2}.

For all k ∈ [d]: for each ik ∈ [n] define the entry bx
(i)
k,ik
∈ bx(i)

k , :

4. If ∃j < i such that `
(j)
k > ik, then set bx

(i)
k,ik

:= bx
(j)
k,ik

.

5. Else if ∃j < i such that `
(j)
k = ik, then set bx

(i)
k,ik

:= bx
(j)
k,ik

+ 1 mod 2.

6. Else set bx
(i)
k,ik
←$ {0, 1}.

Output C(i) = (cm(i), bx
(i)
1 , . . . , bx

(i)
d) and stS = (C(1), . . . , C(i))

Fig. 2. Simulator Si (for 2 ≤ i ≤ q) for the d-dimensional PORE.

Proof. We state a series of hybrid games, which are similar to the 2-dimensional case:

H0: The real experiment: REALPORE
A (κ), where the ciphertexts are generated by the encryption

algorithm.

H1: Same as H0, except we replace the PRF F with a truly random function.

H2: The ideal experiment: IDEALPORE
A,S,L(κ), where the ciphertexts are generated by the simulator.

The first step of the proof is to replace the pseudorandom function F with a truly random
function. Thus, from the property of the pseudorandom function, we get that hybrid H0 (the real
experiment) and hybrid H1 are indistinguishable. Next, we prove by induction that hybrid H1

generates ciphertexts, which are indistinguishable from simulated ciphertexts (hybrid H2). This is
proven in the same manner as for the 2-dimensional PORE. Separately, we study each entry in
the d-dimensional matrix cm and each entry in the n-dimensional vectors bx1, . . . , bxd, and prove
that the entry created using the random function is indistinguishable from the simulated version.
From the definition of the simulator and hybrid H1 we get that each entry is independent from the
others. Thus, we can conclude that the construction is secure with leakage function L.

23

C Revealing Encryption For Other Functions

In this section we present some ideas for constructing simple revealing encryption schemes for other
natural functions.

C.1 Hamming distance

Given a plaintext space {0, 1}n, we define a RE scheme for the function f : {0, 1}n × {0, 1}n → Zn

f(x, y) = dH(x, y)

where dH(x, y) = |{xj 6= yj |j ∈ Zn}| is the Hamming distance between the bit vectors x and y.
Our construction is as follows: the setup algorithm outputs pp = n and sk = (π, r), where

π : [n] → [n] is a random permutation and r ←$ {0, 1}n is a random n-bit string. The encryption
algorithm on input m ∈ {0, 1}n outputs

c = Enc(sk,m) =
(
mπ(1), . . . ,mπ(n)

)
⊕ r

(i.e. we permute the bits of the message m and XOR the result with a random value r). Given two
ciphertexts c1, c2 the evaluation algorithm outputs

Eval(pp, c1, c2) = dH(c1, c2)

Note that when computing the Hamming distance between the two ciphertexts, the random
value r will cancel out. This leaves the permuted plaintexts, which has the same Hamming distance
as the original plaintexts. Thus, the scheme enjoys correctness. Next, the scheme can be proven
secure according to the following leakage function for q ≤ 3

L(m1, . . . ,mq) = {dH(mi,mj)|i, j ∈ [q]}

To prove that the scheme is secure we take a look at the general case for an arbitrary q, and
investigate what the ciphertexts leak about the structure and relation between the queried messages
m1, . . . ,mq. For all s ∈ {0, 1}q and i ∈ [n], define As as follows:

i ∈ As iff s = (m1,i, . . . ,mq,i)

where mj,i denotes the ith bit of message mj for j ∈ [q]. Denote the leaked structure by

T (m1, . . . ,mq) = {(s, |As|+ |As̄|) | s1 = 0}

where s̄ is defined such that s̄j 6= sj for all j ∈ [q]. Thus, we define a new leakage function

L∗(m1, . . . ,mq) = L(m1, . . . ,mq) ∪ T (m1, . . . ,mq)

The simulator then proceeds by picking random ciphertexts c1, . . . , cq under the condition that
T (m1, . . . ,mq) = T (c1, . . . , cq). Then it can be proven that c1, . . . , cq is indistinguishable from real
encryptions of messages m1, . . . ,mq under leakage function L∗. Finally, we can prove that for q ≤ 3
the information leaked by L∗ can be computed given the information leaked by L.

Insecurity when q > 3. We will now give a concrete example of why leakage function L is not
enough for q > 3. For two different set of queried messages {m1, . . . ,mq} and {m′1, . . . ,m′q} with
the same leakage under L, they can have different structure of T . For example (for q = 4):

24

m1 = 0000 m′1 = 0000
m2 = 0011 m′2 = 0011
m3 = 0101 m′3 = 0101
m4 = 1001 m′4 = 0110

Here we observe that dH(mi,mj) = dH(m′i,m
′
j) for all 1 ≤ i < j ≤ 4. However, for s = (0, 0, 0, 0)

we note that (s, 0) ∈ T (m1,m2,m3,m4), while (s, 1) ∈ T (m′1,m
′
2,m

′
3,m

′
4). Thus, the two sets of

queries have different structure, which for q > 3 cannot be computed given only the information
provided by leakage function L.

C.2 Difference Revealing Encryption

Modular Difference. Given a plaintext space Zn (for any integer n), it is easy to see that one-time
pad encryption, with key re-use, is a perfectly secure RE scheme for the function f : Zn×Zn → Zn

f(x, y) = x− y mod n

In particular, let k ← Zn be a random key and pp = n, then given a plaintext mi ∈ Zn

ci = Enc(k,mi) = mi + k mod n

Given two ciphertexts ci, cj it is now possible to compute

Eval(pp, ci, cj) = ci − cj mod n = mi −mj = f(mi,mj)

The scheme can be easily proven secure according to the optimal leakage function

L(m1, . . . ,mq) = {f(mi,mj)|i, j ∈ [q]}

since the simulator only needs to pick a random ciphertext c1 ←$ Zn to start with, and then
compute each following ciphertext c2, . . . , cq as

cj = c1 − f(m1,mj)

Absolute Difference. More interestingly, the above simple construction can be turned into a
revealing encryption for absolute difference between integers of bounded magnitude B i.e., for the
function f(x, y) : [B]× [B]→ [0 : B − 1] defined as

f(x, y) = |x− y|

(Note that the challenge here is to construct a scheme where the output of the Eval function should
be the same no matter what the order of its input is). Our construction is as follows: the setup
algorithm outputs a secret key sk = (s, k), where k ←$ [2B − 1] and s←$ {−1,+1}, and pp = B.
The encryption algorithm on input a plaintext mi ∈ [B] outputs

ci = Enc(sk,mi) = s ·mi + k mod 2B − 1

and given two ciphertexts ci, cj the evaluation function outputs

Eval(pp, ci, cj) = min{|ci − cj |, 2B − 1− |ci − cj |}

25

For correctness, we observe that

ci − cj mod 2B − 1 = s(mi −mj) mod 2B − 1

Given that mi,mj ∈ [B] we have that −B < s(mi − mj) < B. Thus we can conclude that the
evaluation algorithm outputs the absolute difference of the two messages:

Eval(pp, ci, cj) = |s(mi −mj)| = f(mi,mj)

Also in this case the scheme can be proven secure according to the optimal leakage function

L(m1, . . . ,mq) = {f(mi,mj)|i, j ∈ [q]}

using the following simulation strategy: start by picking a random ciphertext c1 ←$ [2B − 1], and
for any i ∈ [q] such that f(mi,m1) = 0, set ci = c1. Let k ∈ [q] be the smallest index such that
f(mk,m1) 6= 0, then let ck = c1 + s · f(mi,m1) for s ←$ {−1,+1}. Then for 2 ≤ i ≤ q do the
following

1. if f(mk,mi) =
∣∣f(mk,m1)− f(mi,m1)

∣∣, then compute ci = c1 + s · f(mi,m1),
2. otherwise compute ci = c1 − s · f(mi,m1).

Note, the reason why we distinguish between these two cases is to determine whether mi is on
the same side (or opposite side) of m1 compared to mk. In case 1) m1 is the maximum or minimum
among m1,mk,mi, thus, mk and mi are on the same side. In case 2) they are on opposite sides.

D Review of Existing Privacy-Preserving Skyline Queries Systems

In this section we review the security of two existing systems for performing privacy-preserving
skyline queries.

D.1 eSkyline

Bothe et al. [BKV13] present a system called eSkyline with the goal of processing skyline queries
over encrypted data. They propose a deterministic secret-key encryption scheme to encrypt each
data vector. However, the scheme is clearly not IND-CPA secure (as the authors also observe
themselves), since a chosen-plaintext attack will allow an adversary to determine the encryption
key. Furthermore, an encryption of the zero-vector will always result in the zero-vector. Thus,
the encryption scheme reveals too much unwanted information, even to an adversary that only is
allowed to observe the encrypted data.

D.2 EPSC

Liu et al. [LLM+16] propose a new system called EPSC (efficient and privacy-preserving skyline
computation). To implement this system they design a new additive homomorphic public key
encryption scheme as follows: let τ, q and η be large primes, and compute C0 = τ−1 mod q,
p = C0 + k0 · q such that p is a prime, and Φ = p · η. Let pk = (Φ, q) be the public key, and
sk = (p, τ, η) be the private key. Then they propose to encrypt a message x as follows: choose a
random number r (of size significantly smaller than q) and compute C = Φ · r + x mod q.

26

In the paper, the following parameters are suggested: |q| = 1024, |Φ| = 2048 and |r| = 512. This
encryption scheme is unfortunately not secure: given a ciphertext C, we can determine whether C
encrypts x′ by computing

a = (C − x′) · (Φ−1 mod q) = r + (x− x′) · Φ−1 mod q.

If x = x′ then a = r, which means that a will be small (i.e. a ≤ 2512 with probability 1), while
in all other cases a will be large (i.e., a > 2512 with overwhelming probability). Thus, the system
does not satisfy IND-CPA security.

27

	Revealing Encryption for Partial Ordering

